1
|
Ilhan M, Turgut S, Turan S, Demirci Cekic S, Ergen HA, Korkmaz Dursun G, Mezani B, Karaman O, Yaylim I, Apak MR, Tasan E. The assessment of total antioxidant capacity and superoxide dismutase levels, and the possible role of manganese superoxide dismutase polymorphism in acromegaly. Endocr J 2018; 65:91-99. [PMID: 29046499 DOI: 10.1507/endocrj.ej17-0300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33-60) pg/mL and 1,313.7 (155-1,902) μM in acromegaly; and 46.3 (38-95) pg/mL and 1,607.3 (195-1,981) μM in healthy subjects (p < 0.001, p < 0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p = 0.05 and p = 0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p < 0.05 and p < 0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.
Collapse
Affiliation(s)
- Muzaffer Ilhan
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Seda Turgut
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Saime Turan
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Sema Demirci Cekic
- Department of Chemistry, Faculty of Engineering, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Hayriye Arzu Ergen
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Gurbet Korkmaz Dursun
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Brunilda Mezani
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Ozcan Karaman
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Ilhan Yaylim
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Mustafa Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Ertugrul Tasan
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| |
Collapse
|
2
|
Popović N, Pajović BS, Stojiljković V, Todorović A, Pejić S, Pavlović I, Gavrilović L. Increased Activity of Hippocampal Antioxidant Enzymes as an Important Adaptive Phenomenon of the Antioxidant Defense System in Chronically Stressed Rats. ACTA VET-BEOGRAD 2017. [DOI: 10.1515/acve-2017-0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
This study examined the effects of chronic restraint stress (CRS: 2 hours × 14 days) on gene expression of three antioxidant enzymes, copper, zinc superoxide dismutase (SOD 1), manganese superoxide dismutase (SOD 2) and catalase (CAT) in the rat hippocampus. Also, we examined changes in the activities of SOD 1, SOD 2 and CAT in the hippocampus of chronically stressed rats. Investigated parameters were quantifi ed by using real-time RT-PCR, Western blot analysis and assay of enzymatic activity. We found that CRS did not change mRNA and protein levels of SOD 1 and CAT, but increased mRNA and protein levels of SOD 2. However, CRS treatment increased the enzyme activities of SOD 1, SOD 2 and CAT. Our fi ndings indicate that the increased activity of antioxidant enzymes (SOD 1, SOD 2 and CAT) in the hippocampus may be an important adaptive phenomenon of the antioxidant defense system in chronically stressed rats.
Collapse
Affiliation(s)
- Nataša Popović
- Institute of Nuclear Sciences “Vinča”, Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade , Serbia
| | - B. Snežana Pajović
- Institute of Nuclear Sciences “Vinča”, Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade , Serbia
| | - Vesna Stojiljković
- Institute of Nuclear Sciences “Vinča”, Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade , Serbia
| | - Ana Todorović
- Institute of Nuclear Sciences “Vinča”, Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade , Serbia
| | - Snežana Pejić
- Institute of Nuclear Sciences “Vinča”, Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade , Serbia
| | - Ivan Pavlović
- Institute of Nuclear Sciences “Vinča”, Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade , Serbia
| | - Ljubica Gavrilović
- Institute of Nuclear Sciences “Vinča”, Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade , Serbia
| |
Collapse
|
3
|
Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals 2016; 29:265-74. [PMID: 26857738 DOI: 10.1007/s10534-016-9913-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/30/2016] [Indexed: 02/05/2023]
Abstract
Three experiments were conducted to investigate the effects of inorganic and organic Mn sources on MnSOD mRNA, protein and enzymatic activity and the possible signal pathways. The primary broiler myocardial cells were treated with MnCl2 (I) or one of organic chelates of Mn and amino acids with weak, moderate (M) or strong (S) chelation strength for 12 and 48 h. Cells were preincubated with superoxide radical anions scavenger N-acetylcysteine (NAC) or specific inhibitors for MAPKs and protein tyrosine kinase (PTK) or protein kinase C (PKC) for 30 min before treatments of I and M. The MnSOD mRNA, protein and enzymatic activity, phosphorylated MAPKs or protein kinases activations were examined. The results showed that additions of Mn increased (P < 0.05) MnSOD mRNA levels and M was more effective than I. Additions of Mn elevated (P < 0.05) MnSOD protein levels and enzymatic activities, and no differences were found among I and M. Addition of NAC did not decrease (P > 0.05) Mn-induced MnSOD mRNA and protein levels. None of the three MAPKs was phosphorylated (P > 0.05) by Mn. Additions of Mn decreased (P < 0.05) the PTK activities and increased (P < 0.05) the membrane PKC contents. Inhibitors for PTK or PKC decreased (P < 0.05) Mn-induced MnSOD protein levels. The results suggested that Mn-induced MnSOD mRNA and protein expressions be not related with NAC, and MAPK pathways might not involve in Mn-induced MnSOD mRNA expression. PKC and PTK mediated the Mn-induced MnSOD protein expression.
