1
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
2
|
Singh SL, Bhat R. Cyclic-NDGA Effectively Inhibits Human γ-Synuclein Fibrillation, Forms Nontoxic Off-Pathway Species, and Disintegrates Preformed Mature Fibrils. ACS Chem Neurosci 2024; 15:1770-1786. [PMID: 38637513 DOI: 10.1021/acschemneuro.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Parkinson's disease arises from protein misfolding, aggregation, and fibrillation and is characterized by LB (Lewy body) deposits, which contain the protein α-synuclein (α-syn) as their major component. Another synuclein, γ-synuclein (γ-syn), coexists with α-syn in Lewy bodies and is also implicated in various types of cancers, especially breast cancer. It is known to seed α-syn fibrillation after its oxidation at methionine residue, thereby contributing in synucleinopathy. Despite its involvement in synucleinopathy, the search for small molecule inhibitors and modulators of γ-syn fibrillation remains largely unexplored. This work reveals the modulatory properties of cyclic-nordihydroguaiaretic acid (cNDGA), a natural polyphenol, on the structural and aggregational properties of human γ-syn employing various biophysical and structural tools, namely, thioflavin T (ThT) fluorescence, Rayleigh light scattering, 8-anilinonaphthalene-1-sulfonic acid binding, far-UV circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, atomic force microscopy, ITC, molecular docking, and MTT-toxicity assay. cNDGA was observed to modulate the fibrillation of γ-syn to form off-pathway amorphous species that are nontoxic in nature at as low as 75 μM concentration. The modulation is dependent on oxidizing conditions, with cNDGA weakly interacting (Kd ∼10-5 M) with the residues at the N-terminal of γ-syn protein as investigated by isothermal titration calorimetry and molecular docking, respectively. Increasing cNDGA concentration results in an increased recovery of monomeric γ-syn as shown by sodium dodecyl sulfate and native-polyacrylamide gel electrophoresis. The retention of native structural properties of γ-syn in the presence of cNDGA was further confirmed by far-UV CD and FTIR. In addition, cNDGA is most effective in suppression of fibrillation when added at the beginning of the fibrillation kinetics and is also capable of disintegrating the preformed mature fibrils. These findings could, therefore, pave the ways for further exploring cNDGA as a potential therapeutic against γ-synucleinopathies.
Collapse
Affiliation(s)
- Sneh Lata Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
4
|
Huang J, Ahmed R, Akimoto M, Martinez Pomier K, Melacini G. Early-Onset Parkinson Mutation Remodels Monomer-Fibril Interactions to Allosterically Amplify Synuclein's Amyloid Cascade. JACS AU 2023; 3:3485-3493. [PMID: 38155658 PMCID: PMC10751762 DOI: 10.1021/jacsau.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Alpha synuclein (αS) aggregates are the main component of Lewy bodies (LBs) associated with Parkinson's disease (PD). A longstanding question about αS and PD pertains to the autosomal dominant E46K αS mutant, which leads to the early onset of PD and LB dementias. The E46K mutation not only promotes αS aggregation but also stabilizes αS monomers in "closed" conformers, which are compact and aggregation-incompetent. Hence, the mechanism of action of the E46K mutation is currently unclear. Here, we show that αS monomers harboring the E46K mutation exhibit more extensive interactions with fibrils compared to those of WT. Such monomer-fibril interactions are sufficient to allosterically drive transitions of αS monomers from closed to open conformations, enabling αS aggregation. We also show that E46K promotes head-to-tail monomer-monomer interactions in early self-association events. This multipronged mechanism provides a new framework to explain how the E46K mutation and possibly other αS variants trigger early-onset PD.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rashik Ahmed
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
5
|
Taniwa K, Murakami K, Sakaguchi Y, Izuo N, Hanaki M, Sampa N, Kume T, Shimizu T, Irie K. Detection of Dietary Chalcone and Flavonoid Metabolites in Mice Using UPLC-MS/MS and Their Modulatory Effects on Amyloid β Aggregation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14289-14299. [PMID: 37702279 DOI: 10.1021/acs.jafc.3c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Amyloid β-protein (Aβ42) aggregates have been demonstrated to induce cognitive decline and neurodegeneration in Alzheimer's disease (AD). Thus, functional food ingredients that inhibit Aβ42 aggregation are valuable for AD prevention. Although several food ingredients have been studied for their anti-aggregation activity, information on their bioavailability in the brain, incorporated forms, and relevance to AD etiology is limited. Here, we first detected the sulfate- and glucuronic-acid-conjugated forms of green perilla-derived chalcone (1) and taxifolin (2), which inhibit Aβ42 aggregation, in the brain, small intestine, and plasma of mice (1 and 2 were administered orally) using ultra-performance liquid chromatography-tandem mass spectrometry. We observed that the conjugated metabolites (sulfate (4) and glucuronide (5)) of 1 prevented the fibrillization and oligomerization of Aβ42. These findings imply that the conjugated metabolites of 1 can prove beneficial for AD treatment.
Collapse
Affiliation(s)
- Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nobuaki Sampa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Killoran PM, Hanson GSM, Verhoork SJM, Smith M, Del Gobbo D, Lian L, Coxon CR. Probing Peptidylprolyl Bond cis/trans Status Using Distal 19 F NMR Reporters. Chemistry 2023; 29:e202203017. [PMID: 36550088 PMCID: PMC10946801 DOI: 10.1002/chem.202203017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
A method for measuring peptidylprolyl bond cis-trans conformational status in peptide models is described, using 4-fluorophenylalanine (4FPhe) as a distal reporter for 19 F NMR. The %cis-Pro population was measured for peptides of the general structure Ac-X-Pro-Z-Ala-Ala-4FPhe (X and Z are proteinogenic amino acids) at pH 7.4, and provided conformational populations consistent with literature values obtained by more complex methods. This approach was applied to probe the prolyl bond status in pentapeptide models of the intrinsically disordered C-terminal region of α-synuclein, which mirrored the preferences in the Ac-X-Pro-Z-Ala-4FPhe models. Advantageously, the 19 F reporter group does not need to be adjacent to or attached to proline to provide quantifiable signals and distal 4-fluorophenylalanines can be placed so as not to influence prolyl bond conformation. Finally, we demonstrated that the prolyl bond status is not significantly affected by pH when there are ionisable amino acid residues at the carboxyl side of proline, which makes 19 F NMR an invaluable tool with which to study proline isomerism at a range of pHs and in different solvents and buffers.
