1
|
Tranter JD, Kumar A, Nair VK, Sah R. Mechanosensing in Metabolism. Compr Physiol 2023; 14:5269-5290. [PMID: 38158369 PMCID: PMC11681368 DOI: 10.1002/cphy.c230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic β-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.
Collapse
Affiliation(s)
- John D. Tranter
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vinayak K. Nair
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Washington University, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Jeevanandam J, Paramasivam E, Saraswathi NT. Glycation restrains open-closed conformation of Insulin. Comput Biol Chem 2023; 102:107803. [PMID: 36542957 DOI: 10.1016/j.compbiolchem.2022.107803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In hyperglycemic conditions, the level of reactive dicarbonyl metabolites concentration is found to be high, which plays a significant role in protein glycation. Despite decades of research, the effect of methylglyoxal on the structure and function of insulin is still unknown. Through a shift in conformation at the B-chain C-terminal (BT-CT) hinge from an "open" to a "wide-open" conformation, insulin binds to the receptor and activates the signal cascade. Insulin resistance, which is the main sign of Type 2 Diabetes, can be caused by a lack of insulin signaling. Methylglyoxal site-specific glycation in residue R22 at B chain forms AGE product Methylglyoxal-hydroimidazolone (MGH1) in insulin. In this work, we present molecular dynamics study of this glycated insulin R22MGH1, which revealed new insights into the conformational and structural changes. We find the following key results: 1) B-chain in insulin undergoes a closed conformational change upon glycation. 2) Glycated insulin shows secondary structure alteration. 3) Glycated insulin retains its closed shape due to an unusually strong hydrophobic contact between B-chain residues. 4) Wide open native conformation of insulin allows the B chain helix to be surrounded by more water molecules compared to the closed conformation of glycated insulin. The closed conformation of glycated insulin impairs its binding to insulin receptor (IR).
Collapse
Affiliation(s)
- Jayanth Jeevanandam
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamilnadu, India
| | - Esackimuthu Paramasivam
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamilnadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamilnadu, India.
| |
Collapse
|
3
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
4
|
Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. J Clin Endocrinol Metab 2022; 107:909-928. [PMID: 34850005 PMCID: PMC8947325 DOI: 10.1210/clinem/dgab849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Design of "first-generation" insulin analogues over the past 3 decades has provided pharmaceutical formulations with tailored pharmacokinetic (PK) and pharmacodynamic (PD) properties. Application of a molecular tool kit-integrating protein sequence, chemical modification, and formulation-has thus led to improved prandial and basal formulations for the treatment of diabetes mellitus. Although PK/PD changes were modest in relation to prior formulations of human and animal insulins, significant clinical advantages in efficacy (mean glycemia) and safety (rates of hypoglycemia) were obtained. Continuing innovation is providing further improvements to achieve ultrarapid and ultrabasal analogue formulations in an effort to reduce glycemic variability and optimize time in range. Beyond such PK/PD metrics, next-generation insulin analogues seek to exploit therapeutic mechanisms: glucose-responsive ("smart") analogues, pathway-specific ("biased") analogues, and organ-targeted analogues. Smart insulin analogues and delivery systems promise to mitigate hypoglycemic risk, a critical barrier to glycemic control, whereas biased and organ-targeted insulin analogues may better recapitulate physiologic hormonal regulation. In each therapeutic class considerations of cost and stability will affect use and global distribution. This review highlights structural principles underlying next-generation design efforts, their respective biological rationale, and potential clinical applications.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Determinants of IGF-II influencing stability, receptor binding and activation. Sci Rep 2022; 12:4695. [PMID: 35304516 PMCID: PMC8933565 DOI: 10.1038/s41598-022-08467-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin like growth factor II (IGF-II) is involved in metabolic and mitogenic signalling in mammalian cells and plays important roles in normal fetal development and postnatal growth. It is structurally similar to insulin and binds not only with high affinity to the type 1 insulin-like growth factor receptor (IGF-1R) but also to the insulin receptor isoform A (IR-A). As IGF-II expression is commonly upregulated in cancer and its signalling promotes cancer cell survival, an antagonist that blocks IGF-II action without perturbing insulin signalling would be invaluable. The high degree of structural homology between the IR and IGF-1R makes selectively targeting either receptor in the treatment of IGF-II-dependent cancers very challenging. However, there are sequence differences between insulin and IGF-II that convey receptor selectivity and influence binding affinity and signalling outcome. Insulin residue YB16 is a key residue involved in maintaining insulin stability, dimer formation and IR binding. Mutation of this residue to glutamine (as found in IGF-II) results in reduced binding affinity. In this study we sought to determine if the equivalent residue Q18 in IGF-II plays a similar role. We show through site-directed mutagenesis of Q18 that this residue contributes to IGF-II structural integrity, selectivity of IGF-1R/IR binding, but surprisingly does not influence IR-A signalling activation. These findings provide insights into a unique IGF-II residue that can influence receptor binding specificity whilst having little influence on signalling outcome.
Collapse
|
6
|
Jarosinski MA, Dhayalan B, Chen YS, Chatterjee D, Varas N, Weiss MA. Structural principles of insulin formulation and analog design: A century of innovation. Mol Metab 2021; 52:101325. [PMID: 34428558 PMCID: PMC8513154 DOI: 10.1016/j.molmet.2021.101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The discovery of insulin in 1921 and its near-immediate clinical use initiated a century of innovation. Advances extended across a broad front, from the stabilization of animal insulin formulations to the frontiers of synthetic peptide chemistry, and in turn, from the advent of recombinant DNA manufacturing to structure-based protein analog design. In each case, a creative interplay was observed between pharmaceutical applications and then-emerging principles of protein science; indeed, translational objectives contributed to a growing molecular understanding of protein structure, aggregation and misfolding. SCOPE OF REVIEW Pioneering crystallographic analyses-beginning with Hodgkin's solving of the 2-Zn insulin hexamer-elucidated general features of protein self-assembly, including zinc coordination and the allosteric transmission of conformational change. Crystallization of insulin was exploited both as a step in manufacturing and as a means of obtaining protracted action. Forty years ago, the confluence of recombinant human insulin with techniques for site-directed mutagenesis initiated the present era of insulin analogs. Variant or modified insulins were developed that exhibit improved prandial or basal pharmacokinetic (PK) properties. Encouraged by clinical trials demonstrating the long-term importance of glycemic control, regimens based on such analogs sought to resemble daily patterns of endogenous β-cell secretion more closely, ideally with reduced risk of hypoglycemia. MAJOR CONCLUSIONS Next-generation insulin analog design seeks to explore new frontiers, including glucose-responsive insulins, organ-selective analogs and biased agonists tailored to address yet-unmet clinical needs. In the coming decade, we envision ever more powerful scientific synergies at the interface of structural biology, molecular physiology and therapeutics.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA; Department of Chemistry, Indiana University, Bloomington, 47405, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
7
|
Kjeldsen TB, Hubálek F, Hjørringgaard CU, Tagmose TM, Nishimura E, Stidsen CE, Porsgaard T, Fledelius C, Refsgaard HHF, Gram-Nielsen S, Naver H, Pridal L, Hoeg-Jensen T, Jeppesen CB, Manfè V, Ludvigsen S, Lautrup-Larsen I, Madsen P. Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans. J Med Chem 2021; 64:8942-8950. [PMID: 33944562 DOI: 10.1021/acs.jmedchem.1c00257] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we describe the molecular engineering of insulin icodec to achieve a plasma half-life of 196 h in humans, suitable for once-weekly subcutaneously administration. Insulin icodec is based on re-engineering of the ultra-long oral basal insulin OI338 with a plasma half-life of 70 h in humans. This systematic re-engineering was accomplished by (1) further increasing the albumin binding by changing the fatty diacid from a 1,18-octadecanedioic acid (C18) to a 1,20-icosanedioic acid (C20) and (2) further reducing the insulin receptor affinity by the B16Tyr → His substitution. Insulin icodec was selected by screening for long intravenous plasma half-life in dogs while ensuring glucose-lowering potency following subcutaneous administration in rats. The ensuing structure-activity relationship resulted in insulin icodec. In phase-2 clinical trial, once-weekly insulin icodec provided safe and efficacious glycemic control comparable to once-daily insulin glargine in type 2 diabetes patients. The structure-activity relationship study leading to insulin icodec is presented here.
