1
|
Kong D, Wang X, Liu L. Biosynthesis of a Novel Diketopiperazine Aspkyncin Incorporating a Kynurenine Unit from Aspergillus aculeatus. J Fungi (Basel) 2025; 11:171. [PMID: 40137209 PMCID: PMC11942691 DOI: 10.3390/jof11030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
The simplest cyclo-peptides, also known as diketopiperazines (DKPs), are widespread in nature. The growing interest in these simplest cyclo-peptides is driven by their significant potential for therapeutic applications. In this study, we identified a biosynthetic gene cluster from Aspergillus aculeatus CRI323-04 through genome mining and heterologous expression in Aspergillus nidulans. The two core genes, aacA and aacB, within the gene cluster were characterized for their role in the biossoynthesis of aspkyncin, a novel DKP compound that incorporates a l-kynurenine (l-Kyn) unit. Furthermore, we successfully reconstituted the activities of the minimal bimodular non-ribosomal peptide synthetase (NRPS) AacA and the methyltransferase AacB both in vivo and in vitro. Our findings demonstrate that AacA catalyzes the condensation and cyclization of two non-proteinogenic amino acids, l-Kyn and N-methyl-l-alanine, to produce aspkyncin without the involvement of any release domain. Notably, the N-methyl-l-alanine is generated by a specialized l-alanine N-methyltransferase AacB prior to NRP assembly. This study reveals an unconventional pathway for the biosynthesis of fungal DKPs.
Collapse
Affiliation(s)
- Dekun Kong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - Xin Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - Li Liu
- Laboratory of Biochemistry and Molecular Biology, Lab Teaching and Management Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Han C, Song A, He Y, Yang L, Chen L, Dai W, Wu Q, Yuan S. Genome mining and biosynthetic pathways of marine-derived fungal bioactive natural products. Front Microbiol 2024; 15:1520446. [PMID: 39726967 PMCID: PMC11669671 DOI: 10.3389/fmicb.2024.1520446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Marine fungal natural products (MFNPs) are a vital source of pharmaceuticals, primarily synthesized by relevant biosynthetic gene clusters (BGCs). However, many of these BGCs remain silent under standard laboratory culture conditions, delaying the development of novel drugs from MFNPs to some extent. This review highlights recent efforts in genome mining and biosynthetic pathways of bioactive natural products from marine fungi, focusing on methods such as bioinformatics analysis, gene knockout, and heterologous expression to identify relevant BGCs and elucidate the biosynthetic pathways and enzyme functions of MFNPs. The research efforts presented in this review provide essential insights for future gene-guided mining and biosynthetic pathway analysis in MFNPs.
Collapse
Affiliation(s)
- Caihua Han
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Anjing Song
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yueying He
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liu Yang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Litong Chen
- Center of Ocean Expedition, School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qilin Wu
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Siwen Yuan
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
3
|
He JB, Ren Y, Li P, Liu YP, Pan HX, Huang LJ, Wang J, Fang P, Tang GL. Crystal Structure and Mutagenesis of an XYP Subfamily Cyclodipeptide Synthase Reveal Key Determinants of Enzyme Activity and Substrate Specificity. Biochemistry 2024; 63:2969-2976. [PMID: 39475147 PMCID: PMC11580168 DOI: 10.1021/acs.biochem.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Cyclodipeptide synthases (CDPSs) catalyze the synthesis of diverse cyclodipeptides (CDPs) by utilizing two aminoacyl-tRNA (aa-tRNA) substrates in a sequential ping-pong reaction mechanism. Numerous CDPSs have been characterized to provide precursors for diketopiperazines (DKPs) with diverse structural characteristics and biological activities. BcmA, belonging to the XYP subfamily, is a cyclo(l-Ile-l-Leu)-synthesizing CDPS involved in the biosynthesis of the antibiotic bicyclomycin. The structural basis and determinants influencing BcmA enzyme activity and substrate selectivity are not well understood. Here, we report the crystal structure of SsBcmA from Streptomyces sapporonensis. Through structural comparison and systematic site-directed mutagenesis, we highlight the significance of key residues located in the aminoacyl-binding pocket for enzyme activity and substrate specificity. In particular, the nonconserved residues D161 and K165 in pocket P2 are essential for the activity of SsBcmA without significant alteration of the substrate specificity, while the conserved residues F158 as well as F210 and S211 in P2 are responsible for determining substrate selectivity. These findings facilitate the understanding of how CDPSs selectively accept hydrophobic substrates and provide additional clues for the engineering of these enzymes for synthetic biology applications.
Collapse
Affiliation(s)
- Jun-Bin He
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Yichen Ren
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Peifeng Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Yi-Pei Liu
- Shaanxi
Natural Carbohydrate Resource Engineering Research Center, College
of Food Science and Technology, Northwest
University, Xi’an 710069, China
| | - Hai-Xue Pan
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Lin-Juan Huang
- Shaanxi
Natural Carbohydrate Resource Engineering Research Center, College
of Food Science and Technology, Northwest
University, Xi’an 710069, China
| | - Jiayuan Wang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Pengfei Fang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences (CAS), 1 Sub-lane
Xiangshan, Hangzhou, Zhejiang 310024, China
| | - Gong-Li Tang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences (CAS), 1 Sub-lane
Xiangshan, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
4
|
Pierre HC, Amrine CSM, Doyle MG, Salvi A, Raja HA, Chekan JR, Huntsman AC, Fuchs JR, Liu K, Burdette JE, Pearce CJ, Oberlies NH. Verticillins: fungal epipolythiodioxopiperazine alkaloids with chemotherapeutic potential. Nat Prod Rep 2024; 41:1327-1345. [PMID: 38629495 PMCID: PMC11409914 DOI: 10.1039/d3np00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.
Collapse
Affiliation(s)
- Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
- Department of Physical and Earth Sciences. Arkansas Tech University, 1701 N. Boulder Ave., Russellville, Arkansas 72801, USA
| | - Michael G Doyle
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Amrita Salvi
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and the Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| |
Collapse
|
5
|
Qureshi M, Mokkawes T, Cao Y, de Visser SP. Mechanism of the Oxidative Ring-Closure Reaction during Gliotoxin Biosynthesis by Cytochrome P450 GliF. Int J Mol Sci 2024; 25:8567. [PMID: 39201254 PMCID: PMC11354885 DOI: 10.3390/ijms25168567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
During gliotoxin biosynthesis in fungi, the cytochrome P450 GliF enzyme catalyzes an unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle, which may have relevance to drug synthesis reactions in biotechnology. However, as the details of the reaction mechanism are still controversial, no applications have been developed yet. To resolve the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we ran a combination of molecular dynamics and density functional theory calculations on the structure and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models. The calculations show that, rather than hydrogen atom transfer from the substrate to Compound I, an initial proton transfer transition state is followed by a fast electron transfer en route to the radical intermediate, and hence a non-synchronous hydrogen atom abstraction takes place. The radical intermediate then reacts by OH rebound to the aromatic ring to form a biradical in the substrate that, through ring-closure between the radical centers, gives gliotoxin products. Interestingly, the structure and energetics of the reaction mechanisms appear little affected by the addition of polar groups to the model and hence we predict that the reaction can be catalyzed by other P450 isozymes that also bind the same substrate. Alternative pathways, such as a pathway starting with an electrophilic attack on the arene to form an epoxide, are high in energy and are ruled out.
