1
|
Davies AM, Beavil RL, Barbolov M, Sandhar BS, Gould HJ, Beavil AJ, Sutton BJ, McDonnell JM. Crystal structures of the human IgD Fab reveal insights into C H1 domain diversity. Mol Immunol 2023; 159:28-37. [PMID: 37267832 DOI: 10.1016/j.molimm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Antibodies of the IgD isotype remain the least well characterized of the mammalian immunoglobulin isotypes. Here we report three-dimensional structures for the Fab region of IgD, based on four different crystal structures, at resolutions of 1.45-2.75 Å. These IgD Fab crystals provide the first high-resolution views of the unique Cδ1 domain. Structural comparisons identify regions of conformational diversity within the Cδ1 domain, as well as among the homologous domains of Cα1, Cγ1 and Cμ1. The IgD Fab structure also possesses a unique conformation of the upper hinge region, which may contribute to the overall disposition of the very long linker sequence between the Fab and Fc regions found in human IgD. Structural similarities observed between IgD and IgG, and differences with IgA and IgM, are consistent with predicted evolutionary relationships for the mammalian antibody isotypes.
Collapse
Affiliation(s)
- Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Rebecca L Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Momchil Barbolov
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Balraj S Sandhar
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Hannah J Gould
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Andrew J Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - James M McDonnell
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom.
| |
Collapse
|
2
|
Wong MTY, Kelm S, Liu X, Taylor RD, Baker T, Essex JW. Higher Affinity Antibodies Bind With Lower Hydration and Flexibility in Large Scale Simulations. Front Immunol 2022; 13:884110. [PMID: 35707541 PMCID: PMC9190259 DOI: 10.3389/fimmu.2022.884110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
We have carried out a long-timescale simulation study on crystal structures of nine antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular dynamics with enhanced sampling and an explicit water model to explore interface conformation and hydration. By combining atomic level simulation and replica exchange to enable full protein flexibility, we find significant numbers of bridging water molecules at the antibody-antigen interface. Additionally, a higher proportion of interactions excluding bulk waters and a lower degree of antigen bound CDR conformational sampling are correlated with higher antibody affinity. The CDR sampling supports enthalpically driven antibody binding, as opposed to entropically driven, in that the difference between antigen bound and unbound conformations do not correlate with affinity. We thus propose that interactions with waters and CDR sampling are aspects of the interface that may moderate antibody-antigen binding, and that explicit hydration and CDR flexibility should be considered to improve antibody affinity prediction and computational design workflows.
Collapse
Affiliation(s)
- Mabel T. Y. Wong
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- *Correspondence: Jonathan W. Essex,
| |
Collapse
|
3
|
Chan KW, Luo CC, Lu H, Wu X, Kong XP. A site of vulnerability at V3 crown defined by HIV-1 bNAb M4008_N1. Nat Commun 2021; 12:6464. [PMID: 34753944 PMCID: PMC8578649 DOI: 10.1038/s41467-021-26846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
Identification of vulnerable sites defined by broadly neutralizing antibodies (bNAbs) on HIV-1 envelope (Env) is crucial for vaccine design, and we present here a vulnerable site defined by bNAb M4008_N1, which neutralizes about 40% of a tier-2 virus panel. A 3.2 Å resolution cryo-EM structure of M4008_N1 in complex with BG505 DS-SOSIP reveals a large, shallow protein epitope surface centered at the V3 crown of gp120 and surrounded by key glycans. M4008_N1 interacts with gp120 primarily through its hammerhead CDR H3 to form a β-sheet interaction with the V3 crown hairpin. This makes M4008_N1 compatible with the closed conformation of the prefusion Env trimer, and thus distinct from other known V3 crown mAbs. This mode of bNAb approaching the immunogenic V3 crown in the native Env trimer suggests a strategy for immunogen design targeting this site of vulnerability. Mapping of the HIV Env surface epitopes targeted by broadly neutralizing antibodies (bNAbs) is of great interest for HIV-1 vaccine design. Here, the authors present the 3.2 Å cryo-EM structure of the bNAb M4008_N1 in complex with BG505 DS-SOSIP, an engineered native-like Env trimer and observe that the bNAb epitope is centered at the V3 crown and that M4008_N1 uses its CDR H3 to form an extended β-sheet with the β-hairpin of the V3 crown in a conformation stabilized in the prefusion trimer.