Collapse
Affiliation(s)
- Thomas B Kjeldsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - František Hubálek
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | | | - Tina M Tagmose
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Erica Nishimura
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Carsten E Stidsen
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Trine Porsgaard
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Christian Fledelius
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Hanne H F Refsgaard
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Sanne Gram-Nielsen
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Helle Naver
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Lone Pridal
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Thomas Hoeg-Jensen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Claus Bekker Jeppesen
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Valentina Manfè
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Svend Ludvigsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Inger Lautrup-Larsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Peter Madsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| |
Collapse
|
8
|
Feng CJ, Sinitskiy A, Pande V, Tokmakoff A. Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity. J Phys Chem B 2021; 125:4620-4633. [PMID: 33929849 DOI: 10.1021/acs.jpcb.1c00399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have investigated the structure and conformational dynamics of insulin dimer using a Markov state model (MSM) built from extensive unbiased atomistic molecular dynamics simulations and performed infrared spectral simulations of the insulin MSM to describe how structural variation within the dimer can be experimentally resolved. Our model reveals two significant conformations to the dimer: a dominant native state consistent with other experimental structures of the dimer and a twisted state with a structure that appears to reflect a ∼55° clockwise rotation of the native dimer interface. The twisted state primarily influences the contacts involving the C-terminus of insulin's B chain, shifting the registry of its intermolecular hydrogen bonds and reorganizing its side-chain packing. The MSM kinetics predict that these configurations exchange on a 14 μs time scale, largely passing through two Markov states with a solvated dimer interface. Computational amide I spectroscopy of site-specifically 13C18O labeled amides indicates that the native and twisted conformation can be distinguished through a series of single and dual labels involving the B24F, B25F, and B26Y residues. Additional structural heterogeneity and disorder is observed within the native and twisted states, and amide I spectroscopy can also be used to gain insight into this variation. This study will provide important interpretive tools for IR spectroscopic investigations of insulin structure and transient IR kinetics experiments studying the conformational dynamics of insulin dimer.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Anton Sinitskiy
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Vijay Pande
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Sun J, Xiong Y, Li X, Haataja L, Chen W, Mir SA, Lv L, Madley R, Larkin D, Anjum A, Dhayalan B, Rege N, Wickramasinghe NP, Weiss MA, Itkin-Ansari P, Kaufman RJ, Ostrov DA, Arvan P, Liu M. Role of Proinsulin Self-Association in Mutant INS Gene-Induced Diabetes of Youth. Diabetes 2020; 69:954-964. [PMID: 32139596 PMCID: PMC7171958 DOI: 10.2337/db19-1106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Abnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene-induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in β-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production.
Collapse
Affiliation(s)
- Jinhong Sun
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Yi Xiong
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Wei Chen
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Saiful A Mir
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Li Lv
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Rachel Madley
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Dennis Larkin
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Arfah Anjum
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Nischay Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| | | | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Cheung DL. The air-water interface stabilizes α-helical conformations of the insulin B-chain. J Chem Phys 2019. [DOI: 10.1063/1.5100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- David L. Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Balasco N, Smaldone G, Ruggiero A, De Simone A, Vitagliano L. Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. Int J Biol Macromol 2018; 118:1924-1930. [PMID: 30017977 DOI: 10.1016/j.ijbiomac.2018.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
The global/local fold of protein structures is stabilized by a variety of specific interactions. A primary role in this context is played by hydrogen bonds. In order to identify novel motifs in proteins, we searched Protein Data Bank structures looking for backbone H-bonds formed by NH groups of two (or more) consecutive residues with consecutive CO groups of distant residues in the sequence. The present analysis unravels the occurrence of recurrent structural motifs that, to the best of our knowledge, had not been characterized in literature. Indeed, these H-bonding patterns are found (i) in a specific parallel β-sheet capping, (ii) in linking of β-hairpins to α-helices, and (iii) in α-helix insertions. Interestingly, structural analyses of these motifs indicate that Gly residues frequently occupy prominent positions. The formation of these motifs is likely favored by the limited propensity of Gly to be embodied in helices/sheets. Of particular interest is the motif corresponding to insertions in helices that was detected in 1% of analyzed structures. Inserted fragments may assume different structures and aminoacid compositions and usually display diversified evolutionary conservation. Since inserted regions are physically separated from the rest of the protein structure, they represent hot spots for ad-hoc protein functionalization.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College South Kensington Campus, London SW7 2AZ, UK
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| |
Collapse
|
12
|
Zheng Q, Lazo ND. Mechanistic Studies of the Inhibition of Insulin Fibril Formation by Rosmarinic Acid. J Phys Chem B 2018; 122:2323-2331. [PMID: 29401384 DOI: 10.1021/acs.jpcb.8b00689] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The self-assembly of insulin to form amyloid fibrils has been widely studied because it is a significant problem in the medical management of diabetes and is an important model system for the investigation of amyloid formation and its inhibition. A few inhibitors of insulin fibrillation have been identified with potencies that could be higher. Knowledge of how these work at the molecular level is not known but important for the development of more potent inhibitors. Here we show that rosmarinic acid completely inhibits amyloid formation by dimeric insulin at pH 2 and 60 °C. In contrast to other polyphenols, rosmarinic acid is soluble in water and does not degrade at elevated temperatures, and thus we were able to decipher the mechanism of inhibition by a combination of solution-state 1H NMR spectroscopy and molecular docking. On the basis of 1H chemical shift perturbations, intermolecular nuclear Overhauser effect enhancements between rosmarinic acid and specific residues of insulin, and slowed dynamics of rosmarinic acid in the presence of insulin, we show that rosmarinic acid binds to a pocket found on the surface of each insulin monomer. This results in the formation of a mixed tetramolecular aromatic network on the surface of insulin dimer, resulting in increased resistance of the amyloidogenic protein to thermal unfolding. This finding opens new avenues for the design of potent inhibitors of amyloid formation and provides strong experimental evidence for the role of surface aromatic clusters in increasing the thermal stability of proteins.
Collapse
Affiliation(s)
- Qiuchen Zheng
- Carlson School of Chemistry and Biochemistry, Clark University , 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Noel D Lazo
- Carlson School of Chemistry and Biochemistry, Clark University , 950 Main Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
13
|
Elviri L, Bergonzi C, Bianchera A, Bettini R. Mapping insulin non-covalent interactions with natural polysaccharides by hydrogen/deuterium exchange mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2323-2330. [PMID: 27495851 DOI: 10.1002/rcm.7708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Drug development efforts involving therapeutic peptides or proteins strongly lead optimization of drug delivery, drug stability, solubility and functionality. The key feature of controlled drug delivery is the use of biocompatible polymers able to interact via non-covalent bonds with an active principle through multiple functional groups. Here amide hydrogen/deuterium exchange (HDX) mass spectrometry was employed to localize insulin dynamics induced by interactions with three natural polysaccharides, i.e. chitosan (CH), sodium alginate (ALG) and chondroitin sulfate (CS). METHODS LTQ-Orbitap continuous-labelling mass spectra were collected by diluting insulin stock solution (10 mM in 0.1% formic acid) to a final concentration of 0.1 mM in D2 O containing 1 mM deuterated ammonium acetate (final pH .6) (insulin:polysaccharide ratio 1:2, w/w). For peptide mapping, deuterated samples were quenched after 0.5, 30, 60, 120 minutes exchange by adding HCl (pH ) and digested with pepsin before LC-MS/MS analysis. RESULTS Differences in the insulin backbone dynamics in the presence of the three polysaccharides were highlighted by monitoring peptic peptides at different time points. No significant differences were observed in the presence of CH, whereas the negatively charged ALG and CS were able to induce significant conformational variations at the B-chain level resulting in more protection against H/D exchange. The A-chain interacted only with CS reducing the protein mobility on a long time scale (120 min). HDX data evidenced heterogeneous insulin dynamics in the presence of ALG and CS. CONCLUSIONS The studies reported here demonstrated the capabilities of mass spectrometry techniques and HDX methods to obtain useful information toward the flexibility and the behavior of native insulin in the presence of natural polysaccharides, and could provide insights to study the behavior of pharmaceutical formulations. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lisa Elviri
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| | - Carlo Bergonzi
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Annalisa Bianchera
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Ruggero Bettini
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
14
|
Mills BJ, Laurence Chadwick JS. Effects of localized interactions and surface properties on stability of protein-based therapeutics. ACTA ACUST UNITED AC 2016; 70:609-624. [PMID: 27861887 DOI: 10.1111/jphp.12658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/04/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Protein-based therapeutics garner significant attention because of exquisite specificity and limited side effects and are now being used to accomplish targeted delivery of small-molecule drugs. This review identifies and highlights individual chemical attributes and categorizes how site-specific changes affect protein stability based on published high-resolution molecular analyses. KEY FINDINGS Because it is challenging to determine the mechanisms by which the stability of large, complex molecules is altered and data are sparse, smaller, therapeutic proteins (insulin, erythropoietin, interferons) are examined alongside antibody data. Integrating this large pool of information with the limited available studies on antibodies reveals common mechanisms by which specific alterations affect protein structure and stability. SUMMARY Physical and chemical stability of therapeutic proteins and antibody drug conjugates (ADCs) is of critical importance because insufficient stability prevents molecules from making it to market. Individual moieties on/near the surface of proteins have substantial influence on structure and stability. Seemingly small, superficial modification may have far-reaching consequences on structure, conformational dynamics, and solubility of the protein, and hence physical stability of the molecule. Chemical modifications, whether spontaneous (e.g. oxidation, deamidation) or intentional, as with ADCs, may adversely impact stability by disrupting local surface properties or higher order protein structure.