Collapse
Affiliation(s)
| | | | | | - Sam P. de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK (Y.C.)
| |
Collapse
|
6
|
Ye W, Liu T, Liu Y, Li M, Wang S, Li S, Zhang W. Enhancing gliotoxins production in deep-sea derived fungus Dichotomocyes cejpii by engineering the biosynthetic pathway. BIORESOURCE TECHNOLOGY 2023; 377:128905. [PMID: 36931443 DOI: 10.1016/j.biortech.2023.128905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Gliotoxin can be developed as potent biopesticide. In this study, the positive transcriptional factor gliZ, glutathione-S transferase encoding gene gliG and gliN were firstly deleted by CRISPR/Cas9 system, which abolished the production of gliotoxin-like compounds in Dichotomomyces cejpii. CRISPR/dCas9 system targeting promoter of gliG was used to activate the biosynthetic genes in gli cluster. The overexpression of gliZ, gliN and gliG can significantly improve the yield of gliotoxin-like compunds. The gliotoxin yields was improved by 16.38 ± 1.36 fold, 18.98 ± 1.28 fold through gliZ overexpression and gliM deletion in D. cejpii FS110. In addtion, gliN was heterologously expressed in E. coli, the purified GliN can catalyze gliotoxin into methyl-gliotoxin. Furthermore, the binding sequences of GliZ in the promoters of gliG was determined by Dnase footprinting. This study firstly illustrated the transcriptional regulatory mechanism of DcGliZ for the gliotoxin biosynthesis in D. cejpii, and improved the yields of gliotoxins significantly in D. cejpii via biosynthetic approaches.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Yuping Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Mengran Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Shixin Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| |
Collapse
|
7
|
Widodo WS, Billerbeck S. Natural and engineered cyclodipeptides: Biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction. ENGINEERING MICROBIOLOGY 2023; 3:100067. [PMID: 39628525 PMCID: PMC11610984 DOI: 10.1016/j.engmic.2022.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 12/06/2024]
Abstract
Cyclodipeptides are diverse chemical scaffolds that show a broad range of bioactivities relevant for medicine, agriculture, chemical catalysis, and material sciences. Cyclodipeptides can be synthesized enzymatically through two unrelated enzyme families, non-ribosomal peptide synthetases (NRPS) and cyclodipeptide synthases (CDPSs). The chemical diversity of cyclodipeptides is derived from the two amino acid side chains and the modification of those side-chains by cyclodipeptide tailoring enzymes. While a large spectrum of chemical diversity is already known today, additional chemical space - and as such potential new bioactivities - could be accessed by exploring yet undiscovered NRPS and CDPS gene clusters as well as via engineering. Further, to exploit cyclodipeptides for applications, the low yield of natural biosynthesis needs to be overcome. In this review we summarize current knowledge on NRPS and CDPS-based cyclodipeptide biosynthesis, engineering approaches to further diversity the natural chemical diversity as well as strategies for high-yield production of cyclodipeptides, including a discussion of how advancements in synthetic biology and metabolic engineering can accelerate the translational potential of cyclodipeptides.
Collapse
Affiliation(s)
- Wahyu Setia Widodo
- Department of Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Wang R, Piggott AM, Chooi YH, Li H. Discovery, bioactivity and biosynthesis of fungal piperazines. Nat Prod Rep 2023; 40:387-411. [PMID: 36374102 DOI: 10.1039/d2np00070a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Covering: up to the end of July, 2022Fungi are prolific producers of piperazine alkaloids, which have been shown to exhibit an array of remarkable biological activities. Since the first fungal piperazine, herquline A, was reported from Penicillium herquei Fg-372 in 1979, a plethora of structurally diverse piperazines have been isolated and characterised from various fungal strains. Significant advancements have been made in recent years towards unravelling the biosynthesis of fungal piperazines and numerous synthetic routes have been proposed. This review provides a comprehensive summary of the current knowledge of the discovery, classification, bioactivity and biosynthesis of piperazine alkaloids reported from fungi, and discusses the perspectives for exploring the structural diversity of fungal piperazines via genome mining of the untapped piperazine biosynthetic pathways.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| |
Collapse
|
9
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
10
|
Patteson JB, Fortinez CM, Putz AT, Rodriguez-Rivas J, Bryant LH, Adhikari K, Weigt M, Schmeing TM, Li B. Structure and Function of a Dehydrating Condensation Domain in Nonribosomal Peptide Biosynthesis. J Am Chem Soc 2022; 144:14057-14070. [PMID: 35895935 DOI: 10.1021/jacs.1c13404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydroamino acids are important structural motifs and biosynthetic intermediates for natural products. Many bioactive natural products of nonribosomal origin contain dehydroamino acids; however, the biosynthesis of dehydroamino acids in most nonribosomal peptides is not well understood. Here, we provide biochemical and bioinformatic evidence in support of the role of a unique class of condensation domains in dehydration (CmodAA). We also obtain the crystal structure of a CmodAA domain, which is part of the nonribosomal peptide synthetase AmbE in the biosynthesis of the antibiotic methoxyvinylglycine. Biochemical analysis reveals that AmbE-CmodAA modifies a peptide substrate that is attached to the donor carrier protein. Mutational studies of AmbE-CmodAA identify several key residues for activity, including four residues that are mostly conserved in the CmodAA subfamily. Alanine mutation of these conserved residues either significantly increases or decreases AmbE activity. AmbE exhibits a dimeric conformation, which is uncommon and could enable transfer of an intermediate between different protomers. Our discovery highlights a central dehydrating function for CmodAA domains that unifies dehydroamino acid biosynthesis in diverse nonribosomal peptide pathways. Our work also begins to shed light on the mechanism of CmodAA domains. Understanding CmodAA domain function may facilitate identification of new natural products that contain dehydroamino acids and enable engineering of dehydroamino acids into nonribosomal peptides.
Collapse
Affiliation(s)
- Jon B Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Camille Marie Fortinez
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Andrew T Putz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Juan Rodriguez-Rivas
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative - LCQB, Paris 75005, France
| | - L Henry Bryant
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kamal Adhikari
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative - LCQB, Paris 75005, France
| | - T Martin Schmeing
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, Canada H3G 0B1
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Dörner S, Rogge K, Fricke J, Schäfer T, Wurlitzer JM, Gressler M, Pham DNK, Manke DR, Chadeayne AR, Hoffmeister D. Genetic Survey of Psilocybe Natural Products. Chembiochem 2022; 23:e202200249. [PMID: 35583969 PMCID: PMC9400892 DOI: 10.1002/cbic.202200249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Psilocybe magic mushrooms are best known for their main natural product, psilocybin, and its dephosphorylated congener, the psychedelic metabolite psilocin. Beyond tryptamines, the secondary metabolome of these fungi is poorly understood. The genomes of five species (P. azurescens, P. cubensis, P. cyanescens, P. mexicana, and P. serbica) were browsed to understand more profoundly common and species-specific metabolic capacities. The genomic analyses revealed a much greater and yet unexplored metabolic diversity than evident from parallel chemical analyses. P. cyanescens and P. mexicana were identified as aeruginascin producers. Lumichrome and verpacamide A were also detected as Psilocybe metabolites. The observations concerning the potential secondary metabolome of this fungal genus support pharmacological and toxicological efforts to find a rational basis for yet elusive phenomena, such as paralytic effects, attributed to consumption of some magic mushrooms.
Collapse
Affiliation(s)
- Sebastian Dörner
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Kai Rogge
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Janis Fricke
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Tim Schäfer
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Jacob M. Wurlitzer
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Duyen N. K. Pham
- Department of Chemistry & BiochemistryUniversity of Massachusetts285 Old Westport RoadDartmouthMA02747USA
| | - David R. Manke
- Department of Chemistry & BiochemistryUniversity of Massachusetts285 Old Westport RoadDartmouthMA02747USA
| | | | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
12
|
Qi J, Han H, Sui D, Tan S, Liu C, Wang P, Xie C, Xia X, Gao JM, Liu C. Efficient production of a cyclic dipeptide (cyclo-TA) using heterologous expression system of filamentous fungus Aspergillus oryzae. Microb Cell Fact 2022; 21:146. [PMID: 35843946 PMCID: PMC9290255 DOI: 10.1186/s12934-022-01872-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Cyclic dipeptides are an important class of natural products owing to their structural diversity and biological activities. In fungi, the cyclo-ring system is formed through the condensation of two α-amino acids via non-ribosomal peptide synthetase (NRPS). However, there are few investigations on the functional identification of this enzyme. Additionally, information on how to increase the production of cyclic dipeptide molecules is relatively scarce. Results We isolated the Eurotium cristatum NWAFU-1 fungus from Jing-Wei Fu brick tea, whose fermentation metabolites contain echinulin-related cyclic dipeptide molecules. We cloned the cirC gene, encoding an NRPS, from E. Cristatum NWAFU-1 and transferred it into the heterologous host Aspergillus oryzae. This transformant produced a novel metabolite possessing an l-tryptophan-l-alanine cyclic dipeptide backbone (Cyclo-TA). Based on the results of heterologous expression and microsomal catalysis, CriC is the first NRPS characterized in fungi that catalyzes the formation of a cyclic dipeptide from l-tryptophan and l-alanine. After substrate feeding, the final yield reached 34 mg/L. In this study, we have characterized a novel NRPS and developed a new method for cyclic dipeptide production. Conclusions In this study we successfully expressed the E. Cristatum NWAFU-1 criC gene in A. oryzae to efficiently produce cyclic dipeptide compounds. Our findings indicate that the A. oryzae heterologous expression system constitutes an efficient method for the biosynthesis of fungal Cyclic dipeptides. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01872-8.