Collapse
Affiliation(s)
- Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Senapathi J, Bommakanti A, Vangara S, Kondapi AK. Design, synthesis, and evaluation of HIV-1 entry inhibitors based on broadly neutralizing antibody 447-52D and gp120 V3loop interactions. Bioorg Chem 2021; 116:105313. [PMID: 34517280 DOI: 10.1016/j.bioorg.2021.105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
The third variable loop region (V3 loop) on gp120 plays an important role in cellular entry of HIV-1. Its interaction with the cellular CD4 and coreceptors is an important hallmark in facilitating the bridging by gp41 and subsequent fusion of membranes for transfer of viral genetic material. Further, the virus phenotype determines the cell tropism via respective co- receptor binding. Thus, coreceptor binding motif of envelope is considered to be a potent anti-viral drug target for viral entry inhibition. However, its high variability in sequence is the major hurdle for developing inhibitors targeting the region. In this study, we have used an in silico Virtual Screening and "Fragment-based" method to design small molecules based on the gp120 V3 loop interactions with a potent broadly neutralizing human monoclonal antibody, 447-52D. From the in silico analysis a potent scaffold, 1,3,5-triazine was identified for further development. Derivatives of 1,3,5-triazine with specific functional groups were designed and synthesized keeping the interaction with co-receptor intact. Finally, preliminary evaluation of molecules for HIV-1 inhibition on two different virus strains (clade C, clade B) yielded IC50 < 5.0 μM. The approach used to design molecules based on broadly neutralizing antibody, was useful for development of target specific potent antiviral agents to prevent HIV entry. The study reported promising inhibitors that could be further developed and studied.
Collapse
Affiliation(s)
- Jagadeesh Senapathi
- Dept. of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, India
| | - Akhila Bommakanti
- Dept. of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, India
| | - Srinivas Vangara
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Anand K Kondapi
- Dept. of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, India.
| |
Collapse
|
5
|
Rawi R, Rutten L, Lai YT, Olia AS, Blokland S, Juraszek J, Shen CH, Tsybovsky Y, Verardi R, Yang Y, Zhang B, Zhou T, Chuang GY, Kwong PD, Langedijk JPM. Automated Design by Structure-Based Stabilization and Consensus Repair to Achieve Prefusion-Closed Envelope Trimers in a Wide Variety of HIV Strains. Cell Rep 2020; 33:108432. [PMID: 33238130 PMCID: PMC7714614 DOI: 10.1016/j.celrep.2020.108432] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/21/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
Soluble envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit neutralizing responses against HIV-1 strains closely related to the immunizing trimer. However, to date such stabilization has succeeded with only a limited number of HIV-1 strains. To address this issue, here we develop ADROITrimer, an automated procedure involving structure-based stabilization and consensus repair, and generate "RnS-DS-SOSIP"-stabilized Envs from 180 diverse Env sequences. The vast majority of these RnS-DS-SOSIP Envs fold into prefusion-closed conformations as judged by antigenic analysis and size exclusion chromatography. Additionally, representative strains from clades AE, B, and C are stabilized in prefusion-closed conformations as shown by negative-stain electron microscopy, and the crystal structure of a clade A strain MI369.A5 Env trimer provides 3.5 Å resolution detail into stabilization and repair mutations. The automated procedure reported herein that yields well-behaved, soluble, prefusion-closed Env trimers from a majority of HIV-1 strains could have substantial impact on the development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucy Rutten
- Janssen Vaccines & Prevention, Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sven Blokland
- Janssen Vaccines & Prevention, Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Jarek Juraszek
- Janssen Vaccines & Prevention, Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
6
|
Chuang GY, Lai YT, Boyington JC, Cheng C, Geng H, Narpala S, Rawi R, Schmidt SD, Tsybovsky Y, Verardi R, Xu K, Yang Y, Zhang B, Chambers M, Changela A, Corrigan AR, Kong R, Olia AS, Ou L, Sarfo EK, Wang S, Wu W, Doria-Rose NA, McDermott AB, Mascola JR, Kwong PD. Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. J Virol 2020; 94:e00074-20. [PMID: 32295908 PMCID: PMC7307166 DOI: 10.1128/jvi.00074-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 01/21/2023] Open
Abstract
HIV-1 envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit humoral responses capable of neutralizing HIV-1 strains closely matched in sequence to the immunizing strain. One strategy to increase elicited neutralization breadth involves vaccine priming of immune responses against a target site of vulnerability, followed by vaccine boosting of these responses with prefusion-closed Env trimers. This strategy has succeeded at the fusion peptide (FP) site of vulnerability in eliciting cross-clade neutralizing responses in standard vaccine-test animals. However, the breadth and potency of the elicited responses have been less than optimal. Here, we identify three mutations (3mut), Met302, Leu320, and Pro329, that stabilize the apex of the Env trimer in a prefusion-closed conformation and show antigenically, structurally, and immunogenically that combining 3mut with other approaches (e.g., repair and stabilize and glycine-helix breaking) yields well-behaved clade C-Env trimers capable of boosting the breadth of FP-directed