Collapse
Affiliation(s)
- Brittney J Mills
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Jennifer S Laurence Chadwick
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA.,BioAnalytix Inc., Cambridge, MA, USA
| |
Collapse
|
15
|
Hjorth CF, Norrman M, Wahlund PO, Benie AJ, Petersen BO, Jessen CM, Pedersen TÅ, Vestergaard K, Steensgaard DB, Pedersen JS, Naver H, Hubálek F, Poulsen C, Otzen D. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin. J Pharm Sci 2016; 105:1376-86. [DOI: 10.1016/j.xphs.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|
16
|
Teska BM, Alarcón J, Pettis RJ, Randolph TW, Carpenter JF. Effects of phenol and meta-cresol depletion on insulin analog stability at physiological temperature. J Pharm Sci 2014; 103:2255-67. [PMID: 24909933 DOI: 10.1002/jps.24039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/11/2022]
Abstract
The stability of three commercial "fast-acting" insulin analogs, insulin lispro, insulin aspart, and insulin glulisine, was studied at various concentrations of phenolic preservatives (phenol and/or meta-cresol) during 9 days of incubation at 37 °C. The analysis by both size-exclusion and reversed-phase chromatography showed degradation of lispro and aspart that was inversely dependent on the concentration of phenolic preservatives. Insulin glulisine was much more stable than the other analogs and showed minimal degradation even in the absence of phenolic preservatives. With sedimentation velocity ultracentrifugation, we determined the preservatives' effect on the insulins' self-assembly. When depleted of preservatives, insulin glulisine dissociates from higher molecular weight species into a number of intermediate molecular weight species, in between monomer and hexamer, whereas insulin aspart and insulin lispro dissociate into monomers and dimers. Decreased stability of insulin lispro and insulin aspart seems to be because of the extent of dissociation when depleted of preservative. Insulin glulisine's dissociation to intermediate molecular weight species appears to help minimize its degradation during incubation at 37 °C.
Collapse
Affiliation(s)
- Brandon M Teska
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | | | | | | | | |
Collapse
|
17
|
Žáková L, Kletvíková E, Veverka V, Lepsík M, Watson CJ, Turkenburg JP, Jirácek J, Brzozowski AM. Structural integrity of the B24 site in human insulin is important for hormone functionality. J Biol Chem 2013; 288:10230-40. [PMID: 23447530 DOI: 10.1074/jbc.m112.448050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the recent first structural insight into the insulin-insulin receptor complex, the role of the C terminus of the B-chain of insulin in this assembly remains unresolved. Previous studies have suggested that this part of insulin must rearrange to reveal amino acids crucial for interaction with the receptor. The role of the invariant Phe(B24), one of the key residues of the hormone, in this process remains unclear. For example, the B24 site functionally tolerates substitutions to D-amino acids but not to L-amino acids. Here, we prepared and characterized a series of B24-modified insulin analogues, also determining the structures of [D-HisB24]-insulin and [HisB24]-insulin. The inactive [HisB24]-insulin molecule is remarkably rigid due to a tight accommodation of the L-His side chain in the B24 binding pocket that results in the stronger tethering of B25-B28 residues to the protein core. In contrast, the highly active [D-HisB24]-insulin is more flexible, and the reverse chirality of the B24C(α) atom swayed the D-His(B24) side chain into the solvent. Furthermore, the pocket vacated by Phe(B24) is filled by Phe(B25), which mimics the Phe(B24) side and main chains. The B25→B24 downshift results in a subsequent downshift of Tyr(B26) into the B25 site and the departure of B26-B30 residues away from the insulin core. Our data indicate the importance of the aromatic L-amino acid at the B24 site and the structural invariance/integrity of this position for an effective binding of insulin to its receptor. Moreover, they also suggest limited, B25-B30 only, unfolding of the C terminus of the B-chain upon insulin activation.
Collapse
Affiliation(s)
- Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Steensgaard DB, Schluckebier G, Strauss HM, Norrman M, Thomsen JK, Friderichsen AV, Havelund S, Jonassen I. Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 2013; 52:295-309. [PMID: 23256685 DOI: 10.1021/bi3008609] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin degludec, an engineered acylated insulin, was recently reported to form a soluble depot after subcutaneous injection with a subsequent slow release of insulin and an ultralong glucose-lowering effect in excess of 40 h in humans. We describe the structure, ligand binding properties, and self-assemblies of insulin degludec using orthogonal structural methods. The protein fold adopted by insulin degludec is very similar to that of human insulin. Hexamers in the R(6) state similar to those of human insulin are observed for insulin degludec in the presence of zinc and resorcinol. However, under conditions comparable to the pharmaceutical formulation comprising zinc and phenol, insulin degludec forms finite dihexamers that are composed of hexamers in the T(3)R(3) state that interact to form an R(3)T(3)-T(3)R(3) structure. When the phenolic ligand is depleted and the solvent condition thereby mimics that of the injection site, the quaternary structure changes from dihexamers to a supramolecular structure composed of linear arrays of hundreds of hexamers in the T(6) state and an average molar mass, M(0), of 59.7 × 10(3) kg/mol. This novel concept of self-assemblies of insulin controlled by zinc and phenol provides the basis for the slow action profile of insulin degludec. To the best of our knowledge, this report for the first time describes a tight linkage between quaternary insulin structures of hexamers, dihexamers, and multihexamers and their allosteric state and its origin in the inherent propensity of the insulin hexamer for allosteric half-site reactivity.
Collapse
Affiliation(s)
- Dorte B Steensgaard
- Diabetes Protein Engineering, Novo Nordisk A/S , Novo Nordisk Park, 2760 Maaloev, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Salbo R, Bush MF, Naver H, Campuzano I, Robinson CV, Pettersson I, Jørgensen TJD, Haselmann KF. Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1181-1193. [PMID: 22499193 DOI: 10.1002/rcm.6211] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization of instrument parameters and calibration standards are crucial for obtaining accurate T-wave Ω-values. METHODS Human insulin and the fast-acting insulin aspart under native-like conditions (ammonium acetate, physiological pH) were analyzed on Waters SYNAPT G1 and G2 HDMS instruments. The calibrated T-wave Ω-values of insulin monomer, dimer, and hexamer ions were measured using many different combinations of denatured and native-like calibrants (masses between 2.85 and 256 kDa) and T-wave conditions. Drift-tube Ω-values were obtained on a modified SYNAPT G1. RESULTS Insulin T-wave Ω-values were measured at 26 combinations of T-wave velocity and amplitude. Optimal sets of calibrants were identified that yield Ω-values with minimal dependence on T-wave conditions and calibration plots with high R(2)-values. The T-wave Ω-values determined under conditions satisfying these criteria had absolute errors <2%. Structural differences between human insulin and fast-acting insulin aspart were probed with IM-MS. Insulin aspart monomers have increased flexibility, while hexamers are more compact than human insulin. CONCLUSIONS Accurate T-wave Ω-values that are indistinguishable from drift-tube values are obtained when using (1) native-like calibrants with masses that closely bracket that of the analyte, (2) T-wave velocities that maximize the R(2) of the calibration plot for those calibrants, and (3) at least three replicates at T-wave velocities that yield calibration plots with high R(2).
