1
|
Demosthene B, Kravchuk P, Harmon CL, Kalae A, Kang EH. Small organic osmolytes accelerate actin filament assembly and stiffen filaments. Cytoskeleton (Hoboken) 2025; 82:281-290. [PMID: 39276026 DOI: 10.1002/cm.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Actin filament assembly and mechanics are crucial for maintenance of cell structure, motility, and division. Actin filament assembly occurs in a crowded intracellular environment consisting of various types of molecules, including small organic molecules known as osmolytes. Ample evidence highlights the protective functions of osmolytes such as trimethylamine-N-oxide (TMAO), including their effects on protein stability and their ability to counteract cellular osmotic stress. Yet, how TMAO affects individual actin filament assembly dynamics and mechanics is not well understood. We hypothesize that, owing to its protective nature, TMAO will enhance filament dynamics and stiffen actin filaments due to increased stability. In this study, we investigate osmolyte-dependent actin filament assembly and bending mechanics by measuring filament elongation rates, steady-state filament lengths, and bending persistence lengths in the presence of TMAO using total internal reflection fluorescence microscopy and pyrene assays. Our results demonstrate that TMAO increases filament elongation rates as well as steady-state average filament lengths, and enhances filament bending stiffness. Together, these results will help us understand how small organic osmolytes modulate cytoskeletal protein assembly and mechanics in living cells.
Collapse
Affiliation(s)
- Bryan Demosthene
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Pavlo Kravchuk
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Connor L Harmon
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Abdulrazak Kalae
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Ellen H Kang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Physics, University of Central Florida, Orlando, Florida, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Stevenson SR, Tzokov SB, Lahiri I, Ayscough KR, Bullough PA. Cryo-EM reconstruction of yeast ADP-actin filament at 2.5 Å resolution. A comparison with vertebrate F-actin. Structure 2025; 33:435-442.e3. [PMID: 39798573 DOI: 10.1016/j.str.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones. Intriguingly, however, substitution of yeast ACT1 with vertebrate β-cytoplasmic actin severely disrupts cell function and the substitution with a skeletal muscle isoform is lethal. Here we report a 2.5 Å structure of budding yeast F-actin. Previously unresolved side-chain information allows us to highlight four main differences in the comparison of yeast and vertebrate ADP F-actins: a more open nucleotide binding pocket; a more solvent exposed C-terminus; a rearrangement of inter-subunit binding interactions in the vicinity of the D loop and changes in the hydrogen bonding network in the vicinity of histidine 73 (yeast actin) and methyl-histidine 73 (vertebrate actin).
Collapse
Affiliation(s)
- Sarah R Stevenson
- Molecular and Cell Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Svetomir B Tzokov
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Indrajit Lahiri
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Nucleic Acids Institute, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Kathryn R Ayscough
- Molecular and Cell Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Per A Bullough
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
3
|
Gunasekara H, Perera T, Chao CJ, Bruno J, Saed B, Anderson J, Zhao Z, Hu YS. Phalloidin-PAINT: Enhanced quantitative nanoscale imaging of F-actin. Biophys J 2024; 123:3051-3064. [PMID: 38961624 PMCID: PMC11427775 DOI: 10.1016/j.bpj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
We present phalloidin-based points accumulation for imaging in nanoscale topography (phalloidin-PAINT), enabling quantitative superresolution imaging of filamentous actin (F-actin) in the cell body and delicate membrane protrusions. We demonstrate that the intrinsic phalloidin dissociation enables PAINT superresolution microscopy in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-PAINT are its ability to consistently quantify F-actin at the nanoscale throughout the entire cell and its enhanced preservation of fragile cellular structures. In a proof-of-concept study, we employed phalloidin-PAINT to superresolve F-actin structures in U2OS and dendritic cells (DCs). We demonstrate more consistent F-actin quantification in the cell body and structurally delicate membrane protrusions of DCs compared with direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse DCs as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane protrusions on the culture glass surface after lipopolysaccharide exposure. The concept of our work opens new possibilities for quantitative protein-specific PAINT using commercially available reagents.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Joshua Bruno
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, Illinois
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
4
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. Structure 2024; 32:725-738.e8. [PMID: 38518780 PMCID: PMC11162321 DOI: 10.1016/j.str.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024]
Abstract
Entry of Salmonella into host enterocytes relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a 1:2 stoichiometry with sub-nanomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the groove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved by a combination of fast association via the core and very slow dissociation dictated by the arm. Similar to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by actin depolymerizing factor (ADF)/cofilin, which correlated with increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Gunasekara H, Perera T, Chao CJ, Bruno J, Saed B, Anderson J, Zhao Z, Hu YS. Quantitative Superresolution Imaging of F-Actin in the Cell Body and Cytoskeletal Protrusions Using Phalloidin-Based Single-Molecule Labeling and Localization Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583337. [PMID: 38496456 PMCID: PMC10942307 DOI: 10.1101/2024.03.04.583337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We present single-molecule labeling and localization microscopy (SMLLM) using dye-conjugated phalloidin to achieve enhanced superresolution imaging of filamentous actin (F-actin). We demonstrate that the intrinsic phalloidin dissociation enables SMLLM in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-based SMLLM are better preservation of cellular structures sensitive to mechanical and shear forces during standard sample preparation and more consistent F-actin quantification at the nanoscale. In a proof-of-concept study, we employed SMLLM to super-resolve F-actin structures in U2OS and dendritic cells (DCs) and demonstrate more consistent F-actin quantification in the cell body and structurally delicate cytoskeletal proportions, which we termed membrane fibers, of DCs compared to direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse dendritic cells as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane fibers on the culture glass surface after lipopolysaccharide exposure. While our work demonstrates SMLLM for F-actin, the concept opens new possibilities for protein-specific single-molecule labeling and localization in the same step using commercially available reagents.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Joshua Bruno
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
6
|
Hvorecny KL, Sladewski TE, De La Cruz EM, Kollman JM, Heaslip AT. Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover. Nat Commun 2024; 15:1840. [PMID: 38418447 PMCID: PMC10902351 DOI: 10.1038/s41467-024-46111-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The cytoskeletal protein actin plays a critical role in the pathogenicity of the intracellular parasite, Toxoplasma gondii, mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there are conflicting data regarding the biochemical and biophysical properties of Toxoplasma actin. Here, we imaged the in vitro assembly of individual Toxoplasma actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length. Unlike skeletal muscle actin, Toxoplasma filaments intrinsically undergo rapid treadmilling due to a high critical concentration, fast monomer dissociation, and rapid nucleotide exchange. Cryo-EM structures of jasplakinolide-stabilized and native (i.e. unstabilized) filaments show an architecture like skeletal actin, with differences in assembly contacts in the D-loop that explain the dynamic nature of the filament, likely a conserved feature of Apicomplexan actin. This work demonstrates that evolutionary changes at assembly interfaces can tune the dynamic properties of actin filaments without disrupting their conserved structure.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Thomas E Sladewski
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Aoife T Heaslip
- Department of Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
7
|
Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573373. [PMID: 38234808 PMCID: PMC10793455 DOI: 10.1101/2023.12.26.573373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Entry of Salmonella into host enterocytes strictly relies on its pathogenicity island 1 effector SipA. We found that SipA binds to F-actin in a unique mode in a 1:2 stoichiometry with picomolar affinity. A cryo-EM reconstruction revealed that SipA's globular core binds at the grove between actin strands, whereas the extended C-terminal arm penetrates deeply into the inter-strand space, stabilizing F-actin from within. The unusually strong binding of SipA is achieved via a combination of fast association via the core and very slow dissociation dictated by the arm. Similarly to Pi, BeF3, and phalloidin, SipA potently inhibited actin depolymerization by ADF/cofilin, which correlated with the increased filament stiffness, supporting the hypothesis that F-actin's mechanical properties contribute to the recognition of its nucleotide state by protein partners. The remarkably strong binding to F-actin maximizes the toxin's effects at the injection site while minimizing global influence on the cytoskeleton and preventing pathogen detection by the host cell.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Chao-Pellicer J, Arberas-Jiménez I, Delgado-Hernández S, Sifaoui I, Tejedor D, García-Tellado F, Piñero JE, Lorenzo-Morales J. Cyanomethyl Vinyl Ethers Against Naegleria fowleri. ACS Chem Neurosci 2023. [PMID: 37167960 DOI: 10.1021/acschemneuro.3c00110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Naegleria fowleri is a pathogenic amoeba that causes a fulminant and rapidly progressive disease affecting the central nervous system called primary amoebic meningoencephalitis (PAM). Moreover, the disease is fatal in more than 97% of the reported cases, mostly affecting children and young people after practicing aquatic activities in nontreated fresh and warm water bodies contaminated with these amoebae. Currently, the treatment of primary amoebic meningoencephalitis is based on a combination of different antibiotics and antifungals, which are not entirely effective and lead to numerous side effects. In the recent years, research against PAM is focused on the search of novel, less toxic, and fully effective antiamoebic agents. Previous studies have reported the activity of cyano-substituted molecules in different protozoa. Therefore, the activity of 46 novel synthetic cyanomethyl vinyl ethers (QOET-51 to QOET-96) against two type strains of N. fowleri (ATCC 30808 and ATCC 30215) was determined. The data showed that QOET-51, QOET-59, QOET-64, QOET-67, QOET-72, QOET-77, and QOET-79 were the most active molecules. In fact, the selectivity index (CC50/IC50) was sixfold higher when compared to the activities of the drugs of reference. In addition, the mechanism of action of these compounds was studied, with the aim to demonstrate the induction of a programmed cell death process in N. fowleri.
