1
|
Staroňová T, Holčáková J, Voňka P, Hrstka R, Ostatná V. Impact of galectin-1's redox state on its lectin activity and monomer-dimer equilibrium. Focusing on oxidized Gal-1. Int J Biol Macromol 2025; 295:139452. [PMID: 39755294 DOI: 10.1016/j.ijbiomac.2025.139452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Galectin-1 (Gal-1) displays unique sensitivity to oxidative inactivation which appears critical in regulating its spatial and temporal activity. The two physicochemical states, i.e. monomer-dimer equilibrium and redox states, are related to Gal-1 varying functionality. In this work, we used chronopotentiometric stripping analysis, intrinsic fluorescence spectroscopy, and mobility shift assay to follow changes in the structure and lectin activity of reduced and oxidized Gal-1 forms. Our results show that monomers and dimers are similarly distributed under mild reduction and oxidation conditions. Gal-1 after its oxidation consists of at least three different monomeric forms while reduced Gal-1 only one. Lectin activity, affinity to N-acetyllactosamine, is relatively similar for low Gal-1 concentrations for both, reduced and oxidized Gal-1. However, at higher Gal-1 concentrations, we observed a ten times higher affinity for reduced than oxidized form. Further, our data indicate that the monoclonal antibodies bind preferentially to Gal-1 dimers and specifically to only some forms of its oxidized form.
Collapse
Affiliation(s)
- Tatiana Staroňová
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic
| | - Jitka Holčáková
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Petr Voňka
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic.
| |
Collapse
|
2
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
3
|
Touarin P, Serrano B, Courbois A, Bornet O, Chen Q, Scott LG, Williamson JR, Sebban-Kreuzer C, Mancini SJC, Elantak L. Pre-B cell receptor acts as a selectivity switch for galectin-1 at the pre-B cell surface. Cell Rep 2024; 43:114541. [PMID: 39058594 DOI: 10.1016/j.celrep.2024.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Galectins are glycan-binding proteins translating the sugar-encoded information of cellular glycoconjugates into physiological activities, including immunity, cell migration, and signaling. Galectins also interact with non-glycosylated partners in the extracellular milieu, among which the pre-B cell receptor (pre-BCR) during B cell development. How these interactions might interplay with the glycan-decoding function of galectins is unknown. Here, we perform NMR experiments on native membranes to monitor Gal-1 binding to physiological cell surface ligands. We show that pre-BCR interaction changes Gal-1 binding to glycosylated pre-B cell surface receptors. At the molecular and cellular levels, we identify α2,3-sialylated motifs as key targeted epitopes. This targeting occurs through a selectivity switch increasing Gal-1 contacts with α2,3-sialylated poly-N-acetyllactosamine upon pre-BCR interaction. Importantly, we observe that this switch is involved in the regulation of pre-BCR activation. Altogether, this study demonstrates that interactions to non-glycosylated proteins regulate the glycan-decoding functions of galectins at the cell surface.
Collapse
Affiliation(s)
- Pauline Touarin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Bastien Serrano
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Audrey Courbois
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Olivier Bornet
- NMR platform, Institut de Microbiologie de la Méditerranée (IMM FR3479), Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Qian Chen
- Cassia, 3030 Bunker Hill Street, Suite 214, San Diego, CA 92109, USA
| | - Lincoln G Scott
- Cassia, 3030 Bunker Hill Street, Suite 214, San Diego, CA 92109, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corinne Sebban-Kreuzer
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | | | - Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France.
| |
Collapse
|
4
|
Querol Cano L, Dunlock VME, Schwerdtfeger F, van Spriel AB. Membrane organization by tetraspanins and galectins shapes lymphocyte function. Nat Rev Immunol 2024; 24:193-212. [PMID: 37758850 DOI: 10.1038/s41577-023-00935-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/29/2023]
Abstract
Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. 'Membrane-organizing proteins' and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand-receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera-Marie E Dunlock
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabian Schwerdtfeger
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Dam TK, Hohman O, Sheppard L, Brewer CF, Bandyopadhyay P. Mechanism of multivalent glycoconjugate-lectin interaction: An update. Adv Carbohydr Chem Biochem 2023; 84:1-21. [PMID: 37979977 DOI: 10.1016/bs.accb.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Lectins are predominantly oligomeric proteins with several binding sites per molecule. Glycoconjugates are their natural ligands, which often possess multiple binding epitopes. Thus, lectin-glycoconjugate interactions are mostly multivalent in nature. The mechanism of multivalent binding is fundamentally different from those described for monovalent interactions in textbooks and research papers. Over the years, binding studies that make use of different lectins and a variety of multivalent glycoconjugate ligands were conducted in order to understand the underlying principles of multivalency. Starting with seemingly simple synthetic multivalent analogs, systematic studies were carried out using natural glycoconjugate ligands with increasing valency and complexity. Those ligands included multivalent glycoproteins, polyvalent polysaccharides, including glycosaminoglycans, as well as supra-valent mucins and proteoglycans. Models and mechanisms of multivalent binding derived from quantitative data are summarized in the present updated review.
Collapse
Affiliation(s)
- Tarun K Dam
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, MI, United States; Health Research Institute, Michigan Technological University, Houghton, MI, United States.
| | - Olivia Hohman
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, MI, United States
| | - Lucas Sheppard
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, MI, United States
| | - C Fred Brewer
- Department of Molecular Pharmacology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Purnima Bandyopadhyay
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
6
|
Dam TK, Brewer CF. Multivalent lectin-carbohydrate interactions: Energetics and mechanisms of binding. Adv Carbohydr Chem Biochem 2023; 84:23-48. [PMID: 37979978 DOI: 10.1016/bs.accb.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
The biological signaling properties of lectins, which are carbohydrate-binding proteins, are due to their ability to bind and cross-link multivalent glycoprotein receptors on the surface of normal and transformed cells. While the cross-linking properties of lectins with multivalent carbohydrates and glycoproteins are relatively well understood, the mechanisms of binding of lectins to multivalent glycoconjugates are less well understood. Recently, the thermodynamics of binding of lectins to synthetic clustered glycosides, a multivalent globular glycoprotein, and to linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules. Importantly, the mechanism of binding of lectins to mucins is similar to that for a variety of protein ligands binding to DNA. Recent analysis also shows that high-affinity lectin-mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects which facilitate binding and subsequent complex formation including enzymology.
Collapse
Affiliation(s)
- Tarun K Dam
- Formerly of the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - C Fred Brewer
- Department of Molecular Pharmacology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
7
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
8
|
Zhou S, Wei Y. Kaleidoscope megamolecules synthesis and application using self-assembly technology. Biotechnol Adv 2023; 65:108147. [PMID: 37023967 DOI: 10.1016/j.biotechadv.2023.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/20/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The megamolecules with high ordered structures play an important role in chemical biology and biomedical engineering. Self-assembly, a long-discovered but very appealing technique, could induce many reactions between biomacromolecules and organic linking molecules, such as an enzyme domain and its covalent inhibitors. Enzyme and its small-molecule inhibitors have achieved many successes in medical application, which realize the catalysis process and theranostic function. By employing the protein engineering technology, the building blocks of enzyme fusion protein and small molecule linker can be assembled into a novel architecture with the specified organization and conformation. Molecular level recognition of enzyme domain could provide both covalent reaction sites and structural skeleton for the functional fusion protein. In this review, we will discuss the range of tools available to combine functional domains by using the recombinant protein technology, which can assemble them into precisely specified architectures/valences and develop the kaleidoscope megamolecules for catalytic and medical application.