Collapse
Affiliation(s)
- Rune Salbo
- Diabetes Protein Engineering, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Borowicz P, Bocian W, Sitkowski J, Bednarek E, Mikiewicz-Syguła D, Błażej-Sosnowska S, Bogiel M, Rusek D, Kurzynoga D, Kozerski L. Novel recombinant insulin analogue with flexible C-terminus in B chain. NMR structure of biosynthetic engineered A22G-B31K-B32R human insulin monomer in water/acetonitrile solution. Int J Biol Macromol 2011; 49:548-54. [PMID: 21704065 DOI: 10.1016/j.ijbiomac.2011.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 11/16/2022]
Abstract
A tertiary structure of recombinant A22(G)-B31(K)-B32(R)-human insulin monomer (insulin GKR) has been characterized by (1)H, (13)C NMR at natural isotopic abundance using NOESY, TOCSY, (1)H/(13)C-GHSQC, and (1)H/(13)C-GHSQC-TOCSY spectra. Translational diffusion studies indicate the monomer structure in water/acetonitrile (65/35vol.%). CSI analysis confirms existence of secondary structure motifs present in human insulin standard (HIS). Both techniques allow to establish that in this solvent recombinant insulin GKR exists as a monomer. Starting from structures calculated by the program CYANA, two different refinement protocols used molecular dynamics simulated annealing with the program AMBER; in vacuum (AMBER_VC), and including a generalized Born solvent model (AMBER_GB). From these calculations an ensemble of 20 structures of lowest energy was chosen which represents the tertiary structure of studied insulin. Here we present novel insulin with added A22(G) amino acid which interacts with β-turn environment resulting in high flexibility of B chain C-terminus.
Collapse
Affiliation(s)
- Piotr Borowicz
- Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Antolíková E, Žáková L, Turkenburg JP, Watson CJ, Hančlová I, Šanda M, Cooper A, Kraus T, Brzozowski AM, Jiráček J. Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface. J Biol Chem 2011; 286:36968-77. [PMID: 21880708 PMCID: PMC3196076 DOI: 10.1074/jbc.m111.265249] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/03/2011] [Indexed: 11/06/2022] Open
Abstract
Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.
Collapse
Affiliation(s)
- Emília Antolíková
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Johan P. Turkenburg
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5YW, United Kingdom, and
| | - Christopher J. Watson
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5YW, United Kingdom, and
| | - Ivona Hančlová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Miloslav Šanda
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Alan Cooper
- the School of Chemistry, Glasgow University, College of Science and Engineering, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Tomáš Kraus
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - A. Marek Brzozowski
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5YW, United Kingdom, and
| | - Jiří Jiráček
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
22
|
Qiao XB, Jiang B, Hou TJ, Xu XJ. Representation of molecular electrostatic potentials of biopolymer by self-organizing feature map. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20010191203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Nakamura T, Takahashi H, Takahashi M, Shimba N, Suzuki EI, Shimada I. Direct Determination of the Insulin−Insulin Receptor Interface Using Transferred Cross-Saturation Experiments. J Med Chem 2010; 53:1917-22. [DOI: 10.1021/jm901099v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takefumi Nakamura
- The Institute of Life Sciences, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Japan Biological Informatics Consortium, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
| | - Hideo Takahashi
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
| | - Mitsuo Takahashi
- The Institute of Life Sciences, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Nobuhisa Shimba
- The Institute of Life Sciences, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Japan Biological Informatics Consortium, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
| | - Ei-ichiro Suzuki
- The Institute of Life Sciences, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Japan Biological Informatics Consortium, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
| | - Ichio Shimada
- Biomedicinal Information Research Center, National institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo, Japan
- The Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
24
|
Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc Natl Acad Sci U S A 2010; 107:1966-70. [PMID: 20133841 DOI: 10.1073/pnas.0911785107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B(26)). They show a structural convergence in the form of a new beta-turn at B(24)-B(26). We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the beta-turn at B(24)-B(26) associated with a trans to cis isomerisation at the B(25)-B(26) peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B(25)-B(26) peptide bond or by the insertion of certain D-amino acids at B(26). The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.
Collapse
|
25
|
Ganim Z, Jones KC, Tokmakoff A. Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy. Phys Chem Chem Phys 2010; 12:3579-88. [DOI: 10.1039/b923515a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A structurally sensitive probe of the monomer/dimer equilibrium of insulin was developed using 2DIR spectroscopy and interpreted using calculated spectra.
Collapse
Affiliation(s)
- Ziad Ganim
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Kevin C. Jones
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Andrei Tokmakoff
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
26
|
Hull JJ, Copley KS, Schegg KM, Quilici DR, Schooley DA, Welch WH. De novo molecular modeling and biophysical characterization of Manduca sexta eclosion hormone. Biochemistry 2009; 48:9047-60. [PMID: 19670911 PMCID: PMC2792118 DOI: 10.1021/bi901078y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eclosion hormone (EH) is an integral component in the cascade regulating the behaviors culminating in emergence of an insect from its old exoskeleton. Little is known regarding the EH solution structure; consequently, we utilized a computational approach to generate a hypothetical structure for Manduca sexta EH. The de novo algorithm exploited the restricted conformational space of disulfide bonds (Cys14-Cys38, Cys18-Cys34, and Cys21-Cys49) and predicted secondary structure elements to generate a thermodynamically stable structure characterized by 55% helical content, an unstructured N-terminus, a helical C-terminus, and a solvent-exposed loop containing Trp28 and Phe29. Both the strain and pseudo energies of the predicted peptide compare favorably with those of known structures. The 62-amino acid peptide was synthesized, folded, assayed for activity, and structurally characterized to confirm the validity of the model. The helical content is supported by circular dichroism and hydrogen-deuterium exchange mass spectrometry. Fluorescence emission spectra and acrylamide quenching are consistent with the solvent exposure predicted for Trp28, which is shielded by Phe29. Furthermore, thermodynamically stable conformations that deviated only slightly from the predicted Manduca EH structure were generated in silico for the Bombyx mori and Drosophila melanogaster EHs, indicating that the conformation is not species-dependent. In addition, the biological activities of known mutants and deletion peptides were rationalized with the predicted Manduca EH structure, and we found that, on the basis of sequence conservation, functionally important residues map to two conserved hydrophobic clusters incorporating the C-terminus and the first loop.
Collapse
Affiliation(s)
| | | | | | | | - David A. Schooley
- Correspondence to: David A. Schooley, Dept. of Biochemistry, University of Nevada, Reno, Nevada 89557; ; Phone: (775)-784-4136; Fax: (775)-784-1419
| | | |
Collapse
|
27
|
Bocian W, Borowicz P, Mikołajczyk J, Sitkowski J, Tarnowska A, Bednarek E, Głąbski T, Tejchman-Małecka B, Bogiel M, Kozerski L. NMR structure of biosynthetic engineered human insulin monomer B31Lys-B32Argin water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer. Biopolymers 2008; 89:820-30. [DOI: 10.1002/bip.21018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Glendorf T, Sørensen AR, Nishimura E, Pettersson I, Kjeldsen T. Importance of the solvent-exposed residues of the insulin B chain alpha-helix for receptor binding. Biochemistry 2008; 47:4743-51. [PMID: 18376848 DOI: 10.1021/bi800054z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjointly, the solvent-exposed residues of the central alpha-helix of the B chain form a well-defined ridge, which is flanked and partly overlapped by the two described insulin receptor binding surfaces on either side of the insulin molecule. To evaluate the importance of this interface in insulin receptor binding, we developed a new powerful method that allows us to introduce all the naturally occurring amino acids into a given position and subsequently determine the receptor binding affinities of the resulting insulin analogues. The total amino acid scanning mutagenesis was performed at positions B9, B10, B12, B13, B16, and B17, and the vast majority of the insulin analogue precursors were expressed and secreted in amounts close to that of the wild-type (human insulin) precursor. The analogue binding data revealed that positions B12 and B16 were the two positions most affected by the amino acid substitutions. Interestingly, the receptor binding affinities of the B13 analogues were also markedly affected by the amino acid substitutions, suggesting that GluB13 indeed is a part of insulin's binding surface. The B10 library screen generated analogues covering a wide range of (20-340%) of relative binding affinities, and the results indicated that a structural stabilization of the central alpha-helix and thereby a more rigid presentation of the binding epitope at the insulin receptor is important for receptor recognition. In conclusion, systematic amino acid scanning mutagenesis allowed us to confirm the importance of the B chain alpha-helix as a central recognition element serving as a linker of a continual binding surface.