Collapse
Affiliation(s)
- Patrick M. Killoran
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolMerseysideL3 3AFUK
| | - George S. M. Hanson
- EaStChem School of ChemistryThe University of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH14 4ASUK
| | - Sanne J. M. Verhoork
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolMerseysideL3 3AFUK
| | - Madeleine Smith
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolMerseysideL3 3AFUK
| | - Davide Del Gobbo
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolMerseysideL3 3AFUK
| | - Lu‐Yun Lian
- Institute of SystemsMolecular and Integrative BiologyThe University of LiverpoolCrown StreetLiverpoolL69 7ZBUK
| | - Christopher R. Coxon
- EaStChem School of ChemistryThe University of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH14 4ASUK
| |
Collapse
|
7
|
Das A, Sah P, Saraogi I. Dual Role of a Fluorescent Small Molecule as a Sensor and Inhibitor of Protein Fibrillation. Chem Asian J 2023; 18:e202201309. [PMID: 36594929 DOI: 10.1002/asia.202201309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Ordered fibrillar aggregates of proteins, called amyloids, are prevalent in several diseases like Alzheimer's, Parkinson's, and Type II diabetes. The key challenge in the treatment of such diseases is the early detection of protein fibrillation and its effective inhibition using extrinsic agents. Thus, molecules that can both detect and inhibit protein fibril formation have great diagnostic and therapeutic utility. Using insulin as a model protein, we report the dual action of an isoquinoline based molecule, named MK14 which detects and prevents insulin fibrillation. Dose dependent inhibition of insulin fibrillation by MK14 gave an IC50 value of 9 μM, and mechanistic investigations suggested that MK14 prevented the elongation of fibrils by interacting with pre-fibrillar intermediates. The fluorescence of MK14 enhanced upon binding to fibrils of insulin as well as those of α-synuclein, the protein involved in Parkinson's disease. MK14 is an environmentally sensitive fluorophore, which could also detect amorphous aggregates of insulin. The dual nature of MK14 as an inhibitor and detector of protein fibrillation makes it an attractive lead compound for monitoring and disrupting protein amyloidogenesis.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Pooja Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India.,Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
8
|
Murakami K, Sakaguchi Y, Taniwa K, Izuo N, Hanaki M, Kawase T, Hirose K, Shimizu T, Irie K. Lysine-targeting inhibition of amyloid β oligomerization by a green perilla-derived metastable chalcone in vitro and in vivo. RSC Chem Biol 2022; 3:1380-1396. [PMID: 36544574 PMCID: PMC9709778 DOI: 10.1039/d2cb00194b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022] Open
Abstract
Oligomers of amyloid β (Aβ) represent an early aggregative form that causes neurotoxicity in the pathogenesis of Alzheimer's disease (AD). Thus, preventing Aβ aggregation is important for preventing AD. Despite intensive studies on dietary compounds with anti-aggregation properties, some identified compounds are susceptible to autoxidation and/or hydration upon incubation in water, leaving unanswered issues regarding which active structures in metastable compounds are actually responsible for the inhibition of Aβ aggregation. In this study, we observed the site-specific inhibition of 42-mer Aβ (Aβ42) oligomerization by the green perilla-derived chalcone 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), which was converted to its decomposed flavonoids (dDDC, 1-3) via nucleophilic aromatic substitution with water molecules. DDC suppressed Aβ42 fibrillization and slowed the transformation of the β-sheet structure, which is rich in Aβ42 aggregates. To validate the contribution of dDDC to the inhibitory effects of DDC on Aβ42 aggregation, we synthesized 1-3 and identified 3, a catechol-type flavonoid, as one of the active forms of DDC. 1H-15N SOFAST-HMQC NMR revealed that 1-3 as well as DDC could interact with residues between His13 and Leu17, which were near the intermolecular β-sheet (Gln15-Ala21). The nucleation in Aβ42 aggregates involves the rate-limiting formation of low-molecular-weight oligomers. The formation of a Schiff base with dDDC at Lys16 and Lys28 in the dimer through autoxidation of dDDC was associated with the suppression of Aβ42 nucleation. Of note, in two AD mouse models using immunoaffinity purification-mass spectrometry, adduct formation between dDDC and brain Aβ was observed in a similar manner as reported in vitro. The present findings unraveled the lysine-targeting inhibitory mechanism of metastable dietary ingredients regarding Aβ oligomerization.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | | | | | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| |
Collapse
|
9
|
Velander P, Wu L, Hildreth SB, Vogelaar NJ, Mukhopadhyay B, Helm RF, Zhang S, Xu B. Catechol-containing compounds are a broad class of protein aggregation inhibitors: Redox state is a key determinant of the inhibitory activities. Pharmacol Res 2022; 184:106409. [PMID: 35995346 PMCID: PMC10074477 DOI: 10.1016/j.phrs.2022.106409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
A range of neurodegenerative and related aging diseases, such as Alzheimer's disease and type 2 diabetes, are linked to toxic protein aggregation. Yet the mechanisms of protein aggregation inhibition by small molecule inhibitors remain poorly understood, in part because most protein targets of aggregation assembly are partially unfolded or intrinsically disordered, which hinders detailed structural characterization of protein-inhibitor complexes and structural-based inhibitor design. Herein we employed a parallel small molecule library-screening approach to identify inhibitors against three prototype amyloidogenic proteins in neurodegeneration and related proteinopathies: amylin, Aβ and tau. One remarkable class of inhibitors identified from these screens against different amyloidogenic proteins was catechol-containing compounds and redox-related quinones/anthraquinones. Secondary assays validated most of the identified inhibitors. In vivo efficacy evaluation of a selected catechol-containing compound, rosmarinic acid, demonstrated its strong mitigating effects of amylin amyloid deposition and related diabetic pathology in transgenic HIP rats. Further systematic investigation of selected class of inhibitors under aerobic and anaerobic conditions revealed that the redox state of the broad class of catechol-containing compounds is a key determinant of the amyloid inhibitor activities. The molecular insights we gained not only explain why a large number of catechol-containing polyphenolic natural compounds, often enriched in healthy diet, have anti-neurodegeneration and anti-aging activities, but also could guide the rational design of therapeutic or nutraceutical strategies to target a broad range of neurodegenerative and related aging diseases.
Collapse
Affiliation(s)
- Paul Velander
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; BRITE Research Institute and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA; Affiliated Faculty, Duke/UNC Alzheimer's Disease Research Center, Durham, NC 27710, USA
| | - Sherry B Hildreth
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Nancy J Vogelaar
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; BRITE Research Institute and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA; Affiliated Faculty, Duke/UNC Alzheimer's Disease Research Center, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
11
|
Al Adem K, Shanti A, Srivastava A, Homouz D, Thomas SA, Khair M, Stefanini C, Chan V, Kim TY, Lee S. Linking Alzheimer’s Disease and Type 2 Diabetes: Characterization and Inhibition of Cytotoxic Aβ and IAPP Hetero-Aggregates. Front Mol Biosci 2022; 9:842582. [PMID: 35372522 PMCID: PMC8968156 DOI: 10.3389/fmolb.2022.842582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The cytotoxic self-aggregation of β-amyloid (Aβ) peptide and islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of Alzheimer’s disease (AD) and Type 2 diabetes (T2D), respectively. Increasing evidence, particularly the co-deposition of Aβ and IAPP in both brain and pancreatic tissues, suggests that Aβ and IAPP cross-interaction may be responsible for a pathological link between AD and T2D. Here, we examined the nature of IAPP-Aβ40 co-aggregation and its inhibition by small molecules. In specific, we characterized the kinetic profiles, morphologies, secondary structures and toxicities of IAPP-Aβ40 hetero-assemblies and compared them to those formed by their homo-assemblies. We demonstrated that monomeric IAPP and Aβ40 form stable hetero-dimers and hetero-assemblies that further aggregate into β-sheet-rich hetero-aggregates that are toxic (cell viability <50%) to both PC-12 cells, a neuronal cell model, and RIN-m5F cells, a pancreatic cell model for β-cells. We then selected polyphenolic candidates to inhibit IAPP or Aβ40 self-aggregation and examined the inhibitory effect of the most potent candidate on IAPP-Aβ40 co-aggregation. We demonstrated that epigallocatechin gallate (EGCG) form inter-molecular hydrogen bonds with each of IAPP and Aβ40. We also showed that EGCG reduced hetero-aggregate formation and resulted in lower β-sheets content and higher unordered structures in IAPP-Aβ40-EGCG samples. Importantly, we showed that EGCG is highly effective in reducing the toxicity of IAPP-Aβ40 hetero-aggregates on both cell models, specifically at concentrations that are equivalent to or are 2.5-fold higher than the mixed peptide concentrations. To the best of our knowledge, this is the first study to report the inhibition of IAPP-Aβ40 co-aggregation by small molecules. We conclude that EGCG is a promising candidate to prevent co-aggregation and cytotoxicity of IAPP-Aβ40, which in turn, contribute to the pathological link between AD and T2D.