Collapse
Affiliation(s)
- Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28220, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna 38206, Tenerife, Islas Canarias, Spain
- Departamento de Química. Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife 38206, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna 38206, Tenerife, Islas Canarias, Spain
- Departamento de Química. Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife 38206, Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, La Laguna 38206, Tenerife, Islas Canarias, Spain
- Departamento de Química. Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife 38206, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28220, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna 38203, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias 38200, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28220, Spain
| |
Collapse
|
9
|
Tang Q, Pollard LW, Homa KE, Kovar DR, Trybus KM. Acetylation of fission yeast tropomyosin does not promote differential association with cognate formins. Cytoskeleton (Hoboken) 2023; 80:77-92. [PMID: 36692369 PMCID: PMC10121778 DOI: 10.1002/cm.21745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
It was proposed from cellular studies that S. pombe tropomyosin Cdc8 (Tpm) segregates into two populations due to the presence or absence of an amino-terminal acetylation that specifies which formin-mediated F-actin networks it binds, but with no supporting biochemistry. To address this mechanism in vitro, we developed methods for S. pombe actin expression in Sf9 cells. We then employed 3-color TIRF microscopy using all recombinant S. pombe proteins to probe in vitro multicomponent mechanisms involving actin, acetylated and unacetylated Tpm, formins, and myosins. Acetyl-Tpm exhibits tight binding to actin in contrast to weaker binding by unacetylated Tpm. In disagreement with the differential recruitment model, Tpm showed no preferential binding to filaments assembled by the FH1-FH2-domains of two S. pombe formins, nor did Tpm binding have any bias towards the growing formin-bound actin filament barbed end. Although our in vitro findings do not support a direct formin-tropomyosin interaction, it is possible that formins bias differential tropomyosin isoform recruitment through undiscovered mechanisms. Importantly, despite a 12% sequence divergence between skeletal and S. pombe actin, S. pombe myosins Myo2 and Myo51 exhibited similar motile behavior with these two actins, validating key prior findings with these myosins that used skeletal actin.
Collapse
Affiliation(s)
- Qing Tang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Kaitlin E. Homa
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - David R. Kovar
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| |
Collapse
|
10
|
Geng M, Hansanant N, Lu SE, Lockless SW, Shin R, Orugunty R, Smith L. Synthesis and characterization of semisynthetic analogs of the antifungal occidiofungin. Front Microbiol 2022; 13:1056453. [PMID: 36583054 PMCID: PMC9792986 DOI: 10.3389/fmicb.2022.1056453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Occidiofungin is a broad-spectrum antifungal compound produced by Burkholderia contaminans MS14. It is a cyclic glycol-lipopeptide with a novel beta-amino acid (NAA2) containing a hydroxylated C18 fatty acid chain with a xylose sugar. This study reports a strategy to produce semisynthetic analogs of occidiofungin to further explore the structure activity relationships of this class of compounds. Oxidative cleavage of the diol present on carbons five C(5) and six C(6) removes the xylose and twelve carbons of the fatty acid chain. The resulting cyclic peptide product, occidiofungin aldehyde, is devoid of antifungal activity. However, the free aldehyde group on this product can be subjected to reductive amination reactions to provide interesting semisynthetic analogs. This chemistry allows the quick generation of analogs to study the structure activity relationships of this class of compounds. Despite restoring the length of the aliphatic side chain by reductive amination addition with undecylamine or dodecylamine to the free aldehyde group, the obtained analogs did not demonstrate any antifungal activity. The antifungal activity was partially restored by the addition of a DL-dihydrosphingosine. The dodecylamine analog was demonstrated to still bind to the cellular target actin, suggesting that the diol on the side chain of native occidiofungin is important for entry into the cell enabling access to cellular target F-actin. These results show that the alkyl side chain on NAA2 along with the diol present on this side chain is important for occidiofungin's antifungal activity.
Collapse
Affiliation(s)
- Mengxin Geng
- Department of Biology, Texas A&M University, College Station, TX, United States
- Sano Chemicals Inc., Bryan, TX, United States
| | - Nopakorn Hansanant
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States
| | - Steve W. Lockless
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Ronald Shin
- Central Alabama High-Field NMR Facility, Structural Biology Shared Facility, Cancer Center University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX, United States
- Sano Chemicals Inc., Bryan, TX, United States
| |
Collapse
|
11
|
Sanders EW, Carr AR, Bruggeman E, Körbel M, Benaissa SI, Donat RF, Santos AM, McColl J, O'Holleran K, Klenerman D, Davis SJ, Lee SF, Ponjavic A. resPAINT: Accelerating Volumetric Super-Resolution Localisation Microscopy by Active Control of Probe Emission. Angew Chem Int Ed Engl 2022; 61:e202206919. [PMID: 35876263 DOI: 10.1002/anie.202206919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.
Collapse
Affiliation(s)
- Edward W Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alexander R Carr
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ezra Bruggeman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Markus Körbel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sarah I Benaissa
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Robert F Donat
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Santos
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - James McColl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simon J Davis
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Aleks Ponjavic
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Sanders EW, Carr AR, Bruggeman E, Körbel M, Benaissa SI, Donat RF, Santos AM, McColl J, O'Holleran K, Klenerman D, Davis SJ, Lee SF, Ponjavic A. resPAINT: Accelerating Volumetric Super-Resolution Localisation Microscopy by Active Control of Probe Emission. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202206919. [PMID: 38505515 PMCID: PMC10946633 DOI: 10.1002/ange.202206919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 03/21/2024]
Abstract
Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.
Collapse
Affiliation(s)
- Edward W. Sanders
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Alexander R. Carr
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Ezra Bruggeman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Markus Körbel
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Sarah I. Benaissa
- Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeCB2 3DYUK
| | - Robert F. Donat
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - Ana M. Santos
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - James McColl
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeCB2 3DYUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Simon J. Davis
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - Steven F. Lee
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Aleks Ponjavic
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- School of Physics and AstronomyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Food Science and NutritionUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
13
|
Okodo M, Okayama K, Tsukakoshi N, Misawa Y, Tanabe K, Teruya K, Ito C, Ishii Y, Fujii M, Oda M. Effects of Menstrual Cycle on Various Morphologies of High-Grade Squamous Intraepithelial Lesions in SurePath™ Liquid-Based Cervical Cytology. Acta Cytol 2022; 66:507-512. [PMID: 35700714 DOI: 10.1159/000525141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The morphology of high-grade squamous intraepithelial lesion (HSIL) on Papanicolaou (Pap) smears widely varied, including syncytial aggregates, sheets, and scattered single cells, and no particular cellular pattern is consistently observed. Therefore, this study aimed to determine whether the menstrual cycle affects the cellular pattern of HSILs, an effort to avoid false negatives due to the oversight of scattered small single HSIL cells in the cytological triage of human papillomavirus-positive women. METHODS A total of 147 HSIL samples of liquid-based cytology (LBC) in patients with cervical intraepithelial neoplasia grade 2 or 3 were obtained, and then, the relationship between cellular patterns, such as single-cell-like and syncytial aggregates, and menstrual cycles classified into six phases was analyzed. If a syncytial aggregate was present, the number of cells constituting the aggregate was visually counted under the microscope. RESULTS HSILs in scattered single cells and small sheets of <6 on LBC samples accounted for 43% (23/54) during the late proliferative phase of the menstrual cycle. A moderately strong statistically significant association was observed between cellular patterns and menstrual cycles (χ2 [3] = 9.423, p < 0.05) (Cramer's V = 0.253). The value of adjusted residuals showed a statistically significant increased proportion of single-cell-like patterns during the late proliferative phase (p < 0.01). CONCLUSIONS The present study demonstrated that HSIL cells in Pap smears in the late proliferation phase have a high frequency of single-cell-like patterns. In human papillomavirus-positive Pap smears with a clean background and predominantly superficial cells, careful microscopic observation by targeting single HSIL cells can potentially reduce false negatives.
