1
|
Sultana T, Zheng C, Morton G, Megraw TL. Zika virus NS3 drives the assembly of a viroplasm-like structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613201. [PMID: 39345390 PMCID: PMC11429906 DOI: 10.1101/2024.09.16.613201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused an epidemic in 2015-2016 in the Americas and raised serious global health concerns due to its association with congenital brain developmental defects in infected pregnancies. Upon infection, ZIKV assembles virus particles in a virus-generated toroidal compartment next to the nucleus called the replication factory, or viroplasm, which forms by remodeling the host cell endoplasmic reticulum (ER). How the viral proteins control viroplasm assembly remains unknown. Here we show that the ZIKV non-structural protein 3 (NS3) is sufficient to drive the assembly of a viroplasm-like structure (VLS) in human cells. NS3 encodes a dual-function protease and RNA helicase. The VLS is similar to the ZIKV viroplasm in its assembly near centrosomes at the nuclear periphery, its deformation of the nuclear membrane, its recruitment of ER, Golgi, and dsRNA, and its association with microtubules at its surface. While sufficient to generate a VLS, NS3 is less efficient in several aspects compared to viroplasm formation upon ZIKV infection. We further show that the helicase domain and not the protease domain is required for optimal VLS assembly and dsRNA recruitment. Overall, this work advances our understanding of the mechanism of viroplasm assembly by ZIKV and likely will extend to other flaviviruses.
Collapse
Affiliation(s)
- Tania Sultana
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Chunfeng Zheng
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Garret Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Timothy L. Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
2
|
Kotsaris G, Kerselidou D, Koutsoubaris D, Constantinou E, Malamas G, Garyfallos DA, Ηatzivassiliou EG. TRAF3 can interact with GMEB1 and modulate its anti-apoptotic function. ACTA ACUST UNITED AC 2020; 27:7. [PMID: 32514408 PMCID: PMC7257233 DOI: 10.1186/s40709-020-00117-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/16/2020] [Indexed: 11/17/2022]
Abstract
Background Members of Tumor Necrosis Factor (TNF) Receptor-Associated Factors (TRAFs) family interact with the cytoplasmic tails of TNF receptor family members to mediate signal transduction processes. TRAF3 has a major immunomodulatory function and TRAF3 deficiency has been linked to malignancies, such as multiple myeloma and lymphoid defects. In order to characterize the molecular mechanisms of TRAF3 signaling, the yeast two-hybrid system was used to identify proteins that interact with TRAF3. Results The yeast two-hybrid screen of a human B cell cDNA library with TRAF3 as bait, identified Glucocorticoid Modulatory Element-Binding Protein 1 (GMEB1) as a TRAF3-interacting protein. Previous studies indicated that GMEB1 functions as a potent inhibitor of caspase activation and apoptosis. The interaction of TRAF3 and GMEB1 proteins was confirmed in mammalian cells lines, using immunoprecipitation assays. The RING and TRAF-C domains of TRAF3 were not essential for this interaction. The overexpression of TRAF3 protein enhanced the anti-apoptotic function of GMEB1 in HeLa cells. On the other hand, downregulation of TRAF3 by RNA interference decreased significantly the ability of GMEB1 to inhibit apoptosis. In addition, LMP1(1–231), a truncated form of the EBV oncoprotein LMP1, that can interact and oligomerize with TRAF3, was also able to cooperate with GMEB1, in order to inhibit apoptosis. Conclusions Our protein-interaction experiments demonstrated that TRAF3 can interact with GMEB1, which is an inhibitor of apoptosis. In addition, cell viability assays showed that overexpression of TRAF3 enhanced the anti-apoptotic activity of GMEB1, supporting a regulatory role of TRAF3 in GMEB1-mediated inhibition of apoptosis. Better understanding of the molecular mechanism of TRAF3 function will improve diagnostics and targeted therapeutic approaches for TRAF3-associated disorders.
Collapse
Affiliation(s)
- George Kotsaris
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Macedonia Greece.,Present Address: Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Despoina Kerselidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Macedonia Greece.,Present Address: Université de Liège, Place du 20-Août, 7 B, 4000 Liège, Belgium
| | - Dimitrios Koutsoubaris
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Macedonia Greece
| | - Elena Constantinou
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Macedonia Greece
| | - George Malamas
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Macedonia Greece
| | - Dimitrios A Garyfallos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Macedonia Greece.,Present Address: Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - Eudoxia G Ηatzivassiliou
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Macedonia Greece
| |
Collapse
|
3
|
Riedl W, Acharya D, Lee JH, Liu G, Serman T, Chiang C, Chan YK, Diamond MS, Gack MU. Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host Microbe 2019; 26:493-503.e6. [PMID: 31600501 PMCID: PMC6922055 DOI: 10.1016/j.chom.2019.09.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
14-3-3 protein family members facilitate the translocation of RIG-I-like receptors (RLRs) to organelles that mediate downstream RLR signaling, leading to interferon production. 14-3-3ϵ promotes the cytosolic-to-mitochondrial translocation of RIG-I, while 14-3-3η facilitates MDA5 translocation to mitochondria. We show that the NS3 protein of Zika virus (ZIKV) antagonizes antiviral gene induction by RIG-I and MDA5 by binding to and sequestering the scaffold proteins 14-3-3ϵ and 14-3-3η. 14-3-3-binding is mediated by a negatively charged RLDP motif in NS3 that is conserved in ZIKV strains of African and Asian lineages and is similar to the one found in dengue and West Nile viruses. ZIKV NS3 is sufficient to inhibit the RLR-14-3-3ϵ/η interaction and to suppress antiviral signaling. Mutational perturbation of 14-3-3ϵ/η binding in a recombinant ZIKV leads to enhanced innate immune responses and impaired growth kinetics. Our study provides molecular understanding of immune evasion functions of ZIKV, which may guide vaccine and anti-flaviviral therapy development.