Collapse
|
4
|
The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype. PLoS One 2014; 9:e94568. [PMID: 24736663 PMCID: PMC3988074 DOI: 10.1371/journal.pone.0094568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/17/2014] [Indexed: 12/19/2022] Open
Abstract
The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.
Collapse
|
5
|
Kim A. Modulation of MnSOD in Cancer:Epidemiological and Experimental Evidence. Toxicol Res 2013; 26:83-93. [PMID: 24278510 PMCID: PMC3834467 DOI: 10.5487/tr.2010.26.2.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/08/2023] Open
Abstract
Since it was first observed in late 1970s that human cancers often had decreased manganese superoxide dismutase (MnSOD) protein expression and activity, extensive studies have been conducted to verify the association between MnSOD and cancer. Significance of MnSOD as a primary mitochondrial antioxidant enzyme is unquestionable; results from in vitro, in vivo and epidemiological studies are in harmony. On the contrary, studies regarding roles of MnSOD in cancer often report conflicting results. Although putative mechanisms have been proposed to explain how MnSOD regulates cellular proliferation, these mechanisms are not capitulated in epidemiological studies. This review discusses most recent epidemiological and experimental studies that examined the association between MnSOD and cancer, and describes emerging hypotheses of MnSOD as a mitochondrial redox regulatory enzyme and of how altered mitochondrial redox may affect physiology of normal as well as cancer cells.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk 712-702, Korea
| |
Collapse
|
6
|
Liu H, Bao W, Lin M, Niu H, Rikihisa Y. Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol 2012; 14:1037-50. [PMID: 22348527 DOI: 10.1111/j.1462-5822.2012.01775.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ehrlichia chaffeensis infects monocytes/macrophages and causes human monocytic ehrlichiosis. To determine the role of type IV secretion (T4S) system in infection, candidates for T4S effectors were identified by bacterial two-hybrid screening of E. chaffeensis hypothetical proteins with positively charged C-terminus using E. chaffeensis VirD4 as bait. Of three potential T4S effectors, ECH0825 was highly upregulated early during exponential growth in a human monocytic cell line. ECH0825 was translocated from the bacterium into the host-cell cytoplasm and localized to mitochondria. Delivery of anti-ECH0825 into infected host cells significantly reduced bacterial infection. Ectopically expressed ECH0825 also localized to mitochondria and inhibited apoptosis of transfected cells in response to etoposide treatment. In double transformed yeast, ECH0825 localized to mitochondria and inhibited human Bax-induced apoptosis. Mitochondrial manganese superoxide dismutase (MnSOD) was increased over ninefold in E. chaffeensis-infected cells, and the amount of reactive oxygen species (ROS) in infected cells was significantly lower than that in uninfected cells. Similarly, MnSOD was upregulated and the ROS level was reduced in ECH0825-transfected cells. These data suggest that, by upregulating MnSOD, ECH0825 prevents ROS-induced cellular damage and apoptosis to allow intracellular infection. This is the first example of host ROS levels linked to a bacterial T4S effector.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
7
|
Kim HJ, Ji BR, Kim JS, Lee HN, Ha DH, Kim CW. Proteomic analysis of proteins associated with cellular senescence by calorie restriction in mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2012; 48:186-95. [DOI: 10.1007/s11626-012-9485-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/06/2012] [Indexed: 01/01/2023]
|
8
|
Rapid upregulation of heart antioxidant enzymes during arousal from estivation in the Giant African snail (Achatina fulica). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:229-36. [DOI: 10.1016/j.cbpa.2010.06.188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 11/23/2022]
|
9
|
Miao L, St. Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009; 47:344-56. [PMID: 19477268 PMCID: PMC2731574 DOI: 10.1016/j.freeradbiomed.2009.05.018] [Citation(s) in RCA: 614] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/10/2009] [Accepted: 05/15/2009] [Indexed: 01/22/2023]
Abstract