responses. Crystal structures of these trimers confirmed prefusion-closed apexes stabilized by hydrophobic patches contributed by Met302 and Leu320, with Pro329 assuming canonically restricted dihedral angles. We substituted the N-terminal eight residues of FP (FP8, residues 512 to 519) of these trimers with the second most prevalent FP8 sequence (FP8v2, AVGLGAVF) and observed a 3mut-stabilized consensus clade C-Env trimer with FP8v2 to boost the breadth elicited in guinea pigs of FP-directed responses induced by immunogens containing the most prevalent FP8 sequence (FP8v1, AVGIGAVF). Overall, 3mut can stabilize the Env trimer apex, and the resultant apex-stabilized Env trimers can be used to expand the neutralization breadth elicited against the FP site of vulnerability.IMPORTANCE A major hurdle to the development of an effective HIV-1 vaccine is the elicitation of serum responses capable of neutralizing circulating strains of HIV, which are extraordinarily diverse in sequence and often highly neutralization resistant. Recently, we showed how sera with 20 to 30% neutralization breadth could, nevertheless, be elicited in standard vaccine test animals by priming with the most prevalent N-terminal 8 residues of the HIV-1 fusion peptide (FP8), followed by boosting with a stabilized BG505-envelope (Env) trimer. Here, we show that subsequent boosting with a 3mut-apex-stabilized consensus C-Env trimer, modified to have the second most prevalent FP8 sequence, elicits higher neutralization breadth than that induced by continued boosting with the stabilized BG505-Env trimer. With increased neutralizing breadth elicited by boosting with a heterologous trimer containing the second most prevalent FP8 sequence, the fusion peptide-directed immune-focusing approach moves a step closer toward realizing an effective HIV-1 vaccine regimen.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Winston Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Kaku Y, Kuwata T, Gorny MK, Matsushita S. Prediction of Contact Residues in Anti-HIV Neutralizing Antibody by Deep Learning. Jpn J Infect Dis 2020; 73:235-241. [PMID: 32009060 DOI: 10.7883/yoken.jjid.2019.496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The monoclonal antibody 1C10 targets the V3 loop of HIV-1 and neutralizes a broad range of clade B viruses. However, the mode of interaction between 1C10 and the V3 loop remains unclear because crystallization of 1C10 and the V3 peptide was unsuccessful due to the flexible regions present in both 1C10 and the V3 peptide. In this study, we predicted the 1C10 amino acid residues that make contact with the V3 loop using a deep learning (DL)-based method. Inputs from ROSIE for docking simulation and FastContact, Naccess, and PDBtools, to approximate interactions were processed by Chainer for DL, and outputs were obtained as probabilities of contact residues. Using this DL algorithm, D95, D97, P100a, and D100b of CDRH3; D53, and D56 of CDRH2; and D61 of FR3 were highly ranked as contact residues of 1C10. Substitution of these residues with alanine significantly decreased the affinity of 1C10 to the V3 peptide. Moreover, the higher the rank of the residue, the more the binding activity diminished. This study demonstrates that the prediction of contact residues using a DL-based approach is a precise and useful tool for the analysis of antibody-antigen interactions.
Collapse
Affiliation(s)
- Yu Kaku
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University
| | - Takeo Kuwata
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University
| | | | - Shuzo Matsushita
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University
| |
Collapse
|
8
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Kroetsch A, Qiao C, Heavey M, Guo L, Shah DK, Park S. Engineered pH-dependent recycling antibodies enhance elimination of Staphylococcal enterotoxin B superantigen in mice. MAbs 2018; 11:411-421. [PMID: 30526311 DOI: 10.1080/19420862.2018.1545510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A new modality in antibody engineering has emerged in which the antigen affinity is designed to be pH dependent (PHD). In particular, combining high affinity binding at neutral pH with low affinity binding at acidic pH leads to a novel antibody that can more effectively neutralize the target antigen while avoiding antibody-mediated antigen accumulation. Here, we studied how the in vivo pharmacokinetics of the superantigen, Staphylococcal enterotoxin B (SEB), is affected by an engineered antibody with pH-dependent binding. PHD anti-SEB antibodies were engineered by introducing mutations into a high affinity anti-SEB antibody, 3E2, by rational design and directed evolution. Three antibody mutants engineered in the study have an affinity at pH 6.0 that is up to 68-fold weaker than the control antibody. The pH dependency of each mutant, measured as the pH-dependent affinity ratio (PAR - ratio of affinity at pH 7.4 and pH 6.0), ranged from 6.7-11.5 compared to 1.5 for the control antibody. The antibodies were characterized in mice by measuring their effects on the pharmacodynamics and pharmacokinetics (PK) of SEB after co-administration. All antibodies were effective in neutralizing the toxin and reducing the toxin-induced cytokine production. However, engineered PHD antibodies led to significantly faster elimination of the toxin from the circulation than wild type 3E2. The area under the curve computed from the SEB PK profile correlated well with the PAR value of antibody, indicating the importance of fine tuning the pH dependency of binding. These results suggest that a PHD recycling antibody may be useful to treat intoxication from a bacterial toxin by accelerating its clearance.