Collapse
Affiliation(s)
- Kenana Al Adem
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aya Shanti
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Physics, University of Houston, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Sneha Ann Thomas
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tae-Yeon Kim
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Khalifa University’s Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Sungmun Lee,
| |
Collapse
|
12
|
Zhytniakivska O, Kurutos A, Shchuka M, Vus K, Tarabara U, Trusova V, Gorbenko G. Fӧrster resonance energy transfer between Thioflavin T and unsymmetrical trimethine cyanine dyes on amyloid fibril scaffold. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Noi K, Ikenaka K, Mochizuki H, Goto Y, Ogi H. Disaggregation Behavior of Amyloid β Fibrils by Anthocyanins Studied by Total-Internal-Reflection-Fluorescence Microscopy Coupled with a Wireless Quartz-Crystal Microbalance Biosensor. Anal Chem 2021; 93:11176-11183. [PMID: 34351734 DOI: 10.1021/acs.analchem.1c01720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid fibrils are formed from various proteins, some of which cause the corresponding neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. It has been reported that many compounds inhibit the formation of amyloid fibrils. Anthocyanins are flavonoid pigments present in fruits and vegetables, which are known to suppress symptoms related with Alzheimer's disease. However, the influence of anthocyanins on the amyloid fibril remains unclear. Here, we succeeded in the direct monitoring of the disaggregation reaction of single amyloid β (Aβ) fibrils by anthocyanins using total-internal-reflection-fluorescence microscopy with a quartz-crystal microbalance (TIRFM-QCM). It is found that the disassembly activity to the Aβ fibrils depends on the number of hydroxyl groups in six-membered ring B of anthocyanin, and only delphinidin-3-galactoside, possessing three hydroxyl groups there, shows high disassembly activity. Our results show the importance of the number of hydroxyl groups and demonstrate the usefulness of TIRFM-QCM as a powerful tool in studying interactions between amyloid fibrils and compounds.
Collapse
Affiliation(s)
- Kentaro Noi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Calderón-Hernández MF, Altamirano-Bustamante NF, Revilla-Monsalve C, Mosquera-Andrade MB, Altamirano-Bustamante MM. What can we learn from β-cell failure biomarker application in diabetes in childhood? A systematic review. World J Diabetes 2021; 12:1325-1362. [PMID: 34512897 PMCID: PMC8394223 DOI: 10.4239/wjd.v12.i8.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prevalence of diabetes as a catastrophic disease in childhood is growing in the world. The search for novel biomarkers of β-cell failure has been an elusive task because it requires several clinical and biochemical measurements in order to integrate the risk of metabolic syndrome.
AIM To determine which biomarkers are currently used to identify β-cell failure among children and adolescents with high risk factors for diabetes mellitus.
METHODS This systematic review was carried out using a modified version of the PICO protocol (Participants/Intervention/Comparison/Outcome). Once our research question was established, terms were individually researched on three different databases (PubMed, BIREME and Web of Science). The total articles obtained underwent a selection process from which the 78 most relevant articles were retrieved to undergo further analysis. They were assessed individually according to quality criteria.
RESULTS First, we made the classification of the β-cell-failure biomarkers by the target tissue and the evolution of the disease, separating the biomarkers in relation to the types of diabetes. Second, we demonstrated that most biomarkers currently used as early signs of β-cell failure are those that concern local or systemic inflammation processes and oxidative stress as well as those related to endothelial dysfunction processes. Third, we explored the novelties of diabetes as a protein conformational disease and the novel biomarker called real human islet amyloid polypeptide amyloid oligomers. Finally, we ended with a discussion about the best practice of validation and individual control of using different types of biomarkers in type 1 and type 2 diabetes in order to assess the role they play in the progress of diabetes in childhood.
CONCLUSION This review makes widely evident that most biomarkers currently used as early signs of β-cell failure are those that concern local or systemic inflammation processes and oxidative stress as well as those related to endothelial dysfunction processes. Landing in the clinical practice we propose that real human islet amyloid polypeptide amyloid oligomers is good for identifying patients with β-cell damage and potentially could substitute many biomarkers.
Collapse
Affiliation(s)
- María F Calderón-Hernández
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, IMSS, Mexico 06720, Mexico
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, IMSS, Mexico 06720, Mexico
| | | | | |
Collapse
|
15
|
Wu L, Velander P, Brown AM, Wang Y, Liu D, Bevan DR, Zhang S, Xu B. Rosmarinic Acid Potently Detoxifies Amylin Amyloid and Ameliorates Diabetic Pathology in a Transgenic Rat Model of Type 2 Diabetes. ACS Pharmacol Transl Sci 2021; 4:1322-1337. [PMID: 34423269 PMCID: PMC8369672 DOI: 10.1021/acsptsci.1c00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Protein aggregation is associated with a large number of human protein-misfolding diseases, yet FDA-approved drugs are currently not available. Amylin amyloid and plaque depositions in the pancreas are hallmark features of type 2 diabetes. Moreover, these amyloid deposits are implicated in the pathogenesis of diabetic complications such as neurodegeneration. We recently discovered that catechols and redox-related quinones/anthraquinones represent a broad class of protein aggregation inhibitors. Further screening of a targeted library of natural compounds in complementary medicine that were enriched with catechol-containing compounds identified rosmarinic acid (RA) as a potent inhibitor of amylin aggregation (estimated inhibitory concentration IC50 = 200-300 nM). Structure-function relationship analysis of RA showed the additive effects of the two catechol-containing components of the RA molecule. We further showed that RA does not reverse fibrillation back to monomeric amylin but rather lead to nontoxic, remodeled protein aggregates. RA has significant ex vivo efficacy in reducing human amylin oligomer levels in HIP rat sera as well as in sera from diabetic patients. In vivo efficacy studies of RA treatment with the diabetic HIP rat model demonstrated significant reduction in amyloid islet deposition and strong mitigation of diabetic pathology. Our work provides new in vitro molecular mechanisms and in vivo efficacy insights for a model nutraceutical agent against type 2 diabetes and other aging-related protein-misfolding diseases.
Collapse
Affiliation(s)
- Ling Wu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
- Biomanufacturing
Research Institute & Technology Enterprise (BRITE) and Department
of Pharmaceutical Sciences, North Carolina
Central University, Durham, North Carolina 27707, United States
| | - Paul Velander
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Anne M. Brown
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yao Wang
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Dongmin Liu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Shijun Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Bin Xu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
- Biomanufacturing
Research Institute & Technology Enterprise (BRITE) and Department
of Pharmaceutical Sciences, North Carolina
Central University, Durham, North Carolina 27707, United States
- Affiliated
Program Faculty, Duke Comprehensive Stroke
Center, Durham, North Carolina 27710, United States
| |
Collapse
|
16
|
Salahuddin P, Khan RH, Furkan M, Uversky VN, Islam Z, Fatima MT. Mechanisms of amyloid proteins aggregation and their inhibition by antibodies, small molecule inhibitors, nano-particles and nano-bodies. Int J Biol Macromol 2021; 186:580-590. [PMID: 34271045 DOI: 10.1016/j.ijbiomac.2021.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation can be induced by a wide variety of factors, such as dominant disease-associated mutations, changes in the environmental conditions (pH, temperature, ionic strength, protein concentration, exposure to transition metal ions, exposure to toxins, posttranslational modifications including glycation, phosphorylation, and sulfation). Misfolded intermediates interact with similar intermediates and progressively form dimers, oligomers, protofibrils, and fibrils. In amyloidoses, fibrillar aggregates are deposited in the tissues either as intracellular inclusion or extracellular plaques (amyloid). When such proteinaceous deposit occurs in the neuronal cells, it initiates degeneration of neurons and consequently resulting in the manifestation of various neurodegenerative diseases. Several different types of molecules have been designed and tested both in vitro and in vivo to evaluate their anti-amyloidogenic efficacies. For instance, the native structure of a protein associated with amyloidosis could be stabilized by ligands, antibodies could be used to remove plaques, oligomer-specific antibody A11 could be used to remove oligomers, or prefibrillar aggregates could be removed by affibodies. Keeping the above views in mind, in this review we have discussed protein misfolding and aggregation, mechanisms of protein aggregation, factors responsible for aggregations, and strategies for aggregation inhibition.
Collapse
Affiliation(s)
- Parveen Salahuddin
- DISC, Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India.