Collapse
Affiliation(s)
- Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
9
|
Ohashi M, Tamura A, Yui N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023; 24:2327-2341. [PMID: 37036902 DOI: 10.1021/acs.biomac.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Acid-degradable polyrotaxanes (PRXs) containing threading β-cyclodextrins (β-CDs) are promising candidates for therapeutic applications of β-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified β-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested β-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of β-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
10
|
Kumar V, Turnbull WB. Targeted delivery of oligonucleotides using multivalent protein-carbohydrate interactions. Chem Soc Rev 2023; 52:1273-1287. [PMID: 36723021 PMCID: PMC9940626 DOI: 10.1039/d2cs00788f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 02/02/2023]
Abstract
Cell surface protein-carbohydrate interactions are essential for tissue-specific recognition and endocytosis of viruses, some bacteria and their toxins, and many glycoproteins. Often protein-carbohydrate interactions are multivalent - multiple copies of glycans bind simultaneously to multimeric receptors. Multivalency enhances both affinity and binding specificity, and is of interest for targeted delivery of drugs to specific cell types. The first such example of carbohydrate-mediated drug delivery to reach the clinic is Givosiran, a small interfering ribonucleic acid (siRNA) that is conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand. This ligand enables efficient uptake of the nucleic acid by the asialoglycoprotein receptor (ASGP-R) on hepatocytes. Synthetic multivalent ligands for ASGP-R were among the first 'cluster glycosides' developed at the birth of multivalent glycoscience around 40 years ago. In this review we trace the history of 'GalNAc targeting' from early academic studies to current pharmaceuticals and consider what other opportunities could follow the success of this delivery technology.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India.
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
11
|
Mousavifar L, Parreira P, Taponard A, Graça VCD, Martins MCL, Roy R. Validation of Selective Capture of Fimbriated Uropathogenic Escherichia coli by a Label-free Engineering Detection System Using Mannosylated Surfaces. ACS APPLIED BIO MATERIALS 2022; 5:5877-5886. [PMID: 36417663 DOI: 10.1021/acsabm.2c00838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Label-free detection of pathogens is of major concern to the microbiologist community. Most procedures require several steps and amplification techniques. Carbohydrates are well-established receptors for host-pathogen interactions, which can be amplified using glycodendritic architectures on the basis of multivalent binding interactions. Given that uropathogenic Escherichia coli bacterial FimH is based on such mannopyranoside-binding interactions, we demonstrate herein that synthetic monomeric and trimeric thiolated α-d-mannosides can be effectively bound to gold substrate-functionalized self-assembled monolayers (SAMs) preactivated with maleimide functionalities. Mannosides grafted onto SAMs were followed using Quartz Crystal Microbalance with Dissipation (QCM-D). Binding recognition efficiency was first evaluated using the plant lectin from Canavalia ensiformis (ConA) also using QCM-D. We showed a direct correlation between the amount of mannoside bound and the lectin attachment. Even though there was less trimer bound (nM/cm2) to the surface, we observed a 7-fold higher amount of lectin anchoring, thus further demonstrating the value of the multivalent interactions. We next examined the relative fimbriated E. coli selective adhesion/capture to either the monomeric or the trimeric mannoside bound to the surface. Our results established the successful engineering of the surfaces to show E. coli adhesion via specific mannopyranoside binding but unexpectedly, the monomeric derivative was more efficient than the trimeric analog, which could be explained by steric hindrance. This approach strongly suggests that it could be broadly applicable to other Gram-negative bacteria sharing analogous carbohydrate-dependent binding interactions.
Collapse
Affiliation(s)
- Leila Mousavifar
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Paula Parreira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Alexis Taponard
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Vanessa C D Graça
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4200-135 Porto, Portugal
| | - René Roy
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
12
|
Kognole AA, Aytenfisu AH, MacKerell AD. Extension of the CHARMM Classical Drude Polarizable Force Field to N- and O-Linked Glycopeptides and Glycoproteins. J Phys Chem B 2022; 126:6642-6653. [PMID: 36005290 PMCID: PMC9463114 DOI: 10.1021/acs.jpcb.2c04245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamic simulations are an effective tool to study complex molecular systems and are contingent upon the availability of an accurate and reliable molecular mechanics force field. The Drude polarizable force field, which allows for the explicit treatment of electronic polarization in a computationally efficient fashion, has been shown to reproduce experimental properties that were difficult or impossible to reproduce with the CHARMM additive force field, including peptide folding cooperativity, RNA hairpin structures, and DNA base flipping. Glycoproteins are essential components of glycoconjugate vaccines, antibodies, and many pharmaceutically important molecules, and an accurate polarizable force field that includes compatibility between the protein and carbohydrate aspect of the force field is essential to study these types of systems. In this work, we present an extension of the Drude polarizable force field to glycoproteins, including both N- and O-linked species. Parameter optimization focused on the dihedral terms using a reweighting protocol targeting NMR solution J-coupling data for model glycopeptides. Validation of the model include eight model glycopeptides and four glycoproteins with multiple N- and O-linked glycosylations. The new glycoprotein carbohydrate force field can be used in conjunction with the remainder of Drude polarizable force field through a variety of MD simulation programs including GROMACS, OPENMM, NAMD, and CHARMM and may be accessed through the Drude Prepper module in the CHARMM-GUI.
Collapse
Affiliation(s)
| | | | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
13
|
Armario-Najera V, Blanco-Perera A, Shenoy SR, Sun Y, Marfil S, Muñoz-Basagoiti J, Perez-Zsolt D, Blanco J, Izquierdo-Useros N, Capell T, O'Keefe BR, Christou P. Physicochemical characterization of the recombinant lectin scytovirin and microbicidal activity of the SD1 domain produced in rice against HIV-1. PLANT CELL REPORTS 2022; 41:1013-1023. [PMID: 35178612 PMCID: PMC9034974 DOI: 10.1007/s00299-022-02834-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro. We analyzed the thermodynamic properties of SD1 compared to full-size SVN (produced in E. coli) by isothermal titration and differential scanning calorimetry to characterize the specific interactions between SVN/SD1 and gp120 as well as to high-mannose oligosaccharides. SVN bound with moderate affinity (Kd = 1.5 µM) to recombinant gp120, with 2.5-fold weaker affinity to nonamannoside (Kd of 3.9 µM), and with tenfold weaker affinity to tetramannoside (13.8 µM). The melting temperature (Tm) of full-size SVN was 59.1 °C and the enthalpy of unfolding (ΔHunf) was 16.4 kcal/mol, but the Tm fell when SVN bound to nonamannoside (56.5 °C) and twice as much energy was required for unfolding (ΔHunf = 33.5 kcal/mol). Interestingly, binding to tetramannoside destabilized the structure of SD1 (ΔTm ~ 11.5 °C) and doubled the enthalpy of unfolding, suggesting a dimerization event. The similar melting phenomenon shared by SVN and SD1 in the presence of oligomannose confirmed their conserved oligosaccharide-binding mechanisms. SD1 expressed in transgenic rice was able to neutralize HIV-1 in vitro. SD1 expressed in rice, therefore, is suitable as a microbicide component.
Collapse
Affiliation(s)
- Victoria Armario-Najera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Amaya Blanco-Perera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Shilpa R Shenoy
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, 21702, USA
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Yi Sun
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | | | | | - Julià Blanco
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
- Chair of AIDS and Related Diseases, University of Vic-Central University of Catalonia, 08500, Vic, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA.