Collapse
Affiliation(s)
- Andrew Kroetsch
- a Department of Chemical and Biological Engineering , University at Buffalo , Buffalo , New York , USA
| | - Chunxia Qiao
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Mairead Heavey
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Leiming Guo
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Dhaval K Shah
- b Department of Pharmaceutical Sciences , University at Buffalo , Buffalo , New York , USA
| | - Sheldon Park
- a Department of Chemical and Biological Engineering , University at Buffalo , Buffalo , New York , USA
| |
Collapse
|
10
|
Kamau E, Bonneau R, Kong XP. Computational-guided determination of the functional role of 447-52D long CDRH3. Protein Eng Des Sel 2018; 31:479-487. [PMID: 31038677 PMCID: PMC6890530 DOI: 10.1093/protein/gzz007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
447-52D (447) is a human monoclonal antibody that recognizes a conserved epitope in the crown region of the third variable loop (V3) of HIV-1 gp120, and like many anti-HIV-1 antibodies with broad neutralization capabilities, it has a long heavy-chain complementarity determining region (CDRH3). Here, we use a combination of computational mutagenesis and modeling in tandem with fluorescence polarization assays to interrogate the molecular basis of 447 CDRH3 length and the individual contribution of selected CDRH3 residues to affinity. We observe that 447 CDRH3 length provides a large binding surface area and the best enthalpic contributions derived from hydrophobic packing, main-chain hydrogen bonds, electrostatic and van der Waals interactions. We also found out that CDRH3 residue Try100I is critical to 447 binding affinity.
Collapse
Affiliation(s)
- Edwin Kamau
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York NY, USA
| | - Richard Bonneau
- Department of Biology, Center for Genomics and Systems Biology and Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York NY, USA
- Center for Computational Biology, Flatiron Institute, New York NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York NY, USA
| |
Collapse
|
11
|
Mathew E, Zhu H, Connelly SM, Sullivan MA, Brewer MG, Piepenbrink MS, Kobie JJ, Dewhurst S, Dumont ME. Display of the HIV envelope protein at the yeast cell surface for immunogen development. PLoS One 2018; 13:e0205756. [PMID: 30335821 PMCID: PMC6193675 DOI: 10.1371/journal.pone.0205756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/01/2018] [Indexed: 11/22/2022] Open
Abstract
As a step toward the development of variant forms of Env with enhanced immunogenic properties, we have expressed the glycoprotein in the yeast surface display system in a form that can be subjected to random mutagenesis followed by screening for forms with enhanced binding to germline antibodies. To optimize the expression and immunogenicity of the yeast-displayed Env protein, we tested different approaches for cell wall anchoring, expression of gp120 and gp140 Env from different viral strains, the effects of introducing mutations designed to stabilize Env, and the effects of procedures for altering N-linked glycosylation of Env. We find that diverse forms of HIV envelope glycoprotein can be efficiently expressed at the yeast cell surface and that gp140 forms of Env are effectively cleaved by Kex2p, the yeast furin protease homolog. Multiple yeast-displayed gp120 and gp140 proteins are capable of binding to antibodies directed against the V3-variable loop, CD4 binding site, and gp41 membrane-proximal regions, including some antibodies whose binding is known to depend on Env conformation and N-linked glycan. Based on antibody recognition and sensitivity to glycosidases, yeast glycosylation patterns partially mimic high mannose-type N-glycosylation in mammalian cells. However, yeast-displayed Env is not recognized by some anti-Env antibodies sensitive to quaternary structure, suggesting either that the displayed protein exists in a monomeric state or that for these antibodies, yeast glycosylation in certain regions hinders recognition or access. Consistent with studies in other systems, reconstructed predicted unmutated precursors to anti-Env antibodies exhibit little affinity for the yeast-displayed envelope protein.