Collapse
Affiliation(s)
- Mitsuaki Okodo
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Mitaka-shi, Japan
| | - Kaori Okayama
- Department of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Takasaki-shi, Japan
| | - Natsuko Tsukakoshi
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Mitaka-shi, Japan
| | - Yukimi Misawa
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Mitaka-shi, Japan
| | - Kazumasa Tanabe
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Mitaka-shi, Japan
| | - Koji Teruya
- Department of Health and Welfare, Faculty of Health Sciences, Kyorin University, Mitaka-shi, Japan
| | - Chieko Ito
- Department of Clinical Laboratory, Genki Plaza Medical Center for Health Care, Tokyo, Japan
| | - Yasuyoshi Ishii
- Department of Clinical Laboratory, Genki Plaza Medical Center for Health Care, Tokyo, Japan
| | - Masahiko Fujii
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Mitaka-shi, Japan
| | - Mizue Oda
- Department of Gynecology, Genki Plaza Medical Center for Health Care, Tokyo, Japan
| |
Collapse
|
14
|
Xie X, Maharjan S, Kelly C, Liu T, Lang RJ, Alperin R, Sebastian S, Bonilla D, Gandolfo S, Boukataya Y, Siadat SM, Zhang YS, Livermore C. Customizable Microfluidic Origami Liver-on-a-Chip (oLOC). ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100677. [PMID: 35754760 PMCID: PMC9231824 DOI: 10.1002/admt.202100677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 05/03/2023]
Abstract
The design and manufacture of an origami-based liver-on-a-chip device are presented, together with demonstrations of the chip's effectiveness at recapitulating some of the liver's key in vivo architecture, physical microenvironment, and functions. Laser-cut layers of polyimide tape are folded together with polycarbonate nanoporous membranes to create a stack of three adjacent flow chambers separated by the membranes. Endothelial cells are seeded in the upper and lower flow chambers to simulate sinusoids, and hepatocytes are seeded in the middle flow chamber. Nutrients and metabolites flow through the simulated sinusoids and diffuse between the vascular pathways and the hepatocyte layers, mimicking physiological microcirculation. Studies of cell viability, metabolic functions, and hepatotoxicity of pharmaceutical compounds show that the endothelialized liver-on-a-chip model is conducive to maintaining hepatocyte functions and evaluation of the hepatotoxicity of drugs. Our unique origami approach speeds chip development and optimization, effectively simplifying the laboratory-scale fabrication of on-chip models of human tissues without necessarily reducing their structural and functional sophistication.
Collapse
Affiliation(s)
- Xin Xie
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chastity Kelly
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Tian Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Roger Alperin
- Department of Mathematics, San Jose State University, San Jose, CA 95192
| | - Shikha Sebastian
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Diana Bonilla
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sakura Gandolfo
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yasmine Boukataya
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
15
|
Mazloom-Farsibaf H, Farzam F, Fazel M, Wester MJ, Meddens MBM, Lidke KA. Comparing lifeact and phalloidin for super-resolution imaging of actin in fixed cells. PLoS One 2021; 16:e0246138. [PMID: 33508018 PMCID: PMC7842966 DOI: 10.1371/journal.pone.0246138] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Visualizing actin filaments in fixed cells is of great interest for a variety of topics in cell biology such as cell division, cell movement, and cell signaling. We investigated the possibility of replacing phalloidin, the standard reagent for super-resolution imaging of F-actin in fixed cells, with the actin binding peptide 'lifeact'. We compared the labels for use in single molecule based super-resolution microscopy, where AlexaFluor 647 labeled phalloidin was used in a dSTORM modality and Atto 655 labeled lifeact was used in a single molecule imaging, reversible binding modality. We found that imaging with lifeact had a comparable resolution in reconstructed images and provided several advantages over phalloidin including lower costs, the ability to image multiple regions of interest on a coverslip without degradation, simplified sequential super-resolution imaging, and more continuous labeling of thin filaments.
Collapse
Affiliation(s)
- Hanieh Mazloom-Farsibaf
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Farzin Farzam
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Mohamadreza Fazel
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael J Wester
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Marjolein B M Meddens
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
16
|
Colombo J, Antkowiak A, Kogan K, Kotila T, Elliott J, Guillotin A, Lappalainen P, Michelot A. A functional family of fluorescent nucleotide analogues to investigate actin dynamics and energetics. Nat Commun 2021; 12:548. [PMID: 33483497 PMCID: PMC7822861 DOI: 10.1038/s41467-020-20827-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Actin polymerization provides force for vital processes of the eukaryotic cell, but our understanding of actin dynamics and energetics remains limited due to the lack of high-quality probes. Most current probes affect dynamics of actin or its interactions with actin-binding proteins (ABPs), and cannot track the bound nucleotide. Here, we identify a family of highly sensitive fluorescent nucleotide analogues structurally compatible with actin. We demonstrate that these fluorescent nucleotides bind to actin, maintain functional interactions with a number of essential ABPs, are hydrolyzed within actin filaments, and provide energy to power actin-based processes. These probes also enable monitoring actin assembly and nucleotide exchange with single-molecule microscopy and fluorescence anisotropy kinetics, therefore providing robust and highly versatile tools to study actin dynamics and functions of ABPs.
Collapse
Affiliation(s)
- Jessica Colombo
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| | - Adrien Antkowiak
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| | - Konstantin Kogan
- grid.7737.40000 0004 0410 2071HiLIFE Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Tommi Kotila
- grid.7737.40000 0004 0410 2071HiLIFE Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Jenna Elliott
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| | - Audrey Guillotin
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| | - Pekka Lappalainen
- grid.7737.40000 0004 0410 2071HiLIFE Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Alphée Michelot
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| |
Collapse
|
17
|
Guhathakurta P, Phung LA, Prochniewicz E, Lichtenberger S, Wilson A, Thomas DD. Actin-binding compounds, previously discovered by FRET-based high-throughput screening, differentially affect skeletal and cardiac muscle. J Biol Chem 2020; 295:14100-14110. [PMID: 32788211 DOI: 10.1074/jbc.ra120.014445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Indexed: 01/21/2023] Open
Abstract
Actin's interactions with myosin and other actin-binding proteins are essential for cellular viability in numerous cell types, including muscle. In a previous high-throughput time-resolved FRET (TR-FRET) screen, we identified a class of compounds that bind to actin and affect actomyosin structure and function. For clinical utility, it is highly desirable to identify compounds that affect skeletal and cardiac muscle differently. Because actin is more highly conserved than myosin and most other muscle proteins, most such efforts have not targeted actin. Nevertheless, in the current study, we tested the specificity of the previously discovered actin-binding compounds for effects on skeletal and cardiac α-actins as well as on skeletal and cardiac myofibrils. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that several of these effects were different for skeletal and cardiac actin isoforms. We also found that several of these compounds affected ATPase activity differently in skeletal and cardiac myofibrils. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lien A Phung
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Lichtenberger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Wilson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA .,Photonic Pharma LLC, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Das S, Ge P, Oztug Durer ZA, Grintsevich EE, Zhou ZH, Reisler E. D-loop Dynamics and Near-Atomic-Resolution Cryo-EM Structure of Phalloidin-Bound F-Actin. Structure 2020; 28:586-593.e3. [PMID: 32348747 DOI: 10.1016/j.str.2020.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Detailed molecular information on G-actin assembly into filaments (F-actin), and their structure, dynamics, and interactions, is essential for understanding their cellular functions. Previous studies indicate that a flexible DNase I binding loop (D-loop, residues 40-50) plays a major role in actin's conformational dynamics. Phalloidin, a "gold standard" for actin filament staining, stabilizes them and affects the D-loop. Using disulfide crosslinking in yeast actin D-loop mutant Q41C/V45C, light-scattering measurements, and cryoelectron microscopy reconstructions, we probed the constraints of D-loop dynamics and its contribution to F-actin formation/stability. Our data support a model of residues 41-45 distances that facilitate G- to F-actin transition. We report also a 3.3-Å resolution structure of phalloidin-bound F-actin in the ADP-Pi-like (ADP-BeFx) state. This shows the phalloidin-binding site on F-actin and how the relative movement between its two protofilaments is restricted by it. Together, our results provide molecular details of F-actin structure and D-loop dynamics.