Numerous short-lived and highly reactive oxygen species (ROS) such as superoxide (O2(.-)), hydroxyl radical, and hydrogen peroxide are continuously generated in vivo. Depending upon concentration, location, and intracellular conditions, ROS can cause toxicity or act as signaling molecules. The cellular levels of ROS are controlled by antioxidant enzymes and small-molecule antioxidants. As major antioxidant enzymes, superoxide dismutases (SODs), including copper-zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase, and extracellular superoxide dismutase, play a crucial role in scavenging O2(.-). This review focuses on the regulation of the sod genes coding for these enzymes, with an emphasis on the human genes. Current knowledge about sod structure and regulation is summarized and depicted as diagrams. Studies to date on genes coding for Cu/ZnSOD (sod1) are mostly focused on alterations in the coding region and their associations with amyotrophic lateral sclerosis. Evaluation of nucleotide sequences reveals that regulatory elements of the sod2 gene reside in both the noncoding and the coding region. Changes associated with sod2 lead to alterations in expression levels as well as protein function. We also discuss the structural basis for the changes in SOD expression associated with pathological conditions and where more work is needed to establish the relationship between SODs and diseases.
Collapse
Affiliation(s)
- Lu Miao
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Valdivia A, Pérez-Álvarez S, Aroca-Aguilar JD, Ikuta I, Jordán J. Superoxide dismutases: a physiopharmacological update. J Physiol Biochem 2009; 65:195-208. [DOI: 10.1007/bf03179070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Gene expressions of Mn-SOD and GPx-1 in streptozotocin-induced diabetes: effect of antioxidants. Mol Cell Biochem 2009; 327:127-34. [DOI: 10.1007/s11010-009-0050-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/04/2009] [Indexed: 11/26/2022]
|
12
|
Koli K, Myllärniemi M, Keski-Oja J, Kinnula VL. Transforming growth factor-beta activation in the lung: focus on fibrosis and reactive oxygen species. Antioxid Redox Signal 2008; 10:333-42. [PMID: 17961070 DOI: 10.1089/ars.2007.1914] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transforming growth factor-betas (TGF-beta) regulate a wide variety of cellular functions in normal development and are involved in both tissue homeostasis and disease pathogenesis. The regulation of the TGF-beta family of growth factors is unique because they are targeted to the extracellular matrix in a biologically inactive form. The release from pericellular matrices and the activation of TGF-beta are important mechanisms in several pathophysiologic conditions. Reactive oxygen species (ROS) can activate TGF-beta either directly or indirectly via the activation of proteases. In addition, TGF-beta itself induces ROS production as part of its signal-transduction pathway. The lung is a unique organ, because its structures act as boundaries between gaseous and aqueous phases, allowing the utilization of inhaled oxygen. However, this renders pulmonary tissues vulnerable to the toxic effects of inhaled air. The oxidant pathways are especially relevant in the lung, where TGF-beta is known to have a role in tissue repair and connective tissue turnover. In pulmonary fibrosis, TGF-beta activation is considered as a hallmark of disease progression. More recently, the oxidative effects of cigarette smoking have been found to activate TGF-beta in chronic obstructive pulmonary disease (COPD), a disease consisting of emphysema, airway fibrosis, and focal lung fibrosis.
Collapse
Affiliation(s)
- Katri Koli
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | |
Collapse
|
13
|
García-López D, Häkkinen K, Cuevas MJ, Lima E, Kauhanen A, Mattila M, Sillanpää E, Ahtiainen JP, Karavirta L, Almar M, González-Gallego J. Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men. Scand J Med Sci Sports 2007; 17:595-604. [PMID: 17316373 DOI: 10.1111/j.1600-0838.2006.00620.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study was aimed at investigating the effects of a 21-week period of progressive strength or endurance training on peripheral blood mononuclear cells (PBMC) antioxidant enzyme gene expression and activity in healthy middle-aged untrained men. Strength (n=11) and endurance (n=12) training were performed twice a week, including resistance exercises to activate all the main muscle groups or cycle-ergometer pedaling, respectively. mRNA levels of catalase, glutathione peroxidase (GPx), mitochondrial superoxide dismutase (MnSOD) and cytosolic superoxide dismutase (CuZnSOD) were increased after 21 weeks of strength training, while endurance training induced significant changes only in MnSOD and GPx mRNA levels. CuZnSOD protein content was significantly increased only in strength-trained subjects. The program of strength or endurance exercise training had no significant effects on the activity of any of the antioxidant enzymes. In conclusion, in a middle-aged population, 21 weeks of strength or endurance training was a sufficient stimulus to up-regulate mRNA levels of PBMC antioxidant enzymes, the strength training being a more optimal stimulus. However, the discrepancies between enzyme protein and mRNA levels suggest that the present systematic strength or endurance training period had no beneficial effects on enzymatic antioxidant defense mechanisms in previously untrained middle-aged men.