Collapse
Affiliation(s)
- Elizabeth Mathew
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hong Zhu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Mark A. Sullivan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Matthew G. Brewer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Michael S. Piepenbrink
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States of America
| | - James J. Kobie
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Structural Comparison of Human Anti-HIV-1 gp120 V3 Monoclonal Antibodies of the Same Gene Usage Induced by Vaccination and Chronic Infection. J Virol 2018; 92:JVI.00641-18. [PMID: 29997214 DOI: 10.1128/jvi.00641-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023] Open
Abstract
Elucidating the structural basis of antibody (Ab) gene usage and affinity maturation of vaccine-induced Abs can inform the design of immunogens for inducing desired Ab responses in HIV vaccine development. Analyses of monoclonal Abs (MAbs) encoded by the same immunoglobulin genes at different stages of maturation can help to elucidate the maturation process. We have analyzed four human anti-V3 MAbs with the same VH1-3*01 and VL3-10*01 gene usage. Two MAbs, TA6 and TA7, were developed from a vaccinee in the HIV vaccine phase I trial DP6-001 with a polyvalent DNA prime/protein boost regimen, and two others, 311-11D and 1334, were developed from HIV-infected patients. The somatic hypermutation (SHM) rates in VH of vaccine-induced MAbs are lower than in chronic HIV infection-induced MAbs, while those in VL are comparable. Crystal structures of the antigen-binding fragments (Fabs) in complex with V3 peptides show that these MAbs bind the V3 epitope with a new cradle-binding mode and that the V3 β-hairpin lies along the antigen-binding groove, which consists of residues from both heavy and light chains. Residues conserved from the germ line sequences form specific binding pockets accommodating conserved structural elements of the V3 crown hairpin, predetermining the Ab gene selection, while somatically mutated residues create additional hydrogen bonds, electrostatic interactions, and van der Waals contacts, correlating with an increased binding affinity. Our data provide a unique example of germ line sequences determining the primordial antigen-binding sites and SHMs correlating with affinity maturation of Abs induced by vaccine and natural HIV infection.IMPORTANCE Understanding the structural basis of gene usage and affinity maturation for anti-HIV-1 antibodies may help vaccine design and development. Antibodies targeting the highly immunogenic third variable loop (V3) of HIV-1 gp120 provide a unique opportunity for detailed structural investigations. By comparing the sequences and structures of four anti-V3 MAbs at different stages of affinity maturation but of the same V gene usage, two induced by vaccination and another two by chronic infection, we provide a fine example of how germ line sequence determines the essential elements for epitope recognition and how affinity maturation improves the antibody's recognition of its epitope.
Collapse
|
13
|
Increased Epitope Complexity Correlated with Antibody Affinity Maturation and a Novel Binding Mode Revealed by Structures of Rabbit Antibodies against the Third Variable Loop (V3) of HIV-1 gp120. J Virol 2018; 92:JVI.01894-17. [PMID: 29343576 DOI: 10.1128/jvi.01894-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/10/2018] [Indexed: 11/20/2022] Open
Abstract
The third variable (V3) loop of HIV-1 gp120 is an immunodominant region targeted by neutralizing antibodies (nAbs). Despite limited breadth, better characterization of the structural details of the interactions between these nAbs and their target epitopes would enhance our understanding of the mechanism of neutralization and facilitate designing better immunogens to induce nAbs with greater breadth. Recently, we isolated two anti-V3 neutralizing monoclonal antibodies (MAbs), 10A3 and 10A37, from a rabbit immunized with gp120 of the M group consensus sequence. In this study, crystal structures of these MAbs bound to target epitopes were determined. 10A3 binds to the V3 crown (303TRKSIHIGPGRAF317) using the cradle binding mode, similar to human V3 MAbs encoded by IGHV5-51 germ line genes, and its epitope structure resembles that bound to the human antibodies. In contrast, 10A37, which exhibits greater breadth and potency than 10A3, binds the V3 crown and the succeeding stem region (308HIGPGRAFYTTGEI323). Unexpectedly, the 315RAFYTT320 portion of the epitope existed as helical turns, a V3 structure that has not been observed previously. Its main chain-dominated antigen-antibody interactions not only explain the broad neutralization of 10A37 but also show that its epitope is a potential vaccine target to be further evaluated. In conclusion, our study provides novel insights about neutralization-susceptible epitope structures of the V3 loop of HIV-1 gp120 and demonstrates that, despite low amino acid sequence similarity to human antibody germ line genes, rabbits can serve as a useful animal model to evaluate human vaccine candidates.IMPORTANCE The apex crown of V3 of HIV-1 gp120 is the most immunogenic region of the surface glycoprotein, and many MAbs targeting this region have been developed. Structural understanding of V3 crown MAbs not only can help understand how antibody responses target this unique region but also contribute to immunogen design for vaccine development. We present here crystal structures of two neutralizing V3 MAbs, 10A3 and 10A37, developed from a rabbit immunized with gp120. Our analysis of 10A3 in complex with V3 provided a detailed example of how epitope complexity can evolve with affinity maturation, while that of 10A37 revealed a novel V3 binding mode targeting the C-terminal side of the V3 crown and showed that this region can form a helical structure. Our study provides novel insights about neutralization-susceptible V3 epitope structures and demonstrates that rabbits can serve as a useful animal model to evaluate human vaccine candidates.