Collapse
Affiliation(s)
- Tine Glendorf
- Diabetes Protein Engineering, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark.
| | | | | | | | | |
Collapse
|
29
|
Bocian W, Sitkowski J, Bednarek E, Tarnowska A, Kawecki R, Kozerski L. Structure of human insulin monomer in water/acetonitrile solution. JOURNAL OF BIOMOLECULAR NMR 2008; 40:55-64. [PMID: 18040865 DOI: 10.1007/s10858-007-9206-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 10/15/2007] [Indexed: 05/25/2023]
Abstract
Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H2O/CD3CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1-3 mM and 10-30 degrees C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER_VC), or including a generalized Born solvent model (AMBER_GB).
Collapse
Affiliation(s)
- Wojciech Bocian
- National Medicines Institute, Chełmska 30/34, Warsaw, 00-725, Poland
| | | | | | | | | | | |
Collapse
|
30
|
Zoete V, Meuwly M, Karplus M. Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition. Proteins 2006; 61:79-93. [PMID: 16080143 DOI: 10.1002/prot.20528] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A calculation of the binding free energy for the dimerization of insulin has been performed using the molecular mechanics-generalized Born surface area approach. The calculated absolute binding free energy is -11.9 kcal/mol, in approximate agreement with the experimental value of -7.2 kcal/mol. The results show that the dimerization is mainly due to nonpolar interactions. The role of the hydrogen bonds between the 2 monomers appears to give the direction of the interactions. A per-atom decomposition of the binding free energy has been performed to identify the residues contributing most to the self association free energy. Residues B24-B26 are found to make the largest favorable contributions to the dimerization. Other residues situated at the interface between the 2 monomers were found to make favorable but smaller contributions to the dimerization: Tyr B16, Val B12, and Pro B28, and to an even lesser extent, Gly B23. The energy decomposition on a per-residue basis is in agreement with experimental alanine scanning data. The results obtained from a single trajectory (i.e., the dimer trajectory is also used for the monomer analysis) and 2 trajectories (i.e., separate trajectories are used for the monomer and dimer) are similar.
Collapse
Affiliation(s)
- Vincent Zoete
- Laboratoire de Chimie Biophysique, ISIS/Université Louis Pasteur, Strasbourg Cedex, France
| | | | | |
Collapse
|
31
|
Santos C, Afonso RA, Guarino MP, Patarrão RS, Fernandes A, Noronha JP, Macedo MP, Caldeira J. In vitro nitrosation of insulin A- and B-chains. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2006; 12:331-8. [PMID: 17404423 DOI: 10.1255/ejms.835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The physiological roles of insulin and nitric oxide (NO) have been recently recognized by several studies. A diversity of chemical modifications of insulin is reported both in vivo and in vitro. S-nitrosation, the covalent linkage of NO to cysteine free thiol is recognized as an important post-translational regulation in many proteins. Here we report the in vitro synthesis of an S-nitrosothiol of bovine insulin A- and B-chains. These compounds were characterized by their HPLC chromatographic behavior, monitored by UV visible spectroscopy and electron spray ionization mass spectrometry. The experimental results indicate that each A- and B-chain were S- nitrosated with only one NO group. Stability and solubility of these synthesized derivatives is described for physiological purposes. In this work, nitroso A- and B-chains of insulin were synthesized in vitro in order to better understand the possible interactions between insulin and NO that may be involved in the etiology of insulin resistance.
Collapse
Affiliation(s)
- Celina Santos
- REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Legge FS, Budi A, Treutlein H, Yarovsky I. Protein flexibility: multiple molecular dynamics simulations of insulin chain B. Biophys Chem 2005; 119:146-57. [PMID: 16129550 DOI: 10.1016/j.bpc.2005.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 11/15/2022]
Abstract
Multiple molecular dynamics simulations totaling more than 100 ns were performed on chain B of insulin in explicit solvent at 300 K and 400 K. Despite some individual variations, a comparison of the protein dynamics of each simulation showed similar trends and most structures were consistent with NMR experimental values, even at the elevated temperature. The importance of packing interactions in determining the conformational transitions of the protein was observed, sometimes resulting in conformations induced by localized hydrophobic interactions. The high temperature simulation generated a more diverse range of structures with similar elements of secondary structure and populated conformations to the simulations at room temperature. A broad sampling of the conformational space of insulin chain B illustrated a wide range of conformational states with many transitions at room temperature in addition to the conformational states observed experimentally. The T-state conformation associated with insulin activity was consistently present and a possible mechanism of behavior was suggested.
Collapse
Affiliation(s)
- F S Legge
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| | | | | | | |
Collapse
|
33
|
Inaba T, Tahara S, Nisikawa N, Kashiwagi H, Sato F. All-electron density functional calculation on insulin with quasi-canonical localized orbitals. J Comput Chem 2005; 26:987-93. [PMID: 15880782 DOI: 10.1002/jcc.20239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An all-electron density functional (DF) calculation on insulin was performed by the Gaussian-based DF program, ProteinDF. Quasi-canonical localized orbitals (QCLOs) were used to improve the initial guess for the self-consistent field (SCF) calculation. All calculations were carried out by parallel computing on eight processors of an Itanium2 cluster (SGI Altix3700) with a theoretical peak performance of 41.6 GFlops. It took 35 h for the whole calculation. Insulin is a protein hormone consisting of two peptide chains linked by three disulfide bonds. The numbers of residues, atoms, electrons, orbitals, and auxiliary functions are 51, 790, 3078, 4439, and 8060, respectively. An all-electron DF calculation on insulin was successfully carried out, starting from connected QCLOs. Regardless of a large molecule with complicated topology, the differences in the total energy and the Mulliken atomic charge between initial and converged wavefunctions were very small. The calculation proceeded smoothly without any trial and error, suggesting that this is a promising method to obtain SCF convergence on large molecules such as proteins.
Collapse
Affiliation(s)
- Toru Inaba
- Mechanical Engineering Research Laboratory, Hitachi, Ltd., 832-2 Horiguchi Hitachinaka, Ibaraki 312-0034, Japan
| | | | | | | | | |
Collapse
|
34
|
Zoete V, Meuwly M, Karplus M. A Comparison of the Dynamic Behavior of Monomeric and Dimeric Insulin Shows Structural Rearrangements in the Active Monomer. J Mol Biol 2004; 342:913-29. [PMID: 15342246 DOI: 10.1016/j.jmb.2004.07.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 07/07/2004] [Accepted: 07/07/2004] [Indexed: 10/26/2022]
Abstract
Molecular dynamics (MD) simulations (5-10ns in length) and normal mode analyses were performed for the monomer and dimer of native porcine insulin in aqueous solution; both starting structures were obtained from an insulin hexamer. Several simulations were done to confirm that the results obtained are meaningful. The insulin dimer is very stable during the simulation and remains very close to the starting X-ray structure; the RMS fluctuations calculated from the MD simulation agree with the experimental B-factors. Correlated motions were found within each of the two monomers; they can be explained by persistent non-bonded interactions and disulfide bridges. The correlated motions between residues B24 and B26 of the two monomers are due to non-bonded interactions between the side-chains and backbone atoms. For the isolated monomer in solution, the A chain and the helix of the B chain are found to be stable during 5ns and 10ns MD simulations. However, the N-terminal and the C-terminal parts of the B chain are very flexible. The C-terminal part of the B chain moves away from the X-ray conformation after 0.5-2.5ns and exposes the N-terminal residues of the A chain that are thought to be important for the binding of insulin to its receptor. Our results thus support the hypothesis that, when monomeric insulin is released from the hexamer (or the dimer in our study), the C-terminal end of the monomer (residues B25-B30) is rearranged to allow binding to the insulin receptor. The greater flexibility of the C-terminal part of the beta chain in the B24 (Phe-->Gly) mutant is in accord with the NMR results. The details of the backbone and side-chain motions are presented. The transition between the starting conformation and the more dynamic structure of the monomers is characterized by displacements of the backbone of Phe B25 and Tyr B26; of these, Phe B25 has been implicated in insulin activation.