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zeyaul Islam
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O Box 5825, Doha, Qatar
| | - Munazza Tamkeen Fatima
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
17
|
Wojtunik-Kulesza K, Rudkowska M, Kasprzak-Drozd K, Oniszczuk A, Borowicz-Reutt K. Activity of Selected Group of Monoterpenes in Alzheimer's Disease Symptoms in Experimental Model Studies-A Non-Systematic Review. Int J Mol Sci 2021; 22:7366. [PMID: 34298986 PMCID: PMC8306454 DOI: 10.3390/ijms22147366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes-low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests-followed by validation in in vivo models.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Kinga Borowicz-Reutt
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| |
Collapse
|
18
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2021; 11:767. [PMID: 34065606 PMCID: PMC8160836 DOI: 10.3390/biom11050767] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
The potential to treat neurodegenerative diseases (NDs) of the major bioactive compound of green tea, epigallocatechin-3-gallate (EGCG), is well documented. Numerous findings now suggest that EGCG targets protein misfolding and aggregation, a common cause and pathological mechanism in many NDs. Several studies have shown that EGCG interacts with misfolded proteins such as amyloid beta-peptide (Aβ), linked to Alzheimer's disease (AD), and α-synuclein, linked to Parkinson's disease (PD). To date, NDs constitute a serious public health problem, causing a financial burden for health care systems worldwide. Although current treatments provide symptomatic relief, they do not stop or even slow the progression of these devastating disorders. Therefore, there is an urgent need to develop effective drugs for these incurable ailments. It is expected that targeting protein misfolding can serve as a therapeutic strategy for many NDs since protein misfolding is a common cause of neurodegeneration. In this context, EGCG may offer great potential opportunities in drug discovery for NDs. Therefore, this review critically discusses the role of EGCG in NDs drug discovery and provides updated information on the scientific evidence that EGCG can potentially be used to treat many of these fatal brain disorders.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; (P.B.G.); (A.C.R.S.)
| |
Collapse
|
19
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
20
|
Chowdhary S, Moschner J, Mikolajczak DJ, Becker M, Thünemann AF, Kästner C, Klemczak D, Stegemann A, Böttcher C, Metrangolo P, Netz RR, Koksch B. The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation. Chembiochem 2020; 21:3544-3554. [PMID: 33405360 PMCID: PMC7756607 DOI: 10.1002/cbic.202000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The hexapeptide hIAPP22-27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild-type hIAPP's toxicity to β-cell death. In amyloid research, the role of hydrophobic and aromatic-aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic-aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) to study the impact of side-chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self-assembly process.
Collapse
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Johann Moschner
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Dorian J. Mikolajczak
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Maximilian Becker
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Andreas F. Thünemann
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Claudia Kästner
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Damian Klemczak
- Institute of PharmacyFreie Universität BerlinKönigin-Luise-Str. 2–414195BerlinGermany
| | - Anne‐Katrin Stegemann
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Christoph Böttcher
- Institute of Chemistry and Biochemistry and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Pierangelo Metrangolo
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanItaly
| | - Roland R. Netz
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Beate Koksch
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
21
|
Dong X, Tang Y, Zhan C, Wei G. Green tea extract EGCG plays a dual role in Aβ 42 protofibril disruption and membrane protection: A molecular dynamic study. Chem Phys Lipids 2020; 234:105024. [PMID: 33278382 DOI: 10.1016/j.chemphyslip.2020.105024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/29/2020] [Indexed: 11/18/2022]
Abstract
Amyloid plaques accumulated by the amyloid-β (Aβ) fibrillar aggregates are the major pathological hallmark of the Alzheimer's disease (AD). Inhibiting aggregation and disassembling preformed fibrils of Aβ by natural small molecules have developed into a promising therapeutic strategy for AD. Previous experiments reported that the green tea extract epigallocatechin-3-gallate (EGCG) can disrupt Aβ fibril and reduce Aβ cytotoxicity. The inhibitory ability of EGCG can also be affected by cellular membranes. Thus, it is essential to consider the membrane influences in the investigation of protofibril-disruptive capability of EGCG. Here, we performed multiple all-atom molecular dynamic simulations to investigate the effect of EGCG on the Aβ42 protofibril in the presence of a mixed POPC/POPG (7:3) lipid bilayer and the underlying molecular mechanisms of action. Our simulations show that in the presence of membrane bilayers, EGCG has a preference to bind to the membrane, and this binding alters the binding modes between Aβ42 protofibril and the lipid bilayer, leading to a reduced membrane thinning, indicative of a protective effect of EGCG on the membrane. And EGCG still displays a disruptive effect on Aβ42 protofibril, albeit with a lesser extent of disruption than that in the membrane-free environment. EGCG destabilizes the two hydrophobic core regions (L17-F19-I31 and F4-L34-V36), and disrupts the intrachain K28-A42 salt bridges. Our results reveal that in the presence of lipid bilayers, EGCG plays a dual role in Aβ42 protofibril disruption and membrane protection, suggesting that EGCG could be a potential effective drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, People's Republic of China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, People's Republic of China
| | - Chendi Zhan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
22
|
Saghir AE, Farrugia G, Vassallo N. The human islet amyloid polypeptide in protein misfolding disorders: Mechanisms of aggregation and interaction with biomembranes. Chem Phys Lipids 2020; 234:105010. [PMID: 33227292 DOI: 10.1016/j.chemphyslip.2020.105010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 02/09/2023]
Abstract
Human islet amyloid polypeptide (hIAPP), otherwise known as amylin, is a 37-residue peptide hormone which is reported to be a common factor in protein misfolding disorders such as type-2 diabetes mellitus, Alzheimer's disease and Parkinson's disease, due to deposition of insoluble hIAPP amyloid in the pancreas and brain. Multiple studies point to the importance of the peptide's interaction with biological membranes and the cytotoxicity of hIAPP species. Here, we discuss the aggregation pathways of hIAPP amyloid fibril formation and focus on the complex interplay between membrane-mediated assembly of hIAPP and the associated mechanisms of membrane damage caused by the peptide species. Mitochondrial membranes, which are unique in their lipid composition, are proposed as prime targets for the early intracellular formation of hIAPP toxic entities. We suggest that future studies should include more physiologically-relevant and in-cell studies to allow a more accurate model of in vivo interactions. Finally, we underscore an urgent need for developing effective therapeutic strategies aimed at hindering hIAPP-phospholipid interactions.
Collapse
Affiliation(s)
- Adam El Saghir
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Gianluca Farrugia
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Neville Vassallo
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| |
Collapse
|
23
|
Ratha BN, Kar RK, Brender JR, Pariary R, Sahoo B, Kalita S, Bhunia A. High-resolution structure of a partially folded insulin aggregation intermediate. Proteins 2020; 88:1648-1659. [PMID: 32683793 DOI: 10.1002/prot.25983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 01/01/2023]
Abstract
Insulin has long been served as a model for protein aggregation, both due to the importance of aggregation in the manufacture of insulin and because the structural biology of insulin has been extensively characterized. Despite intensive study, details about the initial triggers for aggregation have remained elusive at the molecular level. We show here that at acidic pH, the aggregation of insulin is likely initiated by a partially folded monomeric intermediate. High-resolution structures of the partially folded intermediate show that it is coarsely similar to the initial monomeric structure but differs in subtle details-the A chain helices on the receptor interface are more disordered and the B chain helix is displaced from the C-terminal A chain helix when compared to the stable monomer. The result of these movements is the creation of a hydrophobic cavity in the center of the protein that may serve as nucleation site for oligomer formation. Knowledge of this transition may aid in the engineering of insulin variants that retain the favorable pharamacokinetic properties of monomeric insulin but are more resistant to aggregation.
Collapse
Affiliation(s)
- Bhisma N Ratha
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Jeffrey R Brender
- Radiation Biology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Ranit Pariary
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | - Sujan Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
24
|
Okamura E, Aki K. Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
In-situ analytical methods are essential for the reliable observation of peptide reactions without perturbation of the system. In this work, a real-time in-situ NMR analysis was performed to gain insight into the initial stage of the aggregation of amyloid-beta (Aβ) 8–25 monomers, S8GY10EVHHQKLVFF20AEDVG25, in solution prior to the fibril formation. NMR chemical shift and intensity changes in combination with the CD spectra revealed no changes in Aβ secondary structure, but the presence of soluble, oligomeric intermediates followed by the appearance of insoluble and non-structured aggregates before β-fibril formation. Molecular views of intermediates and aggregation mechanisms were proposed in comparison with NMR spectral changes in wild-type Aβ 8–25 and its two mutants, A21G and E22G. The mutation of just one amino acid modified the aggregation properties of Aβ 8–25; it slowed or accelerated the fibril formation by controlling the progress of conversion from monomer to aggregate via a soluble, small oligomer.