Collapse
Affiliation(s)
- D García-López
- Institute of Biomedicine, University of León, León, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Archambaud C, Nahori MA, Pizarro-Cerda J, Cossart P, Dussurget O. Control of Listeria Superoxide Dismutase by Phosphorylation. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84096-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Archambaud C, Nahori MA, Pizarro-Cerda J, Cossart P, Dussurget O. Control ofListeriaSuperoxide Dismutase by Phosphorylation. J Biol Chem 2006; 281:31812-22. [PMID: 16905535 DOI: 10.1074/jbc.m606249200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superoxide dismutases (SODs) are enzymes that protect organisms against superoxides and reactive oxygen species (ROS) produced during their active metabolism. ROS are major mediators of phagocytes microbicidal activity. Here we show that the cytoplasmic Listeria monocytogenes MnSOD is phosphorylated on serine and threonine residues and less active when bacteria reach the stationary phase. We also provide evidence that the most active nonphosphorylated form of MnSOD can be secreted via the SecA2 pathway in culture supernatants and in infected cells, where it becomes phosphorylated. A Deltasod deletion mutant is impaired in survival within macrophages and is dramatically attenuated in mice. Together, our results demonstrate that the capacity to counteract ROS is an essential component of L. monocytogenes virulence. This is the first example of a bacterial SOD post-translationally controlled by phosphorylation, suggesting a possible new host innate mechanism to counteract a virulence factor.
Collapse
Affiliation(s)
- Cristel Archambaud
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Inserm, U604, INRA, USC2020, F-75015 Paris, France
| | | | | | | | | |
Collapse
|
16
|
Cieśla J, Jagielska E, Skopiński T, Dąbrowska M, Maley F, Rode W. Binding and repression of translation of the cognate mRNA by Trichinella spiralis thymidylate synthase differ from the corresponding interactions of the human enzyme. Biochem J 2006; 390:681-8. [PMID: 15882146 PMCID: PMC1199661 DOI: 10.1042/bj20050548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymidylate synthase (TS) of Trichinella spiralis, a parasitic nematode causing trichinellosis, was found to bind its own mRNA and repress translation of the latter, similar to its human counter-part [Chu, Koeller, Casey, Drake, Chabner, Elwood, Zinn and Allegra (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 8977-8981]. However, in striking contrast with human TS, the parasite enzyme's interaction with mRNA was not affected by any of the substrate (deoxyuridylate or N(5,10)-methylenetetrahydrofolate) nor by the inhibitor (fluorodeoxyuridylate; used alone or in the presence of N(5,10)-methylenetetrahydrofolate) similar to that shown for the bifunctional enzyme from Plasmodium falciparum [Zhang and Rathod (2002) Science 296, 545-547]. Moreover, repression of the translation of the parasite enzyme was enhanced by the same ligands that were shown by others (Chu et al., 1991) to prevent human TS from impairing its translation. On comparing the capacity of TS to bind to its cognate mRNA, relative to its ability to inhibit its translation, the same enzyme preparation was active as translational repressor at a considerably lower protein/mRNA ratio, suggesting the two phenomena to be disconnected. Of interest is the fact that the presence of the enzyme protein N-terminal methionine proved to be critical for binding, but not for repression of its translation, indicating that mRNA binding requires a methionine or an adduct (i.e. methionine-histidine) at the N-terminus of TS, but that the translational repression effect does not. Notably, chicken liver dihydrofolate reductase, which is incapable of binding to T. spiralis TS mRNA, repressed the translation of TS.