Collapse
|
14
|
Chuang GY, Geng H, Pancera M, Xu K, Cheng C, Acharya P, Chambers M, Druz A, Tsybovsky Y, Wanninger TG, Yang Y, Doria-Rose NA, Georgiev IS, Gorman J, Joyce MG, O'Dell S, Zhou T, McDermott AB, Mascola JR, Kwong PD. Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. J Virol 2017; 91:e02268-16. [PMID: 28275193 PMCID: PMC5411596 DOI: 10.1128/jvi.02268-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
The HIV-1 envelope (Env) trimer is a target for vaccine design as well as a conformational machine that facilitates virus entry by transitioning between prefusion-closed, CD4-bound, and coreceptor-bound conformations by transitioning into a postfusion state. Vaccine designers have sought to restrict the conformation of the HIV-1 Env trimer to its prefusion-closed state as this state is recognized by most broadly neutralizing, but not nonneutralizing, antibodies. We previously identified a disulfide bond, I201C-A433C (DS), which stabilizes Env in the vaccine-desired prefusion-closed state. When placed into the context of BG505 SOSIP.664, a soluble Env trimer mimic developed by Sanders, Moore, and colleagues, the engineered DS-SOSIP trimer showed reduced conformational triggering by CD4. Here, we further stabilize DS-SOSIP through a combination of structure-based design and 96-well-based expression and antigenic assessment. From 103 designs, we identified one, named DS-SOSIP.4mut, with four additional mutations at the interface of potentially mobile domains of the prefusion-closed structure. We also determined the crystal structures of DS-SOSIP.4mut at 4.1-Å resolution and of an additional DS-SOSIP.6mut variant at 4.3-Å resolution, and these confirmed the formation of engineered disulfide bonds. Notably, DS-SOSIP.4mut elicited a higher ratio of tier 2 autologous titers versus tier 1 V3-sensitive titers than BG505 SOSIP.664. DS-SOSIP.4mut also showed reduced recognition of CD4 and increased thermostability. The improved antigenicity, thermostability, and immunogenicity of DS-SOSIP.4mut suggest utility as an immunogen or a serologic probe; moreover, the specific four alterations identified here, M154, M300, M302, and L320 (4mut), can also be transferred to other HIV-1 Env trimers of interest to improve their properties.IMPORTANCE One approach to elicit broadly neutralizing antibodies against HIV-1 is to stabilize the structurally flexible HIV-1 envelope (Env) trimer in a conformation that displays predominantly broadly neutralizing epitopes and few to no nonneutralizing epitopes. The prefusion-closed conformation of HIV-1 Env has been identified as one such preferred conformation, and a current leading vaccine candidate is the BG505 DS-SOSIP variant, comprising two disulfides and an Ile-to-Pro mutation of Env from strain BG505. Here, we introduced additional mutations to further stabilize BG505 DS-SOSIP in the vaccine-preferred prefusion-closed conformation. In guinea pigs, our best mutant, DS-SOSIP.4mut, elicited a significantly higher ratio of autologous versus V3-directed neutralizing antibody responses than the SOSIP-stabilized form. We also observed an improvement in thermostability and a reduction in CD4 affinity. With improved antigenicity, stability, and immunogenicity, DS-SOSIP.4mut-stabilized trimers may have utility as HIV-1 immunogens or in other antigen-specific contexts, such as with B-cell probes.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Timothy G Wanninger
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Balasubramanian P, Kumar R, Williams C, Itri V, Wang S, Lu S, Hessell AJ, Haigwood NL, Sinangil F, Higgins KW, Liu L, Li L, Nyambi P, Gorny MK, Totrov M, Nadas A, Kong XP, Zolla-Pazner S, Hioe CE. Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine 2017; 35:1464-1473. [PMID: 28185743 DOI: 10.1016/j.vaccine.2016.11.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/22/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022]
Abstract
The V3 loop in the HIV envelope gp120 is one of the immunogenic sites targeted by Abs. The V3 crown in particular has conserved structural elements recognized by cross-reactive neutralizing Abs, indicating its potential contribution in protection against HIV. Crystallographic analyses of anti-V3 crown mAbs in complex with the V3 peptides have revealed that these mAbs recognize the conserved sites on the V3 crown via two distinct strategies: a cradle-binding mode (V3C) and a ladle-binding (V3L) mode. However, almost all of the anti-V3 crown mAbs studied in the past were isolated from chronically HIV-infected individuals. The extents to which the two types of anti-V3 crown Abs are generated by vaccination are unknown. This study analyzed the prevalence of V3C-type and V3L-type Ab responses in HIV-infected individuals and in HIV envelope-immunized humans and animals using peptide mimotopes that distinguish the two Ab types. The results show that both V3L-type and V3C-type Abs were generated by the vast majority of chronically HIV-infected humans, although the V3L-type were more prevalent. In contrast, only one of the two V3 Ab types was elicited in vaccinated humans or animal models, irrespective of HIV-1 envelope clades, envelope constructs (oligomeric or monomeric), and protocols (DNA plus protein or protein alone) used for vaccinations. The V3C-type Abs were produced by vaccinated humans, macaques, and rabbits, whereas the V3L-type Abs were made by mice. The V3C-type and V3L-type Abs generated by the vaccinations were able to mediate virus neutralization. These data indicate the restricted repertoires and the species-specific differences in the functional V3-specific Ab responses induced by the HIV envelope vaccines. The study implies the need for improving immunogen designs and vaccination strategies to broaden the diversity of Abs in order to target the different conserved epitopes in the V3 loop and, by extension, in the entire HIV envelope.