Collapse
Affiliation(s)
- Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China.,Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haiyan Han
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Dan Sui
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Shengnan Tan
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Changli Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China.
| |
Collapse
|
13
|
Rauf M, Ur-Rahman A, Arif M, Gul H, Ud-Din A, Hamayun M, Lee IJ. Immunomodulatory Molecular Mechanisms of Luffa cylindrica for Downy Mildews Resistance Induced by Growth-Promoting Endophytic Fungi. J Fungi (Basel) 2022; 8:689. [PMID: 35887445 PMCID: PMC9324744 DOI: 10.3390/jof8070689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Downy mildew (DM), caused by P. cubensis, is harmful to cucurbits including luffa, with increased shortcomings associated with its control through cultural practices, chemical fungicides, and resistant cultivars; there is a prompt need for an effective, eco-friendly, economical, and safe biocontrol approach. Current research is therefore dealt with the biocontrol of luffa DM1 through the endophytic fungi (EF) consortium. Results revealed that T. harzianum (ThM9) and T. virens (TvA1) showed pathogen-dependent inducible metabolic production of squalene and gliotoxins by higher gene expression induction of SQS1/ERG9 (squalene synthase) and GliP (non-ribosomal peptide synthetase). Gene expression of lytic enzymes of EF was also induced with subsequently higher enzyme activities upon confrontation with P. cubensis. EF-inoculated luffa seeds showed efficient germination with enhanced growth potential and vigor of seedlings. EF-inoculated plants showed an increased level of growth-promoting hormone GA with higher gene expression of GA2OX8. EF-pre-inoculated seedlings were resistant to DM and showed an increased GSH content and antioxidant enzyme activities (SOD, CAT, POD). The level of MDA, H2O2, REL, and disease severity was reduced by EF. ACC, JA, ABA, and SA were overproduced along with higher gene expression of LOX, ERF, NCED2, and PAL. Expression of defense-marker genes (PPO, CAT2, SOD, APX, PER5, LOX, NBS-LRR, PSY, CAS, Ubi, MLP43) was also modulated in EF-inoculated infected plants. Current research supported the use of EF inoculation to effectively escalate the systemic immunity against DM corresponding to the significant promotion of induced systemic resistance (ISR) and systemic acquired resistance (SAR) responses through initiating the defense mechanism by SA, ABA, ET, and JA biosynthesis and signaling pathways in luffa.
Collapse
Affiliation(s)
- Mamoona Rauf
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Asim Ur-Rahman
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Muhammad Arif
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan
| | - Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan;
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
14
|
Redrado S, Esteban P, Domingo MP, Lopez C, Rezusta A, Ramirez-Labrada A, Arias M, Pardo J, Galvez EM. Integration of In Silico and In Vitro Analysis of Gliotoxin Production Reveals a Narrow Range of Producing Fungal Species. J Fungi (Basel) 2022; 8:jof8040361. [PMID: 35448592 PMCID: PMC9030297 DOI: 10.3390/jof8040361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Gliotoxin is a fungal secondary metabolite with impact on health and agriculture since it might act as virulence factor and contaminate human and animal food. Homologous gliotoxin (GT) gene clusters are spread across a number of fungal species although if they produce GT or other related epipolythiodioxopiperazines (ETPs) remains obscure. Using bioinformatic tools, we have identified homologous gli gene clusters similar to the A. fumigatus GT gene cluster in several fungal species. In silico study led to in vitro confirmation of GT and Bisdethiobis(methylthio)gliotoxin (bmGT) production in fungal strain cultures by HPLC detection. Despite we selected most similar homologous gli gene cluster in 20 different species, GT and bmGT were only detected in section Fumigati species and in a Trichoderma virens Q strain. Our results suggest that in silico gli homology analyses in different fungal strains to predict GT production might be only informative when accompanied by analysis about mycotoxin production in cell cultures.
Collapse
Affiliation(s)
- Sergio Redrado
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
| | - Patricia Esteban
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | | | - Concepción Lopez
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Antonio Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Ariel Ramirez-Labrada
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Maykel Arias
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
| | - Eva M. Galvez
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
- Correspondence:
| |
Collapse
|
15
|
Phylogeny of Leptographium qinlingensis cytochrome P450 genes and transcription levels of six CYPs in response to different nutrition media or terpenoids. Arch Microbiol 2021; 204:16. [DOI: 10.1007/s00203-021-02616-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
|
16
|
Lentzeacins A-E, New Bacterial-Derived 2,5- and 2,6-Disubstituted Pyrazines from a BGC-Rich Soil Bacterium Lentzea sp. GA3-008. Molecules 2021; 26:molecules26237197. [PMID: 34885778 PMCID: PMC8658869 DOI: 10.3390/molecules26237197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Pyrazines (1,4-diazirines) are an important group of natural products that have tremendous monetary value in the food and fragrance industries and can exhibit a wide range of biological effects including antineoplastic, antidiabetic and antibiotic activities. As part of a project investigating the secondary metabolites present in understudied and chemically rich Actinomycetes, we isolated a series of six pyrazines from a soil-derived Lentzea sp. GA3-008, four of which are new. Here we describe the structures of lentzeacins A-E (1, 3, 5 and 6) along with two known analogues (2 and 4) and the porphyrin zincphyrin. The structures were determined by NMR spectroscopy and HR-ESI-MS. The suite of compounds present in Lentzea sp. includes 2,5-disubstituted pyrazines (compounds 2, 4, and 6) together with the new 2,6-disubstituted isomers (compounds 1, 3 and 5), a chemical class that is uncommon. We used long-read Nanopore sequencing to assemble a draft genome sequence of Lentzea sp. which revealed the presence of 40 biosynthetic gene clusters. Analysis of classical di-modular and single module non-ribosomal peptide synthase genes, and cyclic dipeptide synthases narrows down the possibilities for the biosynthesis of the pyrazines present in this strain.
Collapse
|
17
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
18
|
Scherlach K, Kuttenlochner W, Scharf DH, Brakhage AA, Hertweck C, Groll M, Huber EM. Strukturelle und mechanistische Einblicke in die Bildung der C‐S‐Bindungen in Gliotoxin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kirstin Scherlach
- Abteilung Biomolekulare Chemie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
| | - Wolfgang Kuttenlochner
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| | - Daniel H. Scharf
- Abteilung Molekulare und Angewandte Mikrobiologie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Abteilung Mikrobiologie und Kinderkrankenhaus Zhejiang Universität Fakultät für Medizin Hangzhou 310058 Zhejiang V.R. China
| | - Axel A. Brakhage
- Abteilung Molekulare und Angewandte Mikrobiologie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Fakultät für Biowissenschaften Friedrich Schiller Universität Jena 07743 Jena Deutschland
| | - Christian Hertweck
- Abteilung Biomolekulare Chemie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Fakultät für Biowissenschaften Friedrich Schiller Universität Jena 07743 Jena Deutschland
| | - Michael Groll
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| | - Eva M. Huber
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| |
Collapse
|
19
|
Scherlach K, Kuttenlochner W, Scharf DH, Brakhage AA, Hertweck C, Groll M, Huber EM. Structural and Mechanistic Insights into C-S Bond Formation in Gliotoxin. Angew Chem Int Ed Engl 2021; 60:14188-14194. [PMID: 33909314 PMCID: PMC8251611 DOI: 10.1002/anie.202104372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/01/2022]
Abstract
Glutathione‐S‐transferases (GSTs) usually detoxify xenobiotics. The human pathogenic fungus Aspergillus fumigatus however uses the exceptional GST GliG to incorporate two sulfur atoms into its virulence factor gliotoxin. Because these sulfurs are essential for biological activity, glutathionylation is a key step of gliotoxin biosynthesis. Yet, the mechanism of carbon−sulfur linkage formation from a bis‐hydroxylated precursor is unresolved. Here, we report structures of GliG with glutathione (GSH) and its reaction product cyclo[‐l‐Phe‐l‐Ser]‐bis‐glutathione, which has been purified from a genetically modified A. fumigatus strain. The structures argue for stepwise processing of first the Phe and second the Ser moiety. Enzyme‐mediated dehydration of the substrate activates GSH and a helix dipole stabilizes the resulting anion via a water molecule for the nucleophilic attack. Activity assays with mutants validate the interactions of GliG with the ligands and enrich our knowledge about enzymatic C−S bond formation in gliotoxin and epipolythiodioxopiperazine (ETP) natural compounds in general.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Wolfgang Kuttenlochner
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| | - Daniel H Scharf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Department of Microbiology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, P.R. China
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Groll
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| | - Eva M Huber
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| |
Collapse
|
20
|
Adrover-Castellano ML, Schmidt JJ, Sherman DH. Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products. ChemCatChem 2021; 13:2095-2116. [PMID: 34335987 PMCID: PMC8320681 DOI: 10.1002/cctc.202001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Many biologically active natural products are synthesized by nonribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and their hybrids. These megasynthetases contain modules possessing distinct catalytic domains that allow for substrate initiation, chain extension, processing and termination. At the end of a module, a terminal domain, usually a thioesterase (TE), is responsible for catalyzing the release of the NRPS or PKS as a linear or cyclized product. In this review, we address the general cyclization mechanism of the TE domain, including oligomerization and the fungal C-C bond forming Claisen-like cyclases (CLCs). Additionally, we include examples of cyclization catalysts acting within or at the end of a module. Furthermore, condensation-like (CT) domains, terminal reductase (R) domains, reductase-like domains that catalyze Dieckmann condensation (RD), thioesterase-like Dieckmann cyclases, trans-acting TEs from the penicillin binding protein (PBP) enzyme family, product template (PT) domains and others will also be reviewed. The studies summarized here highlight the remarkable diversity of NRPS and PKS cyclization catalysts for the production of biologically relevant, complex cyclic natural products and related compounds.