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
14
|
Narayanan V, Bobbili KB, Sivaji N, Jayaprakash NG, Suguna K, Surolia A, Sekhar A. Structure and Carbohydrate Recognition by the Nonmitogenic Lectin Horcolin. Biochemistry 2022; 61:464-478. [PMID: 35225598 DOI: 10.1021/acs.biochem.1c00778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lectins are sugar-binding proteins that have shown considerable promise as antiviral agents because of their ability to interact with envelope glycoproteins present on the surface of viruses such as HIV-1. However, their therapeutic potential has been compromised by their mitogenicity that stimulates uncontrolled division of T-lymphocytes. Horcolin, a member of the jacalin family of lectins, tightly binds the HIV-1 envelope glycoprotein gp120 and neutralizes HIV-1 particles but is nonmitogenic. In this report, we combine X-ray crystallography and NMR spectroscopy to obtain atomic-resolution insights into the structure of horcolin and the molecular basis for its carbohydrate recognition. Each protomer of the horcolin dimer adopts a canonical β-prism I fold with three Greek key motifs and carries two carbohydrate-binding sites. The carbohydrate molecule binds in a negatively charged pocket and is stabilized by backbone and side chain hydrogen bonds to conserved residues in the ligand-binding loop. NMR titrations reveal a two-site binding mode and equilibrium dissociation constants for the two binding sites determined from two-dimensional (2D) lineshape modeling are 4-fold different. Single-binding-site variants of horcolin confirm the dichotomy in binding sites and suggest that there is allosteric communication between the two sites. An analysis of the horcolin structure shows a network of hydrogen bonds linking the two carbohydrate-binding sites directly and through a secondary binding site, and this coupling between the two sites is expected to assume importance in the interaction of horcolin with high-mannose glycans found on viral envelope glycoproteins.
Collapse
Affiliation(s)
- Vaishali Narayanan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Kishore Babu Bobbili
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Nukathoti Sivaji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Nisha G Jayaprakash
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
15
|
Ganeshalingam S, Sandamalika WMG, Lim C, Yang H, Liyanage DS, Nadarajapillai K, Jeong T, Lee J. Molecular characterization and expression profiling of tandem-repeat galectin-8 from red-spotted grouper (Epinephelus akaara): Potential antibacterial, antiviral, and wound healing activities. FISH & SHELLFISH IMMUNOLOGY 2022; 121:86-98. [PMID: 34990805 DOI: 10.1016/j.fsi.2021.12.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Galectin-8 is a typical β-galactoside binding lectin, which primarily functions as a pattern recognition receptor and/or danger receptor that is engaged in pathogen recognition by the host innate immune system. Although several fish galectins have been identified, the role of galectin-8 in teleost immunity is still not fully understood. In this study, molecular, transcriptional, and immune-related functions of galectin-8 (EaGal8) from red-spotted grouper (Epinephelus akaara) were analyzed. The open reading frame of EaGal8 comprised 960 bp encoding 319 amino acids of a ∼35 kDa protein, composed of the N- and C-terminal carbohydrate recognition domains joined by a short hinge peptide. Phylogenetic analysis revealed that EaGal8 was closely related to the Epinephelus lanceolatus galectin-8-like protein. Although EaGal8 showed ubiquitous tissue expression, the highest expression level was observed in the blood. Immunostimulants, including lipopolysaccharide, poly(I:C), and nervous necrosis virus, significantly upregulated the EaGal8 transcription level in a time-dependent manner (p < 0.05). Furthermore, recombinant EaGal8 (rEaGal8) showed a binding affinity toward seven different carbohydrates in a concentration-dependent manner. In addition, rEaGal8 caused strong agglutination of fish red blood cells and several gram-positive and gram-negative bacteria, including Streptococcus iniae, Streptococcus parauberis, Lactococcus garvieae, Escherichia coli, Edwardsiella tarda, Vibrio alginolyticus, Vibrio parahaemolyticus, and Pseudomonas aeruginosa. For the first time in teleosts, we report the wound healing ability of galectin-8 in this study. At low concentrations, rEaGal8 showed potential wound healing responses in FHM cells, in vitro. Thus, this study reinforces the role of EaGal8 in innate immune responses against bacterial and viral infections and wound healing in red-spotted grouper.
Collapse
Affiliation(s)
- Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
16
|
Mahadevegowda SH, Ruan L, Zhang J, Hou S, Raju C, Chan-Park MB. Synthesis of dimeric and tetrameric trithiomannoside clusters through convenient photoinitiated thiol-ene click protocol for efficient inhibition of gram-negative bacteria. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1928154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Surendra H. Mahadevegowda
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, India
| | - Lin Ruan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jianhua Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cheerlavancha Raju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mary B. Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
18
|
Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, Yan M, Chang WC, Hsu JM, Cha JH, Hsu JL, Chou CW, Sun X, Deng Y, Chou CK, Yu D, Hung MC. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun 2021; 12:832. [PMID: 33547304 PMCID: PMC7864927 DOI: 10.1038/s41467-021-21099-2] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023] Open
Abstract
The two T cell inhibitory receptors PD-1 and TIM-3 are co-expressed during exhausted T cell differentiation, and recent evidence suggests that their crosstalk regulates T cell exhaustion and immunotherapy efficacy; however, the molecular mechanism is unclear. Here we show that PD-1 contributes to the persistence of PD-1+TIM-3+ T cells by binding to the TIM-3 ligand galectin-9 (Gal-9) and attenuates Gal-9/TIM-3-induced cell death. Anti-Gal-9 therapy selectively expands intratumoral TIM-3+ cytotoxic CD8 T cells and immunosuppressive regulatory T cells (Treg cells). The combination of anti-Gal-9 and an agonistic antibody to the co-stimulatory receptor GITR (glucocorticoid-induced tumor necrosis factor receptor-related protein) that depletes Treg cells induces synergistic antitumor activity. Gal-9 expression and secretion are promoted by interferon β and γ, and high Gal-9 expression correlates with poor prognosis in multiple human cancers. Our work uncovers a function for PD-1 in exhausted T cell survival and suggests Gal-9 as a promising target for immunotherapy.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenocarcinoma/mortality
- Adenocarcinoma/therapy
- Animals
- Antibodies/pharmacology
- Antineoplastic Agents, Immunological/pharmacology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/immunology
- Colonic Neoplasms/mortality
- Colonic Neoplasms/therapy
- Galectins/antagonists & inhibitors
- Galectins/genetics
- Galectins/immunology
- Gene Expression Regulation, Neoplastic/immunology
- Glucocorticoid-Induced TNFR-Related Protein/agonists
- Glucocorticoid-Induced TNFR-Related Protein/genetics
- Glucocorticoid-Induced TNFR-Related Protein/immunology
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/immunology
- Humans
- Immunotherapy/methods
- Jurkat Cells
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Protein Binding
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/mortality
- Skin Neoplasms/therapy
- Survival Analysis
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Riyao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Han Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Meisi Yan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Wei-Chao Chang
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Jong-Ho Cha
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheng-Wei Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Xian Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yalan Deng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
19
|
Singrang N, Laophetsakunchai S, Tran BN, Matsudaira PT, Tassanakajon A, Wangkanont K. Biochemical and structural characterization of a recombinant fibrinogen-related lectin from Penaeus monodon. Sci Rep 2021; 11:2934. [PMID: 33536457 PMCID: PMC7858579 DOI: 10.1038/s41598-021-82301-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Fibrinogen-related lectins are carbohydrate-binding proteins of the innate immune system that recognize glycan structures on microbial surfaces. These innate immune lectins are crucial for invertebrates as they do not rely on adaptive immunity for pathogen clearance. Here, we characterize a recombinant fibrinogen-related lectin PmFREP from the black tiger shrimp Penaeus monodon expressed in the Trichoplusia ni insect cell. Electron microscopy and cross-linking experiments revealed that PmFREP is a disulfide-linked dimer of pentamers distinct from other fibrinogen-related lectins. The full-length protein binds N-acetyl sugars in a Ca2+ ion-independent manner. PmFREP recognized and agglutinated Pseudomonas aeruginosa. Weak binding was detected with other bacteria, including Vibrio parahaemolyticus, but no agglutination activity was observed. The biologically active PmFREP will not only be a crucial tool to elucidate the innate immune signaling in P. monodon and other economically important species, but will also aid in detection and prevention of shrimp bacterial infectious diseases.