Collapse
Affiliation(s)
- William Riedl
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhiraj Acharya
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jung-Hyun Lee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Guanqun Liu
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Taryn Serman
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Ying Kai Chan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Hadweh P, Chaitoglou I, Gravato-Nobre MJ, Ligoxygakis P, Mosialos G, Hatzivassiliou E. Functional analysis of the C. elegans cyld-1 gene reveals extensive similarity with its human homolog. PLoS One 2018; 13:e0191864. [PMID: 29394249 PMCID: PMC5796713 DOI: 10.1371/journal.pone.0191864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/13/2018] [Indexed: 12/16/2022] Open
Abstract
The human cylindromatosis tumor suppressor (HsCyld) has attracted extensive attention due to its association with the development of multiple types of cancer. HsCyld encodes a deubiquitinating enzyme (HsCYLD) with a broad range of functions that include the regulation of several cell growth, differentiation and death pathways. HsCyld is an evolutionarily conserved gene. Homologs of HsCyld have been identified in simple model organisms such as Drosophila melanogaster and Caenorhabditis elegans (C. elegans) which offer extensive possibilities for functional analyses. In the present report we have investigated and compared the functional properties of HsCYLD and its C. elegans homolog (CeCYLD). As expected from the mammalian CYLD expression pattern, the CeCyld promoter is active in multiple tissues with certain gastrointestinal epithelia and neuronal cells showing the most prominent activity. CeCYLD is a functional deubiquitinating enzyme with similar specificity to HsCYLD towards K63- and M1-linked polyubiquiting chains. CeCYLD was capable of suppressing the TRAF2-mediated activation of NF-kappaB and AP1 similarly to HsCYLD. Finally, CeCYLD could suppress the induction of TNF-dependent gene expression in mammalian cells similarly to HsCYLD. Our results demonstrate extensively overlapping functions between the HsCYLD and CeCYLD, which establish the C. elegans protein as a valuable model for the elucidation of the complex activity of the human tumor suppressor protein.
Collapse
Affiliation(s)
- Paul Hadweh
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Iro Chaitoglou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford,South Parks Road, Oxford, United Kingdom
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eudoxia Hatzivassiliou
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
5
|
Chiang JJ, Sparrer KMJ, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner KP, Gack MU. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol 2018; 19:53-62. [PMID: 29180807 PMCID: PMC5815369 DOI: 10.1038/s41590-017-0005-y] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
The sensor RIG-I detects double-stranded RNA derived from RNA viruses. Although RIG-I is also known to have a role in the antiviral response to DNA viruses, physiological RNA species recognized by RIG-I during infection with a DNA virus are largely unknown. Using next-generation RNA sequencing (RNAseq), we found that host-derived RNAs, most prominently 5S ribosomal RNA pseudogene 141 (RNA5SP141), bound to RIG-I during infection with herpes simplex virus 1 (HSV-1). Infection with HSV-1 induced relocalization of RNA5SP141 from the nucleus to the cytoplasm, and virus-induced shutoff of host protein synthesis downregulated the abundance of RNA5SP141-interacting proteins, which allowed RNA5SP141 to bind RIG-I and induce the expression of type I interferons. Silencing of RNA5SP141 strongly dampened the antiviral response to HSV-1 and the related virus Epstein-Barr virus (EBV), as well as influenza A virus (IAV). Our findings reveal that antiviral immunity can be triggered by host RNAs that are unshielded following depletion of their respective binding proteins by the virus.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chlorocebus aethiops
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Gene Expression/immunology
- HEK293 Cells
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity/immunology
- Interferon Type I/genetics
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Mice, Knockout
- Pseudogenes/genetics
- RNA Transport/immunology
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/immunology
- RNA, Ribosomal, 5S/metabolism
- Receptors, Immunologic
- Vero Cells
Collapse
Affiliation(s)
- Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | | | - Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Charlotte Lässig
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Teng Huang
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Activation of peroxisome proliferator-activated receptor gamma in mammary epithelial cells upregulates the expression of tumor suppressor Cyld to mediate growth inhibition and anti-inflammatory effects. Int J Biochem Cell Biol 2017; 82:49-56. [DOI: 10.1016/j.biocel.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
|
7
|
Chan YK, Gack MU. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat Immunol 2016; 17:523-30. [PMID: 26998762 PMCID: PMC4837045 DOI: 10.1038/ni.3393] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
14-3-3 proteins regulate biological processes by binding to phosphorylated serine or phosphorylated threonine motifs of cellular proteins. Among the 14-3-3 proteins, 14-3-3ɛ serves a crucial function in antiviral immunity by mediating the cytosol-to-mitochondrial membrane translocation of the pathogen sensor RIG-I. Here we found that the NS3 protein of dengue virus (DV) bound to 14-3-3ɛ and prevented translocation of RIG-I to the adaptor MAVS and thereby blocked antiviral signaling. Intriguingly, a highly conserved phosphomimetic RxEP motif in NS3 was essential for the binding of 14-3-3ɛ. A recombinant mutant DV deficient in binding to 14-3-3ɛ showed impairment in antagonism of RIG-I and elicited a markedly augmented innate immune response and enhanced T cell activation. Our work reveals a novel phosphomimetic-based mechanism for viral antagonism of 14-3-3-mediated immunity, which might guide the rational design of therapeutics.