Collapse
Affiliation(s)
- Vincent Zoete
- Laboratoire de Chimie Biophysique, ISIS/Université Louis Pasteur, 8, allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| | | | | |
Collapse
|
35
|
Huang K, Xu B, Hu SQ, Chu YC, Hua QX, Qu Y, Li B, Wang S, Wang RY, Nakagawa SH, Theede AM, Whittaker J, De Meyts P, Katsoyannis PG, Weiss MA. How Insulin Binds: the B-Chain α-Helix Contacts the L1 β-Helix of the Insulin Receptor. J Mol Biol 2004; 341:529-50. [PMID: 15276842 DOI: 10.1016/j.jmb.2004.05.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 05/11/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Binding of insulin to the insulin receptor plays a central role in the hormonal control of metabolism. Here, we investigate possible contact sites between the receptor and the conserved non-polar surface of the B-chain. Evidence is presented that two contiguous sites in an alpha-helix, Val(B12) and Tyr(B16), contact the receptor. Chemical synthesis is exploited to obtain non-standard substitutions in an engineered monomer (DKP-insulin). Substitution of Tyr(B16) by an isosteric photo-activatable derivative (para-azido-phenylalanine) enables efficient cross-linking to the receptor. Such cross-linking is specific and maps to the L1 beta-helix of the alpha-subunit. Because substitution of Val(B12) by larger side-chains markedly impairs receptor binding, cross-linking studies at B12 were not undertaken. Structure-function relationships are instead probed by side-chains of similar or smaller volume: respective substitution of Val(B12) by alanine, threonine, and alpha-aminobutyric acid leads to activities of 1(+/-0.1)%, 13(+/-6)%, and 14(+/-5)% (relative to DKP-insulin) without disproportionate changes in negative cooperativity. NMR structures are essentially identical with native insulin. The absence of transmitted structural changes suggests that the low activities of B12 analogues reflect local perturbation of a "high-affinity" hormone-receptor contact. By contrast, because position B16 tolerates alanine substitution (relative activity 34(+/-10)%), the contribution of this neighboring interaction is smaller. Together, our results support a model in which the B-chain alpha-helix, functioning as an essential recognition element, docks against the L1 beta-helix of the insulin receptor.
Collapse
Affiliation(s)
- Kun Huang
- Department of Biochemistry, Case Western Reserve School of Medicine, Cleveland OH 44106-4935, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schaffer ML, Deshayes K, Nakamura G, Sidhu S, Skelton NJ. Complex with a phage display-derived peptide provides insight into the function of insulin-like growth factor I. Biochemistry 2003; 42:9324-34. [PMID: 12899619 DOI: 10.1021/bi034386c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dramatic improvement in the NMR spectra of insulin-like growth factor I (IGF-I) in the presence of a peptide identified from a phage display library has allowed for the first time the determination of a high-resolution solution structure for much of IGF-I. The three helices of IGF-I in this complex have an arrangement similar to that seen in high-resolution crystal structures of IGF-I and insulin, although there are differences in the conformation and precise location of helix 3. A cluster of hydrophobic and basic side chains within the turn-helix motif of the peptide contact a hydrophobic patch on helices 1 and 3 of IGF-I. The importance of this patch for tight binding was verified using alanine scanning mutagenesis of the peptide in two different phage display formats. Consistent with its antagonistic activity, the peptide binds to a region implicated by mutagenesis studies to be important for association with IGF binding proteins (IGFBPs). The ability of the peptide to also inhibit signaling has important implications for the manner in which IGF-I interacts with its receptor. Interestingly, the peptide uses the same binding site as detergent and a fragment of IGFBP-5 identified in other IGF-I complexes. The ligand-induced structural variability of helix 3 in these complexes suggests that exchange between such conformations may be the source of the dynamic nature of free IGF-I and likely has functional significance for the ability of IGF-I to recognize two signaling receptors and six binding proteins with high affinity.
Collapse
Affiliation(s)
- Michelle L Schaffer
- Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
37
|
Dong J, Wan Z, Popov M, Carey PR, Weiss MA. Insulin assembly damps conformational fluctuations: Raman analysis of amide I linewidths in native states and fibrils. J Mol Biol 2003; 330:431-42. [PMID: 12823980 DOI: 10.1016/s0022-2836(03)00536-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The crystal structure of insulin has been investigated in a variety of dimeric and hexameric assemblies. Interest in dynamics has been stimulated by conformational variability among crystal forms and evidence suggesting that the functional monomer undergoes a conformational change on receptor binding. Here, we employ Raman spectroscopy and Raman microscopy to investigate well-defined oligomeric species: monomeric and dimeric analogs in solution, native T(6) and R(6) hexamers in solution and corresponding polycrystalline samples. Remarkably, linewidths of Raman bands associated with the polypeptide backbone (amide I) exhibit progressive narrowing with successive self-assembly. Whereas dimerization damps fluctuations at an intermolecular beta-sheet, deconvolution of the amide I band indicates that formation of hexamers stabilizes both helical and non-helical elements. Although the structure of a monomer in solution resembles a crystallographic protomer, its encagement in a native assembly damps main-chain fluctuations. Further narrowing of a beta-sheet-specific amide I band is observed on reorganization of insulin in a cross-beta fibril. Enhanced flexibility of the native insulin monomer is in accord with molecular dynamics simulations. Such conformational fluctuations may initiate formation of an amyloidogenic nucleus and enable induced fit on receptor binding.
Collapse
Affiliation(s)
- Jian Dong
- Department of Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue SOM-W427, Cleveland, OH 44106-4935, USA
| | | | | | | | | |
Collapse
|
38
|
Kjeldsen T, Pettersson AF. Relationship between self-association of insulin and its secretion efficiency in yeast. Protein Expr Purif 2003; 27:331-7. [PMID: 12597894 DOI: 10.1016/s1046-5928(02)00640-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The folding stability of insulin is positively correlated with the expression yield of the precursor expressed in yeast. Insulin assembles into dimers and hexamers in a concentration-dependent manner and amino acid substitutions that impair the ability of insulin to associate into dimers concomitantly decrease the expression yield (excluding substitutions that enhance folding stability). In contrast, introduction of an amino substitution that enhances the self-association of insulin improved the yeast expression yield. In the monomeric state the majority of the non-polar residues of insulin are exposed to the solvent and assembly into dimers and hexamers shields these from contact with the solvent. It is proposed that self-association enhances the flux of insulin through the secretory pathway by increasing the hydrophilicity, decreasing the surface area as well as decreasing the molar concentration in the secretory pathway.
Collapse
Affiliation(s)
- Thomas Kjeldsen
- Insulin Research, Novo Nordisk A/S, Novo Alle, DK-2880 Bagsvaerd, Denmark. ThKnovonordisk.com
| | | |
Collapse
|
39
|
Kjeldsen T, Ludvigsen S, Diers I, Balschmidt P, Sorensen AR, Kaarsholm NC. Engineering-enhanced protein secretory expression in yeast with application to insulin. J Biol Chem 2002; 277:18245-8. [PMID: 11923277 DOI: 10.1074/jbc.c200137200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptation to efficient heterologous expression is a prerequisite for recombinant proteins to fulfill their clinical and biotechnological potential. We describe a rational strategy to optimize the secretion efficiency in yeast of an insulin precursor by structure-based engineering of the folding stability. The yield of a fast-acting insulin analogue (Asp(B28)) expressed in yeast was enhanced 5-fold by engineering a specific interaction between an aromatic amino acid in the connecting peptide and a phenol binding site in the hydrophobic core of the molecule. This insulin precursor is characterized by significantly enhanced folding stability. The improved folding properties enhanced the secretion efficiency of the insulin precursor from 10 to 50%. The precursor remains fully in vitro convertible to mature fast-acting insulin.