Collapse
Affiliation(s)
- Nongnuch Singrang
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirasit Laophetsakunchai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Bich Ngoc Tran
- Department of Biological Sciences, Faculty of Science, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Paul T Matsudaira
- Department of Biological Sciences, Faculty of Science, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. .,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
20
|
Janković T, Danilović Luković J, Miler I, Mitić N, Hajduković L, Janković M. Assembly of tetraspanins, galectin-3, and distinct N-glycans defines the solubilization signature of seminal prostasomes from normozoospermic and oligozoospermic men. Ups J Med Sci 2021; 126:7673. [PMID: 34540145 PMCID: PMC8431989 DOI: 10.48101/ujms.v126.7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prostasomes, extracellular vesicles (EVs) abundantly present in seminal plasma, express distinct tetraspanins (TS) and galectin-3 (gal-3), which are supposed to shape their surface by an assembly of different molecular complexes. In this study, detergent-sensitivity patterns of membrane-associated prostasomal proteins were determined aiming at the solubilization signature as an intrinsic multimolecular marker and a new parameter suitable as a reference for the comparison of EVs populations in health and disease. METHODS Prostasomes were disrupted by Triton X-100 and analyzed by gel filtration under conditions that maintained complete solubilization. Redistribution of TS (CD63, CD9, and CD81), gal-3, gamma-glutamyltransferase (GGT), and distinct N-glycans was monitored using solid-phase lectin-binding assays, transmission electron microscopy, electrophoresis, and lectin blot. RESULTS Comparative data on prostasomes under normal physiology and conditions of low sperm count revealed similarity regarding the redistribution of distinct N-glycans and GGT, all presumed to be mainly part of the vesicle coat. In contrast to this, a greater difference was found in the redistribution of integral membrane proteins, exemplified by TS and gal-3. Accordingly, they were grouped into two molecular patterns mainly consisting of overlapped CD9/gal-3/wheat germ agglutinin-reactive glycoproteins and CD63/GGT/concanavalin A-reactive glycoproteins. CONCLUSIONS Solubilization signature can be considered as an all-inclusive distinction factor regarding the surface properties of a particular vesicle since it reflects the status of the parent cell and the extracellular environment, both of which contribute to the composition of spatial membrane arrangements.
Collapse
Affiliation(s)
- Tamara Janković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | | | - Irena Miler
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
- University of Belgrade, Institute of Nuclear Sciences, VINČA, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Ninoslav Mitić
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Ljiljana Hajduković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Miroslava Janković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| |
Collapse
|
21
|
Protein Analysis: From Sequence to Structure. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
23
|
|
24
|
Welch CJ, Talaga ML, Kadav PD, Edwards JL, Bandyopadhyay P, Dam TK. A capture and release method based on noncovalent ligand cross-linking and facile filtration for purification of lectins and glycoproteins. J Biol Chem 2020; 295:223-236. [PMID: 31792056 PMCID: PMC6952606 DOI: 10.1074/jbc.ra119.010625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
Glycan-binding proteins such as lectins are ubiquitous proteins that mediate many biological functions. To study their various biological activities and structure-function relationships, researchers must use lectins in their purest form. Conventional purification techniques, especially affinity column chromatography, have been instrumental in isolating numerous lectins and glycoproteins. These approaches, however, are time-consuming, consist of multiple steps, and often require extensive trial-and-error experimentation. Therefore, techniques that are relatively rapid and facile are needed. Here we describe such a technique, called capture and release (CaRe). The strength of this approach is rooted in its simplicity and accuracy. CaRe purifies lectins by utilizing their ability to form spontaneous noncovalently cross-linked complexes with specific multivalent ligands. The lectins are captured in the solution phase by multivalent capturing agents, released by competitive monovalent ligands, and then separated by filtration. CaRe does not require antibodies, solid affinity matrices, specialized detectors, a customized apparatus, controlled environments, or functionalization or covalent modification of reagents. CaRe is a time-saving procedure that can purify lectins even from a few milliliters of crude protein extracts. We validated CaRe by purifying recombinant human galectin-3 and five other known lectins and also tested CaRe's ability to purify glycoproteins. Besides purifying lectins and glycoproteins, CaRe has the potential to purify other glycoconjugates, including proteoglycans. This technique could also be used for nonlectin proteins that bind multivalent ligands. Given the ubiquity of glycosylation in nature, we anticipate that CaRe has broad utility.
Collapse
Affiliation(s)
- Christina J Welch
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Melanie L Talaga
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Priyanka D Kadav
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Jared L Edwards
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Purnima Bandyopadhyay
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
| | - Tarun K Dam
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931; Health Research Institute, Michigan Technological University, Houghton, Michigan 49931.
| |
Collapse
|
25
|
Modenutti CP, Capurro JIB, Di Lella S, Martí MA. The Structural Biology of Galectin-Ligand Recognition: Current Advances in Modeling Tools, Protein Engineering, and Inhibitor Design. Front Chem 2019; 7:823. [PMID: 31850312 PMCID: PMC6902271 DOI: 10.3389/fchem.2019.00823] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
Galectins (formerly known as “S-type lectins”) are a subfamily of soluble proteins that typically bind β-galactoside carbohydrates with high specificity. They are present in many forms of life, from nematodes and fungi to animals, where they perform a wide range of functions. Particularly in humans, different types of galectins have been described differing not only in their tissue expression but also in their cellular location, oligomerization, fold architecture and carbohydrate-binding affinity. This distinct yet sometimes overlapping distributions and physicochemical attributes make them responsible for a wide variety of both intra- and extracellular functions, including tremendous importance in immunity and disease. In this review, we aim to provide a general description of galectins most important structural features, with a special focus on the molecular determinants of their carbohydrate-recognition ability. For that purpose, we structurally compare the human galectins, in light of recent mutagenesis studies and novel X-ray structures. We also offer a detailed description on how to use the solvent structure surrounding the protein as a tool to get better predictions of galectin-carbohydrate complexes, with a potential application to the rational design of glycomimetic inhibitory compounds. Finally, using Gal-1 and Gal-3 as paramount examples, we review a series of recent advances in the development of engineered galectins and galectin inhibitors, aiming to dissect the structure-activity relationship through the description of their interaction at the molecular level.
Collapse
Affiliation(s)
- Carlos P Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Buenos Aires, Argentina
| | - Juan I Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Buenos Aires, Argentina
| | - Santiago Di Lella
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Buenos Aires, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Buenos Aires, Argentina
| |
Collapse
|
26
|
Fettis MM, Farhadi SA, Hudalla GA. A chimeric, multivalent assembly of galectin-1 and galectin-3 with enhanced extracellular activity. Biomater Sci 2019; 7:1852-1862. [PMID: 30899922 DOI: 10.1039/c8bm01631c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Galectins are attractive therapeutic candidates to control aberrant immune system activation because they can alter the phenotype and function of various innate and adaptive immune cells. However, use of exogenous galectin-1 ("G1") and galectin-3 ("G3") as immunomodulators is challenged by their high dosing requirements and dynamic quaternary structures. Here we report a chimeric assembly of G1 and G3 with enhanced extracellular activity ("G1/G3 Zipper"), which was created by recombinant fusion of G1 and G3 via a peptide linker that forms a two-stranded α-helical coiled-coil. G1/G3 Zipper had higher apparent binding affinity for immobilized lactose and a lower concentration threshold for inducing soluble glycoprotein crosslinking than G1, a recombinant fusion of G1 and G3 with a flexible peptide linker ("G1/G3"), or a recently reported stable G1 dimer crosslinked by poly(ethylene glycol) diacrylate ("G1-PEG-G1"). As a result, G1/G3 Zipper was more effective at inducing Jurkat T cell apoptosis in media containing serum, and was the only variant that could induce apoptosis at low concentrations under serum-free conditions. The monomeric G1/G3 fusion protein lacked extracellular activity under all conditions tested, suggesting that the enhanced activity of G1/G3 Zipper was due to its quaternary structure and increased carbohydrate-recognition domain valency. Thus, combining G1 and G3 into a non-native chimeric assembly provides a new candidate therapeutic with greater immunomodulatory potency than the wild-type proteins and previously reported engineered variants.