Collapse
Affiliation(s)
- Ying Kai Chan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michaela U. Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Ohashi M, Holthaus AM, Calderwood MA, Lai CY, Krastins B, Sarracino D, Johannsen E. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog 2015; 11:e1004822. [PMID: 25855980 PMCID: PMC4391933 DOI: 10.1371/journal.ppat.1004822] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear proteins EBNA3A, EBNA3B, and EBNA3C interact with the cell DNA binding protein RBPJ and regulate cell and viral genes. Repression of the CDKN2A tumor suppressor gene products p16INK4A and p14ARF by EBNA3A and EBNA3C is critical for EBV mediated transformation of resting B lymphocytes into immortalized lymphoblastoid cell lines (LCLs). To define the composition of endogenous EBNA3 protein complexes, we generated lymphoblastoid cell lines (LCLs) expressing flag-HA tagged EBNA3A, EBNA3B, or EBNA3C and used tandem affinity purification to isolate each EBNA3 complex. Our results demonstrated that each EBNA3 protein forms a distinct complex with RBPJ. Mass-spectrometry revealed that the EBNA3A and EBNA3B complexes also contained the deubquitylation complex consisting of WDR48, WDR20, and USP46 (or its paralog USP12) and that EBNA3C complexes contained WDR48. Immunoprecipitation confirmed that EBNA3A, EBNA3B, and EBNA3C association with the USP46 complex. Using chromatin immunoprecipitation, we demonstrate that WDR48 and USP46 are recruited to the p14ARF promoter in an EBNA3C dependent manner. Mapping studies were consistent with WDR48 being the primary mediator of EBNA3 association with the DUB complex. By ChIP assay, WDR48 was recruited to the p14ARF promoter in an EBNA3C dependent manner. Importantly, WDR48 associated with EBNA3A and EBNA3C domains that are critical for LCL growth, suggesting a role for USP46/USP12 in EBV induced growth transformation. Epstein-Barr virus (EBV) is a gammaherpesvirus implicated in the pathogenesis of multiple malignancies, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma, and gastric carcinoma. EBV infection of resting B-lymphocytes drives them to proliferate as lymphoblastoid cell lines (LCLs), an in vitro model of PTLD. LCLs express a limited EBV gene repertoire, including six nuclear proteins (EBNA1, 2, 3A, 3B, 3C, and LP), three integral membrane proteins (LMP1, 2A, and 2B), and more than 30 micro RNAs. EBNA2 and the EBNA3 proteins are transcription factors that regulate viral and cell gene expression through the cell DNA binding protein RBPJ. In this study, we established LCLs transformed by recombinant EBV genomes in which a Flag-HA epitope tag is fused in-frame to the C-terminus of EBNA3A, EBNA3B or EBNA3C. Using these LCLs, we purified endogenous EBNA3 complexes and identified the USP46 deubiquitinating enzyme (DUB) and its associated chaperones WDR48 and WDR20 as EBNA3 binding proteins. We find that EBNA3s interact primarily with the WDR48 protein and that loss of WDR48 interaction with EBNA3A or EBNA3C impairs LCL growth. This study represents the first characterization of EBNA3 complexes from LCLs and implicates the USP46 DUB complex in EBNA3 mediated gene regulation.
Collapse
Affiliation(s)
- Makoto Ohashi
- Departments of Medicine and Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin, Madison, Wisconsin, United States of America
| | - Amy M. Holthaus
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael A. Calderwood
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chiou-Yan Lai
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan Krastins
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts, United States of America
| | - David Sarracino
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts, United States of America
| | - Eric Johannsen
- Departments of Medicine and Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hadweh P, Habelhah H, Kieff E, Mosialos G, Hatzivassiliou E. The PP4R1 subunit of protein phosphatase PP4 targets TRAF2 and TRAF6 to mediate inhibition of NF-κB activation. Cell Signal 2014; 26:2730-7. [PMID: 25134449 DOI: 10.1016/j.cellsig.2014.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 12/01/2022]
Abstract
TRAFs constitute a family of proteins that have been implicated in signal transduction by immunomodulatory cellular receptors and viral proteins. TRAF2 and TRAF6 have an E3-ubiquitin ligase activity, which is dependent on the integrity of their RING finger domain and it has been associated with their ability to activate the NF-κB and AP1 signaling pathways. A yeast two-hybrid screen with TRAF2 as bait, identified the regulatory subunit PP4R1 of protein phosphatase PP4 as a TRAF2-interacting protein. The interaction of TRAF2 with PP4R1 depended on the integrity of the RING finger domain of TRAF2. PP4R1 could interact also with the TRAF2-related factor TRAF6 in a RING domain-dependent manner. Exogenous expression of PP4R1 inhibited NF-κB activation by TRAF2, TRAF6, TNF and the Epstein-Barr virus oncoprotein LMP1. In addition, expression of PP4R1 downregulated IL8 induction by LMP1, whereas downregulation of PP4R1 by RNA interference enhanced the induction of IL8 by LMP1 and TNF. PP4R1 could mediate the dephosphorylation of TRAF2 Ser11, which has been previously implicated in TRAF2-mediated activation of NF-κB. Finally, PP4R1 could inhibit TRAF6 polyubiquitination, suggesting an interference with the E3 ubiquitin ligase activity of TRAF6. Taken together, our data identify a novel mechanism of NF-κB pathway inhibition which is mediated by PP4R1-dependent targeting of specific TRAF molecules.
Collapse
Affiliation(s)
- Paul Hadweh
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Hasem Habelhah
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Elliott Kieff
- Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece.
| | - Eudoxia Hatzivassiliou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece.
| |
Collapse
|
10
|
Duarte M, Wang L, Calderwood MA, Adelmant G, Ohashi M, Roecklein-Canfield J, Marto JA, Hill DE, Deng H, Johannsen E. An RS motif within the Epstein-Barr virus BLRF2 tegument protein is phosphorylated by SRPK2 and is important for viral replication. PLoS One 2013; 8:e53512. [PMID: 23326445 PMCID: PMC3541133 DOI: 10.1371/journal.pone.0053512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/29/2012] [Indexed: 01/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gammaherpesvirus that causes infectious mononucleosis, B cell lymphomas, and nasopharyngeal carcinoma. Many of the genes required for EBV virion morphogenesis are found in all herpesviruses, but some are specific to gammaherpesviruses. One of these gamma-specific genes, BLRF2, encodes a tegument protein that has been shown to be essential for replication in other gammaherpesviruses. In this study, we identify BLRF2 interacting proteins using binary and co-complex protein assays. Serine/Arginine-rich Protein Kinase 2 (SRPK2) was identified by both assays and was further shown to phosphorylate an RS motif in the BLRF2 C-terminus. Mutation of this RS motif (S148A+S150A) abrogated the ability of BLRF2 to support replication of a murine gammaherpesvirus 68 genome lacking the BLRF2 homolog (ORF52). We conclude that the BLRF2 RS motif is phosphorylated by SRPK2 and is important for viral replication.