Collapse
Affiliation(s)
- Joanna Cieśla
- *Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Elżbieta Jagielska
- *Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Tomasz Skopiński
- *Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Magdalena Dąbrowska
- *Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Frank Maley
- †Wadsworth Center, New York State Department of Health, Albany, NY 12201, U.S.A
| | - Wojciech Rode
- *Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Xi Q, Cuesta R, Schneider RJ. Regulation of translation by ribosome shunting through phosphotyrosine-dependent coupling of adenovirus protein 100k to viral mRNAs. J Virol 2005; 79:5676-83. [PMID: 15827182 PMCID: PMC1082770 DOI: 10.1128/jvi.79.9.5676-5683.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus simultaneously inhibits cap-dependent host cell mRNA translation while promoting the translation of its late viral mRNAs during infection. Studies previously demonstrated that tyrosine kinase activity plays a central role in the control of late adenovirus protein synthesis. The tyrosine kinase inhibitor genistein decreases late viral mRNA translation and prevents viral inhibition of cellular protein synthesis. Adenovirus protein 100k blocks cellular mRNA translation by disrupting the cap-initiation complex and promotes viral mRNA translation through an alternate mechanism known as ribosome shunting. 100k protein interaction with initiation factor eIF4G and the viral 5' noncoding region on viral late mRNAs, known as the tripartite leader, are both essential for ribosome shunting. We show that adenovirus protein 100k promotes ribosome shunting in a tyrosine phosphorylation-dependent manner. The primary sites of phosphorylated tyrosine on protein 100k were mapped and mutated, and two key sites are shown to be essential for protein 100k to promote ribosome shunting. Mutation of the two tyrosine phosphorylation sites in 100k protein does not impair interaction with initiation factor 4G, but it severely reduces association of 100k with tripartite leader mRNAs. 100k protein therefore promotes ribosome shunting and selective translation of viral mRNAs by binding specifically to the adenovirus tripartite leader in a phosphotyrosine-dependent manner.
Collapse
Affiliation(s)
- Qiaoran Xi
- NYU School of Medicine, Department of Microbiology, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
18
|
Bémeur C, Ste-Marie L, Desjardins P, Butterworth RF, Vachon L, Montgomery J, Hazell AS. Expression of superoxide dismutase in hyperglycemic focal cerebral ischemia in the rat. Neurochem Int 2004; 45:1167-74. [PMID: 15380626 DOI: 10.1016/j.neuint.2004.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/21/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
This study investigated the possibility that hyperglycemia induces early expression of various superoxide dismutases (SOD) and nitric oxide synthases (NOS) following focal cerebral ischemia in the rat. MnSOD, CuZnSOD, nNOS and eNOS mRNA and protein expression were examined 3 h after permanent middle cerebral artery occlusion under acute hyperglycemic or normoglycemic conditions. 2,3,5-triphenyltetrazolium chloride (TTC) treatment post-mortem revealed a significant area at risk of infarction following ischemia in hyperglycemic compared to normoglycemic rats. Although no changes in MnSOD, CuZnSOD, nNOS and eNOS mRNA expression were detected, Western blots of ischemic cortex revealed an increase in MnSOD and CuZnSOD protein expression in hyperglycemic compared to normoglycemic rats. Pre-treatment of hyperglycemic rats with the NOS inhibitors L-nitroarginine methyl ester (L-NAME) and 7-nitroindazole (7-NI) or dehydroascorbic acid (DHA), a superoxide scavenger, significantly reduced the TTC delineated zone. The hyperglycemia-induced post-transcriptional upregulation of MnSOD and CuZnSOD levels suggest a response to increased superoxide production which, in the presence of increased nitric oxide production, may play a major role in the increased risk of damage following hyperglycemic stroke.