Collapse
Affiliation(s)
- Margaret M Fettis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA 32611.
| | | | | |
Collapse
|
27
|
Abstract
Cancer has high incidence and it will continue to increase over the next decades. Detection and quantification of cancer-associated biomarkers is frequently carried out for diagnosis, prognosis and treatment monitoring at various disease stages. It is well-known that glycosylation profiles change significantly during oncogenesis. Aberrant glycans produced during tumorigenesis are, therefore, valuable molecules for detection and characterization of cancer, and for therapeutic design and monitoring. Although glycoproteomics has benefited from the development of analytical tools such as high performance liquid chromatography, two-dimensional gel and capillary electrophoresis and mass spectrometry, these approaches are not well suited for rapid point-of-care (POC) testing easily performed by medical staff. Lectins are biomolecules found in nature with specific affinities toward particular glycan structures and bind them thus forming a relatively strong complex. Because of this characteristic, lectins have been used in analytical techniques for the selective capture or separation of certain glycans in complex samples, namely, in lectin affinity chromatography, or to characterize glycosylation profiles in diverse clinical situations, using lectin microarrays. Lectin-based biosensors have been developed for the detection of specific aberrant and cancer-associated glycostructures to aid diagnosis, prognosis and treatment assessment of these patients. The attractive features of biosensors, such as portability and simple use make them highly suitable for POC testing. Recent developments in lectin biosensors, as well as their potential and pitfalls in cancer glycan biomarker detection, are presented in this chapter.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Pachuca, Hidalgo, México.
| |
Collapse
|
28
|
Jing Y, Chen J, Zhou L, Sun J, Cai M, Shi Y, Tian Y, Gao J, Wang H. Super-resolution imaging of cancer-associated carbohydrates using aptamer probes. NANOSCALE 2019; 11:14879-14886. [PMID: 31360978 DOI: 10.1039/c9nr03948a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Globo H, as one of the most crucial cancer-associated carbohydrates, is exclusively overexpressed in a variety of cancers. However, the accurate localization and detailed morphology of globo H at the molecular level remain unclear. Here, we applied direct stochastic optical reconstruction microscopy (dSTORM) and relied on fluorophore-conjugated aptamers to solve the problem. The results showed that globo H organized as clusters on cell membranes with irregular shapes and different sizes from 100 to 300 nm. Significantly, globo H was found to have a higher expression level and larger clusters on various cancer cells than on non-cancer cells, which hinted that its specific distribution could be utilized for cancer diagnosis. Moreover, dual-color dSTORM imaging revealed the colocalization of globo H and other cancer-associated carbohydrates, and the clustering of globo H could be disrupted by the treatment of corresponding glycosidases, which indicated that these carbohydrates might intertwine in spatial organization and function cooperatively in cancers. Our work clarified the clustered distribution of globo H at the nanometer scale and revealed the potential interactions between cancer-associated carbohydrates, which paves the way for further understanding the relationship between the spatial structures and functions of carbohydrates in cancers.
Collapse
Affiliation(s)
- Yingying Jing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cramer J, Sager CP, Ernst B. Hydroxyl Groups in Synthetic and Natural-Product-Derived Therapeutics: A Perspective on a Common Functional Group. J Med Chem 2019; 62:8915-8930. [DOI: 10.1021/acs.jmedchem.9b00179] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jonathan Cramer
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christoph P. Sager
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
30
|
Romero-Ben E, Cid JJ, Assali M, Fernández-García E, Wellinger RE, Khiar N. Surface modulation of single-walled carbon nanotubes for selective bacterial cell agglutination. Int J Nanomedicine 2019; 14:3245-3263. [PMID: 31190792 PMCID: PMC6512782 DOI: 10.2147/ijn.s179202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Bacterial resistance to antibiotics is one of the biggest challenges facing medicine today. Anti-adhesive therapy, using inhibitors of bacterial adhesion to epithelial cells, one of the first stages of infection, is a promising approximation in this area. The size, shape, number of sugar and their placement are variables that have to be taken into account in order to develop multivalent systems able to inhibit the bacterial adhesion based on sugar-lectin interaction. MATERIALS AND METHODS In the present work we report a modular approach for the synthesis of water-soluble 1D-carbon nanotube-sugar nanoconstructs, with the necessary flexibility to allow an efficient sugar-lectin interaction. The method is based on the reaction of aryl diazonium salts generated in situ from aniline-substituted mannose and lactose derivatives with single wall carbon nanotubes (SWCNTs) sidewalls. RESULTS Two hybrid nanosystems, I-II, exposing mannose or lactose and having a tetraethylene glycol spacer between the sugar and the nanotube sidewall were rapidly assembled and adequately characterized. The sweet nano-objects were then tested for their ability to agglutinate and selectively inhibit the growth of uropathogenic Escherichia coli. These studies have shown that nanosystem I, exposing mannose on the nanotube surface is able to agglutinate and to inhibit the bacterial growth unlike nano-objects II exposing lactose. CONCLUSION The results reported constitute a proof of principle in using mannose-coated 1D-carbon nanotubes as antiadhesive drugs that compete for FimH binding and prevent the uropathogenic bacteria from adhering to the urothelial surface.