Collapse
Affiliation(s)
- Melissa Duarte
- The Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chantzoura E, Prinarakis E, Panagopoulos D, Mosialos G, Spyrou G. Glutaredoxin-1 regulates TRAF6 activation and the IL-1 receptor/TLR4 signalling. Biochem Biophys Res Commun 2010; 403:335-9. [PMID: 21078302 DOI: 10.1016/j.bbrc.2010.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 12/24/2022]
Abstract
Glutaredoxin-1 (GRX-1) is a cytoplasmic enzyme that highly contributes to the antioxidant defense system. It catalyzes the reversible reduction of glutathione-protein mixed disulfides, a process called deglutathionylation. Here, we investigated the role of GRX-1 in the pathway triggered by interleukin-1/Toll-like receptor 4 (IL-1R/TLR4) by using RNA interference (RNAi) in HEK293 and HeLa cells. TNF receptor-associated factor 6 (TRAF6) is an intermediate signalling molecule involved in the signal transduction by members of the interleukin-1/Toll-like receptor (IL-1R/TLR) family. TRAF6 has an E3 ubiquitin ligase activity which depends on the integrity of an amino-terminal really interesting new gene (RING) finger motif. Upon receptor activation, TRAF6 undergoes K63-linked auto-polyubiquitination which mediates protein-protein interactions and signal propagation. Our data showed that IL-1R and TLR4-mediated NF-κB induction was severely reduced in GRX-1 knockdown cells. We found that the RING-finger motif of TRAF6 is S-glutathionylated under normal conditions. Moreover, upon IL-1 stimulation TRAF6 undergoes deglutathionylation catalyzed by GRX-1. The deglutathionylation of TRAF6 is essential for its auto-polyubiquitination and subsequent activation. Taken together, our findings reveal another signalling molecule affected by S-glutathionylation and uncover a crucial role for GRX-1 in the TRAF6-dependent activation of NF-κB by IL-1R/TLRs.
Collapse
Affiliation(s)
- Eleni Chantzoura
- Center of Basic Research I, Biochemistry Division, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | | | | | | | | |
Collapse
|
12
|
dDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling. Curr Biol 2010; 20:1799-808. [PMID: 20888228 DOI: 10.1016/j.cub.2010.08.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/30/2010] [Accepted: 08/25/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mammalian DOR was discovered as a gene whose expression is misregulated in muscle of Zucker diabetic rats. Because no DOR loss-of-function mammalian models are available, we analyze here the in vivo function of DOR by studying flies mutant for Drosophila DOR (dDOR). RESULTS We show that dDOR is a novel coactivator of ecdysone receptor (EcR) that is needed during metamorphosis. dDOR binds EcR and is required for maximal EcR transcriptional activity. In the absence of dDOR, flies display a number of ecdysone loss-of-function phenotypes such as impaired spiracle eversion, impaired salivary gland degradation, and pupal lethality. Furthermore, dDOR knockout flies are lean. We find that dDOR expression is inhibited by insulin signaling via FOXO. CONCLUSION This work uncovers dDOR as a novel EcR coactivator. It also establishes a mutual antagonistic relationship between ecdysone and insulin signaling in the fly fat body. Furthermore, because ecdysone signaling inhibits insulin signaling in the fat body, this also uncovers a feed-forward mechanism whereby ecdysone potentiates its own signaling via dDOR.
Collapse
|
13
|
Abstract
A bioinformatic analysis identified two putative NF-kappaB binding sites in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) promoter. The ability of p65RelA to interact with the LMP1 promoter was shown by in vitro and in vivo assays. Using an EBV-transformed lymphoblastoid cell line as a reporter system for the activity of the +40/-328 LMP1 promoter region, the functional importance of NF-kappaB and other transcription factor binding sites was demonstrated. p65RelA could also induce LMP1 expression from the EBV genome in Daudi and P3HR1 Burkitt's lymphoma cell lines. Finally, it was shown that p65RelA could cooperate with EBNA2 or the aryl hydrocarbon receptor in the transactivation of the LMP1 promoter. Our study established the importance of NF-kappaB and several cis-acting elements in the regulation of the LMP1 promoter in a latency III environment and highlighted a complex interplay between NF-kappaB and other transcription factors in this process.
Collapse
|
14
|
Iwema T, Billas IML, Beck Y, Bonneton F, Nierengarten H, Chaumot A, Richards G, Laudet V, Moras D. Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO J 2007; 26:3770-82. [PMID: 17673910 PMCID: PMC1952225 DOI: 10.1038/sj.emboj.7601810] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 07/02/2007] [Indexed: 11/08/2022] Open
Abstract
Retinoid X receptor (RXR) and Ultraspiracle (USP) play a central role as ubiquitous heterodimerization partners of many nuclear receptors. While it has long been accepted that a wide range of ligands can activate vertebrate/mollusc RXRs, the existence and necessity of specific endogenous ligands activating RXR-USP in vivo is still matter of intense debate. Here we report the existence of a novel type of RXR-USP with a ligand-independent functional conformation. Our studies involved Tribolium USP (TcUSP) as representative of most arthropod RXR-USPs, with high sequence homology to vertebrate/mollusc RXRs. The crystal structure of the ligand-binding domain of TcUSP was solved in the context of the functional heterodimer with the ecdysone receptor (EcR). While EcR exhibits a canonical ligand-bound conformation, USP adopts an original apo structure. Our functional data demonstrate that TcUSP is a constitutively silent partner of EcR, and that none of the RXR ligands can bind and activate TcUSP. These findings together with a phylogenetic analysis suggest that RXR-USPs have undergone remarkable functional shifts during evolution and give insight into receptor-ligand binding evolution and dynamics.