Collapse
Affiliation(s)
- Sanchaita Das
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Peng Ge
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
| | - Zeynep A Oztug Durer
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Elena E Grintsevich
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Asaro RJ, Zhu Q. Vital erythrocyte phenomena: what can theory, modeling, and simulation offer? Biomech Model Mechanobiol 2020; 19:1361-1388. [DOI: 10.1007/s10237-020-01302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
20
|
Xie X, Maharjan S, Liu S, Zhang YS, Livermore C. A Modular, Reconfigurable Microfabricated Assembly Platform for Microfluidic Transport and Multitype Cell Culture and Drug Testing. MICROMACHINES 2019; 11:E2. [PMID: 31861298 PMCID: PMC7020019 DOI: 10.3390/mi11010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Modular microfluidics offer the opportunity to combine the precise fluid control, rapid sample processing, low sample and reagent volumes, and relatively lower cost of conventional microfluidics with the flexible reconfigurability needed to accommodate the requirements of target applications such as drug toxicity studies. However, combining the capabilities of fully adaptable modular microelectromechanical systems (MEMS) assembly with the simplicity of conventional microfluidic fabrication remains a challenge. A hybrid polydimethylsiloxane (PDMS)-molding/photolithographic process is demonstrated to rapidly fabricate LEGO®-like modular blocks. The blocks are created with different sizes that interlock via tongue-and-groove joints in the plane and stack via interference fits out of the plane. These miniature strong but reversible connections have a measured resistance to in-plane and out-of-plane forces of up to >6000× and >1000× the weight of the block itself, respectively. The LEGO®-like interference fits enable O-ring-free microfluidic connections that withstand internal fluid pressures of >120 kPa. A single layer of blocks is assembled into LEGO®-like cell culture plates, where the in vitro biocompatibility and drug toxicity to lung epithelial adenocarcinoma cells and hepatocellular carcinoma cells cultured in the modular microwells are measured. A double-layer block structure is then assembled so that a microchannel formed at the interface between layers connects two microwells. Breast tumor cells and hepatocytes cultured in the coupled wells demonstrate interwell migration as well as the simultaneous effects of a single drug on the two cell types.
Collapse
Affiliation(s)
- Xin Xie
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA;
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Sushila Maharjan
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
- Research Institute for Bioscience and Biotechnology, Nakkhu-4, Lalitpur 44600, Nepal
| | - Sanwei Liu
- MEMS Sensors and Actuators Laboratory, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA;
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
21
|
Yamashiro S, Watanabe N. Quantitative high-precision imaging of myosin-dependent filamentous actin dynamics. J Muscle Res Cell Motil 2019; 41:163-173. [PMID: 31313218 DOI: 10.1007/s10974-019-09541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Over recent decades, considerable effort has been made to understand how mechanical stress applied to the actin network alters actin assembly and disassembly dynamics. However, there are conflicting reports concerning the issue both in vitro and in cells. In this review, we discuss concerns regarding previous quantitative live-cell experiments that have attempted to evaluate myosin regulation of filamentous actin (F-actin) turnover. In particular, we highlight an error-generating mechanism in quantitative live-cell imaging, namely convection-induced misdistribution of actin-binding probes. Direct observation of actin turnover at the single-molecule level using our improved electroporation-based Single-Molecule Speckle (eSiMS) microscopy technique overcomes these concerns. We introduce our recent single-molecule analysis that unambiguously demonstrates myosin-dependent regulation of F-actin stability in live cells. We also discuss the possible application of eSiMS microscopy in the analysis of actin remodeling in striated muscle cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Ishii S, Oyama K, Arai T, Itoh H, Shintani SA, Suzuki M, Kobirumaki-Shimozawa F, Terui T, Fukuda N, Ishiwata S. Microscopic heat pulses activate cardiac thin filaments. J Gen Physiol 2019; 151:860-869. [PMID: 31010810 PMCID: PMC6572001 DOI: 10.1085/jgp.201812243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/20/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022] Open
Abstract
During the excitation-contraction coupling of the heart, sarcomeres are activated via thin filament structural changes (i.e., from the "off" state to the "on" state) in response to a release of Ca2+ from the sarcoplasmic reticulum. This process involves chemical reactions that are highly dependent on ambient temperature; for example, catalytic activity of the actomyosin ATPase rises with increasing temperature. Here, we investigate the effects of rapid heating by focused infrared (IR) laser irradiation on the sliding of thin filaments reconstituted with human α-tropomyosin and bovine ventricular troponin in an in vitro motility assay. We perform high-precision analyses measuring temperature by the fluorescence intensity of rhodamine-phalloidin-labeled F-actin coupled with a fluorescent thermosensor sheet containing the temperature-sensitive dye Europium (III) thenoyltrifluoroacetonate trihydrate. This approach enables a shift in temperature from 25°C to ∼46°C within 0.2 s. We find that in the absence of Ca2+ and presence of ATP, IR laser irradiation elicits sliding movements of reconstituted thin filaments with a sliding velocity that increases as a function of temperature. The heating-induced acceleration of thin filament sliding likewise occurs in the presence of Ca2+ and ATP; however, the temperature dependence is more than twofold less pronounced. These findings could indicate that in the mammalian heart, the on-off equilibrium of the cardiac thin filament state is partially shifted toward the on state in diastole at physiological body temperature, enabling rapid and efficient myocardial dynamics in systole.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Tomomi Arai
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideki Itoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Epithelial Biology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Madoka Suzuki
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Takako Terui
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
23
|
Blanc A, Todorovic M, Perrin DM. Solid-phase synthesis of a novel phalloidin analog with on-bead and off-bead actin-binding activity. Chem Commun (Camb) 2019; 55:385-388. [PMID: 30540302 DOI: 10.1039/c8cc08379g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific effectors of actin polymerization have found use as dynamic probes of cellular morphology that may be used to gauge cellular response to stimuli and drugs. Of various natural products that target actin, phalloidin is one of the most potent and selective inhibitors of actin depolymerization. Phalloidin and related members of the phallotoxin family are macrocyclic heptapeptides bearing a characteristic and rigidifying transannular tryptathionine bridge. Here we describe a solid-phase synthesis of a new phalloidin analog as a prototype for library development with the potential for on- and off-bead screening. To validate our method, we labelled the phalloidin derivative with a fluorescent dye which stained actin in CHO cells. Furthermore, a bioassay was developed allowing actin polymerization on beads carrying a phalloidin derivative.