Collapse
Affiliation(s)
- Elena Romero-Ben
- Asymmetric Synthesis and Functional Nanosystems Group, Institute of Chemical Research-Universidad de Sevilla, Avda. Américo Vespucio, 41092 Seville, Spain,
| | - Juan José Cid
- Asymmetric Synthesis and Functional Nanosystems Group, Institute of Chemical Research-Universidad de Sevilla, Avda. Américo Vespucio, 41092 Seville, Spain,
| | - Mohyeddin Assali
- Asymmetric Synthesis and Functional Nanosystems Group, Institute of Chemical Research-Universidad de Sevilla, Avda. Américo Vespucio, 41092 Seville, Spain,
| | - Elisabeth Fernández-García
- Genome Stability Department, Andalusian Center for Molecular Biology and Regenerative Medicine Centre, Universidad de Sevilla-CSIC, Avda. Américo Vespucio, 41092 Seville, Spain
| | - Ralf Erik Wellinger
- Genome Stability Department, Andalusian Center for Molecular Biology and Regenerative Medicine Centre, Universidad de Sevilla-CSIC, Avda. Américo Vespucio, 41092 Seville, Spain
| | - Noureddine Khiar
- Asymmetric Synthesis and Functional Nanosystems Group, Institute of Chemical Research-Universidad de Sevilla, Avda. Américo Vespucio, 41092 Seville, Spain,
| |
Collapse
|
31
|
Bertino P, Premeaux TA, Fujita T, Haun BK, Marciel MP, Hoffmann FW, Garcia A, Yiang H, Pastorino S, Carbone M, Niki T, Berestecky J, Hoffmann PR, Ndhlovu LC. Targeting the C-terminus of galectin-9 induces mesothelioma apoptosis and M2 macrophage depletion. Oncoimmunology 2019; 8:1601482. [PMID: 31413910 PMCID: PMC6682368 DOI: 10.1080/2162402x.2019.1601482] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022] Open
Abstract
Galectin-9 has emerged as a promising biological target for cancer immunotherapy due to its role as a regulator of macrophage and T-cell differentiation. In addition, its expression in tumor cells modulates tumor cell adhesion, metastasis, and apoptosis. Malignant mesothelioma (MM) is an aggressive neoplasm of the mesothelial cells lining the pleural and peritoneal cavities, and in this study, we found that both human MM tissues and mouse MM cells express high levels of galectin-9. Using a novel monoclonal antibody (mAb) (Clone P4D2) that binds the C-terminal carbohydrate recognition domain (CRD) of galectin-9, we demonstrate unique agonistic properties resulting in MM cell apoptosis. Furthermore, the P4D2 mAb reduced tumor-associated macrophages differentiation toward a protumor phenotype. Importantly, these effects exerted by the P4D2 mAb were observed in both human and mouse in vitro experiments and not observed with another antigalectin-9 specific mAb (clone P1D9) that engages the N-terminus CRD of galectin-9. In syngeneic murine models of MM, P4D2 mAb treatment inhibited tumor growth and improved survival, with tumors from P4D2-treated mice exhibited reduced infiltration of tumor-associated M2 macrophages. This was consistent with an increased production of inducible nitric oxide synthase, which is a major enzyme-regulating macrophage inflammatory response to cancer. These data suggest that using an antigalectin 9 mAb with agonistic properties similar to those exerted by galectin-9 may provide a novel multitargeted strategy for the treatment of mesothelioma and possibly other galectin-9 expressing tumors.
Collapse
Affiliation(s)
- Pietro Bertino
- Department of Cell and Molecular Biology, Honolulu, HI, USA
| | - Thomas A. Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Tsuyoshi Fujita
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Brien K. Haun
- Department of Cell and Molecular Biology, Honolulu, HI, USA
| | | | | | - Alan Garcia
- Department of Microbiology and Biotechnology, Kapi‘olani Community College, Honolulu, HI, USA
| | - Haining Yiang
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Sandra Pastorino
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Michele Carbone
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- GalPharma, Co., Ltd., Takamatsu, Japan
| | - John Berestecky
- Department of Microbiology and Biotechnology, Kapi‘olani Community College, Honolulu, HI, USA
| | | | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| |
Collapse
|
32
|
Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ 2019; 26:981-993. [PMID: 30903104 DOI: 10.1038/s41418-019-0317-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Glycosylation and glycan-binding proteins such as galectins play an important role in the control of cell death signaling. Strikingly, very little attention has been given so far to the understanding of the molecular details behind this key regulatory network. Glycans attached to the death receptors such as CD95 and TRAIL-Rs, either alone or in a complex with galectins, might promote or inhibit apoptotic signals. However, we have just started to decode the functions of galectins in the modulation of extrinsic and intrinsic apoptosis. In this work, we have discussed the current understanding of the glycosylation-galectin regulatory network in CD95- as well as TRAIL-R-induced apoptosis and therapeutic strategies based on targeting galectins in cancer.
Collapse
|
33
|
Tjandra KC, Thordarson P. Multivalency in Drug Delivery–When Is It Too Much of a Good Thing? Bioconjug Chem 2019; 30:503-514. [DOI: 10.1021/acs.bioconjchem.8b00804] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kristel C. Tjandra
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pall Thordarson
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
34
|
Tian X, Hussain S, de Pace C, Ruiz-Pérez L, Battaglia G. Zn II Complexes for Bioimaging and Correlated Applications. Chem Asian J 2019; 14:509-526. [PMID: 30716209 DOI: 10.1002/asia.201801437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Indexed: 11/09/2022]
Abstract
Zinc is a biocompatible element that exists as the second most abundant transition metal ion and an indispensable trace element in the human body. Compared to traditional metal-organic complexes systems, d10 metal ZnII complexes not only exhibit a large Stokes shift and good photon stability but also possess strong emission and low cytotoxicity with a relatively small molecular weight. The use of ZnII complexes has emerged in the last decade as a versatile and convenient tool for numerous biological applications, including bioimaging, molecular and protein recognition, as well as photodynamic therapy. Herein, we review recent developments involving ZnII metal complexes applied as specific subcellular compartment imaging probes and their correlated utilizations.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of life science, Anhui University, Hefei, 230039, P.R. China
| | - Sajid Hussain
- School of life science, Anhui University, Hefei, 230039, P.R. China.,School of Applied Sciences and Humanities (NUSASH), National University of Technology, Sector I-12, Islamabad, Pakistan
| | - Cesare de Pace
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Giuseppe Battaglia
- School of life science, Anhui University, Hefei, 230039, P.R. China.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
35
|
Brissonnet Y, Araoz R, Sousa R, Percevault L, Brument S, Deniaud D, Servent D, Le Questel JY, Lebreton J, Gouin SG. Di- and heptavalent nicotinic analogues to interfere with α7 nicotinic acetylcholine receptors. Bioorg Med Chem 2019; 27:700-707. [PMID: 30692022 DOI: 10.1016/j.bmc.2019.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022]
Abstract
In the field of nicotinic acetylcholine receptors (nAChRs), recognized as important therapeutic targets, much effort has been dedicated to the development of nicotinic analogues to agonize or antagonize distinct homo- and heteropentamers nAChR subtypes, selectively. In this work we developed di- and heptavalent nicotinic derivatives based on ethylene glycol (EG) and cyclodextrin cores, respectively. The compounds showed a concentration dependent inhibition of acetylcholine-induced currents on α7 nAChR expressed by Xenopus oocytes. Interesting features were observed with the divalent nicotinic derivatives, acting as antagonists with varied inhibitory concentrations (IC50) in function of the spacer arm length. The best divalent compounds showed a 16-fold lowered IC50 compared to the monovalent reference (12 vs 195 µM). Docking investigations provide guidelines to rationalize these experimental findings.
Collapse
Affiliation(s)
- Yoan Brissonnet
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Romulo Araoz
- CNRS, Neuro-PSI, UMR9197, 91191 Gif-Sur-Yvette, France; CEA/DRF/JOLIOT/SIMOPRO/Toxines Récepteur et Canaux Ioniques, F-91191 Gif-Sur-Yvette, France.