Collapse
|
40
|
Kjeldsen T, Balschmidt P, Diers I, Hach M, Kaarsholm NC, Ludvigsen S. Expression of insulin in yeast: the importance of molecular adaptation for secretion and conversion. Biotechnol Genet Eng Rev 2002; 18:89-121. [PMID: 11530700 DOI: 10.1080/02648725.2001.10648010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- T Kjeldsen
- Novo Nordisk A/S, Novo Alle 6B S.90, 2880 Bagsvaerd, Denmark.
| | | | | | | | | | | |
Collapse
|
41
|
Tito P, Nettleton EJ, Robinson CV. Dissecting the hydrogen exchange properties of insulin under amyloid fibril forming conditions: a site-specific investigation by mass spectrometry. J Mol Biol 2000; 303:267-78. [PMID: 11023791 DOI: 10.1006/jmbi.2000.4142] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the hydrogen exchange properties of bovine insulin under solution conditions that cause it to aggregate and eventually form amyloid fibrils. The results have been obtained at the residue-specific level using peptic digestion and mass spectrometry. A total of 19 peptides were assigned to regions of the protein and their exchange properties monitored for a period of 24 hours. The results of the peptic digestion show that residues A13 to A21 and B11 to B30 are more susceptible to proteolysis than the N-terminal regions of the protein. A total of 15 slowly exchanging amides were observed for insulin under these solution conditions. Location of the protected amides was carried out using a peptic-digestion protocol at low pH. Chromatographic separation was not required. This enabled a direct comparison of the peptides within the same mass spectrum. From kinetic analysis of the rates slow exchange has been located to 4(+/-1) backbone amides in the A13-A19 helix and 6(+/-1) in the B chain helix. The remaining 5(+/-1) are assigned to helix A2-A8. Taken together the results from digestion and hydrogen exchange show that at low pH and relatively high concentrations the C termini of both chains are susceptible to proteolysis but that the solution structure contains the native state helices. More generally the results demonstrate that mass spectrometry can be applied to study site-specific hydrogen exchange properties of proteins even under conditions where they are known to be partially folded and aggregate extensively in solution.
Collapse
Affiliation(s)
- P Tito
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, South Parks Road, Oxford, OX1 3QT, UK
| | | | | |
Collapse
|
42
|
Schlein M, Havelund S, Kristensen C, Dunn MF, Kaarsholm NC. Ligand-induced conformational change in the minimized insulin receptor. J Mol Biol 2000; 303:161-9. [PMID: 11023783 DOI: 10.1006/jmbi.2000.4134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within the class of insulin and insulin-like growth factor receptors, detailed information about the molecular recognition event at the hormone-receptor interface is limited by the absence of suitable co-crystals. We describe the use of a biologically active insulin derivative labeled with the NBD fluorophore (B29NBD-insulin) to characterize the mechanism of reversible 1:1 complex formation with a fragment of the insulin receptor ectodomain. The accompanying 40 % increase in the fluorescence quantum yield of the label provides the basis for a dynamic study of the hormone-receptor binding event. Stopped-flow fluorescence experiments show that the kinetics of complex formation are biphasic comprising a bimolecular binding event followed by a conformational change. Displacement with excess unlabeled insulin gave monophasic kinetics of dissociation. The rate data are rationalized in terms of available experiments on mutant receptors and the X-ray structure of a non-binding fragment of the receptor of the homologous insulin-like growth factor (IGF-1).
Collapse
Affiliation(s)
- M Schlein
- Health Care Discovery, Novo Nordisk A/S, Novo Alle 1, DK 2880, Bagsvaerd, Denmark
| | | | | | | | | |
Collapse
|
43
|
Abstract
The focus of this review is the relationship between the three-dimensional structure of ligands of the various members of the growth factor receptor tyrosine kinase superfamily and their interaction with the cognate receptor. Particular attention is given to the transforming growth factor-alpha, epidermal growth factor (EGF); nerve growth factor, neurotrophin; and insulin-like growth factor-1 (IGF-1), insulin systems since these have been extensively studied in recent years. The three receptor types, which bind these ligands, are the epidermal growth factor receptor family (erb B receptors), the neurotrophin or Trk receptor family, and IGF-1/insulin receptors, respectively, and represent three distinct members of the tyrosine kinase superfamily. For each of these, formation of the ligand-receptor complex initiates the signal transduction cascade through autophosphorylation by the intracellular tyrosine kinase domain. The extracellular portion of the receptor that contains the ligand binding domain in these systems varies significantly in organization in each case. For the EGF receptor system, ligand binding induces homo- and heterodimerization of the receptor leading to activation of the intracellular kinase. For the Trk receptor system, homodimerization of receptors has been shown to occur, although a second receptor, p75, is also required for high affinity binding of neurotrophins and for enhanced sensitivity of tyrosine kinase activation at low ligand concentrations. The IGF-1 and insulin receptors exist as covalent cross-linked dimers where each monomer is composed of two subunits. The aim of this review is also to discuss the mechanism of ligand-receptor interaction for each of these cases; however, since no structural information is yet available for the ligand-receptor complex, the discussion will largely be centered on the molecular requirements of ligand binding. As these receptors are activated through the ligand binding site on the extracellular domain, this represents a possible target for pharmacological intervention by inhibition or stimulation of this portion of the receptor. Thus from a drug design perspective, the focus of this review is to discuss progress in the development of agonists or antagonists of the ligand for these receptors.
Collapse
Affiliation(s)
- C McInnes
- Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
44
|
Sproule K, Morrill P, Pearson JC, Burton SJ, Hejnaes KR, Valore H, Ludvigsen S, Lowe CR. New strategy for the design of ligands for the purification of pharmaceutical proteins by affinity chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 740:17-33. [PMID: 10798291 DOI: 10.1016/s0378-4347(99)00570-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new approach for the identification of ligands for the purification of pharmaceutical proteins by affinity chromatography is described. The technique involves four steps. Selection of an appropriate site on the target protein, design of a complementary ligand compatible with the three-dimensional structure of the site, construction of a limited solid-phase combinatorial library of near-neighbour ligands and solution synthesis of the hit ligand, immobilisation, optimisation and application of the adsorbent for the purification of the target protein. This strategy is exemplified by the purification of a recombinant human insulin precursor (MI3) from a crude fermentation broth of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- K Sproule
- Institute of Biotechnology, University of Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kjeldsen T, Pettersson AF, Hach M. The role of leaders in intracellular transport and secretion of the insulin precursor in the yeast Saccharomyces cerevisiae. J Biotechnol 1999; 75:195-208. [PMID: 10553658 DOI: 10.1016/s0168-1656(99)00159-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pulse-chase analysis of folded and misfolded insulin precursor (IP) expressed in Saccharomyces cerevisiae was performed to establish the requirements for intracellular transport and the influence of the secretory pathway quality control mechanisms on secretion. Metabolic labelling of the IP expressed in S. cerevisiae showed that the effect of a leader was to stabilise the IP in the endoplasmic reticulum (ER), and facilitate intracellular transport of the fusion protein and rapid secretion. The first metabolically labelled IP appeared in the culture supernatant within 2-4 min of chase, and most of the secreted IP appeared within the first 15 min of chase. After enzymatic removal of the leader in a late Golgi apparatus compartment, the IP followed one of two routes: (1) to the plasma membrane and hence to the culture supernatant, or (2) to a Golgi or post-Golgi compartment from which secretion was restricted. Combined secretion and intracellular retention of the IP reflected either saturation of a Golgi or post-Golgi compartment and secretion as a consequence of overexpression, or competition between secretion and intracellular retention. IP which was misfolded, either due to amino acid substitution or because disulphide bond formation had been prevented with dithiothreitol (DTT), was transported from the ER to the Golgi apparatus but then retained in a Golgi or post-Golgi compartment and not exported to the culture supernatant.