Collapse
Affiliation(s)
- Chantal Bémeur
- Laboratoire de Neurobiologie, Centre de Recherche du CHUM, Hôpital St-Luc, A-466, 1058 St-Denis St, Montréal, Québec, Canada H2X 3J4.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kinnula VL, Crapo JD. Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med 2004; 36:718-44. [PMID: 14990352 DOI: 10.1016/j.freeradbiomed.2003.12.010] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 12/01/2003] [Accepted: 12/12/2003] [Indexed: 02/06/2023]
Abstract
Reactive oxygen metabolites have multifactorial effects on the regulation of cell growth and the capacity of malignant cells to invade. Overexpression of the superoxide dismutases (SODs) in vitro increases cell differentiation, decreases cell growth and proliferation, and can reverse a malignant phenotype to a nonmalignant one. The situation in vivo is more complex due to multiple interactions of tumor cells with their environment. Numerous in vivo studies show that the superoxide dismutases can be highly expressed in aggressive human solid tumors. Furthermore, high SOD has occasionally been associated with a poor prognosis and with resistance to cytotoxic drugs and radiation. Most of the apparent conflicts between the above in vitro and in vivo observations can be reconciled by considering the net redox status of tumor cells in different environments. Administering high concentrations of SOD to cells in vitro is usually associated with a non- or less malignant phenotype, whereas secondary induction of SOD in tumors in vivo can be associated with an aggressive malignant transformation probably due to the altered (oxidative) redox state in the malignant cells. This concept suggests that for many types of tumors antioxidants could be used to diminish the invasive capability of malignant cells.
Collapse
Affiliation(s)
- Vuokko L Kinnula
- Division of Pulmonary Medicine, Department of Medicine, University of Helsinki and Helsinki University Hospital, FIN-0029 Helsinki, Finland.
| | | |
Collapse
|
20
|
Abstract
The lungs are directly exposed to higher oxygen concentrations than most other tissues. Increased oxidative stress is a significant part of the pathogenesis of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease, parenchymal lung diseases (e.g., idiopathic pulmonary fibrosis and lung granulomatous diseases), and lung malignancies. Lung tissue is protected against these oxidants by a variety of antioxidant mechanisms among which the superoxide dismutases (SODs) are the only ones converting superoxide radicals to hydrogen peroxide. There are three SODs: cytosolic copper-zinc, mitochondrial manganese, and extracellular SODs. These enzymes have specific distributions and functions. Their importance in protecting lung tissue has been confirmed in transgenic and knockout animal studies. Relatively few studies have been conducted on these enzymes in the normal human lung or in human lung diseases. Most human studies suggest that there is induction of manganese SOD and, possibly, extracellular SOD during inflammatory, but not fibrotic, phases of parenchymal lung diseases and that both copper-zinc SOD and manganese SOD may be downregulated in asthmatic airways. Many previous antioxidant therapies have been disappointing, but newly characterized SOD mimetics are being shown to protect against oxidant-related lung disorders in animal models.
Collapse
|
21
|
Skabkina OV, Skabkin MA, Popova NV, Lyabin DN, Penalva LO, Ovchinnikov LP. Poly(A)-binding protein positively affects YB-1 mRNA translation through specific interaction with YB-1 mRNA. J Biol Chem 2003; 278:18191-8. [PMID: 12646583 DOI: 10.1074/jbc.m209073200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major protein of cytoplasmic mRNPs from rabbit reticulocytes, YB-1, is a member of an ancient family of proteins containing a common structural feature, cold-shock domain. In eukaryotes, this family is represented by multifunctional mRNA/Y-box DNA-binding proteins that control gene expression at different stages. To address possible post-transcriptional regulation of YB-1 gene expression, we examined effects of exogenous 5'- and 3'-untranslatable region-containing fragments of YB-1 mRNA on its translation and stability in a cell-free system. The addition of the 3' mRNA fragment as well as its subfragment I shut off protein synthesis at the initiation stage without affecting mRNA stability. UV cross-linking revealed four proteins (69, 50, 46, and 44 kDa) that specifically interacted with the 3' mRNA fragment; the inhibitory subfragment I bound two of them, 69- and 50-kDa proteins. We have identified these proteins as PABP (poly(A)-binding protein) (69 kDa) and YB-1 (50 kDa) and demonstrated that titrating out of PABP by poly(A) strongly and specifically inhibits YB-1 mRNA cap(+)poly(A)(-) translation in a cell-free system. Thus, PABP is capable of positively affecting YB-1 mRNA translation in a poly(A) tail-independent manner.