| | - Rui Sousa
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Lucie Percevault
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Sami Brument
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - David Deniaud
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Denis Servent
- CEA/DRF/JOLIOT/SIMOPRO/Toxines Récepteur et Canaux Ioniques, F-91191 Gif-Sur-Yvette, France
| | - Jean-Yves Le Questel
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | - Jacques Lebreton
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Sébastien G Gouin
- Université de Nantes, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| |
Collapse
|
36
|
Silva MLS. Lectin-based biosensors as analytical tools for clinical oncology. Cancer Lett 2018; 436:63-74. [PMID: 30125611 DOI: 10.1016/j.canlet.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
The review focus on the use of lectin-based biosensors in the oncology field, and ponders the potentialities of using these devices as analytical tools to monitor the levels of cancer glycobiomarkers in biological fluids, helping in the diagnosis, prognosis and treatment assessment. Several examples of lectin-based biosensors directed for cancer biomarkers are described and discussed, and their potential application in the clinic is considered, taking into account their analytical features, advantages and performance in sample analysis. Technical and practical aspects in the construction process, which are specific for lectin biosensors, are debated, as well as the requirements in sample collection and processing, and biosensor validation. Today's challenges for real implementation of these devices in the clinic are presented, along with the future trends in the field.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo Km 4.5, 42076, Pachuca, Hidalgo, Mexico; LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
37
|
Abstract
Galectins are carbohydrate-binding proteins that are involved in many physiological functions, such as inflammation, immune responses, cell migration, autophagy and signalling. They are also linked to diseases such as fibrosis, cancer and heart disease. How such a small family of only 15 members can have such widespread effects remains a conundrum. In this Cell Science at a Glance article, we summarise recent literature on the many cellular activities that have been ascribed to galectins. As shown on the accompanying poster, these include carbohydrate-independent interactions with cytosolic or nuclear targets and carbohydrate-dependent interactions with extracellular glycoconjugates. We discuss how these intra- and extracellular activities might be linked and point out the importance of unravelling molecular mechanisms of galectin function to gain a true understanding of their contributions to the physiology of the cell. We close with a short outlook on the organismal functions of galectins and a perspective on the major challenges in the field.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ralf Jacob
- Philipps-Universität Marburg, Institut für Zytobiologie, Robert-Koch-Str. 6, 35037 Marburg, Germany
| | - Hakon Leffler
- Sect. MIG (Microbiology, Immunology, Glycobiology), Dept Laboratory Medicine, Lund University, POB 117, 22100 Lund, Sweden
| |
Collapse
|
38
|
IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Curr Opin Struct Biol 2018; 49:36-43. [PMID: 29306779 DOI: 10.1016/j.sbi.2017.12.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) have critical roles in a diverse array of cellular functions. Of relevance here is that they are components of macromolecular complexes, where their conformational flexibility helps mediate interactions with binding partners. IDPs often interact with their binding partners through short sequence motifs, commonly repeated within the disordered regions. As such, multivalent interactions are common for IDPs and their binding partners within macromolecular complexes. Here we discuss the importance of IDP multivalency in three very different macromolecular assemblies: biomolecular condensates, the nuclear pore, and the cytoskeleton.
Collapse
|
39
|
Aarnio-Peterson M, Zhao P, Yu SH, Christian C, Flanagan-Steet H, Wells L, Steet R. Altered Met receptor phosphorylation and LRP1-mediated uptake in cells lacking carbohydrate-dependent lysosomal targeting. J Biol Chem 2017; 292:15094-15104. [PMID: 28724630 DOI: 10.1074/jbc.m117.790139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/14/2017] [Indexed: 11/06/2022] Open
Abstract
Acid hydrolases utilize a carbohydrate-dependent mechanism for lysosomal targeting. These hydrolases acquire a mannose 6-phosphate tag by the action of the GlcNAc-1-phosphotransferase enzyme, allowing them to bind receptors and traffic to endosomes. Loss of GlcNAc-1-phosphotransferase results in hydrolase hypersecretion and profound lysosomal storage. Little, however, is known about how these cellular phenotypes affect the trafficking, activity, and localization of surface glycoproteins. To address this question, we profiled the abundance of surface glycoproteins in WT and CRISPR-mediated GNPTAB-/- HeLa cells and identified changes in numerous glycoproteins, including the uptake receptor LRP1 and multiple receptor tyrosine kinases. Decreased cell surface LRP1 in GNPTAB-/- cells corresponded with a reduction in its steady-state level and less amyloid-β-40 (Aβ40) peptide uptake. GNPTAB-/- cells displayed elevated activation of several kinases including Met receptor. We found increased Met phosphorylation within both the kinase and the docking domains and observed that lower concentrations of pervanadate were needed to cause an increase in phospho-Met in GNPTAB-/- cells. Together, these data suggested a decrease in the activity of the receptor and non-receptor protein-tyrosine phosphatases that down-regulate Met phosphorylation. GNPTAB-/- cells exhibited elevated levels of reactive oxygen species, known to inactivate cell surface and cytosolic phosphatases by oxidation of active site cysteine residues. Consistent with this mode of action, peroxide treatment of parental HeLa cells elevated phospho-Met levels whereas antioxidant treatment of GNPTAB-/- cells reduced phospho-Met levels. Collectively, these findings identify new mechanisms whereby impaired lysosomal targeting can impact the activity and recycling of receptors.
Collapse
Affiliation(s)
- Megan Aarnio-Peterson
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Peng Zhao
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Seok-Ho Yu
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Courtney Christian
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Heather Flanagan-Steet
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Lance Wells
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Richard Steet
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
40
|
Bleuler-Martinez S, Stutz K, Sieber R, Collot M, Mallet JM, Hengartner M, Schubert M, Varrot A, Künzler M. Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes. Glycobiology 2017; 27:486-500. [PMID: 27980000 DOI: 10.1093/glycob/cww113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
Lectins are used as defense effector proteins against predators, parasites and pathogens by animal, plant and fungal innate defense systems. These proteins bind to specific glycoepitopes on the cell surfaces and thereby interfere with the proper cellular functions of the various antagonists. The exact cellular toxicity mechanism is in many cases unclear. Lectin CCL2 of the mushroom Coprinopsis cinerea was previously shown to be toxic for Caenorhabditis elegans and Drosophila melanogaster. This toxicity is dependent on a single, high-affinity binding site for the trisaccharide GlcNAc(Fucα1,3)β1,4GlcNAc, which is a hallmark of nematode and insect N-glycan cores. The carbohydrate-binding site is located at an unusual position on the protein surface when compared to other β-trefoil lectins. Here, we show that CCL2 forms a compact dimer in solution and in crystals. Substitution of two amino acid residues at the dimer interface, R18A and F133A, interfered with dimerization of CCL2 and reduced toxicity but left carbohydrate-binding unaffected. These results, together with the positioning of the two carbohydrate-binding sites on the surface of the protein dimer, suggest that crosslinking of N-glycoproteins on the surface of intestinal cells of invertebrates is a crucial step in the mechanism of CCL2-mediated toxicity. Comparisons of the number and positioning of carbohydrate-binding sites among different dimerizing fungal β-trefoil lectins revealed a considerable variability in the carbohydrate-binding patterns of these proteins, which are likely to correlate with their respective functions.
Collapse
Affiliation(s)
| | - Katrin Stutz
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Ramon Sieber
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Mayeul Collot
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Michael Hengartner
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstr. 20, 8093 Zürich, Switzerland.,Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Annabelle Varrot
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, 38041 Grenoble, France
| | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
41
|
Tang Y, Kong M, Tian X, Wang J, Xie Q, Wang A, Zhang Q, Zhou H, Wu J, Tian Y. A series of terpyridine-based zinc(ii) complexes assembled for third-order nonlinear optical responses in the near-infrared region and recognizing lipid membranes. J Mater Chem B 2017; 5:6348-6355. [DOI: 10.1039/c7tb01063j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-photon (TP) microscopy has advantages for biological imaging in that it allows deeper tissue-penetration and excellent resolution compared with one-photon (OP) microscopy.
Collapse
Affiliation(s)
- Yiwen Tang
- Department of Chemistry
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Hefei 230039
- P. R. China
| | - Ming Kong
- Department of Chemistry
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Hefei 230039
- P. R. China
| | - Xiaohe Tian
- School of Life Science
- Anhui University
- Hefei 230039
- P. R. China
| | - Jinghang Wang
- Department of Chemistry
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Hefei 230039
- P. R. China
| | - Qingyuan Xie
- Department of Chemistry
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Hefei 230039
- P. R. China
| | - Aidong Wang
- School of Chemistry and Chemical Engeering
- Huangshan University
- Huangshan
- P. R. China
| | - Qiong Zhang
- Department of Chemistry
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Hefei 230039
- P. R. China
| | - Hongping Zhou
- Department of Chemistry
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Hefei 230039
- P. R. China
| | - Jieying Wu
- Department of Chemistry
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Hefei 230039
- P. R. China
| | - Yupeng Tian
- Department of Chemistry
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Hefei 230039
- P. R. China
- State Key Laboratory of Coordination Chemistry
| |
Collapse
|
42
|
Yang H, Cheng Q. Chemoselective ligation reaction of N-acetylglucosamine (NAG) with hydrazide functional probes to determine galactosyltransferase activity by MALDI mass spectrometry. Analyst 2017; 142:2654-2662. [DOI: 10.1039/c7an00428a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A perfluorocarbon-modified gold surface is used to immobilize PF-β-NAG and allows quantification of β-GT enzymatic activity with MALDI-TOF/MS.