Collapse
Affiliation(s)
- T Kjeldsen
- Insulin Research, Novo Nordisk A/S, Bagsvaerd, Denmark.
| | | | | |
Collapse
|
46
|
Buijs J, Costa Vera C, Ayala E, Steensma E, Håkansson P, Oscarsson S. Conformational stability of adsorbed insulin studied with mass spectrometry and hydrogen exchange. Anal Chem 1999; 71:3219-25. [PMID: 10450163 DOI: 10.1021/ac9809433] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new method is described for direct monitoring of the conformational stability of proteins that are physically adsorbed from solution onto a solid substrate. The adsorption-induced conformational changes of insulin are studied using a combination of hydrogen/deuterium (H/D) exchange and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The effect of the surface hydrophobicity on the adsorption-induced conformational changes in the insulin structure is probed by adsorbing insulin on a hydrophilic silica and a hydrophobic methylated silica surface before subjecting the insulin molecules to the isotopic exchange process. The present study describes the experimental procedure of this new application of MALDI. Results show that insulin is more highly and more irreversibly adsorbed to a hydrophobic methylated silica surface than to a hydrophilic silica surface. Hydrogen-exchange experiments clearly demonstrate that the strong interaction of insulin with the hydrophobic surface is accompanied by a strong increase in the H/D-exchange rates and thus in a reduction in the insulin native structural stability. In contrast, H/D-exchange rates of insulin are somewhat reduced upon adsorption on silica from solution.
Collapse
Affiliation(s)
- J Buijs
- Division of Ion Physics, Angström Laboratory, Uppsala University, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
Kurapkat G, Siedentop M, Gattner HG, Hagelstein M, Brandenburg D, Grötzinger J, Wollmer A. The solution structure of a superpotent B-chain-shortened single-replacement insulin analogue. Protein Sci 1999; 8:499-508. [PMID: 10091652 PMCID: PMC2144277 DOI: 10.1110/ps.8.3.499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper reports on an insulin analogue with 12.5-fold receptor affinity, the highest increase observed for a single replacement, and on its solution structure, determined by NMR spectroscopy. The analogue is [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. C-terminal truncation of the B-chain by four (or five) residues is known not to affect the functional properties of insulin, provided the new carboxylate charge is neutralized. As opposed to the dramatic increase in receptor affinity caused by the substitution of D-Ala for the wild-type residue TyrB26 in the truncated molecule, this very substitution reduces it to only 18% of that of the wild-type hormone when the B-chain is present in full length. The insulin molecule in solution is visualized as an ensemble of conformers interrelated by a dynamic equilibrium. The question is whether the "active" conformation of the hormone, sought after in innumerable structure/function studies, is or is not included in the accessible conformational space, so that it could be adopted also in the absence of the receptor. If there were any chance for the active conformation, or at least a predisposed state to be populated to a detectable extent, this chance should be best in the case of a superpotent analogue. This was the motivation for the determination of the three-dimensional structure of [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. However, neither the NMR data nor CD spectroscopic comparison of a number of related analogues provided a clue concerning structural features predisposing insulin to high receptor affinity. After the present study it seems more likely than before that insulin will adopt its active conformation only when exposed to the force field of the receptor surface.
Collapse
Affiliation(s)
- G Kurapkat
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Olsen HB, Ludvigsen S, Kaarsholm NC. The relationship between insulin bioactivity and structure in the NH2-terminal A-chain helix. J Mol Biol 1998; 284:477-88. [PMID: 9813131 DOI: 10.1006/jmbi.1998.2175] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of naturally occuring and chemically modified insulins have established that the NH2-terminal helix of the A-chain is important in conferring affinity in insulin-receptor interactions. Nevertheless, the three-dimensional structural basis for these observations has not previously been studied in detail. To correlate structure and function in this region of the molecule, we have used the solution structure of an engineered monomer (GluB1, GluB10, GluB16, GluB27, desB30)-insulin (4E insulin) as a template for design of A-chain mutants associated with enhanced or greatly diminished affinity for the insulin receptor. In the context of 4E insulin, the employed mutants, i.e. ThrA8-->His and ValA3-->Gly, result in species with 143% and 0.1% biological activity, respectively, relative to human insulin. The high-resolution NMR studies reveal two well-defined structures each resembling the template. However, significant structural differences are evident notably in residues A2-A8 and their immediate environment. In comparison with the template structure, the A8His mutation enhances the helical character of residues A2-A8. This structural change leads to additional exposure of a hydrophobic patch mainly consisting of species invariant residues. In contrast, the A3Gly mutation leads to stretching and disruption of the A2-A8 helix and changes both the dimensions and the access to the hydrophobic patch exposed in the more active insulins. We conclude that the mutations induce small, yet decisive structural changes that either mediate or inhibit the subtle conformational adjustments involved in the presentation of this part of the insulin pharmacophore to the receptor.
Collapse
Affiliation(s)
- H B Olsen
- Novo Nordisk A/S, Novo Alle 1, Bagsvaerd, DK-2880, Denmark
| | | | | |
Collapse
|
49
|
Ludvigsen S, Olsen HB, Kaarsholm NC. A structural switch in a mutant insulin exposes key residues for receptor binding. J Mol Biol 1998; 279:1-7. [PMID: 9636695 DOI: 10.1006/jmbi.1998.1801] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite years of effort to clarify the structural basis of insulin receptor binding no clear consensus has emerged. It is generally believed that insulin receptor binding is accompanied by some degree of conformational change in the carboxy-terminal of the insulin B-chain. In particular, while most substitutions for PheB24 lead to inactive species, glycine or D-amino acids are well tolerated in this position. Here we assess the conformation change by solving the solution structure of the biologically active (GluB16, GlyB24, desB30)-insulin mutant. The structure in aqueous solution at pH 8 reveals a subtle, albeit well-defined rearrangement of the C-terminal decapeptide involving a perturbation of the B20-23 turn, which allows the PheB25 residue to occupy the position normally taken up by PheB24 in native insulin. The new protein surface exposed rationalizes the receptor binding properties of a series of insulin analogs. We suggest that the structural switch is forced by the structure of the underlying core of species invariant residues and that an analogous rearrangement of the C-terminal of the B-chain occurs in native insulin on binding to its receptor.
Collapse
|
50
|
Hua QX, Hu SQ, Jia W, Chu YC, Burke GT, Wang SH, Wang RY, Katsoyannis PG, Weiss MA. Mini-proinsulin and mini-IGF-I: homologous protein sequences encoding non-homologous structures. J Mol Biol 1998; 277:103-18. [PMID: 9514738 DOI: 10.1006/jmbi.1997.1574] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein minimization highlights essential determinants of structure and function. Minimal models of proinsulin and insulin-like growth factor I contain homologous A and B domains as single-chain analogues. Such models (designated mini-proinsulin and mini-IGF-I) have attracted wide interest due to their native foldability but complete absence of biological activity. The crystal structure of mini-proinsulin, determined as a T3R3 hexamer, is similar to that of the native insulin hexamer. Here, we describe the solution structure of a monomeric mini-proinsulin under physiologic conditions and compare this structure to that of the corresponding two-chain analogue. The two proteins each contain substitutions in the B-chain (HisB10-->Asp and ProB28-->Asp) designed to destabilize self-association by electrostatic repulsion; the proteins differ by the presence or absence of a peptide bond between LysB29 and GlyA1. The structures are essentially identical, resembling in each case the T-state crystallographic protomer. Differences are observed near the site of cross-linking: the adjoining A1-A8 alpha-helix (variable among crystal structures) is less well-ordered in mini-proinsulin than in the two-chain variant. The single-chain analogue is not completely inactive: its affinity for the insulin receptor is 1500-fold lower than that of the two-chain analogue. Moreover, at saturating concentrations mini-proinsulin retains the ability to stimulate lipogenesis in adipocytes (native biological potency). These results suggest that a change in the conformation of insulin, as tethered by the B29-A1 peptide bond, optimizes affinity but is not integral to the mechanism of transmembrane signaling. Surprisingly, the tertiary structure of mini-proinsulin differs from that of mini-IGF-I (main-chain rms deviation 4.5 A) despite strict conservation of non-polar residues in their respective hydrophobic cores (side-chain rms deviation 4.9 A). Three-dimensional profile scores suggest that the two structures each provide acceptable templates for threading of insulin-like sequences. Mini-proinsulin and mini-IGF-I thus provide examples of homologous protein sequences encoding non-homologous structures.
Collapse
Affiliation(s)
- Q X Hua
- Center for Molecular Oncology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|