Collapse
Affiliation(s)
- Emiko Okamura
- Faculty of Pharmaceutical Sciences , Himeji Dokkyo University , 7-2-1, Kamiohno , Himeji 670-8524, Japan
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences , Himeji Dokkyo University , 7-2-1, Kamiohno , Himeji 670-8524, Japan
| |
Collapse
|
25
|
Das A, Dutta T, Gadhe L, Koner AL, Saraogi I. Biocompatible Fluorescent Probe for Selective Detection of Amyloid Fibrils. Anal Chem 2020; 92:10336-10341. [DOI: 10.1021/acs.analchem.0c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| |
Collapse
|
26
|
Gancar M, Kurin E, Bednarikova Z, Marek J, Mucaji P, Nagy M, Gazova Z. Amyloid Aggregation of Insulin: An Interaction Study of Green Tea Constituents. Sci Rep 2020; 10:9115. [PMID: 32499589 PMCID: PMC7272432 DOI: 10.1038/s41598-020-66033-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Exogenous insulin, used as a therapeutic agent for diabetes, forms insoluble deposits containing amyloid fibrillar structures near the administration site. We have analyzed the in vitro anti-amyloid activity of four green tea constituents: (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), gallic acid (GA), caffeine (CF), and their equimolar mixtures. Regarding individually tested compounds, only EGCG inhibited the fibrillization process. The individual EC, GA, and CF molecules were ineffective. The presence of EGCG in equimolar combinations with GA, EC, or CF was required for the inhibitory activity of most mixtures. Molecular docking revealed that EGCG interacts with an essential amyloidogenic region of insulin chain B. Individually inactive GA had a potentiating effect on the activity of EGCG. In contrast, EC and CF had a negative impact on the activity of the mixtures. We have observed diverse morphology and the amount of insulin amyloid aggregates formed in the presence of studied compounds. The distinct types of amyloid aggregates created in vitro in the presence of EGCG and other green tea constituents were characterized. Results indicate that the biological activity of individual molecules is not directly applicable to the pooled samples effects prediction.
Collapse
Affiliation(s)
- Miroslav Gancar
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Elena Kurin
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Jozef Marek
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia.
| |
Collapse
|
27
|
Fluorine-19 NMR spectroscopy of fluorinated analogs of tritrpticin highlights a distinct role for Tyr residues in antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183260. [DOI: 10.1016/j.bbamem.2020.183260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
|
28
|
Ultrastructural evidence for self-replication of Alzheimer-associated Aβ42 amyloid along the sides of fibrils. Proc Natl Acad Sci U S A 2020; 117:11265-11273. [PMID: 32439711 PMCID: PMC7260961 DOI: 10.1073/pnas.1918481117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Two unresolved problems in Alzheimer’s disease (AD) are its onset and propagation, linked to Aβ peptide aggregation. Fibrils of Aβ42 may grow by monomer addition at their ends. Additionally, through so-called secondary nucleation, fibrils can catalyse the formation of new aggregates from monomer on their surface, thereby generating oligomeric species that are toxic to brain tissue. Insights into the structural transitions occurring during secondary nucleation will facilitate the design of therapies to limit the neurotoxicity in AD, but such information is currently lacking. This study identifies conditions that allow the capture of reaction intermediates of secondary nucleation for the purpose of ultrastructural characterization. These reaction intermediates are morphologically distinct from mature fibrils and cover the sides of fibrils during an on-going aggregation reaction. The nucleation of Alzheimer-associated Aβ peptide monomers can be catalyzed by preexisting Aβ fibrils. This leads to autocatalytic amplification of aggregate mass and underlies self-replication and generation of toxic oligomers associated with several neurodegenerative diseases. However, the nature of the interactions between the monomeric species and the fibrils during this key process, and indeed the ultrastructural localization of the interaction sites have remained elusive. Here we used NMR and optical spectroscopy to identify conditions that enable the capture of transient species during the aggregation and secondary nucleation of the Aβ42 peptide. Cryo-electron microscopy (cryo-EM) images show that new aggregates protrude from the entire length of the progenitor fibril. These protrusions are morphologically distinct from the well-ordered fibrils dominating at the end of the aggregation process. The data provide direct evidence that self-replication through secondary nucleation occurs along the sides of fibrils, which become heavily decorated under the current solution conditions (14 µM Aβ42, 20 mM sodium phosphate, 200 µM EDTA, pH 6.8).
Collapse
|
29
|
Berardet C, Kaffy J, Halgand F, Van der Rest G, Ongeri S, Taverna M. Evidence for different in vitro oligomerization behaviors of synthetic hIAPP obtained from different sources. Anal Bioanal Chem 2020; 412:3103-3111. [PMID: 32211924 DOI: 10.1007/s00216-020-02560-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes is characterized by the aggregation of human islet amyloid polypeptide (hIAPP), from monomer to amyloid deposits that are made of insoluble fibrils. Discrepancies concerning the nature of formed species or oligomerization kinetics among reported in vitro studies on hIAPP aggregation process have been highlighted. In this work, we investigated if the sample itself could be at the origin of those observed differences. To this aim, four hIAPP samples obtained from three different sources or suppliers have been analyzed and compared by ThT fluorescence spectroscopy and by two recently developed techniques, capillary electrophoresis (CE), and ESI-IMS-QToF-MS. Lots provided by the same supplier were shown to be very similar whatever the analytical technique used to characterize them. In contrast, several critical differences could be pointed out for hIAPP provided by different suppliers. We demonstrated that in several samples, some oligomerized peptides (e.g., dimer) were already present upon reception. Purity was also different, and the proneness of the peptide solution to form fibrils in vitro within 24 h could vary considerably from one sample source to another but not from lot to lot of the same source. All those results demonstrate that the initial state of conformation, oligomerization, and quality of the hIAPP can greatly impact the aggregation kinetics, and thus the information provided by these in vitro tests. Finally, a careful selection of the peptide batch and source is mandatory to perform relevant in vitro studies on hIAPP oligomerization and to screen new molecules modulating this pathological process. Graphical abstract.