Collapse
Affiliation(s)
- Preetha Balasubramanian
- The Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajnish Kumar
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Constance Williams
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Vincenza Itri
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shixia Wang
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shan Lu
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Keith W Higgins
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Lily Liu
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Liuzhe Li
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Phillipe Nyambi
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Maxim Totrov
- Molsoft LLC, 3366 N Torrey Pines Ct., La Jolla, CA 92037, USA
| | - Arthur Nadas
- Department of Environment Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catarina E Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
16
|
Gorman J, Soto C, Yang MM, Davenport TM, Guttman M, Bailer RT, Chambers M, Chuang GY, DeKosky BJ, Doria-Rose NA, Druz A, Ernandes MJ, Georgiev IS, Jarosinski MC, Joyce MG, Lemmin TM, Leung S, Louder MK, McDaniel JR, Narpala S, Pancera M, Stuckey J, Wu X, Yang Y, Zhang B, Zhou T, NISC Comparative Sequencing Program, Mullikin JC, Baxa U, Georgiou G, McDermott AB, Bonsignori M, Haynes BF, Moore PL, Morris L, Lee KK, Shapiro L, Mascola JR, Kwong PD. Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nat Struct Mol Biol 2016; 23:81-90. [PMID: 26689967 PMCID: PMC4833398 DOI: 10.1038/nsmb.3144] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 Env V1V2 arise in multiple donors. However, atomic-level interactions had previously been determined only with antibodies from a single donor, thus making commonalities in recognition uncertain. Here we report the cocrystal structure of V1V2 with antibody CH03 from a second donor and model Env interactions of antibody CAP256-VRC26 from a third donor. These V1V2-directed bNAbs used strand-strand interactions between a protruding antibody loop and a V1V2 strand but differed in their N-glycan recognition. Ontogeny analysis indicated that protruding loops develop early, and glycan interactions mature over time. Altogether, the multidonor information suggested that V1V2-directed bNAbs form an 'extended class', for which we engineered ontogeny-specific antigens: Env trimers with chimeric V1V2s that interacted with inferred ancestor and intermediate antibodies. The ontogeny-based design of vaccine antigens described here may provide a general means for eliciting antibodies of a desired class.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Max M. Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Brandon J. DeKosky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael J. Ernandes
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marissa C. Jarosinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - M. Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Thomas M. Lemmin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Sherman Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mark K. Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jonathan R. McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - James C. Mullikin
- NIH Intramural Sequenicng Center (NISC), National Human Geonome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mattia Bonsignori
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Barton F. Haynes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Penny L. Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Department of Biochemistry & Molecular Biophysics and Department of Systems Biology, Columbia University, New York
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Boonchawalit S, Harada S, Shirai N, Gatanaga H, Oka S, Matsushita S, Yoshimura K. Impact of the Maraviroc-Resistant Mutation M434I in the C4 Region of HIV-1 gp120 on Sensitivity to Antibody-Mediated Neutralization. Jpn J Infect Dis 2015; 69:236-43. [PMID: 26166507 DOI: 10.7883/yoken.jjid.2015.310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously reported that a maraviroc (MVC)-resistant human immunodeficiency virus type 1variant, generated using in vitro selection, exhibited high sensitivity to several neutralizing monoclonal antibodies (NMAbs) and autologous plasma IgGs. The MVC-resistant variant acquired 4 sequential mutations in gp120: T297I, M434I, V200I, and K305R. In this study, we examined the mutation most responsible for conferring enhanced neutralization sensitivity of the MVC-resistant variant to several NMAbs and autologous plasma IgGs. The virus with the first resistant mutation, T297I, was sensitive to all NMAbs, whereas the passage control virus was not. The neutralization sensitivity of the variant greatly increased following its acquisition of the second mutation, M434I, in the C4 region. The M434I mutation conferred the greatest neutralizing sensitivity among the 4 MVC-resistant mutations. Additionally, the single M434I mutation was sufficient for the enhanced neutralization of the virus by NMAbs, autologous plasma IgGs, and heterologous sera relative to that of the parental virus.
Collapse
|
18
|
Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding. Emerg Microbes Infect 2015; 4:e44. [PMID: 26251831 PMCID: PMC4522616 DOI: 10.1038/emi.2015.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 01/07/2023]
Abstract
The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitope peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence (433)AMYAPPI(439), it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.