Collapse
Affiliation(s)
- Thomas Iwema
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Isabelle ML Billas
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Yannick Beck
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - François Bonneton
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
| | - Hélène Nierengarten
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Arnaud Chaumot
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
- CEMAGREF, Laboratoire d'Ecotoxicologie, Lyon Cedex, France
| | - Geoff Richards
- HFSP (Human Frontier Science Program), Strasbourg, France
| | - Vincent Laudet
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
| | - Dino Moras
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| |
Collapse
|
15
|
Hatzivassiliou EG, Tsichritzis T, Mosialos G. Induction of apoptosis by rewiring the signal transduction of Epstein-Barr virus oncoprotein LMP1 toward caspase activation. J Virol 2005; 79:5215-9. [PMID: 15795305 PMCID: PMC1069534 DOI: 10.1128/jvi.79.8.5215-5219.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus latent membrane protein 1 (LMP1) is an oncoprotein which mimics activated tumor necrosis factor receptor family members. Here we demonstrate the principle that an inducible association of the LMP1 cytoplasmic carboxyl terminus with caspase-8 by a heterodimerizing agent causes apoptosis. This process depends on the catalytic activity of caspase-8 and the ability of LMP1 to oligomerize constitutively at the plasma membrane. Our data indicate that chemical inducers of the association of the LMP1 carboxyl terminus with caspase-8 can kill LMP1-expressing cells selectively. Such compounds could be used as chemotherapeutic agents for LMP1-associated malignancies.
Collapse
Affiliation(s)
- Eudoxia G Hatzivassiliou
- Institute of Immunology, Biomedical Sciences Research Center Al. Fleming, 34 Al. Fleming St., Vari 16672, Greece
| | | | | |
Collapse
|
16
|
Komatsu T, Ballestas ME, Barbera AJ, Kelley-Clarke B, Kaye KM. KSHV LANA1 binds DNA as an oligomer and residues N-terminal to the oligomerization domain are essential for DNA binding, replication, and episome persistence. Virology 2004; 319:225-36. [PMID: 14980483 DOI: 10.1016/j.virol.2003.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 11/05/2003] [Indexed: 11/24/2022]
Abstract
Latency-associated nuclear antigen 1 (LANA1) binds to Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeat (TR) DNA to mediate episome replication and persistence. LANA1 concentrates at sites of TR DNA along mitotic chromosomes, consistent with tethering KSHV DNA to chromosomes for efficient segregation of episomes to progeny nuclei. We now investigate LANA1 C-terminus self-association and DNA binding. The TR DNA binding domain was localized to LANA1 residues 996-1139. Scanning deletions within this region ablated both LANA1 oligomerization and DNA binding, consistent with a requirement for oligomerization to bind DNA. Furthermore, LANA1 bound TR DNA as an oligomer. Deletion of amino acids 1007-1021, N-terminal to the LANA1 oligomerization domain, ablated DNA binding, DNA replication, and episome persistence, implicating these residues in contacting DNA. Indeed, LANA1 residues 1007-1021 correspond to EBNA1 residues that contact the cognate sequence. Like EBNA1, the LANA1 DNA-binding domain has oligomerization activity and critical residues essential for recognizing DNA.
Collapse
Affiliation(s)
- Takashi Komatsu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Hatzivassiliou E, Koukos G, Ribeiro A, Zannis V, Kardassis D. Functional specificity of two hormone response elements present on the human apoA-II promoter that bind retinoid X receptor alpha/thyroid receptor beta heterodimers for retinoids and thyroids: synergistic interactions between thyroid receptor beta and upstream stimulatory factor 2a. Biochem J 2003; 376:423-31. [PMID: 12959642 PMCID: PMC1223787 DOI: 10.1042/bj20030549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 08/05/2003] [Accepted: 09/05/2003] [Indexed: 11/17/2022]
Abstract
DNA binding and mutagenesis in vitro established that the -67/-55 region of the apoA-II (apolipoprotein A-II) promoter contains a thyroid HRE (hormone response element), which strongly binds RXRalpha (retinoid X receptor alpha)/T(3)Rbeta (thyroid receptor beta) heterodimers and weakly T(3)Rbeta homodimers, but does not bind other homo- or heterodimers of RXRalpha or orphan nuclear receptors. Transactivation was abolished by point mutations in the thyroid HRE. In co-transfection experiments of HEK-293 (human embryonic kidney 293) cells, the -911/+29 human apoA-II promoter was transactivated strongly by RXRalpha/T(3)Rbeta heterodimers in the presence of RA (9- cis retinoic acid) or T(3) (tri-iodothyronine). Homopolymeric promoters containing either three copies of the -73/-40 (element AIIAB) or four copies of the -738/-712 (element AIIJ) apoA-II promoter could be transactivated by RXRalpha/T(3)Rbeta heterodimers in COS-7 cells only in the presence of T(3) or RA respectively. RXRalpha/T(3)Rbeta heterodimers and USF2a (upstream stimulatory factor 2a) synergistically transactivated the -911/+29 apoA-II promoter in the presence of T(3). USF2a also enhanced the activity of a GAL4-T(3)Rbeta fusion protein in the presence of T(3) and suppressed the activity of a GAL4-RXRalpha fusion protein in the presence of RA. These findings suggest a functional specificity of the two HREs of the apoA-II promoter for retinoids and thyroids, which is modulated by synergistic or antagonistic interactions between RXRalpha/T(3)Rbeta heterodimers and the ubiquitous transcription factor USF2a.
Collapse
Affiliation(s)
- Eudoxia Hatzivassiliou
- Biomedical Sciences Research Center Al. Fleming, Institute of Immunology, 14-16 Al. Fleming Str., Vari GR-16672, Greece
| | | | | | | | | |
Collapse
|
18
|
Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424:793-6. [PMID: 12917689 DOI: 10.1038/nature01803] [Citation(s) in RCA: 762] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 05/14/2003] [Indexed: 12/29/2022]
Abstract
Familial cylindromatosis is an autosomal dominant predisposition to tumours of skin appendages called cylindromas. Familial cylindromatosis is caused by mutations in a gene encoding the CYLD protein of previously unknown function. Here we show that CYLD is a deubiquitinating enzyme that negatively regulates activation of the transcription factor NF-kappaB by specific tumour-necrosis factor receptors (TNFRs). Loss of the deubiquitinating activity of CYLD correlates with tumorigenesis. CYLD inhibits activation of NF-kappaB by the TNFR family members CD40, XEDAR and EDAR in a manner that depends on the deubiquitinating activity of CYLD. Downregulation of CYLD by RNA-mediated interference augments both basal and CD40-mediated activation of NF-kappaB. The inhibition of NF-kappaB activation by CYLD is mediated, at least in part, by the deubiquitination and inactivation of TNFR-associated factor 2 (TRAF2) and, to a lesser extent, TRAF6. These results indicate that CYLD is a negative regulator of the cytokine-mediated activation of NF-kappaB that is required for appropriate cellular homeostasis of skin appendages.