Collapse
Affiliation(s)
- Corentin Berardet
- CNRS, Institut Galien Paris Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.,CNRS, BioCIS, FLUOPEPIT, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Julia Kaffy
- CNRS, BioCIS, FLUOPEPIT, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Frédéric Halgand
- Institut de Chimie Physique, UMR 8000, Réactivité des Ions, Spectrométrie de Masse, Analyse et Spectroscopies (RISMAS), CNRS, University Paris-Sud, University Paris-Saclay, Rue Henri Becquerel, Bâtiment 201 P2, 91405, Orsay, France
| | - Guillaume Van der Rest
- Institut de Chimie Physique, UMR 8000, Réactivité des Ions, Spectrométrie de Masse, Analyse et Spectroscopies (RISMAS), CNRS, University Paris-Sud, University Paris-Saclay, Rue Henri Becquerel, Bâtiment 201 P2, 91405, Orsay, France
| | - Sandrine Ongeri
- CNRS, BioCIS, FLUOPEPIT, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Myriam Taverna
- CNRS, Institut Galien Paris Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
30
|
Kalita S, Kalita S, Paul A, Sarkar A, Mandal B. Peptidomimetics prepared by tail-to-side chain one component peptide stapling inhibit Alzheimer's amyloid-β fibrillogenesis. Chem Sci 2020; 11:4171-4179. [PMID: 34122880 PMCID: PMC8152599 DOI: 10.1039/c9sc06076f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting the elderly population worldwide. Despite enormous efforts and considerable advancement in research, no therapeutic agents have come to light to date. However, many peptide-based and small molecule inhibitors interact efficiently with the amyloid-β (Aβ) peptide and alter its aggregation pathway. On the other hand, stapled peptides have been developed mainly to stabilize α-helix conformations and study protein–protein interactions. β-Sheet stabilization or destabilization by stapled peptides has not been explored enough. Herein, we describe the generation of a library of “tail-to-side chain” stapled peptides via lactamization and their application for the first time as modulators of Aβ1-40 self-association and fibrillogenesis. They also disrupt the preformed fibrillar aggregates into nontoxic species. Their stability in the presence of proteolytic enzymes is increased due to stapling. Therefore, the stapled peptides thus formed can be useful as potent amyloid aggregation inhibitors and pave a therapeutic pathway for combating amyloid-related diseases. Also, they may help in gaining insight into the process of aggregation. Tail to side-chain stapled peptides inhibit fibrillogenesis of Alzheimer's amyloid β peptide by facilitating off-pathway aggregation.![]()
Collapse
Affiliation(s)
- Sujan Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Sourav Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Ashim Paul
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Amar Sarkar
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Bhubaneswar Mandal
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| |
Collapse
|
31
|
Raimundo AF, Ferreira S, Martins IC, Menezes R. Islet Amyloid Polypeptide: A Partner in Crime With Aβ in the Pathology of Alzheimer's Disease. Front Mol Neurosci 2020; 13:35. [PMID: 32265649 PMCID: PMC7103646 DOI: 10.3389/fnmol.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes affects hundreds of millions of patients worldwide. Despite the advances in understanding the disease and therapeutic options, it remains a leading cause of death and of comorbidities globally. Islet amyloid polypeptide (IAPP), or amylin, is a hormone produced by pancreatic β-cells. It contributes to the maintenance of glucose physiological levels namely by inhibiting insulin and glucagon secretion as well as controlling adiposity and satiation. IAPP is a highly amyloidogenic polypeptide forming intracellular aggregates and amyloid structures that are associated with β-cell death. Data also suggest the relevance of unprocessed IAPP forms as seeding for amyloid buildup. Besides the known consequences of hyperamylinemia in the pancreas, evidence has also pointed out that IAPP has a pathological role in cognitive function. More specifically, IAPP was shown to impair the blood–brain barrier; it was also seen to interact and co-deposit with amyloid beta peptide (Aß), and possibly with Tau, within the brain of Alzheimer's disease (AD) patients, thereby contributing to diabetes-associated dementia. In fact, it has been suggested that AD results from a metabolic dysfunction in the brain, leading to its proposed designation as type 3 diabetes. Here, we have first provided a brief perspective on the IAPP amyloidogenic process and its role in diabetes and AD. We have then discussed the potential interventions for modulating IAPP proteotoxicity that can be explored for therapeutics. Finally, we have proposed the concept of a “diabetes brain phenotype” hypothesis in AD, which may help design future IAPP-centered drug developmentstrategies against AD.
Collapse
Affiliation(s)
- Ana F Raimundo
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Ferreira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Regina Menezes
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
32
|
Altamirano-Bustamante MM, Altamirano-Bustamante NF, Larralde-Laborde M, Lara-Martínez R, Leyva-García E, Garrido-Magaña E, Rojas G, Jiménez-García LF, Revilla-Monsalve C, Altamirano P, Calzada-León R. Unpacking the aggregation-oligomerization-fibrillization process of naturally-occurring hIAPP amyloid oligomers isolated directly from sera of children with obesity or diabetes mellitus. Sci Rep 2019; 9:18465. [PMID: 31804529 PMCID: PMC6895187 DOI: 10.1038/s41598-019-54570-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
The formation of amyloid oligomers and fibrils of the human islet amyloid polypeptide (hIAPP) has been linked with β- cell failure and death which causes the onset, progression, and comorbidities of diabetes. We begin to unpack the aggregation-oligomerization-fibrillization process of these oligomers taken from sera of pediatric patients. The naturally occurring or real hIAPP (not synthetic) amyloid oligomers (RIAO) were successfully isolated, we demonstrated the presence of homo (dodecamers, hexamers, and trimers) and hetero-RIAO, as well as several biophysical characterizations which allow us to learn from the real phenomenon taking place. We found that the aggregation/oligomerization process is active in the sera and showed that it happens very fast. The RIAO can form fibers and react with anti-hIAPP and anti-amyloid oligomers antibodies. Our results opens the epistemic horizon and reveal real differences between the four groups (Controls vs obesity, T1DM or T2DM) accelerating the process of understanding and discovering novel and more efficient prevention, diagnostic, transmission and therapeutic pathways.
Collapse
Affiliation(s)
- Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico.
| | | | - Mateo Larralde-Laborde
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Edgar Leyva-García
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Gerardo Rojas
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Perla Altamirano
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | |
Collapse
|
33
|
Roy D, Bhattacharyya D, Bhunia A. Do Catechins (ECG and EGCG) Bind to the Same Site as Thioflavin T (ThT) in Amyloid Fibril? Answer From Saturation Transfer Difference NMR. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19849791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Dipanwita Roy
- Department of Biophysics, Bose Institute, Kolkata, WB, India
| | | | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, WB, India
| |
Collapse
|
34
|
Khatun S, Singh A, Mandal D, Chandra A, Gupta AN. Quantification of protein aggregation rates and quenching effects of amylin–inhibitor complexes. Phys Chem Chem Phys 2019; 21:20083-20094. [DOI: 10.1039/c9cp03238j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparative inhibition capabilities of graphene quantum dots, resveratrol, and curcumin decipher the dose-dependent competitive role of protein aggregation rate and quenching effect in amylin fibrillation.
Collapse
Affiliation(s)
- Suparna Khatun
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Anurag Singh
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Debabrata Mandal
- School of Nanoscience and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Amreesh Chandra
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
- School of Nanoscience and Technology
| | - Amar Nath Gupta
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
35
|
Lee YH, Lin Y, Cox SJ, Kinoshita M, Sahoo BR, Ivanova M, Ramamoorthy A. Zinc boosts EGCG's hIAPP amyloid Inhibition both in solution and membrane. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:529-536. [PMID: 30468883 DOI: 10.1016/j.bbapap.2018.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Amyloid aggregation of human islet amyloid polypeptide (hIAPP) is linked to insulin-producing islet cell death in type II diabetes. Previous studies have shown that zinc (Zn(II)) and insulin, co-secreted with hIAPP, have an inhibition effect on hIAPP aggregation. Lipid membranes have also been shown to significantly influence the aggregation kinetics of hIAPP. An increasing number of studies report the importance of developing small molecule inhibitors to suppress the hIAPP's aggregation and subsequent toxicity. The ability of epigallocatechin-gallate (EGCG) to inhibit aggregation of a variety of amyloid peptide/proteins initiated numerous studies as well as the development of derivative compounds to potentially treat amyloid diseases. In this study, a combination of Thioflavin-T fluorescence kinetics, transmission electron microscopy, isothermal titration calorimetery, circular dicrosim and nucelar magnetic resonance experiments were used to demonstrate a significant enhancement in EGCG's efficiency when complexed with Zn(II). We demonstrate that the Zn-EGCG complex is able to significantly suppress hIAPP's amyloid aggregation both in presence and absence of lipid membrane. Circular dichroism experiments indicate the formation and stabilization of a helical structure of hIAPP in presence of the EGCG:Zn(II) complex. Our results also reveal the ability of EGCG or EGCG:Zn(II) to efficiently suppress hIAPP's cellular toxicity. We believe that the reported results could be useful to develop strategies to trap hIAPP intermediates for further biophysical and structural studies, and also to devise approaches to abolish amyloid aggregation and cellular toxicity.