Collapse
Affiliation(s)
| | - Jennifer J Schmidt
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| |
Collapse
|
21
|
Liu H, Xu W, Bruno VM, Phan QT, Solis NV, Woolford CA, Ehrlich RL, Shetty AC, McCraken C, Lin J, Bromley MJ, Mitchell AP, Filler SG. Determining Aspergillus fumigatus transcription factor expression and function during invasion of the mammalian lung. PLoS Pathog 2021; 17:e1009235. [PMID: 33780518 PMCID: PMC8031882 DOI: 10.1371/journal.ppat.1009235] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/08/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
To gain a better understanding of the transcriptional response of Aspergillus fumigatus during invasive pulmonary infection, we used a NanoString nCounter to assess the transcript levels of 467 A. fumigatus genes during growth in the lungs of immunosuppressed mice. These genes included ones known to respond to diverse environmental conditions and those encoding most transcription factors in the A. fumigatus genome. We found that invasive growth in vivo induces a unique transcriptional profile as the organism responds to nutrient limitation and attack by host phagocytes. This in vivo transcriptional response is largely mimicked by in vitro growth in Aspergillus minimal medium that is deficient in nitrogen, iron, and/or zinc. From the transcriptional profiling data, we selected 9 transcription factor genes that were either highly expressed or strongly up-regulated during in vivo growth. Deletion mutants were constructed for each of these genes and assessed for virulence in mice. Two transcription factor genes were found to be required for maximal virulence. One was rlmA, which is required for the organism to achieve maximal fungal burden in the lung. The other was sltA, which regulates of the expression of multiple secondary metabolite gene clusters and mycotoxin genes independently of laeA. Using deletion and overexpression mutants, we determined that the attenuated virulence of the ΔsltA mutant is due in part to decreased expression aspf1, which specifies a ribotoxin, but is not mediated by reduced expression of the fumigaclavine gene cluster or the fumagillin-pseruotin supercluster. Thus, in vivo transcriptional profiling focused on transcription factors genes provides a facile approach to identifying novel virulence regulators. Although A. fumigatus causes the majority of cases of invasive aspergillosis, the function of most genes in its genome remains unknown. To identify genes encoding transcription factors that may be important for virulence, we used a NanoString nCounter to measure the mRNA levels of A. fumigatus transcription factor genes in the lungs of mice with invasive aspergillosis. The transcriptional profiling data indicate that the organism is exposed to nutrient limitation and stress during growth in the lungs, and that it responds by up-regulating genes that encode mycotoxins and secondary metabolites. In vitro, this response was most closely mimicked by growth in medium that was deficient in nitrogen, iron and/or zinc. Using the transcriptional profiling data, we identified two transcription factors that govern A. fumigatus virulence. These were RlmA, which is governs factors that enables the organism to proliferate maximally in the lung and SltA, which controls the production of mycotoxins and secondary metabolites.
Collapse
Affiliation(s)
- Hong Liu
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Wenjie Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States of America
| | - Quynh T. Phan
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Rachel L. Ehrlich
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland, Baltimore, MD, United States of America
| | - Carrie McCraken
- Institute for Genome Sciences, University of Maryland, Baltimore, MD, United States of America
| | - Jianfeng Lin
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, and Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, MA, United Kingdom
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
- * E-mail: (APM); (SGF)
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- * E-mail: (APM); (SGF)
| |
Collapse
|
22
|
Scharf DH, Chankhamjon P, Scherlach K, Dworschak J, Heinekamp T, Roth M, Brakhage AA, Hertweck C. N-Heterocyclization in Gliotoxin Biosynthesis is Catalyzed by a Distinct Cytochrome P450 Monooxygenase. Chembiochem 2021; 22:336-339. [PMID: 32835438 PMCID: PMC7891397 DOI: 10.1002/cbic.202000550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Gliotoxin and related epidithiodiketopiperazines (ETP) from diverse fungi feature highly functionalized hydroindole scaffolds with an array of medicinally and ecologically relevant activities. Mutation analysis, heterologous reconstitution, and biotransformation experiments revealed that a cytochrome P450 monooxygenase (GliF) from the human-pathogenic fungus Aspergillus fumigatus plays a key role in the formation of the complex heterocycle. In vitro assays using a biosynthetic precursor from a blocked mutant showed that GliF is specific to ETPs and catalyzes an unprecedented heterocyclization reaction that cannot be emulated with current synthetic methods. In silico analyses indicate that this rare biotransformation takes place in related ETP biosynthetic pathways.
Collapse
Affiliation(s)
- Daniel H. Scharf
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
- Department of MicrobiologyZhejiang University School of MedicineYuhangtang Road 866Hangzhou310058P. R. China
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthBinsheng Road 3333Hangzhou310052P. R. China
| | - Pranatchareeya Chankhamjon
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Kirstin Scherlach
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Jan Dworschak
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Thorsten Heinekamp
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Martin Roth
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Axel A. Brakhage
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
23
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
24
|
Tsunematsu Y, Maeda N, Sato M, Hara K, Hashimoto H, Watanabe K, Hertweck C. Specialized Flavoprotein Promotes Sulfur Migration and Spiroaminal Formation in Aspirochlorine Biosynthesis. J Am Chem Soc 2020; 143:206-213. [PMID: 33351612 DOI: 10.1021/jacs.0c08879] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidithiodiketopiperazines (ETPs) are a class of ecologically and medicinally important cyclodipeptides bearing a reactive transannular disulfide bridge. Aspirochlorine, an antifungal and toxic ETP isolated from Aspergillus oryzae used in sake brewing, deviates from the common ETP scaffold owing to its unusual ring-enlarged disulfide bridge linked to a spiroaminal ring system. Although this disulfide ring system is implicated in the biological activity of ETPs the biochemical basis for this derailment has remained a mystery. Here we report the discovery of a novel oxidoreductase (AclR) that represents the first-in-class enzyme catalyzing both a carbon-sulfur bond migration and spiro-ring formation, and that the acl pathway involves a cryptic acetylation as a prerequisite for the rearrangement. Genetic screening in A. oryzae identified aclR as the candidate for the complex biotransformation, and the aclR-deficient mutant provided the biosynthetic intermediate, unexpectedly harboring an acetyl group. In vitro assays showed that AclR alone promotes 1,2-sulfamyl migration, elimination of the acetoxy group, and spiroaminal formation. AclR features a thioredoxin oxidoreductase fold with a noncanonical CXXH motif that is distinct from the CXXC in the disulfide forming oxidase for the ETP biosynthesis. Crystallographic and mutational analyses of AclR revealed that the CXXH motif is crucial for catalysis, whereas the flavin-adenine dinucleotide is required as a support of the protein fold, and not as a redox cofactor. AclR proved to be a suitable bioinformatics handle to discover a number of related fungal gene clusters that potentially code for the biosynthesis of derailed ETP compounds. Our results highlight a specialized role of the thioredoxin oxidoreductase family enzyme in the ETP pathway and expand the chemical diversity of small molecules bearing an aberrant disulfide pharmacophore.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.,Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Naoya Maeda
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kodai Hara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Hashimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
25
|
Heterologous Expression of the Unusual Terreazepine Biosynthetic Gene Cluster Reveals a Promising Approach for Identifying New Chemical Scaffolds. mBio 2020; 11:mBio.01691-20. [PMID: 32843555 PMCID: PMC7448278 DOI: 10.1128/mbio.01691-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Advances in genome sequencing have revitalized natural product discovery efforts, revealing the untapped biosynthetic potential of fungi. While the volume of genomic data continues to expand, discovery efforts are slowed due to the time-consuming nature of experiments required to characterize new molecules. To direct efforts toward uncharacterized biosynthetic gene clusters most likely to encode novel chemical scaffolds, we took advantage of comparative metabolomics and heterologous gene expression using fungal artificial chromosomes (FACs). By linking mass spectral profiles with structural clues provided by FAC-encoded gene clusters, we targeted a compound originating from an unusual gene cluster containing an indoleamine 2,3-dioxygenase (IDO). With this approach, we isolate and characterize R and S forms of the new molecule terreazepine, which contains a novel chemical scaffold resulting from cyclization of the IDO-supplied kynurenine. The discovery of terreazepine illustrates that FAC-based approaches targeting unusual biosynthetic machinery provide a promising avenue forward for targeted discovery of novel scaffolds and their biosynthetic enzymes, and it also represents another example of a biosynthetic gene cluster "repurposing" a primary metabolic enzyme to diversify its secondary metabolite arsenal.IMPORTANCE Here, we provide evidence that Aspergillus terreus encodes a biosynthetic gene cluster containing a repurposed indoleamine 2,3-dioxygenase (IDO) dedicated to secondary metabolite synthesis. The discovery of this neofunctionalized IDO not only enabled discovery of a new compound with an unusual chemical scaffold but also provided insight into the numerous strategies fungi employ for diversifying and protecting themselves against secondary metabolites. The observations in this study set the stage for further in-depth studies into the function of duplicated IDOs present in fungal biosynthetic gene clusters and presents a strategy for accessing the biosynthetic potential of gene clusters containing duplicated primary metabolic genes.