Collapse
Affiliation(s)
- Hyojik Yang
- Department of Chemistry
- University of California
- Riverside
- USA
| | - Quan Cheng
- Department of Chemistry
- University of California
- Riverside
- USA
| |
Collapse
|
43
|
Cancer Therapy Due to Apoptosis: Galectin-9. Int J Mol Sci 2017; 18:ijms18010074. [PMID: 28045432 PMCID: PMC5297709 DOI: 10.3390/ijms18010074] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/25/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of apoptosis is a major hallmark in cancer biology that might equip tumors with a higher malignant potential and chemoresistance. The anti-cancer activities of lectin, defined as a carbohydrate-binding protein that is not an enzyme or antibody, have been investigated for over a century. Recently, galectin-9, which has two distinct carbohydrate recognition domains connected by a linker peptide, was noted to induce apoptosis in thymocytes and immune cells. The apoptosis of these cells contributes to the development and regulation of acquired immunity. Furthermore, human recombinant galectin-9, hG9NC (null), which lacks an entire region of the linker peptide, was designed to resist proteolysis. The hG9NC (null) has demonstrated anti-cancer activities, including inducing apoptosis in hematological, dermatological and gastrointestinal malignancies. In this review, the molecular characteristics, history and apoptosis-inducing potential of galectin-9 are described.
Collapse
|
44
|
Cousin JM, Cloninger MJ. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int J Mol Sci 2016; 17:ijms17091566. [PMID: 27649167 PMCID: PMC5037834 DOI: 10.3390/ijms17091566] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/24/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.
Collapse
Affiliation(s)
- Jonathan M Cousin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
45
|
Vamvaka E, Evans A, Ramessar K, Krumpe LRH, Shattock RJ, O'Keefe BR, Christou P, Capell T. Cyanovirin-N produced in rice endosperm offers effective pre-exposure prophylaxis against HIV-1BaL infection in vitro. PLANT CELL REPORTS 2016; 35:1309-19. [PMID: 27007716 PMCID: PMC7815165 DOI: 10.1007/s00299-016-1963-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/27/2016] [Indexed: 05/19/2023]
Abstract
Cyanovirin-N produced in rice endosperm provides efficient pre-exposure prophylaxis against HIV-1 BaL infection in vitro. Cyanovirin-N (CV-N) is a lectin with potent antiviral activity that has been proposed as a component of microbicides for the prevention of infection with Human immunodeficiency virus (HIV). The production of protein-based microbicide components requires a platform that is sufficiently economical and scalable to meet the demands of the large at-risk population, particularly in resource poor developing countries. We, therefore, expressed CV-N in rice endosperm, because the dried seed is ideal for storage and transport and crude extracts could be prepared locally and used as a microbicide component without further purification. We found that crude extracts from rice seeds expressing up to 10 µg CV-N per gram dry seed weight showed dose-dependent gp120 binding activity, confirming that the protein was soluble, correctly folded and active. The recombinant lectin ((OS)CV-N) reduced the infectivity of HIV-1BaL (an R5 virus strain representing the majority of transmitted infections) by ~90 % but showed only weak neutralization activity against HIV-1RF (representative of X4 virus, rarely associated with transmission), suggesting it would be highly effective for pre-exposure prophylaxis against the vast majority of transmitted strains. Crude extracts expressing (OS)CV-N showed no toxicity towards human cells at working dilutions indicating that microbicide components produced in rice endosperm are safe for direct application as topical microbicides in humans.
Collapse
Affiliation(s)
- E Vamvaka
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - A Evans
- Department of Medicine, Imperial College London, Norfolk Place, London, UK
| | - K Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - L R H Krumpe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, USA
| | - R J Shattock
- Department of Medicine, Imperial College London, Norfolk Place, London, UK
| | - B R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA
| | - P Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - T Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain.
| |
Collapse
|
46
|
Das R, Mukhopadhyay B. Use of ‘click chemistry’ for the synthesis of carbohydrate-porphyrin dendrimers and their multivalent approach toward lectin sensing. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Blanchard H, Bum-Erdene K, Bohari MH, Yu X. Galectin-1 inhibitors and their potential therapeutic applications: a patent review. Expert Opin Ther Pat 2016; 26:537-54. [PMID: 26950805 DOI: 10.1517/13543776.2016.1163338] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Galectins have affinity for β-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics. AREAS COVERED This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site. EXPERT OPINION Significant evidence implicates galectin-1's involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence similarity of the carbohydrate-binding sites of different galectins makes design of specific antagonists (blocking agents/inhibitors of function) difficult. Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectin-1 to the desired site. Developing modified forms of galectin-1 has resulted in increased stability and functional potency. Gene and protein therapy approaches that deliver the protein toward the target are under exploration as is exploitation of different inhibitor scaffolds.
Collapse
Affiliation(s)
- Helen Blanchard
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | - Khuchtumur Bum-Erdene
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | | | - Xing Yu
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| |
Collapse
|
48
|
Shan Y, Wang H. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 2016; 44:3617-38. [PMID: 25893228 DOI: 10.1039/c4cs00508b] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.
Collapse
Affiliation(s)
- Yuping Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | |
Collapse
|
49
|
Yeast expressed ArtinM shares structure, carbohydrate recognition, and biological effects with native ArtinM. Int J Biol Macromol 2016; 82:22-30. [DOI: 10.1016/j.ijbiomac.2015.09.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/24/2022]
|
50
|
Loka RS, McConnell MS, Nguyen HM. Studies of Highly-Ordered Heterodiantennary Mannose/Glucose-Functionalized Polymers and Concanavalin A Protein Interactions Using Isothermal Titration Calorimetry. Biomacromolecules 2015; 16:4013-4021. [PMID: 26580410 DOI: 10.1021/acs.biomac.5b01380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preparations of the highly ordered monoantennary, homofunctional diantennary, and heterofunctional diantennary neoglycopolymers of α-d-mannose and β-d-glucose residues were achieved via ring-opening metathesis polymerization. Isothermal titration calorimetry measurements of these synthetic neoglycopolymers with Concanavalin A (Con A), revealed that heterofunctional diantennary architectures bearing both α-mannose and nonbinding β-glucose units, poly(Man-Glc), binds to Con A (Ka = 16.1 × 10(6) M(-1)) comparably to homofunctional diantennary neoglycopolymer (Ka = 30 × 10(6) M(-1)) bearing only α-mannose unit, poly(Man-Man). In addition, poly(Man-Glc) neoglycopolymer shows a nearly 5-fold increasing in binding affinity compared to monoantennary neoglycopolymer, poly(Man). Although the exact mechanism for the high binding affinity of poly(Man-Glc) to Con A is unclear, we hypothesize that the α-mannose bound to Con A might facilitate interaction of β-glucose with the extended binding site of Con A due to the close proximity of β-glucose to α-mannose residues in the designed polymerizable scaffold.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry, University of Iowa, Iowa 52242, United States
| | | | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa 52242, United States
| |
Collapse
|