Collapse
Affiliation(s)
- Young-Ho Lee
- Institute for Protein research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan; Protein Structure Research Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Chungcheongbuk-do 28119, South Korea
| | - Yuxi Lin
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea
| | - Sarah J Cox
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Misaki Kinoshita
- Institute for Protein research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Magdalena Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
36
|
Menadione sodium bisulfite inhibits the toxic aggregation of amyloid-β(1–42). Biochim Biophys Acta Gen Subj 2018; 1862:2226-2235. [DOI: 10.1016/j.bbagen.2018.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
37
|
Hoffmann AR, Saravanan MS, Lequin O, Killian JA, Khemtemourian L. A single mutation on the human amyloid polypeptide modulates fibril growth and affects the mechanism of amyloid-induced membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1783-1792. [DOI: 10.1016/j.bbamem.2018.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
|
38
|
Camilles M, Link S, Balbach J, Saalwächter K, Krushelnitsky A. Quantitative NMR study of heat-induced aggregation of eye-lens crystallin proteins under crowding conditions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:S1570-9639(18)30119-5. [PMID: 30071343 DOI: 10.1016/j.bbapap.2018.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
Abstract
The eye lens contains a highly concentrated, polydisperse mixture of crystallins, and a loss in transparency during cataract formation is attributed to the aggregation of these proteins. Most biochemical and biophysical studies of crystallins have been performed in diluted samples because of various physical limitations of the respective method at physiological concentrations of up to 200-400 mg/mL. We introduce a straightforward proton NMR transverse relaxometry method to quantify simultaneously proteins in the dissolved and aggregated states at these elevated concentrations, because these states significantly differ in their transverse relaxation properties. The key feature of this method is a direct observation of the protein signal in a wide range of relaxation delays, from few microseconds up to few hundred milliseconds. We applied this method to follow heat-induced aggregation of bovine α- and γB-crystallin between 60 and 200 mg/mL. We find that at 60 °C, a temperature where both crystallins still comprise a native tertiary structure, γB-crystallin aggregated at these high protein concentrations with a time constant of about 30-40 h. α-crystallin remained soluble at 60 mg/mL but formed a transparent gel at 200 mg/mL. This quantitative NMR method can be applied to investigations of other proteins and their mixtures under various aggregation conditions.
Collapse
Affiliation(s)
- Maria Camilles
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Susanne Link
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jochen Balbach
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Alexey Krushelnitsky
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
39
|
Kinetic analysis of the multistep aggregation pathway of human transthyretin. Proc Natl Acad Sci U S A 2018; 115:E6201-E6208. [PMID: 29915031 DOI: 10.1073/pnas.1807024115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aggregation of transthyretin (TTR) is the causative agent for TTR cardiomyopathy and polyneuropathy amyloidoses. Aggregation is initiated by dissociation of the TTR tetramer into a monomeric intermediate, which self-assembles into amyloid. The coupled multiple-step equilibria and low-concentration, aggregation-prone intermediates are challenging to probe using conventional assays. We report a 19F-NMR assay that leverages a highly sensitive trifluoroacetyl probe at a strategic site that gives distinct 19F chemical shifts for the TTR tetramer and monomeric intermediate and enables direct quantification of their populations during the aggregation process. Integration of real-time 19F-NMR and turbidity measurements as a function of temperature allows kinetic and mechanistic dissection of the aggregation pathway of both wild-type and mutant TTR. At physiological temperature, the monomeric intermediate formed by wild-type TTR under mildly acidic conditions rapidly aggregates into species that are invisible to NMR, leading to loss of the NMR signal at the same rate as the turbidity increase. Lower temperature accelerates tetramer dissociation and decelerates monomer tetramerization and oligomerization via reduced hydrophobic interactions associated with packing of a phenylalanine (F87) into a neighboring protomer. As a result, the intermediate accumulates to a higher level, and formation of higher-order aggregates is delayed. Application of this assay to pathogenic (V30M, L55P, and V122I) and protective (T119M) mutants revealed significant differences in behavior. A monomeric intermediate was observed only for V122I: aggregation of V30M and L55P proceeds without an observable monomeric intermediate, whereas the protective mutant T119M remains resistant to tetramer dissociation and aggregation.
Collapse
|
40
|
Davies HA, Lee CF, Miller L, Liu LN, Madine J. Insights into the Origin of Distinct Medin Fibril Morphologies Induced by Incubation Conditions and Seeding. Int J Mol Sci 2018; 19:ijms19051357. [PMID: 29751581 PMCID: PMC5983645 DOI: 10.3390/ijms19051357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Incubation conditions are an important factor to consider when studying protein aggregation in vitro. Here, we employed biophysical methods and atomic force microscopy to show that agitation dramatically alters the morphology of medin, an amyloid protein deposited in the aorta. Agitation reduces the lag time for fibrillation by ~18-fold, suggesting that the rate of fibril formation plays a key role in directing the protein packing arrangement within fibrils. Utilising preformed sonicated fibrils as seeds, we probed the role of seeding on medin fibrillation and revealed three distinct fibril morphologies, with biophysical modelling explaining the salient features of experimental observations. We showed that nucleation pathways to distinct fibril morphologies may be switched on and off depending on the properties of the seeding fibrils and growth conditions. These findings may impact on the development of amyloid-based biomaterials and enhance understanding of seeding as a pathological mechanism.
Collapse
Affiliation(s)
- Hannah A Davies
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| | - Leanne Miller
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
41
|
Gadais C, Devillers E, Gasparik V, Chelain E, Pytkowicz J, Brigaud T. Probing the Outstanding Local Hydrophobicity Increases in Peptide Sequences Induced by Incorporation of Trifluoromethylated Amino Acids. Chembiochem 2018. [DOI: 10.1002/cbic.201800088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charlène Gadais
- Laboratory of Chemical Biology (LCB, EA 4505); Université Cergy-Pontoise; Mail Gay-Lussac 95000 Cergy-Pontoise cedex France
| | - Emmanuelle Devillers
- Laboratory of Chemical Biology (LCB, EA 4505); Université Cergy-Pontoise; Mail Gay-Lussac 95000 Cergy-Pontoise cedex France
| | - Vincent Gasparik
- Laboratory of Chemical Biology (LCB, EA 4505); Université Cergy-Pontoise; Mail Gay-Lussac 95000 Cergy-Pontoise cedex France
| | - Evelyne Chelain
- Laboratory of Chemical Biology (LCB, EA 4505); Université Cergy-Pontoise; Mail Gay-Lussac 95000 Cergy-Pontoise cedex France
| | - Julien Pytkowicz
- Laboratory of Chemical Biology (LCB, EA 4505); Université Cergy-Pontoise; Mail Gay-Lussac 95000 Cergy-Pontoise cedex France
| | - Thierry Brigaud
- Laboratory of Chemical Biology (LCB, EA 4505); Université Cergy-Pontoise; Mail Gay-Lussac 95000 Cergy-Pontoise cedex France
| |
Collapse
|
42
|
BRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells. Proc Natl Acad Sci U S A 2018; 115:E2752-E2761. [PMID: 29507232 PMCID: PMC5866560 DOI: 10.1073/pnas.1715951115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulation of islet amyloid polypeptide (IAPP)-containing amyloid fibrils is the main pathological finding in pancreatic islets in type 2 diabetes. The formation of these IAPP amyloid fibrils is considered toxic and may constitute a major cause for the loss of insulin-producing beta cells. The protein domain BRICHOS is present in several different proproteins and possesses antiamyloid chaperone activity. This study demonstrates expression of the BRICHOS-containing protein Bri2 in human pancreatic beta cells and its colocalization with IAPP. The Bri2 BRICHOS domain effectively prevents IAPP from forming fibrils and protects cells from the toxicity associated with IAPP fibrillation. It is concluded that the Bri2 BRICHOS domain may act as an endogenous inhibitor of IAPP amyloid formation in pancreatic beta cells. Aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils in islets of Langerhans is associated with type 2 diabetes, and formation of toxic IAPP species is believed to contribute to the loss of insulin-producing beta cells. The BRICHOS domain of integral membrane protein 2B (Bri2), a transmembrane protein expressed in several peripheral tissues and in the brain, has recently been shown to prevent fibril formation and toxicity of Aβ42, an amyloid-forming peptide in Alzheimer disease. In this study, we demonstrate expression of Bri2 in human islets and in the human beta-cell line EndoC-βH1. Bri2 colocalizes with IAPP intracellularly and is present in amyloid deposits in patients with type 2 diabetes. The BRICHOS domain of Bri2 effectively inhibits fibril formation in vitro and instead redirects IAPP into formation of amorphous aggregates. Reduction of endogenous Bri2 in EndoC-βH1 cells with siRNA increases sensitivity to metabolic stress leading to cell death while a concomitant overexpression of Bri2 BRICHOS is protective. Also, coexpression of IAPP and Bri2 BRICHOS in lateral ventral neurons of Drosophila melanogaster results in an increased cell survival. IAPP is considered to be the most amyloidogenic peptide known, and described findings identify Bri2, or in particular its BRICHOS domain, as an important potential endogenous inhibitor of IAPP aggregation and toxicity, with the potential to be a possible target for the treatment of type 2 diabetes.