Collapse
|
26
|
The Desotamide Family of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9080452. [PMID: 32727132 PMCID: PMC7459860 DOI: 10.3390/antibiotics9080452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products underpin the majority of antimicrobial compounds in clinical use and the discovery of new effective antibacterial treatments is urgently required to combat growing antimicrobial resistance. Non-ribosomal peptides are a major class of natural products to which many notable antibiotics belong. Recently, a new family of non-ribosomal peptide antibiotics were discovered-the desotamide family. The desotamide family consists of desotamide, wollamide, surugamide, ulleungmycin and noursamycin/curacomycin, which are cyclic peptides ranging in size between six and ten amino acids in length. Their biosynthesis has attracted significant attention because their highly functionalised scaffolds are cyclised by a recently identified standalone cyclase. Here, we provide a concise review of the desotamide family of antibiotics with an emphasis on their biosynthesis.
Collapse
|
27
|
Huang ZL, Ye W, Zhu MZ, Kong YL, Li SN, Liu S, Zhang WM. Interaction of a Novel Zn2Cys6 Transcription Factor DcGliZ with Promoters in the Gliotoxin Biosynthetic Gene Cluster of the Deep-Sea-Derived Fungus Dichotomomyces cejpii. Biomolecules 2019; 10:E56. [PMID: 31905743 PMCID: PMC7022936 DOI: 10.3390/biom10010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
Gliotoxin is an important epipolythiodioxopiperazine, which was biosynthesized by the gli gene cluster in Aspergillus genus. However, the regulatory mechanism of gliotoxin biosynthesis remains unclear. In this study, a novel Zn2Cys6 transcription factor DcGliZ that is responsible for the regulation of gliotoxin biosynthesis from the deep-sea-derived fungus Dichotomomyces cejpii was identified. DcGliZ was expressed in Escherichia coli and effectively purified from inclusion bodies by refolding. Using electrophoretic mobility shift assay, we demonstrated that purified DcGliZ can bind to gliG, gliM, and gliN promoter regions in the gli cluster. Furthermore, the binding kinetics and affinity of DcGliZ protein with different promoters were measured by surface plasmon resonance assays, and the results demonstrated the significant interaction of DcGliZ with the gliG, gliM, and gliN promoters. These new findings would lay the foundation for the elucidation of future gliotoxin biosynthetic regulation mechanisms in D. cejpii.
Collapse
Affiliation(s)
| | - Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Z.-L.H.); (M.-Z.Z.); (Y.-L.K.); (S.-N.L.); (S.L.)
| | | | | | | | | | - Wei-Min Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Z.-L.H.); (M.-Z.Z.); (Y.-L.K.); (S.-N.L.); (S.L.)
| |
Collapse
|
28
|
Berry D, Mace W, Grage K, Wesche F, Gore S, Schardl CL, Young CA, Dijkwel PP, Leuchtmann A, Bode HB, Scott B. Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS. Proc Natl Acad Sci U S A 2019; 116:25614-25623. [PMID: 31801877 PMCID: PMC6926027 DOI: 10.1073/pnas.1913080116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) generate the core peptide scaffolds of many natural products. These include small cyclic dipeptides such as the insect feeding deterrent peramine, which is a pyrrolopyrazine (PPZ) produced by grass-endophytic Epichloë fungi. Biosynthesis of peramine is catalyzed by the 2-module NRPS, PpzA-1, which has a C-terminal reductase (R) domain that is required for reductive release and cyclization of the NRPS-tethered dipeptidyl-thioester intermediate. However, some PpzA variants lack this R domain due to insertion of a transposable element into the 3' end of ppzA We demonstrate here that these truncated PpzA variants utilize nonenzymatic cyclization of the dipeptidyl thioester to a 2,5-diketopiperazine (DKP) to synthesize a range of novel PPZ products. Truncation of the R domain is sufficient to subfunctionalize PpzA-1 into a dedicated DKP synthetase, exemplified by the truncated variant, PpzA-2, which has also evolved altered substrate specificity and reduced N-methyltransferase activity relative to PpzA-1. Further allelic diversity has been generated by recombination-mediated domain shuffling between ppzA-1 and ppzA-2, resulting in the ppzA-3 and ppzA-4 alleles, each of which encodes synthesis of a unique PPZ metabolite. This research establishes that efficient NRPS-catalyzed DKP biosynthesis can occur in vivo through nonenzymatic dipeptidyl cyclization and presents a remarkably clean example of NRPS evolution through recombinant exchange of functionally divergent domains. This work highlights that allelic variants of a single NRPS can result in a surprising level of secondary metabolite diversity comparable to that observed for some gene clusters.