Collapse
Affiliation(s)
- Olga V Skabkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | | | | | | | | | | |
Collapse
|
22
|
Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 2003; 34:800-9. [PMID: 12654467 DOI: 10.1016/s0891-5849(02)01431-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endurance exercise is associated with protection against myocardial ischemia/reperfusion (I/R) injury and has been shown to increase heat shock protein 72 (HSP72). Dietary antioxidants have also been reported to decrease I/R-induced injury. Because exercise and antioxidants may provide cardioprotection via different mechanisms, combining these countermeasures could provide additive protection. Alternatively, because exercise-induced oxidant production may promote expression of HSP72, antioxidants could attenuate exercise-induced HSP72 expression and decrease exercise-related cardioprotection. These experiments examined the individual and combined effects of exercise and antioxidants on myocardial I/R injury (in vivo). Rats receiving a mixed antioxidant diet or control diet were assigned to exercise or sedentary groups and randomized to receive: (i) short I/R (myocardial stunning), (ii) long I/R (myocardial infarction), or (iii) sham surgery. Antioxidants significantly increased total antioxidant capacity and attenuated exercise-related HSP72 accumulation. Nonetheless, during short I/R, exercise-trained animals demonstrated improved left ventricular developed pressure (LVDP), independent of diet. Further, antioxidants alone resulted in improved LVDP. Finally, compared to control diet/sedentary animals, both exercise groups (control and antioxidant diets) and the antioxidant diet/sedentary group sustained smaller infarctions. We conclude that exercise and antioxidants can independently provide protection against myocardial contractile dysfunction and infarction, and the combination of these two strategies does not enhance or inhibit the protection observed with each individual countermeasure.
Collapse
Affiliation(s)
- Karyn L Hamilton
- Department of Exercise and Sport Science, Center for Exercise Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 2002; 33:337-49. [PMID: 12126755 DOI: 10.1016/s0891-5849(02)00905-x] [Citation(s) in RCA: 1473] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Superoxide dismutases are an ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anions. Three unique and highly compartmentalized mammalian superoxide dismutases have been biochemically and molecularly characterized to date. SOD1, or CuZn-SOD (EC 1.15.1.1), was the first enzyme to be characterized and is a copper and zinc-containing homodimer that is found almost exclusively in intracellular cytoplasmic spaces. SOD2, or Mn-SOD (EC 1.15.1.1), exists as a tetramer and is initially synthesized containing a leader peptide, which targets this manganese-containing enzyme exclusively to the mitochondrial spaces. SOD3, or EC-SOD (EC 1.15.1.1), is the most recently characterized SOD, exists as a copper and zinc-containing tetramer, and is synthesized containing a signal peptide that directs this enzyme exclusively to extracellular spaces. What role(s) these SODs play in both normal and disease states is only slowly beginning to be understood. A molecular understanding of each of these genes has proven useful toward the deciphering of their biological roles. For example, a variety of single amino acid mutations in SOD1 have been linked to familial amyotrophic lateral sclerosis. Knocking out the SOD2 gene in mice results in a lethal cardiomyopathy. A single amino acid mutation in human SOD3 is associated with 10 to 30-fold increases in serum SOD3 levels. As more information is obtained, further insights will be gained.
Collapse
Affiliation(s)
- Igor N Zelko
- Division of Pulmonary and Critical Care, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
24
|
Yang C, Maiguel DA, Carrier F. Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. Nucleic Acids Res 2002; 30:2251-60. [PMID: 12000845 PMCID: PMC115285 DOI: 10.1093/nar/30.10.2251] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 03/15/2002] [Accepted: 03/15/2002] [Indexed: 01/25/2023] Open
Abstract
Genotoxic stress (DNA damage) can elicit multiple responses in mammalian cells, including the activation of numerous cascades of signal transduction that result in the activation of cellular genes involved in growth control, DNA repair and apoptosis. In an earlier report, we have shown that DNA-damaging agents can also induce the RNA-binding activity of several specific proteins that favor a double stem-loop RNA structure. Here we report the purification and identification of nucleophosmin (NPM) and nucleolin as two genotoxic stress-responsive RNA-binding proteins. UV radiation induces the protein expression levels and RNA-binding activity of NPM while nucleolin RNA-binding activity increases after UV or ionizing radiation exposure. Moreover, we have identified 40 mRNA ligands that are potentially regulated by nucleolin, several of which are stress-responsive transcripts. In addition, our data indicate that activation of nucleolin RNA-binding activity by genotoxic stress is mediated by stress-activated protein kinase p38. Our findings suggest that activation of the RNA-binding properties of nucleolin and NPM is part of the cellular response to genotoxic stress.
Collapse
Affiliation(s)
- Chonglin Yang
- University of Maryland, Baltimore, School of Medicine, Biochemistry and Molecular Biology Department, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Terry D Oberley
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI 53705, USA.
| |
Collapse
|