Collapse
|
43
|
Wang J, Yamamoto T, Bai J, Cox SJ, Korshavn KJ, Monette M, Ramamoorthy A. Real-time monitoring of the aggregation of Alzheimer's amyloid-β via 1H magic angle spinning NMR spectroscopy. Chem Commun (Camb) 2018; 54:2000-2003. [PMID: 29411841 DOI: 10.1039/c8cc00167g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton magic-angle-spinning NMR used for real-time analysis of amyloid aggregation reveals that mechanical rotation of Aβ1-40 monomers increases the rate of formation of aggregates, and that the increasing lag-time with peptide concentration suggests the formation of growth-incompetent species. EGCG's ability to shift off-pathway aggregation is also demonstrated.
Collapse
Affiliation(s)
- Jian Wang
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
New insights into the influence of monofluorination on dimyristoylphosphatidylcholine membrane properties: A solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:654-663. [DOI: 10.1016/j.bbamem.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
45
|
Naito A, Matsumori N, Ramamoorthy A. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy. Biochim Biophys Acta Gen Subj 2018; 1862:307-323. [PMID: 28599848 PMCID: PMC6384124 DOI: 10.1016/j.bbagen.2017.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 310-helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
46
|
Epigallocatechin gallate (EGCG) reduces the intensity of pancreatic amyloid fibrils in human islet amyloid polypeptide (hIAPP) transgenic mice. Sci Rep 2018; 8:1116. [PMID: 29348618 PMCID: PMC5773570 DOI: 10.1038/s41598-017-18807-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/15/2017] [Indexed: 01/27/2023] Open
Abstract
The formation of amyloid fibrils by human islet amyloid polypeptide protein (hIAPP) has been implicated in pancreas dysfunction and diabetes. However, efficient treatment options to reduce amyloid fibrils in vivo are still lacking. Therefore, we tested the effect of epigallocatechin gallate (EGCG) on fibril formation in vitro and in vivo. To determine the binding of hIAPP and EGCG, in vitro interaction studies were performed. To inhibit amyloid plaque formation in vivo, homozygous (tg/tg), hemizygous (wt/tg), and control mice (wt/wt) were treated with EGCG. EGCG bound to hIAPP in vitro and induced formation of amorphous aggregates instead of amyloid fibrils. Amyloid fibrils were detected in the pancreatic islets of tg/tg mice, which was associated with disrupted islet structure and diabetes. Although pancreatic amyloid fibrils could be detected in wt/tg mice, these animals were non-diabetic. EGCG application decreased amyloid fibril intensity in wt/tg mice, however it was ineffective in tg/tg animals. Our data indicate that EGCG inhibits amyloid fibril formation in vitro and reduces fibril intensity in non-diabetic wt/tg mice. These results demonstrate a possible in vivo effectiveness of EGCG on amyloid formation and suggest an early therapeutical application.
Collapse
|
47
|
Hoffmann ARF, Caillon L, Salazar Vazquez LS, Spath PA, Carlier L, Khemtémourian L, Lequin O. Time dependence of NMR observables reveals salient differences in the accumulation of early aggregated species between human islet amyloid polypeptide and amyloid-β. Phys Chem Chem Phys 2018; 20:9561-9573. [DOI: 10.1039/c7cp07516b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proton NMR shows that IAPP fibril formation does not involve the accumulation of early aggregated species, in contrast with Aβ.
Collapse
Affiliation(s)
- Anaïs R. F. Hoffmann
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | - Lucie Caillon
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | | | - Pierre-Alexandre Spath
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | - Ludovic Carlier
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | - Lucie Khemtémourian
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | - Olivier Lequin
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| |
Collapse
|
48
|
Kamal Zaidi F, Bhat R. Resveratrol Interferes with an Early Step in the Fibrillization Pathway of Human Lysozyme and Modulates it towards Less-Toxic, Off-Pathway Aggregates. Chembiochem 2017; 19:159-170. [DOI: 10.1002/cbic.201700207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/31/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Fatima Kamal Zaidi
- School of Biotechnology; Jawaharlal Nehru University; New Mehrauli road New Delhi 110067 India
| | - Rajiv Bhat
- School of Biotechnology; Jawaharlal Nehru University; New Mehrauli road New Delhi 110067 India
| |
Collapse
|
49
|
Chatzikonstantinou AV, Chatziathanasiadou MV, Ravera E, Fragai M, Parigi G, Gerothanassis IP, Luchinat C, Stamatis H, Tzakos AG. Enriching the biological space of natural products and charting drug metabolites, through real time biotransformation monitoring: The NMR tube bioreactor. Biochim Biophys Acta Gen Subj 2017; 1862:1-8. [PMID: 28974426 DOI: 10.1016/j.bbagen.2017.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Natural products offer a wide range of biological activities, but they are not easily integrated in the drug discovery pipeline, because of their inherent scaffold intricacy and the associated complexity in their synthetic chemistry. Enzymes may be used to perform regioselective and stereoselective incorporation of functional groups in the natural product core, avoiding harsh reaction conditions, several protection/deprotection and purification steps. METHODS Herein, we developed a three step protocol carried out inside an NMR-tube. 1st-step: STD-NMR was used to predict the: i) capacity of natural products as enzyme substrates and ii) possible regioselectivity of the biotransformations. 2nd-step: The real-time formation of multiple-biotransformation products in the NMR-tube bioreactor was monitored in-situ. 3rd-step: STD-NMR was applied in the mixture of the biotransformed products to screen ligands for protein targets. RESULTS Herein, we developed a simple and time-effective process, the "NMR-tube bioreactor", that is able to: (i) predict which component of a mixture of natural products can be enzymatically transformed, (ii) monitor in situ the transformation efficacy and regioselectivity in crude extracts and multiple substrate biotransformations without fractionation and (iii) simultaneously screen for interactions of the biotransformation products with pharmaceutical protein targets. CONCLUSIONS We have developed a green, time-, and cost-effective process that provide a simple route from natural products to lead compounds for drug discovery. GENERAL SIGNIFICANSE This process can speed up the most crucial steps in the early drug discovery process, and reduce the chemical manipulations usually involved in the pipeline, improving the environmental compatibility.
Collapse
Affiliation(s)
- Alexandra V Chatzikonstantinou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Ioannis P Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Haralambos Stamatis
- Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
50
|
Nie RZ, Zhu W, Peng JM, Ge ZZ, Li CM. Comparison of disaggregative effect of A-type EGCG dimer and EGCG monomer on the preformed bovine insulin amyloid fibrils. Biophys Chem 2017; 230:1-9. [PMID: 28818314 DOI: 10.1016/j.bpc.2017.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022]
Abstract
In the present study, the disruptive effects of epigallocatechin-3-gallate (EGCG) and A-type dimeric epigallocatechin-3-gallate (A-type EGCG dimer) on the preformed bovine insulin amyloid fibrils were studied by several biophysical methods including thioflavin-T (ThT) fluorescence assay, 1-anilinonaphthalene-8-sulfonic (ANS) fluorescence assay, Congo red (CR) binding assay, dynamic light scattering (DLS), transmission electron microscopy (TEM), Gel electrophoresis (SDS-PAGE) and Bradford assay. Our results demonstrated that A-type EGCG dimer showed significantly more potential disaggregative effects on the bovine insulin amyloid fibrils than EGCG. A-type EGCG dimer could not only dramatically promote the disaggregation of the preformed bovine insulin amyloid fibrils, but also restructure the amyloid fibrils into amorphous aggregates. While, EGCG could only shorten and thin the fibrils, but induce no small amorphous aggregates. Our present results provided additional evidence for the more potent disaggregation effects of dimeric polyphenols than monomeric polyphenols and suggested that A-type EGCG dimer seems to have potential application as an excellent anti-amyloidogenic agent.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Ming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Zhen Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|