Collapse
Affiliation(s)
- Daniel Berry
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Wade Mace
- Grasslands Research Centre, AgResearch Ltd., Palmerston North 4442, New Zealand
| | - Katrin Grage
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Frank Wesche
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sagar Gore
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | | | | | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Adrian Leuchtmann
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Helge B Bode
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany;
- Buchmann Institute for Molecular Life Sciences, Goethe-Universität, 60438 Frankfurt am Main, Germany
- Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz (LOEWE) Centre for Translational Biodiversity Genomics, 60325 Frankfurt am Main, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand;
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
29
|
Traynor AM, Sheridan KJ, Jones GW, Calera JA, Doyle S. Involvement of Sulfur in the Biosynthesis of Essential Metabolites in Pathogenic Fungi of Animals, Particularly Aspergillus spp.: Molecular and Therapeutic Implications. Front Microbiol 2019; 10:2859. [PMID: 31921039 PMCID: PMC6923255 DOI: 10.3389/fmicb.2019.02859] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Fungal sulfur uptake is required for incorporation into the sidechains of the amino acids cysteine and methionine, and is also essential for the biosynthesis of the antioxidant glutathione (GSH), S-adenosylmethionine (SAM), the key source of methyl groups in cellular transmethylation reactions, and S-adenosylhomocysteine (SAH). Biosynthesis of redox-active gliotoxin in the opportunistic fungal pathogen Aspergillus fumigatus has been elucidated over the past 10 years. Some fungi which produce gliotoxin-like molecular species have undergone unexpected molecular rewiring to accommodate this high-risk biosynthetic process. Specific disruption of gliotoxin biosynthesis, via deletion of gliK, which encodes a γ-glutamyl cyclotransferase, leads to elevated intracellular antioxidant, ergothioneine (EGT), levels, and confirms crosstalk between the biosynthesis of both sulfur-containing moieties. Gliotoxin is ultimately formed by gliotoxin oxidoreductase GliT-mediated oxidation of dithiol gliotoxin (DTG). In fact, DTG is a substrate for both GliT and a bis-thiomethyltransferase, GtmA. GtmA converts DTG to bisdethiobis(methylthio)gliotoxin (BmGT), using 2 mol SAM and resultant SAH must be re-converted to SAM via the action of the Methyl/Met cycle. In the absence of GliT, DTG fluxes via GtmA to BmGT, which results in both SAM depletion and SAH overproduction. Thus, the negative regulation of gliotoxin biosynthesis via GtmA must be counter-balanced by GliT activity to avoid Methyl/Met cycle dysregulation, SAM depletion and trans consequences on global cellular biochemistry in A. fumigatus. DTG also possesses potent Zn2+ chelation properties which positions this sulfur-containing metabolite as a putative component of the Zn2+ homeostasis system within fungi. EGT plays an essential role in high-level redox homeostasis and its presence requires significant consideration in future oxidative stress studies in pathogenic filamentous fungi. In certain filamentous fungi, sulfur is additionally indirectly required for the formation of EGT and the disulfide-bridge containing non-ribosomal peptide, gliotoxin, and related epipolythiodioxopiperazines. Ultimately, interference with emerging sulfur metabolite functionality may represent a new strategy for antifungal drug development.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Ireland
| | | | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - José A Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
30
|
Occurrence and Properties of Thiosilvatins. Mar Drugs 2019; 17:md17120664. [PMID: 31779089 PMCID: PMC6950259 DOI: 10.3390/md17120664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
The spread of studies on biodiversity in different environmental contexts is particularly fruitful for natural product discovery, with the finding of novel secondary metabolites and structural models, which are sometimes specific to certain organisms. Within the large class of the epipolythiodioxopiperazines, which are typical of fungi, thiosilvatins represent a homogeneous family that, so far, has been reported in low frequency in both marine and terrestrial contexts. However, recent observations indicate that these compounds have been possibly neglected in the metabolomic characterization of fungi, particularly from marine sources. Aspects concerning occurrence, bioactivities, structural, and biosynthetic properties of thiosilvatins are reviewed in this paper.
Collapse
|
31
|
Baccile JA, Le HH, Pfannenstiel BT, Bok JW, Gomez C, Brandenburger E, Hoffmeister D, Keller NP, Schroeder FC. Diketopiperazine Formation in Fungi Requires Dedicated Cyclization and Thiolation Domains. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joshua A. Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University Ithaca NY USA
- Present Address: Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA USA
| | - Henry H. Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University Ithaca NY USA
| | - Brandon T. Pfannenstiel
- Departments of Bacteriology Medical Microbiology and Immunology University of Wisconsin-Madison Madison WI USA
| | - Jin Woo Bok
- Departments of Bacteriology Medical Microbiology and Immunology University of Wisconsin-Madison Madison WI USA
| | - Christian Gomez
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University Ithaca NY USA
| | - Eileen Brandenburger
- Department of Pharmaceutical Microbiology Hans-Knöll-Institute Friedrich Schiller University Jena Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology Hans-Knöll-Institute Friedrich Schiller University Jena Germany
| | - Nancy P. Keller
- Departments of Bacteriology Medical Microbiology and Immunology University of Wisconsin-Madison Madison WI USA
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University Ithaca NY USA
| |
Collapse
|
32
|
Baccile JA, Le HH, Pfannenstiel BT, Bok JW, Gomez C, Brandenburger E, Hoffmeister D, Keller NP, Schroeder FC. Diketopiperazine Formation in Fungi Requires Dedicated Cyclization and Thiolation Domains. Angew Chem Int Ed Engl 2019; 58:14589-14593. [PMID: 31342608 PMCID: PMC6764874 DOI: 10.1002/anie.201909052] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 01/08/2023]
Abstract
Cyclization of linear dipeptidyl precursors derived from nonribosomal peptide synthetases (NRPSs) into 2,5-diketopiperazines (DKPs) is a crucial step in the biosynthesis of a large number of bioactive natural products. However, the mechanism of DKP formation in fungi has remained unclear, despite extensive studies of their biosyntheses. Here we show that DKP formation en route to the fungal virulence factor gliotoxin requires a seemingly extraneous couplet of condensation (C) and thiolation (T) domains in the NRPS GliP. In vivo truncation of GliP to remove the CT couplet or just the T domain abrogated production of gliotoxin and all other gli pathway metabolites. Point mutation of conserved active sites in the C and T domains diminished cyclization activity of GliP in vitro and abolished gliotoxin biosynthesis in vivo. Verified NRPSs of other fungal DKPs terminate with similar CT domain couplets, suggesting a conserved strategy for DKP biosynthesis by fungal NRPSs.
Collapse
Affiliation(s)
- Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Present Address: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brandon T Pfannenstiel
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jin Woo Bok
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Gomez
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Eileen Brandenburger
- Department of Pharmaceutical Microbiology, Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany
| | - Nancy P Keller
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 2019; 46:493-513. [PMID: 30673909 PMCID: PMC6460464 DOI: 10.1007/s10295-018-02130-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.
Collapse
Affiliation(s)
- Matt McErlean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Steven Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
34
|
Du YL, Ryan KS. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep 2019; 36:430-457. [DOI: 10.1039/c8np00049b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review reactions catalyzed by pyridoxal phosphate-dependent enzymes, highlighting enzymes reported in the recent natural product biosynthetic literature.
Collapse
Affiliation(s)
- Yi-Ling Du
- Institute of Pharmaceutical Biotechnology
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
35
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
36
|
Scharf DH, Dworschak JD, Chankhamjon P, Scherlach K, Heinekamp T, Brakhage AA, Hertweck C. Reconstitution of Enzymatic Carbon-Sulfur Bond Formation Reveals Detoxification-Like Strategy in Fungal Toxin Biosynthesis. ACS Chem Biol 2018; 13:2508-2512. [PMID: 30075079 DOI: 10.1021/acschembio.8b00413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gliotoxin is a virulence factor of the human pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. The activity of this metabolite is mediated by a transannular disulfide bond, a hallmark of the epipolythiodiketopiperazine (ETP) family. Through the creation of fungal gene deletion mutants and heterologous protein expression, we unveiled the critical role of the cytochrome P450 monooxygenase (CYP450) GliC for the stepwise bishydroxylation of the diketopiperazine (DKP) core. We show for the first time the formation of the C-S bond from the DKP in a combined assay of GliC and the glutathione- S-transferase (GST) GliG in vitro. Furthermore, we present experimental evidence for an intermediary imine species. The flexible substrate scope of GliC and GliG in combination parallels P450/GST pairs used in eukaryotic phase I/II detoxification pathways.
Collapse
Affiliation(s)
- Daniel H. Scharf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Jan D. Dworschak
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Pranatchareeya Chankhamjon
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
37
|
Liu H, Xu W, Solis NV, Woolford C, Mitchell AP, Filler SG. Functional convergence of gliP and aspf1 in Aspergillus fumigatus pathogenicity. Virulence 2018; 9:1062-1073. [PMID: 30052103 PMCID: PMC6086310 DOI: 10.1080/21505594.2018.1482182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/25/2018] [Indexed: 10/28/2022] Open
Abstract
Gliotoxin contributes to the virulence of the fungus Aspergillus fumigatus in non-neutropenic mice that are immunosuppressed with corticosteroids. To investigate how the absence of gliotoxin affects both the fungus and the host, we used a nanoString nCounter to analyze their transcriptional responses during pulmonary infection of a non-neutropenic host with a gliotoxin-deficient ΔgliP mutant. We found that the ΔgliP mutation led to increased expression of aspf1, which specifies a secreted ribotoxin. Prior studies have shown that aspf1, like gliP, is not required for virulence in a neutropenic infection model, but its role in a non-neutropenic infection model has not been fully investigated. To investigate the functional significance of this up-regulation of aspf1, a Δaspf1 single mutant and a Δaspf1 ΔgliP double mutant were constructed. Both Δaspf1 and ΔgliP single mutants had reduced lethality in non-neutropenic mice, and a Δaspf1 ΔgliP double mutant had a greater reduction in lethality than either single mutant. Analysis of mice infected with these mutants indicated that the presence of gliP is associated with massive apoptosis of leukocytes at the foci of infection and inhibition of chemokine production. Also, the combination of gliP and aspf1 is associated with suppression of CXCL1 chemokine expression. Thus, aspf1 contributes to A. fumigatus pathogenicity in non-neutropenic mice and its up-regulation in the ΔgliP mutant may partially compensate for the absence of gliotoxin. ABBREVIATIONS PAS: periodic acid-Schiff; PBS: phosphate buffered saline; ROS: reactive oxygen species; TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end labeling.