Collapse
Affiliation(s)
- Eirini Trompouki
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', 34 Alexander Fleming Street, Vari 16672, Greece
| | | | | | | | | | | |
Collapse
|
19
|
Cooper A, Johannsen E, Maruo S, Cahir-McFarland E, Illanes D, Davidson D, Kieff E. EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virus-transformed lymphoblast growth. J Virol 2003; 77:999-1010. [PMID: 12502816 PMCID: PMC140836 DOI: 10.1128/jvi.77.2.999-1010.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus nuclear antigen protein 3A (EBNA3A) is one of four EBNAs (EBNA-2, EBNALP, EBNA3A, and EBNA3C) through the cellular DNA sequence-specific transcription factor RBP-Jkappa/CBF-1/CSL and are essential for conversion of primary B lymphocytes to lymphoblastoid cell lines (LCLs). In the present study, we investigated the effects of EBNA3A on EBNA2 activation of transcription in the IB4 LCL by conditionally overexpressing EBNA3A three- to fivefold. EBNA3A overexpression increased EBNA3A association with RBP-Jkappa, did not change EBNA3C association with RBP-Jkappa or EBNA or LMP1 expression, decreased EBNA2 association with RBP-Jkappa, decreased c-myc expression, and caused G(0)/G(1) growth arrest with prolonged viability. Expression of the fusion protein MycERTM in cells with conditional EBNA3A overexpression restored cell cycle progression and caused apoptosis. In contrast, MycER in the same cells without EBNA3A overexpression enhanced cell proliferation and did not increase apoptosis. These data indicate that EBNA3A overexpression inhibits protection from c-myc-induced apoptosis. In assays of EBNA2- and RBP-Jkappa-dependent transcription, EBNA3A amino acids 1 to 386 were sufficient for repression equivalent to that by wild-type EBNA3A, amino acids 1 to 124 were unimportant, amino acids 1 to 277 were insufficient, and a triple alanine substitution within the EBNA3A core RBP-Jkappa binding domain was a null mutation. In reverse genetic experiments with IB4 LCLs, the effects of conditional EBNA3A overexpression on c-myc expression and proliferation did not require amino acids 524 to 944 but did require amino acids 278 to 524 as well as wild-type sequence in the core RBP-Jkappa binding domain. The dependence of EBNA3A effects on the core RBP-Jkappa interaction domain and on the more C-terminal amino acids (amino acids 278 to 524) required for efficient RBP-Jkappa association strongly implicates RBP-Jkappa in c-myc promoter regulation.
Collapse
Affiliation(s)
- Andrew Cooper
- Virology Program and Department of Medicine, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Rymarczyk G, Grad I, Rusek A, Oświecimska-Rusin K, Niedziela-Majka A, Kochman M, Ozyhar A. Purification of Drosophila melanogaster ultraspiracle protein and analysis of its A/B region-dependent dimerization behavior in vitro. Biol Chem 2003; 384:59-69. [PMID: 12674500 DOI: 10.1515/bc.2003.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two members of the nuclear receptor superfamily, EcR (ecdysteroid receptor protein) and Usp (Ultraspiracle), heterodimerize to form a functional receptor for the steroid hormone 20-hydroxyecdysone and thus enable it to coordinate morphogenetic events during insect metamorphosis. N-terminally His-tagged Usp was overexpressed in E. coli cells as a non-truncated protein and purified to homogeneity in two chromatographic steps. It was demonstrated that the recombinant receptor specifically binds the ecdysone response element of the hsp27 gene promoter (hsp27EcRE). Moreover, a highly synergistically formed heterodimeric complex with the DNA-binding domain of EcR was observed on hsp27EcRE, but not on the native Usp response element from the chorion s15 gene promoter. Recombinant Usp forms homodimers and homotetramers in the absence of DNA, as judged from gel filtration and chemical crosslinking experiments. Truncation of its N-terminal A/B region changes molecular characteristics of Usp, considerably weakening its oligomerization potential under the same experimental conditions. This contrasts with the results obtained previously for the similarly truncated RXR--a vertebrate homolog of Usp.
Collapse
Affiliation(s)
- Grzegorz Rymarczyk
- Institute of Organic Chemistry, Biochemistry and Biotechnology, Division of Biochemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
21
|
Hatzoglou A, Deshayes F, Madry C, Laprée G, Castanas E, Tsapis A. Natural antisense RNA inhibits the expression of BCMA, a tumour necrosis factor receptor homologue. BMC Mol Biol 2002; 3:4. [PMID: 11960555 PMCID: PMC107798 DOI: 10.1186/1471-2199-3-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Accepted: 04/18/2002] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND BCMA (B-cell maturation) belongs to the tumour necrosis factor receptor gene family, and is specifically expressed in mature B lymphocytes. Antisense BCMA RNA is produced by transcription from the same locus and has typical mRNA features, e.g, polyadenylation, splicing, Kozak consensus sequence and an ORF (p12). To investigate the function of antisense BCMA RNA, we expressed BCMA in cell lines, in the presence of antisense p12 or a mutant lacking the initiation ATG codon (p12-ATG). RESULTS Overexpression of both p12 and p12-ATG antisense BCMA resulted in a large decrease in the amount of BCMA protein produced, with no change in BCMA RNA levels, indicating that BCMA expression is regulated by antisense BCMA RNA at the translational level. We have also observed slight adenosine modifications, suggestive of the activity of a double-stranded RNA-specific adenosine deaminase. CONCLUSION These data suggest that antisense BCMA may operate under physiological conditions using similar antisense-mediated control mechanisms, to inhibit the expression of the BCMA gene.