Collapse
Affiliation(s)
- Antoine Blanc
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, V6T-1Z1, Canada.
| | | | | |
Collapse
|
24
|
A Novel Actin Binding Drug with In Vivo Efficacy. Antimicrob Agents Chemother 2018; 63:AAC.01585-18. [PMID: 30323040 PMCID: PMC6325233 DOI: 10.1128/aac.01585-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 11/23/2022] Open
Abstract
Occidiofungin is produced by the soil bacterium Burkolderia contaminans MS14 and is structurally similar or identical to the burkholdines, xylocandins, and cepacidines. This study identified the primary cellular target of occidiofungin, which was determined to be actin. Occidiofungin is produced by the soil bacterium Burkolderia contaminans MS14 and is structurally similar or identical to the burkholdines, xylocandins, and cepacidines. This study identified the primary cellular target of occidiofungin, which was determined to be actin. The modification of occidiofungin with a functional alkyne group enabled affinity purification assays and localization studies in yeast. Occidiofungin has a subtle effect on actin dynamics that triggers apoptotic cell death. We demonstrate the highly specific localization of occidiofungin to cellular regions rich in actin in yeast and the binding of occidiofungin to purified actin in vitro. Furthermore, a disruption of actin-mediated cellular processes, such as endocytosis, nuclear segregation, and hyphal formation, was observed. All of these processes require the formation of stable actin cables, which are disrupted following the addition of a subinhibitory concentration of occidiofungin. We were also able to demonstrate the effectiveness of occidiofungin in treating a vulvovaginal yeast infection in a murine model. The results of this study are important for the development of an efficacious novel class of actin binding drugs that may fill the existing gap in treatment options for fungal infections or different types of cancer.
Collapse
|
25
|
Yamashiro S, Taniguchi D, Tanaka S, Kiuchi T, Vavylonis D, Watanabe N. Convection-Induced Biased Distribution of Actin Probes in Live Cells. Biophys J 2018; 116:142-150. [PMID: 30558885 DOI: 10.1016/j.bpj.2018.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/02/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
Abstract
Fluorescent markers that bind endogenous target proteins are frequently employed for quantitative live-cell imaging. To visualize the actin cytoskeleton in live cells, several actin-binding probes have been widely used. Among them, Lifeact is the most popular probe with ideal properties, including fast exchangeable binding kinetics. Because of its fast kinetics, Lifeact is generally believed to distribute evenly throughout cellular actin structures. In this study, however, we demonstrate misdistribution of Lifeact toward the rear of lamellipodia where actin filaments continuously move inward along the retrograde flow. Similarly, phalloidin showed biased misdistribution toward the rear of lamellipodia in live cells. We show evidence of convection-induced misdistribution of actin probes by both experimental data and physical models. Our findings warn about the potential error arising from the use of target-binding probes in quantitative live imaging.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Medicine, Kyoto Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan.
| | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan
| | - Soichiro Tanaka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi, Japan
| | - Tai Kiuchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Medicine, Kyoto Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan.
| |
Collapse
|
26
|
Lorenz JS, Schnauß J, Glaser M, Sajfutdinow M, Schuldt C, Käs JA, Smith DM. Synthetic Transient Crosslinks Program the Mechanics of Soft, Biopolymer-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706092. [PMID: 29446165 PMCID: PMC5878933 DOI: 10.1002/adma.201706092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/20/2017] [Indexed: 05/21/2023]
Abstract
Actin networks are adaptive materials enabling dynamic and static functions of living cells. A central element for tuning their underlying structural and mechanical properties is the ability to reversibly connect, i.e., transiently crosslink, filaments within the networks. Natural crosslinkers, however, vary across many parameters. Therefore, systematically studying the impact of their fundamental properties like size and binding strength is unfeasible since their structural parameters cannot be independently tuned. Herein, this problem is circumvented by employing a modular strategy to construct purely synthetic actin crosslinkers from DNA and peptides. These crosslinkers mimic both intuitive and noncanonical mechanical properties of their natural counterparts. By isolating binding affinity as the primary control parameter, effects on structural and dynamic behaviors of actin networks are characterized. A concentration-dependent triphasic behavior arises from both strong and weak crosslinkers due to emergent structural polymorphism. Beyond a certain threshold, strong binding leads to a nonmonotonic elastic pulse, which is a consequence of self-destruction of the mechanical structure of the underlying network. The modular design also facilitates an orthogonal regulatory mechanism based on enzymatic cleaving. This approach can be used to guide the rational design of further biomimetic components for programmable modulation of the properties of biomaterials and cells.
Collapse
Affiliation(s)
- Jessica S Lorenz
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103, Leipzig, Germany
| | - Jörg Schnauß
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103, Leipzig, Germany
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany
| | - Martin Glaser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103, Leipzig, Germany
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany
| | - Martin Sajfutdinow
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103, Leipzig, Germany
| | - Carsten Schuldt
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103, Leipzig, Germany
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany
| | - Josef A Käs
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103, Leipzig, Germany
| |
Collapse
|
27
|
Silkworth WT, Kunes KL, Nickel GC, Phillips ML, Quinlan ME, Vizcarra CL. The neuron-specific formin Delphilin nucleates nonmuscle actin but does not enhance elongation. Mol Biol Cell 2017; 29:610-621. [PMID: 29282276 PMCID: PMC6004577 DOI: 10.1091/mbc.e17-06-0363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
The formin Delphilin binds the glutamate receptor, GluRδ2, in dendritic spines of Purkinje cells. Both proteins play a role in learning. To understand how Delphilin functions in neurons, we studied the actin assembly properties of this formin. Formins have a conserved formin homology 2 domain, which nucleates and associates with the fast-growing end of actin filaments, influencing filament growth together with the formin homology 1 (FH1) domain. The strength of nucleation and elongation varies widely across formins. Additionally, most formins have conserved domains that regulate actin assembly through an intramolecular interaction. Delphilin is distinct from other formins in several ways: its expression is limited to Purkinje cells, it lacks classical autoinhibitory domains, and its FH1 domain has minimal proline-rich sequence. We found that Delphilin is an actin nucleator that does not accelerate elongation, although it binds to the barbed end of filaments. In addition, Delphilin exhibits a preference for actin isoforms, nucleating nonmuscle actin but not muscle actin, which has not been described or systematically studied in other formins. Finally, Delphilin is the first formin studied that is not regulated by intramolecular interactions. We speculate how the activity we observe is consistent with its localization in the small dendritic spines.
Collapse
Affiliation(s)
- William T Silkworth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristina L Kunes
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Grace C Nickel
- Department of Chemistry, Barnard College, New York, NY 10027
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | | |
Collapse
|
28
|
Elam WA, Cao W, Kang H, Huehn A, Hocky GM, Prochniewicz E, Schramm AC, Negrón K, Garcia J, Bonello TT, Gunning PW, Thomas DD, Voth GA, Sindelar CV, De La Cruz EM. Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. J Biol Chem 2017; 292:19565-19579. [PMID: 28939776 PMCID: PMC5712599 DOI: 10.1074/jbc.m117.808378] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Many biological processes, including cell division, growth, and motility, rely on rapid remodeling of the actin cytoskeleton and on actin filament severing by the regulatory protein cofilin. Phosphorylation of vertebrate cofilin at Ser-3 regulates both actin binding and severing. Substitution of serine with aspartate at position 3 (S3D) is widely used to mimic cofilin phosphorylation in cells and in vitro The S3D substitution weakens cofilin binding to filaments, and it is presumed that subsequent reduction in cofilin occupancy inhibits filament severing, but this hypothesis has remained untested. Here, using time-resolved phosphorescence anisotropy, electron cryomicroscopy, and all-atom molecular dynamics simulations, we show that S3D cofilin indeed binds filaments with lower affinity, but also with a higher cooperativity than wild-type cofilin, and severs actin weakly across a broad range of occupancies. We found that three factors contribute to the severing deficiency of S3D cofilin. First, the high cooperativity of S3D cofilin generates fewer boundaries between bare and decorated actin segments where severing occurs preferentially. Second, S3D cofilin only weakly alters filament bending and twisting dynamics and therefore does not introduce the mechanical discontinuities required for efficient filament severing at boundaries. Third, Ser-3 modification (i.e. substitution with Asp or phosphorylation) "undocks" and repositions the cofilin N terminus away from the filament axis, which compromises S3D cofilin's ability to weaken longitudinal filament subunit interactions. Collectively, our results demonstrate that, in addition to inhibiting actin binding, Ser-3 modification favors formation of a cofilin-binding mode that is unable to sufficiently alter filament mechanical properties and promote severing.