Collapse
Affiliation(s)
- Hong Liu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wenjie Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carol Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
38
|
Mishra AK, Choi J, Choi SJ, Baek KH. Cyclodipeptides: An Overview of Their Biosynthesis and Biological Activity. Molecules 2017; 22:molecules22101796. [PMID: 29065531 PMCID: PMC6151668 DOI: 10.3390/molecules22101796] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Cyclodipeptides (CDP) represent a diverse family of small, highly stable, cyclic peptides that are produced as secondary functional metabolites or side products of protein metabolism by bacteria, fungi, and animals. They are widespread in nature, and exhibit a broad variety of biological and pharmacological activities. CDP synthases (CDPSs) and non-ribosomal peptide synthetases (NRPSs) catalyze the biosynthesis of the CDP core structure, which is further modified by tailoring enzymes often associated with CDP biosynthetic gene clusters. In this review, we provide a comprehensive summary of CDP biosynthetic pathways and modifying enzymes. We also discuss the biological properties of some known CDPs and their possible applications in metabolic engineering.
Collapse
Affiliation(s)
- Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Jaehyuk Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Seong-Jin Choi
- Department of Biotechnology, Daegu Catholic University, Gyeongsan 38430, Korea.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| |
Collapse
|
39
|
Kim Y, Heo IB, Yu JH, Shin KS. Characteristics of a Regulator of G-Protein Signaling (RGS) rgsC in Aspergillus fumigatus. Front Microbiol 2017; 8:2058. [PMID: 29109714 PMCID: PMC5660106 DOI: 10.3389/fmicb.2017.02058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
The regulator of G-protein signaling (RGS) proteins have a conserved RGS domain that facilitates the intrinsic GTPase activity of an activated Gα subunit of heterotrimeric G protein, thereby attenuating signal transduction. Among six predicted RGS proteins in the opportunistic human pathogenic fungus Aspergillus fumigatus, only three (FlbA, GprK, and Rax1) have been studied. The unexplored RgsC composed of the Phox-associated (PXA), RGS, Phox homology (PX), and Nexin_C superfamily domains is highly conserved in many ascomycete fungi, suggesting a crucial role of RgsC in fungal biology. To address this, we have investigated functions of the rgsC gene. The deletion (Δ) of rgsC causes impaired vegetative growth and asexual development coupled with reduced expression of key developmental regulators. Moreover, ΔrgsC results in accelerated and elevated conidial germination regardless of the presence or absence of an external carbon source. Furthermore, ΔrgsC causes reduced conidial tolerance to oxidative stress. In addition, activities and expression of catalases and superoxide dismutases (SODs) are severely decreased in the ΔrgsC mutant. The deletion of rgsC results in a slight reduction in conidial tolerance to cell wall damaging agents, yet significantly lowered mRNA levels of cell wall integrity/biogenesis transcription factors, indicating that RgsC may function in proper activation of cell wall stress response. The ΔrgsC mutant exhibits defective gliotoxin (GT) production and decreased virulence in the wax moth larvae, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters is down-regulated by ΔrgsC and growth of the ΔrgsC mutant is reduced on inorganic and simple nitrogen medium, suggesting that RgsC may function in external nitrogen source sensing and/or transport. In summary, RgsC is necessary for proper growth, development, stress response, GT production, and external nutrients sensing.
Collapse
Affiliation(s)
- Young Kim
- Department of Biological Science, Daejeon University, Daejeon, South Korea
| | - In-Beom Heo
- Department of Biological Science, Daejeon University, Daejeon, South Korea
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kwang-Soo Shin
- Department of Biological Science, Daejeon University, Daejeon, South Korea
| |
Collapse
|
40
|
Marion A, Groll M, Scharf DH, Scherlach K, Glaser M, Sievers H, Schuster M, Hertweck C, Brakhage AA, Antes I, Huber EM. Gliotoxin Biosynthesis: Structure, Mechanism, and Metal Promiscuity of Carboxypeptidase GliJ. ACS Chem Biol 2017; 12:1874-1882. [PMID: 28525266 DOI: 10.1021/acschembio.6b00847] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of glutathione (GSH) conjugates, best known from the detoxification of xenobiotics, is a widespread strategy to incorporate sulfur into biomolecules. The biosynthesis of gliotoxin, a virulence factor of the human pathogenic fungus Aspergillus fumigatus, involves attachment of two GSH molecules and their sequential decomposition to yield two reactive thiol groups. The degradation of the GSH moieties requires the activity of the Cys-Gly carboxypeptidase GliJ, for which we describe the X-ray structure here. The enzyme forms a homodimer with each monomer comprising one active site. Two metal ions are present per proteolytic center, thus assigning GliJ to the diverse family of dinuclear metallohydrolases. Depending on availability, Zn2+, Fe2+, Fe3+, Mn2+, Cu2+, Co2+, or Ni2+ ions are accepted as cofactors. Despite this high metal promiscuity, a preference for zinc versus iron and manganese was noted. Mutagenesis experiments revealed details of metal coordination, and molecular modeling delivered insights into substrate recognition and processing by GliJ. The latter results suggest a reaction mechanism in which the two scissile peptide bonds of one gliotoxin precursor molecule are hydrolyzed sequentially and in a given order.
Collapse
Affiliation(s)
- Antoine Marion
- Center
for Integrated Protein Science Munich at the Department of Biosciences, Technische Universität München, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany
| | - Michael Groll
- Center
for Integrated Protein Science Munich at the Department Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Daniel H. Scharf
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), D-07745 Jena, Germany
| | - Kirstin Scherlach
- Department
of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), D-07745 Jena, Germany
| | - Manuel Glaser
- Center
for Integrated Protein Science Munich at the Department of Biosciences, Technische Universität München, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany
| | - Holger Sievers
- Fachgruppe
Analytische Chemie, Technische Universität München, D-85748 Garching, Germany
| | - Michael Schuster
- Fachgruppe
Analytische Chemie, Technische Universität München, D-85748 Garching, Germany
| | - Christian Hertweck
- Department
of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), D-07745 Jena, Germany
- Chair of
Natural Product Chemistry, Friedrich Schiller University (FSU), D-07743 Jena, Germany
| | - Axel A. Brakhage
- Department
of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), D-07745 Jena, Germany
- Department
of Microbiology and Molecular Biology, Friedrich Schiller University (FSU), D-07743 Jena, Germany
| | - Iris Antes
- Center
for Integrated Protein Science Munich at the Department of Biosciences, Technische Universität München, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany
| | - Eva M. Huber
- Center
for Integrated Protein Science Munich at the Department Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
41
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
42
|
Fukuda T, Takahashi M, Nagai K, Harunari E, Imada C, Tomoda H. Isomethoxyneihumicin, a new cytotoxic agent produced by marine Nocardiopsis alba KM6-1. J Antibiot (Tokyo) 2016; 70:590-594. [PMID: 27999443 DOI: 10.1038/ja.2016.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/11/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022]
Abstract
A new cytotoxic agent designated isomethoxyneihumicin (1 and 2), a mixture of lactam-lactim tautomers, was isolated along with methoxyneihumicin (3) from the culture broth of the marine Nocardiopsis alba KM6-1. The structures of 1 and 2 were elucidated in spectroscopic analyses (1D and 2D NMR data, and ROESY correlations). Isomethoxyneihumicin (15.0 μM) and 3 (15.0 μM) arrested the cell cycle of Jurkat cells at the G2/M phase (66 and 67%) in 12 h. Isomethoxyneihumicin and 3 exhibited cytotoxicity against Jurkat cells with IC50 values of 6.98 and 30.5 μM in 20 h, respectively. These results strongly suggest that isomethoxyneihumicin and 3 exhibit cytotoxicity against Jurkat cells by inhibiting the cell cycle at the G2/M phase.