Collapse
Affiliation(s)
- Anastassia Hatzoglou
- INSERM U131, Institut Paris-Sud sur les Cytokines, 32, rue des Carnets, 92140 Clamart, France
- Laboratory of Experimental Endocrinology, Faculty of Medicine, University of Crete, POBox 1393, Heraklion, 71110 Greece
| | - Frédérique Deshayes
- INSERM U131, Institut Paris-Sud sur les Cytokines, 32, rue des Carnets, 92140 Clamart, France
| | - Christine Madry
- INSERM U131, Institut Paris-Sud sur les Cytokines, 32, rue des Carnets, 92140 Clamart, France
| | - Geneviéve Laprée
- INSERM U131, Institut Paris-Sud sur les Cytokines, 32, rue des Carnets, 92140 Clamart, France
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, Faculty of Medicine, University of Crete, POBox 1393, Heraklion, 71110 Greece
| | - Andreas Tsapis
- INSERM U131, Institut Paris-Sud sur les Cytokines, 32, rue des Carnets, 92140 Clamart, France
| |
Collapse
|
22
|
Hannan GN, Hill RJ. LcUSP, an ultraspiracle gene from the sheep blowfly, Lucilia cuprina: cDNA cloning, developmental expression of RNA and confirmation of function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:771-781. [PMID: 11378412 DOI: 10.1016/s0965-1748(00)00182-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA sequence corresponding to most of the DNA-binding domain of a Lucilia cuprina ultraspiracle protein (LcUSP) was amplified by PCR from genomic DNA and cloned. This cloned fragment was used to screen a L. cuprina cDNA library and to isolate a full-length LcUSP encoding sequence within a 3800-bp cDNA clone. The conceptually translated amino acid sequence of this open reading frame (467 amino acids) was used in alignment comparisons and phylogenetic analyses to reveal that LcUSP most closely resembles DmUSP relative to other known insect nuclear hormone receptors. An antisense RNA probe specific for the 5' end of Lcusp was used in ribonuclease protection assays to detect significant levels of Lcusp RNA throughout L. cuprina development. Highest levels were detected in embryos, late third instar larvae, pupae and adult females. This pattern parallels the pattern of expression observed for Dmusp RNAs during Drosophila melanogaster development. Finally, the LcUSP sequence was engineered for expression in mammalian cells and we now report that the cloned LcUSP is functional in vivo and can act as a partner for a chimeric L. cuprina ecdysone receptor to form an ecdysteroid-dependent transcription factor in mammalian cells.
Collapse
Affiliation(s)
- G N Hannan
- CSIRO Molecular Science, Sydney Laboratory, PO Box 184, North Ryde, NSW 2113, Australia.
| | | |
Collapse
|
23
|
Zannis VI, Kan HY, Kritis A, Zanni EE, Kardassis D. Transcriptional regulatory mechanisms of the human apolipoprotein genes in vitro and in vivo. Curr Opin Lipidol 2001; 12:181-207. [PMID: 11264990 DOI: 10.1097/00041433-200104000-00012] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present review summarizes recent advances in the transcriptional regulation of the human apolipoprotein genes, focusing mostly, but not exclusively, on in-vivo studies and signaling mechanisms that affect apolipoprotein gene transcription. An attempt is made to explain how interactions of transcription factors that bind to proximal promoters and distal enhancers may bring about gene transcription. The experimental approaches used and the transcriptional regulatory mechanisms that emerge from these studies may also be applicable in other gene systems that are associated with human disease. Understanding extracellular stimuli and the specific mechanisms that underlie apolipoprotein gene transcription may in the long run allow us to selectively switch on antiatherogenic genes, and switch off proatherogenic genes. This may have beneficial effects and may confer protection from atherosclerosis to humans.
Collapse
Affiliation(s)
- V I Zannis
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.
| | | | | | | | | |
Collapse
|
24
|
Hatzoglou A, Roussel J, Bourgeade MF, Rogier E, Madry C, Inoue J, Devergne O, Tsapis A. TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1322-30. [PMID: 10903733 DOI: 10.4049/jimmunol.165.3.1322] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BCMA (B cell maturation) is a nonglycosylated integral membrane type I protein that is preferentially expressed in mature B lymphocytes. Previously, we reported in a human malignant myeloma cell line that BCMA is not primarily present on the cell surface but lies in a perinuclear structure that partially overlaps the Golgi apparatus. We now show that in transiently or stably transfected cells, BCMA is located on the cell surface, as well as in a perinulear Golgi-like structure. We also show that overexpression of BCMA in 293 cells activates NF-kappa B, Elk-1, the c-Jun N-terminal kinase, and the p38 mitogen-activated protein kinase. Coimmunoprecipitation experiments performed in transfected cells showed that BCMA associates with TNFR-associated factor (TRAF) 1, TRAF2, and TRAF3 adaptor proteins. Analysis of deletion mutants of the intracytoplasmic tail of BCMA showed that the 25-aa protein segment, from position 119 to 143, conserved between mouse and human BCMA, is essential for its association with the TRAFs and the activation of NF-kappa B, Elk-1, and c-Jun N-terminal kinase. BCMA belongs structurally to the TNFR family. Its unique TNFR motif corresponds to a variant motif present in the fourth repeat of the TNFRI molecule. This study confirms that BCMA is a functional member of the TNFR superfamily. Furthermore, as BCMA is lacking a "death domain" and its overexpression activates NF-kappa B and c-Jun N-terminal kinase, we can reasonably hypothesize that upon binding of its corresponding ligand BCMA transduces signals for cell survival and proliferation.