Collapse
Affiliation(s)
- W Austin Elam
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Wenxiang Cao
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Hyeran Kang
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Andrew Huehn
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Glen M Hocky
- the Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Ewa Prochniewicz
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Anthony C Schramm
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Karina Negrón
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jean Garcia
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Teresa T Bonello
- the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Peter W Gunning
- the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - David D Thomas
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Gregory A Voth
- the Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Charles V Sindelar
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Enrique M De La Cruz
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520,
| |
Collapse
|
29
|
Kumar S, Mansson A. Covalent and non-covalent chemical engineering of actin for biotechnological applications. Biotechnol Adv 2017; 35:867-888. [PMID: 28830772 DOI: 10.1016/j.biotechadv.2017.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022]
Abstract
The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Alf Mansson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| |
Collapse
|
30
|
Kumar S, Milani G, Takatsuki H, Lana T, Persson M, Frasson C, te Kronnie G, Månsson A. Sensing protein antigen and microvesicle analytes using high-capacity biopolymer nano-carriers. Analyst 2015; 141:836-46. [PMID: 26617251 DOI: 10.1039/c5an02377g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lab-on-a-chip systems with molecular motor driven transport of analytes attached to cytoskeletal filament shuttles (actin filaments, microtubules) circumvent challenges with nanoscale liquid transport. However, the filaments have limited cargo-carrying capacity and limitations either in transportation speed (microtubules) or control over motility direction (actin). To overcome these constraints we here report incorporation of covalently attached antibodies into self-propelled actin bundles (nanocarriers) formed by cross-linking antibody conjugated actin filaments via fascin, a natural actin-bundling protein. We demonstrate high maximum antigen binding activity and propulsion by surface adsorbed myosin motors. Analyte transport capacity is tested using both protein antigens and microvesicles, a novel class of diagnostic markers. Increased incubation concentration with protein antigen in the 0.1-100 nM range (1 min) reduces the fraction of motile bundles and their velocity but maximum transportation capacity of >1 antigen per nm of bundle length is feasible. At sub-nanomolar protein analyte concentration, motility is very well preserved opening for orders of magnitude improved limit of detection using motor driven concentration on nanoscale sensors. Microvesicle-complexing to monoclonal antibodies on the nanocarriers compromises motility but nanocarrier aggregation via microvesicles shows unique potential in label-free detection with the aggregates themselves as non-toxic reporter elements.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
LeClaire LL, Fortwendel JR. Differential Support of Aspergillus fumigatus Morphogenesis by Yeast and Human Actins. PLoS One 2015; 10:e0142535. [PMID: 26555617 PMCID: PMC4640809 DOI: 10.1371/journal.pone.0142535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022] Open
Abstract
The actin cytoskeleton is highly conserved among eukaryotes and is essential for cellular processes regulating growth and differentiation. In fungi, filamentous actin (F-actin) orchestrates hyphal tip structure and extension via organization of exocytic and endocytic processes at the hyphal tip. Although highly conserved, there are key differences among actins of fungal species as well as between mammalian and fungal actins. For example, the F-actin stabilizing molecules, phalloidin and jasplakinolide, bind to actin structures in yeast and human cells, whereas phalloidin does not bind actin structures of Aspergillus. These discrepancies suggest structural differences between Aspergillus actin filaments and those of human and yeast cells. Additionally, fungal actin kinetics are much faster than those of humans, displaying 5-fold faster nucleation and 40-fold faster nucleotide exchange rates. Limited published studies suggest that these faster actin kinetics are required for normal growth and morphogenesis of yeast cells. In the current work, we show that replacement of Aspergillus actin with yeast actin generates a morphologically normal strain, suggesting that Aspergillus actin kinetics are similar to those of yeast. In contrast to wild type A. fumigatus, F-actin in this strain binds phalloidin, and pharmacological stabilization of these actin structures with jasplakinolide inhibits germination and alters morphogenesis in a dose-dependent manner. We also show that human β-actin cannot support Aspergillus viability, even though the amino acid sequences of human and Aspergillus actins are 89.3% identical. Our findings show that minor differences in actin protein sequence account for loss of phalloidin and jasplakinolide sensitivity in Aspergillus species.
Collapse
Affiliation(s)
- Lawrence L. LeClaire
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Jarrod R. Fortwendel
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
32
|
Welch D, Lettinga MP, Ripoll M, Dogic Z, Vliegenthart GA. Trains, tails and loops of partially adsorbed semi-flexible filaments. SOFT MATTER 2015; 11:7507-7514. [PMID: 26279011 DOI: 10.1039/c5sm01457c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polymer adsorption is a fundamental problem in statistical mechanics that has direct relevance to diverse disciplines ranging from biological lubrication to stability of colloidal suspensions. We combine experiments with computer simulations to investigate depletion induced adsorption of semi-flexible polymers onto a hard-wall. Three dimensional filament configurations of partially adsorbed F-actin polymers are visualized with total internal reflection fluorescence microscopy. This information is used to determine the location of the adsorption/desorption transition and extract the statistics of trains, tails and loops of partially adsorbed filament configurations. In contrast to long flexible filaments which primarily desorb by the formation of loops, the desorption of stiff, finite-sized filaments is largely driven by fluctuating filament tails. Simulations quantitatively reproduce our experimental data and allow us to extract universal laws that explain scaling of the adsorption-desorption transition with relevant microscopic parameters. Our results demonstrate how the adhesion strength, filament stiffness, length, as well as the configurational space accessible to the desorbed filament can be used to design the characteristics of filament adsorption and thus engineer properties of composite biopolymeric materials.
Collapse
Affiliation(s)
- David Welch
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
33
|
Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat Cell Biol 2015; 17:480-9. [DOI: 10.1038/ncb3142] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
|
34
|
Abstract
Bicyclic peptides can bind with high affinity and selectivity to protein targets, making this format attractive for biotechnological and medicinal applications. The good binding properties are based to a large extent on the limited conformational flexibility of the two connected peptide rings. Bicyclic peptides with desired binding specificity can be isolated from phage display libraries that are generated by chemically cyclizing linear peptide on phage with alkylating reagents. Recently, we presented a strategy for the phage selection of bicyclic peptides based on two disulfide bridges. This approach allows the generation and screening of topologically highly diverse bicyclic peptide structures. Herein, we describe step-by-step protocols to clone and produce disulfide-cyclized bicyclic peptide libraries as well as to screen the libraries and to synthesize and characterize isolated bicyclic peptides.
Collapse
|
35
|
ten Siethoff L, Lard M, Generosi J, Andersson H, Linke H, Månsson A. Molecular motor propelled filaments reveal light-guiding in nanowire arrays for enhanced biosensing. NANO LETTERS 2014; 14:737-42. [PMID: 24367994 PMCID: PMC3924849 DOI: 10.1021/nl404032k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Indexed: 05/27/2023]
Abstract
Semiconductor nanowire arrays offer significant potential for biosensing applications with optical read-out due to their high surface area and due to the unique optical properties of one-dimensional materials. A challenge for optical read-out of analyte-binding to the nanowires is the need to efficiently collect and detect light from a three-dimensional volume. Here we show that light from fluorophores attached along several μm long vertical Al2O3 coated gallium phosphide nanowires couples into the wires, is guided along them and emitted at the tip. This enables effective collection of light emitted by fluorescent analytes located at different focal planes along the nanowire. We unequivocally demonstrate the light-guiding effect using a novel method whereby the changes in emitted fluorescence intensity are observed when fluorescent cytoskeletal filaments are propelled by molecular motors along the wires. The findings are discussed in relation to nanobiosensor developments, other nanotechnological applications, and fundamental studies of motor function.