Collapse
Affiliation(s)
- Takashi Fukuda
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Misaki Takahashi
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kenichiro Nagai
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Enjuro Harunari
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
43
|
Tauber JP, Schroeckh V, Shelest E, Brakhage AA, Hoffmeister D. Bacteria induce pigment formation in the basidiomyceteSerpula lacrymans. Environ Microbiol 2016; 18:5218-5227. [DOI: 10.1111/1462-2920.13558] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 01/23/2023]
Affiliation(s)
- James P. Tauber
- Department of Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology (HKI); Friedrich Schiller University; Beutenbergstrasse 11a Jena 07745 Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology (HKI); Jena Germany
| | - Ekaterina Shelest
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology (HKI); Jena Germany
- Microbiology and Molecular Biology; Friedrich Schiller University Jena; Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology (HKI); Friedrich Schiller University; Beutenbergstrasse 11a Jena 07745 Germany
| |
Collapse
|
44
|
Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus. PLoS One 2016; 11:e0161312. [PMID: 27584150 PMCID: PMC5008803 DOI: 10.1371/journal.pone.0161312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) family represents the largest and most varied collection of membrane embedded proteins that are sensitized by ligand binding and interact with heterotrimeric G proteins. Despite their presumed critical roles in fungal biology, the functions of the GPCR family members in the opportunistic human pathogen Aspergillus fumigatus are largely unknown, as only two (GprC and GprD) of the 15 predicted GPCRs have been studied. Here, we characterize the gprK gene, which is predicted to encode a hybrid GPCR with both 7-transmembrane and regulator of G-protein signaling (RGS) domains. The deletion of gprK causes severely impaired asexual development coupled with reduced expression of key developmental activators. Moreover, ΔgprK results in hyper-activation of germination even in the absence of carbon source, and elevated expression and activity of the protein kinase A PkaC1. Furthermore, proliferation of the ΔgprK mutant is restricted on the medium when pentose is the sole carbon source, suggesting that GprK may function in external carbon source sensing. Notably, the absence of gprK results in reduced tolerance to oxidative stress and significantly lowered mRNA levels of the stress-response associated genes sakA and atfA. Activities of catalases and SODs are severely decreased in the ΔgprK mutant, indicating that GprK may function in proper activation of general stress response. The ΔgprK mutant is also defective in gliotoxin (GT) production and slightly less virulent toward the greater wax moth, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters are down-regulated by ΔgprK. In summary, GprK is necessary for proper development, GT production, and oxidative stress response, and functions in down-regulating the PKA-germination pathway.
Collapse
|
45
|
Kalb D, Heinekamp T, Schieferdecker S, Nett M, Brakhage AA, Hoffmeister D. An Iterative O-Methyltransferase Catalyzes 1,11-Dimethylation of Aspergillus fumigatus Fumaric Acid Amides. Chembiochem 2016; 17:1813-1817. [PMID: 27442960 DOI: 10.1002/cbic.201600293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 11/12/2022]
Abstract
S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species.
Collapse
Affiliation(s)
- Daniel Kalb
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Sebastian Schieferdecker
- Research Group Secondary Metabolism of Predatory Bacteria, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Beutenbergstrasse 11a, 07745, Jena, Germany.
| |
Collapse
|
46
|
Moloney NM, Owens RA, Doyle S. Proteomic analysis of Aspergillus fumigatus – clinical implications. Expert Rev Proteomics 2016; 13:635-49. [DOI: 10.1080/14789450.2016.1203783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
47
|
Schafhauser T, Kirchner N, Kulik A, Huijbers MM, Flor L, Caradec T, Fewer DP, Gross H, Jacques P, Jahn L, Jokela J, Leclère V, Ludwig-Müller J, Sivonen K, van Berkel WJ, Weber T, Wohlleben W, van Pée KH. The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN inTalaromyces islandicus(‘Penicillium islandicum’). Environ Microbiol 2016; 18:3728-3741. [DOI: 10.1111/1462-2920.13294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/15/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Thomas Schafhauser
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Norbert Kirchner
- Department of Pharmaceutical Biology; Pharmaceutical Institute, University of Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen; 72076 Tübingen Germany
| | - Andreas Kulik
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Mieke M.E. Huijbers
- Laboratory of Biochemistry; Wageningen University; Dreijenlaan 3 6703 HA Wageningen The Netherlands
| | - Liane Flor
- Allgemeine Biochemie, Technische Universität Dresden; 01069 Dresden Germany
| | - Thibault Caradec
- Research Laboratory in Agro-Food and Biotechnology; Charles Viollette Institute, Team ProBioGEM, Polytech-Lille, Université Lille1- Sciences et Technologies; 59655 Villeneuve d'Ascq France
| | - David P. Fewer
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki; Viikinkaari 9 FIN-00014 Helsinki Finland
| | - Harald Gross
- Department of Pharmaceutical Biology; Pharmaceutical Institute, University of Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen; 72076 Tübingen Germany
| | - Philippe Jacques
- Research Laboratory in Agro-Food and Biotechnology; Charles Viollette Institute, Team ProBioGEM, Polytech-Lille, Université Lille1- Sciences et Technologies; 59655 Villeneuve d'Ascq France
| | - Linda Jahn
- Institut für Botanik; Technische Universität Dresden; 01062 Dresden Germany
| | - Jouni Jokela
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki; Viikinkaari 9 FIN-00014 Helsinki Finland
| | - Valérie Leclère
- Research Laboratory in Agro-Food and Biotechnology; Charles Viollette Institute, Team ProBioGEM, Polytech-Lille, Université Lille1- Sciences et Technologies; 59655 Villeneuve d'Ascq France
| | | | - Kaarina Sivonen
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki; Viikinkaari 9 FIN-00014 Helsinki Finland
| | - Willem J.H. van Berkel
- Laboratory of Biochemistry; Wageningen University; Dreijenlaan 3 6703 HA Wageningen The Netherlands
| | - Tilmann Weber
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen; 72076 Tübingen Germany
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; Kogle Alle 6 2970 Hørsholm Denmark
| | - Wolfgang Wohlleben
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
- German Centre for Infection Research (DZIF), Partner site Tübingen; 72076 Tübingen Germany
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden; 01069 Dresden Germany
| |
Collapse
|
48
|
Duell ER, Glaser M, Le Chapelain C, Antes I, Groll M, Huber EM. Sequential Inactivation of Gliotoxin by the S-Methyltransferase TmtA. ACS Chem Biol 2016; 11:1082-9. [PMID: 26808594 DOI: 10.1021/acschembio.5b00905] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epipolythiodioxopiperazine (ETP) gliotoxin mediates toxicity via its reactive thiol groups and thereby contributes to virulence of the human pathogenic fungus Aspergillus fumigatus. Self-intoxication of the mold is prevented either by reversible oxidation of reduced gliotoxin or by irreversible conversion to bis(methylthio)gliotoxin. The latter is produced by the S-methyltransferase TmtA and attenuates ETP biosynthesis. Here, we report the crystal structure of TmtA in complex with S-(5'-adenosyl)-l-homocysteine. TmtA features one substrate and one cofactor binding pocket per protein, and thus, bis-thiomethylation of gliotoxin occurs sequentially. Molecular docking of substrates and products into the active site of TmtA reveals that gliotoxin forms specific interactions with the protein surroundings, and free energy calculations indicate that methylation of the C10a-SH group precedes alkylation of the C3-SH site. Altogether, TmtA is well suited to selectively convert gliotoxin and to control its biosynthesis, suggesting that homologous enzymes serve to regulate the production of their toxic natural sulfur compounds in a similar manner.
Collapse
Affiliation(s)
- Elke R. Duell
- Center for Integrated Protein
Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Manuel Glaser
- Center for Integrated Protein
Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Camille Le Chapelain
- Center for Integrated Protein
Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Iris Antes
- Center for Integrated Protein
Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael Groll
- Center for Integrated Protein
Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Eva M. Huber
- Center for Integrated Protein
Science Munich (CIPSM) at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
49
|
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry reveals the correlation between chemical compounds in Japanese sake and its organoleptic properties. J Biosci Bioeng 2016. [DOI: 10.1016/j.jbiosc.2015.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Abstract
The emergence of next-generation sequencing has provided new opportunities in the discovery of new nonribosomal peptides (NRPs) and NRP synthethases (NRPSs). However, there remain challenges for the characterization of these megasynthases. While genetic methods in native hosts are critical in elucidation of the function of fungal NRPS, in vitro assays of intact heterologously expressed proteins provide deeper mechanistic insights in NRPS enzymology. Our previous work in the study of NRPS takes advantage of Saccharomyces cerevisiae strain BJ5464-npgA as a robust and versatile platform for characterization of fungal NRPSs. Here we describe the use of yeast recombination strategies in S. cerevisiae for cloning of the NRPS coding sequence in 2μ-based expression vector; the use of affinity chromatography for purification of NRPS from the total S. cerevisiae soluble protein fraction; and strategies for reconstitution of NRPSs activities in vitro.
Collapse
Affiliation(s)
- Ralph A Cacho
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|