Collapse
Affiliation(s)
- A Hatzoglou
- Laboratory of Experimental Endocrinology, Faculty of Medicine, University of Crete, Heraklion, Greece
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lan Q, Hiruma K, Hu X, Jindra M, Riddiford LM. Activation of a delayed-early gene encoding MHR3 by the ecdysone receptor heterodimer EcR-B1-USP-1 but not by EcR-B1-USP-2. Mol Cell Biol 1999; 19:4897-906. [PMID: 10373539 PMCID: PMC84291 DOI: 10.1128/mcb.19.7.4897] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MHR3, a homolog of the retinoid orphan receptor (ROR), is a transcription factor in the nuclear hormone receptor family that is induced by 20-hydroxyecdysone (20E) in the epidermis of the tobacco hornworm, Manduca sexta. Its 2.7-kb 5' flanking region was found to contain four putative ecdysone receptor response elements (EcREs) and a monomeric (GGGTCA) nuclear receptor binding site. Activation of this promoter fused to a chloramphenicol acetyltransferase (CAT) reporter by 2 micrograms of 20E per ml in Manduca GV1 cells was similar to that of endogenous MHR3, with detectable CAT by 3 h. When the ecdysone receptor B1 (EcR-B1) and Ultraspiracle 1 (USP-1) were expressed at high levels under the control of a constitutive promoter, CAT levels after a 3-h exposure to 20E increased two- to sixfold. In contrast, high expression of EcR-B1 and USP-2 caused little increase in CAT levels in response to 20E. Moreover, expression of USP-2 prevented activation by EcR-B1-USP-1. Deletion experiments showed that the upstream region, including the three most proximal putative EcREs, was responsible for most of the 20E activation, with the EcRE3 at -671 and the adjacent GGGTCA being most critical. The EcRE1 at -342 was necessary but not sufficient for the activational response but was the only one of the three putative EcREs to bind the EcR-B1-USP-1 complex in gel mobility shift assays and was responsible for the silencing action of EcR-B1-USP-1 in the absence of hormone. EcRE2 and EcRE3 each specifically bound other protein(s) in the cell extract, but not EcR and USP, and so are not EcREs in this cellular context. When cell extracts were used, the EcR-B1-USP-2 heterodimer showed no binding to EcRE1, and the presence of excess USP-2 prevented the binding of EcR-B1-USP-1 to this element. In contrast, in vitro-transcribed-translated USP-1 and USP-2 both formed heterodimeric complexes with EcR-B1 that bound ponasterone A with the same Kd (7 x 10(-10) M) and bound to both EcRE1 and heat shock protein 27 EcRE. Thus, factors present in the cell extract appear to modulate the differential actions of the two USP isoforms.
Collapse
Affiliation(s)
- Q Lan
- Department of Zoology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | | | | | |
Collapse
|
26
|
Ballestas ME, Chatis PA, Kaye KM. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 1999; 284:641-4. [PMID: 10213686 DOI: 10.1126/science.284.5414.641] [Citation(s) in RCA: 565] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary effusion lymphoma (PEL) cells harbor Kaposi's sarcoma-associated herpesvirus (KSHV) episomes and express a KSHV-encoded latency-associated nuclear antigen (LANA). In PEL cells, LANA and KSHV DNA colocalized in dots in interphase nuclei and along mitotic chromosomes. In the absence of KSHV DNA, LANA was diffusely distributed in the nucleus or on mitotic chromosomes. In lymphoblasts, LANA was necessary and sufficient for the persistence of episomes containing a specific KSHV DNA fragment. Furthermore, LANA colocalized with the artificial KSHV DNA episomes in nuclei and along mitotic chromosomes. These results support a model in which LANA tethers KSHV DNA to chromosomes during mitosis to enable the efficient segregation of KSHV episomes to progeny cells.
Collapse
MESH Headings
- Antigens, Viral/analysis
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Cell Nucleus/chemistry
- Chromosomes/chemistry
- Chromosomes/metabolism
- Cosmids
- DNA, Viral/analysis
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Interphase
- Lymphocytes/chemistry
- Microscopy, Confocal
- Mitosis
- Nuclear Proteins/analysis
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Plasmids
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M E Ballestas
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
27
|
Tchoudakova A, Callard GV. Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary. Endocrinology 1998; 139:2179-89. [PMID: 9529008 DOI: 10.1210/endo.139.4.5899] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evidence to date indicates that the gene encoding cytochrome P450 aromatase (P450arom) in humans is a single member of the CYPl9 family, but multiple CYPl9 loci and isoforms have been identified in pigs. Here we report the cloning and characterization of a second member of the CYP19 family in goldfish. A search for P450arom variants was prompted by studies showing that a full-length P450arom complementary DNA (cDNA) isolated from a goldfish brain cDNA library hybridizes with a high abundance 3 kb transcript in brain RNA but fails to detect a message in ovarian RNA. A stepwise PCR cloning strategy led to isolation of a 1.9-kb cDNA, which encodes a protein of 518 amino acids and has a predicted mol wt of 58.7K. The ovary-derived P450arom (-A) shares 68-72% sequence identity with ovarian aromatases of other fish species, but only 62% identity with the homologous brain-derived P450arom (-B). Amino acid differences are distributed throughout the two goldfish P450arom forms, but presumptive functional domains are highly conserved. Both P450aromA and -B are able to aromatize [3H]androgen to [3H]estrogen when expressed in nonsteroidogenic COS cells. Southern analysis and PCR-restriction analysis of genomic DNA using discriminating probes and primers indicates that a single locus encodes the brain-derived P450aromB (CYPl9B), whereas one or two different loci encode the ovarian form (CYPl9A). Northern blot analysis revealed two P450aromA messenger RNAs (1.9 >> 3.0 kb) in ovary. Simultaneous PCR amplification with A- and B-specific primer pairs confirms that P450aromA is the only form expressed in ovaries, but shows overlapping expression of the two genes in neural tissues. Whereas P450aromB messenger RNA predominates in brain (B/A, approximately 14:1), the ratios are reversed in retina (B/A, approximately 1:25). Further studies are required to resolve the evolutionary and functional implications of multiple CYPl9 genes and P450arom isozymes in goldfish, their differential expression in brain and ovary, and whether observations can be generalized to other vertebrates.
Collapse
Affiliation(s)
- A Tchoudakova
- Department of Biology, Boston University, Massachusetts 02215, USA
| | | |
Collapse
|