Collapse
|
19
|
Kwon YD, Pancera M, Acharya P, Georgiev IS, Crooks ET, Gorman J, Joyce MG, Guttman M, Ma X, Narpala S, Soto C, Terry DS, Yang Y, Zhou T, Ahlsen G, Bailer RT, Chambers M, Chuang GY, Doria-Rose NA, Druz A, Hallen MA, Harned A, Kirys T, Louder MK, O'Dell S, Ofek G, Osawa K, Prabhakaran M, Sastry M, Stewart-Jones GBE, Stuckey J, Thomas PV, Tittley T, Williams C, Zhang B, Zhao H, Zhou Z, Donald BR, Lee LK, Zolla-Pazner S, Baxa U, Schön A, Freire E, Shapiro L, Lee KK, Arthos J, Munro JB, Blanchard SC, Mothes W, Binley JM, McDermott AB, Mascola JR, Kwong PD. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat Struct Mol Biol 2015; 22:522-31. [PMID: 26098315 PMCID: PMC4706170 DOI: 10.1038/nsmb.3051] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022]
Abstract
As the sole viral antigen on the HIV-1-virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1-Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.
Collapse
Affiliation(s)
- Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma T Crooks
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Goran Ahlsen
- 1] Department of Biochemistry &Molecular Biophysics, Columbia University, New York, New York, USA. [2] Department of Systems Biology, Columbia University, New York, New York, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Hallen
- 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Adam Harned
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tatsiana Kirys
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul V Thomas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tishina Tittley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hong Zhao
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Bruce R Donald
- 1] Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA. [2] Department of Chemistry, Duke University, Durham, North Carolina, USA. [3] Department of Computer Science, Duke University, Durham, North Carolina, USA
| | - Lawrence K Lee
- Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Susan Zolla-Pazner
- 1] New York University School of Medicine, New York, New York, USA. [2] New York Veterans Affairs Harbor Healthcare System, New York, New York, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lawrence Shapiro
- 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Biochemistry &Molecular Biophysics, Columbia University, New York, New York, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James B Munro
- 1] Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James M Binley
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Zolla-Pazner S, Edlefsen PT, Rolland M, Kong XP, deCamp A, Gottardo R, Williams C, Tovanabutra S, Sharpe-Cohen S, Mullins JI, deSouza MS, Karasavvas N, Nitayaphan S, Rerks-Ngarm S, Pitisuttihum P, Kaewkungwal J, O'Connell RJ, Robb ML, Michael NL, Kim JH, Gilbert P. Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses. EBioMedicine 2014; 1:37-45. [PMID: 25599085 PMCID: PMC4293639 DOI: 10.1016/j.ebiom.2014.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
To evaluate the role of V3-specific IgG antibodies (Abs) in the RV144 clinical HIV vaccine trial, which reduced HIV-1 infection by 31.2%, the anti-V3 Ab response was assessed. Vaccinees' V3 Abs were highly cross-reactive with cyclic V3 peptides (cV3s) from diverse virus subtypes. Sieve analysis of CRF01_AE breakthrough viruses from 43 vaccine- and 66 placebo-recipients demonstrated an estimated vaccine efficacy of 85% against viruses with amino acids mismatching the vaccine at V3 site 317 (p = 0.004) and 52% against viruses matching the vaccine at V3 site 307 (p = 0.004). This analysis was supported by data showing that vaccinees' plasma Abs were less reactive with I307 when replaced with residues found more often in vaccinees' breakthrough viruses. Simultaneously, viruses with mutations at F317 were less infectious, possibly due to the contribution of F317 to optimal formation of the V3 hydrophobic core. These data suggest that RV144-induced V3-specific Abs imposed immune pressure on infecting viruses and inform efforts to design an HIV vaccine. The RV144 vaccine reduced infection by viruses with isoleucine in V3 position 307. Many vaccine-induced antibodies are cross-reactive and target an epitope including I307. There was selection for breakthrough viruses carrying F317 in V3 (p = 0.004). F317 is needed to maintain optimal infectivity. F317 is a poor or non-contact residue for vaccine induced V3 antibodies.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York Veterans Affairs Harbor Healthcare System, 423 East 23 Street, New York, NY 10010, USA ; New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Morgane Rolland
- Department of Retrovirology, Walter Reed Army Institute of Research, Building 503, Silver Spring, MD 20910, USA
| | - Xiang-Peng Kong
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Constance Williams
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Sodsai Tovanabutra
- Department of Retrovirology, Walter Reed Army Institute of Research, Building 503, Silver Spring, MD 20910, USA
| | - Sandra Sharpe-Cohen
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, 358B Rosen Building, Campus box 358070, Seattle, WA 98195
| | - Mark S deSouza
- Thai Red Cross AIDS Research Center 104, Tower 2, Rajdumari Rd. Pathumwan, Bangkok, Thailand, 10330
| | - Nicos Karasavvas
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Sorachai Nitayaphan
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Supachai Rerks-Ngarm
- Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Punnee Pitisuttihum
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Jaranit Kaewkungwal
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Robert J O'Connell
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Merlin L Robb
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Nelson L Michael
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Jerome H Kim
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Peter Gilbert
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| |
Collapse
|