Collapse
Affiliation(s)
- Lasse ten Siethoff
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-391 82 Kalmar, Sweden
| | - Mercy Lard
- Nanometer
Structure Consortium (nmC@LU) and Solid State Physics Lund University, SE-221 00 Lund, Sweden
| | - Johanna Generosi
- Nanometer
Structure Consortium (nmC@LU) and Solid State Physics Lund University, SE-221 00 Lund, Sweden
| | - Håkan
S. Andersson
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-391 82 Kalmar, Sweden
| | - Heiner Linke
- Nanometer
Structure Consortium (nmC@LU) and Solid State Physics Lund University, SE-221 00 Lund, Sweden
| | - Alf Månsson
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
36
|
Elam WA, Kang H, De La Cruz EM. Competitive displacement of cofilin can promote actin filament severing. Biochem Biophys Res Commun 2013; 438:728-31. [PMID: 23911787 DOI: 10.1016/j.bbrc.2013.07.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/27/2013] [Indexed: 11/30/2022]
Abstract
Cofilin is an essential actin filament severing protein that functions in the dynamic remodeling of the actin cytoskeleton. Filament severing activity is most efficient at sub-stoichiometric cofilin binding densities (i.e. <1 cofilin per actin filament subunit), and peaks when the number density of boundaries (i.e. junctions) between bare and cofilin-decorated segments is maximal. A model in which local topological and mechanical discontinuities lead to preferential fragmentation at boundaries accounts for available experimental data, including direct visualization of cofilin and actin during real-time severing events. The boundary-severing model predicts that ligands (e.g. other actin-binding proteins) that compete with cofilin for actin filament binding and modulate cofilin occupancy on filaments will alter the bare-decorated segment boundary density, and thus, the filament severing activity of cofilin. Here, we directly test this model prediction by evaluating the effects of phalloidin and myosin, two ligands that compete with cofilin for filament binding, on the actin filament binding and severing activities of cofilin. Our experiments demonstrate that competitive displacement of cofilin lowers cofilin occupancy and promotes severing when initial cofilin occupancy is high (i.e. >50%). Even in the presence of competitive ligands, maximum severing activity occurs when cofilin-decorated boundary density is highest, consistent with preferential fragmentation at boundaries. We propose a general "severodyne" framework for the modulation of cofilin-mediated actin filament severing by small molecule or actin-binding protein ligands that compete with cofilin for actin filament binding.
Collapse
Affiliation(s)
- W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
37
|
Elam WA, Kang H, De la Cruz EM. Biophysics of actin filament severing by cofilin. FEBS Lett 2013; 587:1215-9. [PMID: 23395798 DOI: 10.1016/j.febslet.2013.01.062] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/16/2022]
Abstract
The continuous assembly and disassembly of actin filament networks is vital for cellular processes including division, growth, and motility. Network remodeling is facilitated by cofilins, a family of essential regulatory proteins that fragment actin filaments. Cofilin induces net structural changes in filaments that render them more compliant in bending and twisting. A model in which local stress accumulation at mechanical discontinuities, such as boundaries of bare and cofilin-decorated filament segments, accounts for the cofilin concentration dependence of severing, including maximal activity at sub-stoichiometric binding densities. Real-time imaging of cofilin-mediated filament severing supports the boundary-fracture model. The severing model predicts that fragmentation is promoted by factors modulating filament mechanics (e.g. tethering, cross-linking, or deformation), possibly explaining enhanced in vivo severing activities.
Collapse
Affiliation(s)
- W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
38
|
Van Goor D, Hyland C, Schaefer AW, Forscher P. The role of actin turnover in retrograde actin network flow in neuronal growth cones. PLoS One 2012; 7:e30959. [PMID: 22359556 PMCID: PMC3281045 DOI: 10.1371/journal.pone.0030959] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022] Open
Abstract
The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.
Collapse
Affiliation(s)
- David Van Goor
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Callen Hyland
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Andrew W. Schaefer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Paul Forscher
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
39
|
Bradley MJ, De La Cruz EM. Analyzing ATP utilization by DEAD-Box RNA helicases using kinetic and equilibrium methods. Methods Enzymol 2012; 511:29-63. [PMID: 22713314 PMCID: PMC7768905 DOI: 10.1016/b978-0-12-396546-2.00002-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DEAD-box proteins (DBPs) couple ATP utilization to conformational rearrangement of RNA. In this chapter, we outline a combination of equilibrium and kinetic methods that have been developed and applied to the analysis of ATP utilization and linked RNA remodeling by DBPs, specifically Escherichia coli DbpA and Saccharomyces cerevisiae Mss116. Several important considerations are covered, including solution conditions, DBP assembly/aggregation, and RNA substrate properties. We discuss practical experimental methods for determination of DBP-RNA-nucleotide binding affinities and stoichiometries, steady-state ATPase activity, ATP binding, hydrolysis and product release rate constants, and RNA unwinding. We present general methods to integrate and analyze this combination of experimental data to identify the preferred kinetic pathway of ATP utilization and linked dsRNA unwinding.
Collapse
Affiliation(s)
- Michael J Bradley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
40
|
McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL, Henn A, Cao W, Suarez C, Martiel JL, Blanchoin L, Reisler E, De La Cruz EM. Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 2011; 101:151-9. [PMID: 21723825 DOI: 10.1016/j.bpj.2011.05.049] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022] Open
Abstract
The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials.
Collapse
Affiliation(s)
- Brannon R McCullough
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schmitz S, Schaap IAT, Kleinjung J, Harder S, Grainger M, Calder L, Rosenthal PB, Holder AA, Veigel C. Malaria parasite actin polymerization and filament structure. J Biol Chem 2010; 285:36577-85. [PMID: 20826799 PMCID: PMC2978586 DOI: 10.1074/jbc.m110.142638] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 09/02/2010] [Indexed: 11/06/2022] Open
Abstract
A novel form of acto-myosin regulation has been proposed in which polymerization of new actin filaments regulates motility of parasites of the apicomplexan class of protozoa. In vivo and in vitro parasite F-actin is very short and unstable, but the structural basis and details of filament dynamics remain unknown. Here, we show that long actin filaments can be obtained by polymerizing unlabeled rabbit skeletal actin (RS-actin) onto both ends of the short rhodamine-phalloidin-stabilized Plasmodium falciparum actin I (Pf-actin) filaments. Following annealing, hybrid filaments of micron length and "zebra-striped" appearance are observed by fluorescence microscopy that are stable enough to move over myosin class II motors in a gliding filament assay. Using negative stain electron microscopy we find that pure Pf-actin stabilized by jasplakinolide (JAS) also forms long filaments, indistinguishable in length from RS-actin filaments, and long enough to be characterized structurally. To compare structures in near physiological conditions in aqueous solution we imaged Pf-actin and RS-actin filaments by atomic force microscopy (AFM). We found the monomer stacking to be distinctly different for Pf-actin compared with RS-actin, such that the pitch of the double helix of Pf-actin filaments was 10% larger. Our results can be explained by a rotational angle between subunits that is larger in the parasite compared with RS-actin. Modeling of the AFM data using high-resolution actin filament models supports our interpretation of the data. The structural differences reported here may be a consequence of weaker inter- and intra-strand contacts, and may be critical for differences in filament dynamics and for regulation of parasite motility.
Collapse
Affiliation(s)
| | | | | | - Simone Harder
- From the Division of Physical Biochemistry
- the Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Munira Grainger
- the Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | - Anthony A. Holder
- the Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | |
Collapse
|
42
|
Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 2010; 67:609-29. [PMID: 20672362 PMCID: PMC3038201 DOI: 10.1002/cm.20473] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/15/2010] [Indexed: 12/30/2022]
Abstract
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | |
Collapse
|
43
|
Stokasimov E, Rubenstein PA. Actin isoform-specific conformational differences observed with hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 2009; 284:25421-30. [PMID: 19605362 DOI: 10.1074/jbc.m109.013078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin can exist in multiple conformations necessary for normal function. Actin isoforms, although highly conserved in sequence, exhibit different biochemical properties and cellular roles. We used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry to analyze conformational differences between Saccharomyces cerevisiae and muscle actins in the G and F forms to gain insight into these differences. We also utilized HD exchange to study interdomain and allosteric communication in yeast-muscle hybrid actins to better understand the conformational dynamics of actin. Areas showing differences in HD exchange between G- and F-actins are areas of intermonomer contacts, consistent with the current filament models. Our results showed greater exchange for yeast G-actin compared with muscle actin in the barbed end pivot region and areas in subdomains 1 and 2 and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared with muscle actin. For hybrid G-actins, the muscle-like and yeastlike parts of the molecule generally showed exchange characteristics resembling their parent actins. A few exceptions were a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3 with muscle actin-like exchange characteristics although the areas were yeastlike. These results demonstrate that there is cross-talk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared with both yeast and muscle actins are consistent with mismatched yeast-muscle interfaces resulting in decreased stability of the hybrid filament contacts.
Collapse
Affiliation(s)
- Ema Stokasimov
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
44
|
Kinetic analysis of the guanine nucleotide exchange activity of TRAPP, a multimeric Ypt1p exchange factor. J Mol Biol 2009; 389:275-88. [PMID: 19361519 DOI: 10.1016/j.jmb.2009.03.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/24/2009] [Accepted: 03/30/2009] [Indexed: 11/22/2022]
Abstract
TRAPP complexes, which are large multimeric assemblies that function in membrane traffic, are guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1p. Here we measured rate and equilibrium constants that define the interaction of Ypt1p with guanine nucleotide (guanosine 5'-diphosphate and guanosine 5'-triphosphate/guanosine 5'-(beta,gamma-imido)triphosphate) and the core TRAPP subunits required for GEF activity. These parameters allowed us to identify the kinetic and thermodynamic bases by which TRAPP catalyzes nucleotide exchange from Ypt1p. Nucleotide dissociation from Ypt1p is slow (approximately 10(-4) s(-1)) and accelerated >1000-fold by TRAPP. Acceleration of nucleotide exchange by TRAPP occurs via a predominantly Mg(2+)-independent pathway. Thermodynamic linkage analysis indicates that TRAPP weakens nucleotide affinity by <80-fold and vice versa, in contrast to most other characterized GEF systems that weaken nucleotide binding affinities by 4-6 orders of magnitude. The overall net changes in nucleotide binding affinities are small because TRAPP accelerates both nucleotide binding and dissociation from Ypt1p. Weak thermodynamic coupling allows TRAPP, Ypt1p, and nucleotide to exist as a stable ternary complex, analogous to strain-sensing cytoskeleton motors. These results illustrate a novel strategy of guanine nucleotide exchange by TRAPP that is particularly suited for a multifunctional GEF involved in membrane traffic.
Collapse
|
45
|
Schaefer AW, Schoonderwoert VTG, Ji L, Mederios N, Danuser G, Forscher P. Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 2008; 15:146-62. [PMID: 18606148 DOI: 10.1016/j.devcel.2008.05.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 01/16/2008] [Accepted: 05/05/2008] [Indexed: 01/07/2023]
Abstract
Although much evidence suggests that axon growth and guidance depend on well-coordinated cytoskeletal dynamics, direct characterization of the corresponding molecular events has remained a challenge. Here, we address this outstanding problem by examining neurite outgrowth stimulated by local application of cell adhesion substrates. During acute outgrowth, the advance of organelles and underlying microtubules was correlated with regions of attenuated retrograde actin network flow in the periphery. Interestingly, as adhesion sites matured, contractile actin arc structures, known to be regulated by the Rho/Rho Kinase/myosin II signaling cascade, became more robust and coordinated microtubule movements in the growth cone neck. When Rho Kinase was inhibited, although growth responses occurred with less of a delay, microtubules failed to consolidate into a single axis of growth. These results reveal a role for Rho Kinase and myosin II contractility in regulation of microtubule behavior during neuronal growth.
Collapse
Affiliation(s)
- Andrew W Schaefer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | |
Collapse
|
46
|
Mahaffy RE, Pollard TD. Influence of phalloidin on the formation of actin filament branches by Arp2/3 complex. Biochemistry 2008; 47:6460-7. [PMID: 18489122 DOI: 10.1021/bi702484h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic peptide phalloidin binds and stabilizes actin filaments. It is widely used in studies of actin filament assembly, including analysis of branch formation by Arp2/3 complex, but its influence on the branching reaction has not been considered. Here we show that rhodamine-phalloidin binds both Arp2/3 complex and the VCA domain of Arp2/3 complex activator, hWASp, with dissociation equilibrium constants of about 100 nM. Not only does phalloidin promote nucleation of pure actin monomers but it also dramatically stimulates branch formation by actin, Arp2/3 complex, and hWASp-VCA more than 10-fold and inhibits dissociation of branches. Therefore, the appearance of more branches in samples treated with rhodamine-phalloidin arises from multiple influences of the peptide on both the formation and dissociation of branches.
Collapse
Affiliation(s)
- Rachel E Mahaffy
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
47
|
Beltzner CC, Pollard TD. Pathway of actin filament branch formation by Arp2/3 complex. J Biol Chem 2007; 283:7135-44. [PMID: 18165685 DOI: 10.1074/jbc.m705894200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A spectroscopic assay using pyrene-labeled fission yeast Arp2/3 complex revealed that the complex binds to and dissociates from actin filaments extremely slowly with or without the nucleation-promoting factor fission yeast Wsp1-VCA. Wsp1-VCA binds both Arp2/3 complex and actin monomers with high affinity. These two ligands have only modest impacts on the interaction of the other ligand with VCA. Simulations of a mathematical model based on the kinetic parameters determined in this study and elsewhere account for the full time course of actin polymerization in the presence of Arp2/3 complex and Wsp1-VCA and show that an activation step, postulated to follow binding of a ternary complex of Arp2/3 complex, a bound nucleation-promoting factor, and an actin monomer to an actin filament, has a rate constant at least 0.15 s(-1). Kinetic parameters determined in this study constrain the process of actin filament branch formation during cellular motility to one main pathway.
Collapse
Affiliation(s)
- Christopher C Beltzner
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
48
|
Reisler E, Egelman EH. Actin Structure and Function: What We Still Do Not Understand. J Biol Chem 2007; 282:36133-7. [DOI: 10.1074/jbc.r700030200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Nolen BJ, Pollard TD. Insights into the influence of nucleotides on actin family proteins from seven structures of Arp2/3 complex. Mol Cell 2007; 26:449-57. [PMID: 17499050 PMCID: PMC1997283 DOI: 10.1016/j.molcel.2007.04.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/30/2007] [Accepted: 04/24/2007] [Indexed: 11/15/2022]
Abstract
ATP is required for nucleation of actin filament branches by Arp2/3 complex, but the influence of ATP binding and hydrolysis are poorly understood. We determined crystal structures of bovine Arp2/3 complex cocrystallized with various bound adenine nucleotides and cations. Nucleotide binding favors closure of the nucleotide-binding cleft of Arp3, but no large-scale conformational changes in the complex. Thus, ATP binding does not directly activate Arp2/3 complex but is part of a network of interactions that contribute to nucleation. We compared nucleotide-induced conformational changes of residues lining the cleft in Arp3 and actin structures to construct a movie depicting the proposed ATPase cycle for the actin family. Chemical crosslinking stabilized subdomain 1 of Arp2, revealing new electron density for 69 residues in this subdomain. Steric clashes with Arp3 appear to be responsible for intrinsic disorder of subdomains 1 and 2 of Arp2 in inactive Arp2/3 complex.
Collapse
Affiliation(s)
- Brad J Nolen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
50
|
Takaine M, Mabuchi I. Properties of actin from the fission yeast Schizosaccharomyces pombe and interaction with fission yeast profilin. J Biol Chem 2007; 282:21683-94. [PMID: 17533155 DOI: 10.1074/jbc.m611371200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe serves as a model system for studying role of actin cytoskeleton, since it has simple actin cytoskeletons and is genetically tractable. In contrast, biochemical approaches using this organism are still developing; fission yeast actin has so far not been isolated in its native form and characterized, and therefore, biochemical assays of fission yeast actin-binding proteins (ABPs) or myosin have been performed using rabbit skeletal muscle actin that may interact with the fission yeast ABPs in a manner different from fission yeast actin. Here, we report a novel method for isolating functionally active actin from fission yeast cells. The highly purified fission yeast actin polymerized with kinetics somewhat different from those of muscle actin and forms filaments that are structurally indistinguishable from skeletal muscle actin filaments. The fission yeast actin was a significantly weaker activator of Mg(2+)-ATPase of HMM of skeletal muscle myosin than muscle actin. The fission yeast profilin Cdc3 suppressed polymerization of fission yeast actin more effectively than that of muscle actin and showed an affinity for fission yeast actin higher than for muscle actin. The establishment of purification of fission yeast actin will enable reconstruction of physiologically relevant interactions between the actin and fission yeast ABPs or myosins and contribute to clarification of function of actin cytoskeleton in various cellular activities.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | |
Collapse
|