1
|
Ramos-Álvarez I, Lee L, Jensen RT. Group II p21-activated kinase, PAK4, is needed for activation of focal adhesion kinases, MAPK, GSK3, and β-catenin in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 318:G490-G503. [PMID: 31984786 PMCID: PMC7099487 DOI: 10.1152/ajpgi.00229.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/31/2023]
Abstract
PAK4 is the only member of the Group II p21-activated kinases (PAKs) present in rat pancreatic acinar cells and is activated by gastrointestinal hormones/neurotransmitters stimulating PLC/cAMP and by various pancreatic growth factors. However, little is known of the role of PAK4 activation in cellular signaling cascades in pancreatic acinar cells. In the present study, we examined the role of PAK4's participation in five different cholecystokinin-8 (CCK-8)-stimulated signaling pathways (PI3K/Akt, MAPK, focal adhesion kinase, GSK3, and β-catenin), which mediate many of its physiological acinar-cell effects, as well as effects in pathophysiological conditions. To define PAK4's role, the effect of two different PAK4 inhibitors, PF-3758309 and LCH-7749944, was examined under experimental conditions that only inhibited PAK4 activation and not activation of the other pancreatic PAK, Group I PAK2. The inhibitors' effects on activation of these five signaling cascades by both physiological and pathophysiological concentrations of CCK, as well as by 12-O-tetradecanoylphobol-13-acetate (TPA), a PKC-activator, were examined. CCK/TPA activation of focal adhesion kinases(PYK2/p125FAK) and the accompanying adapter proteins (paxillin/p130CAS), Mek1/2, and p44/42, but not c-Raf or other MAPKs (JNK/p38), were mediated by PAK4. Activation of PI3K/Akt/p70s6K was independent of PAK4, whereas GSK3 and β-catenin stimulation was PAK4-dependent. These results, coupled with recent studies showing PAK4 is important in pancreatic fluid/electrolyte/enzyme secretion and acinar cell growth, show that PAK4 plays an important role in different cellular signaling cascades, which have been shown to mediate numerous physiological and pathophysiological processes in pancreatic acinar cells.NEW & NOTEWORTHY In pancreatic acinar cells, cholecystokinin (CCK) or 12-O-tetradecanoylphobol-13-acetate (TPA) activation of focal adhesion kinases (p125FAK,PYK2) and its accompanying adapter proteins, p130CAS/paxillin; Mek1/2, p44/42, GSK3, and β-catenin are mediated by PAK4. PI3K/Akt/p70s6K, c-Raf, JNK, or p38 pathways are independent of PAK4 activation.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Nuche-Berenguer B, Ramos-Álvarez I, Jensen RT. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1122-1136. [PMID: 26912410 PMCID: PMC4846574 DOI: 10.1016/j.bbadis.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
Abstract
In a recent study we explored Group-1-p21-activated kinases (GP.1-PAKs) in rat pancreatic acini. Only PAK2 was present; it was activated by gastrointestinal-hormones/neurotransmitters and growth factors in a PKC-, Src- and small-GTPase-mediated manner. PAK2 was required for enzyme-secretion and ERK/1-2-activation. In the present study we examined PAK2's role in CCK and TPA-activation of important distal signaling cascades mediating their physiological/pathophysiological effects and analyzed its role in pathophysiological processes important in early pancreatitis. In rat pancreatic acini, PAK2-inhibition by the specific, GP.1.PAK-inhibitor, IPA-3-suppressed cholecystokinin (CCK)/TPA-stimulated activation of focal-adhesion kinases and mitogen-activated protein-kinases. PAK2-inhibition reversed the dual stimulatory/inhibitory effect of CCK/TPA on the PI3K/Akt/GSK-3β pathway. However, its inhibition did not affect PKC activation. PAK2-inhibition protected acini from CCK-induced ROS-generation; caspase/trypsin-activation, important in early pancreatitis; as well as from cell-necrosis. Furthermore, PAK2-inhibition reduced proteolytic-activation of PAK-2p34, which is involved in programmed-cell-death. To ensure that the study did not only rely in the specificity of IPA-3 as a PAK inhibitor, we used two other approaches for PAK inhibition, FRAX597 a ATP-competitive-GP.1-PAKs-inhibitor and infection with a PAK2-dominant negative(DN)-Advirus. Those two approaches confirmed the results obtained with IPA-3. This study demonstrates that PAK2 is important in mediating CCK's effect on the activation of signaling-pathways known to mediate its physiological/pathophysiological responses including several cellular processes linked to the onset of pancreatitis. Our results suggest that PAK2 could be a new, important therapeutic target to consider for the treatment of diseases involving deregulation of pancreatic acinar cells.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA.
| |
Collapse
|
3
|
Nuche-Berenguer B, Moreno P, Jensen RT. Elucidation of the roles of the Src kinases in pancreatic acinar cell signaling. J Cell Biochem 2015; 116:22-36. [PMID: 25079913 PMCID: PMC4229413 DOI: 10.1002/jcb.24895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Recent studies report the Src-family kinases (SFK's) are important in a number of physiological and pathophysiological responses of pancreatic acinar cells (pancreatitis, growth, apoptosis); however, the role of SFKs in various signaling cascades important in mediating these cell functions is either not investigated or unclear. To address this we investigated the action of SFKs in these signaling cascades in rat pancreatic acini by modulating SFK activity using three methods: adenovirus-induced expression of an inactive dominant-negative CSK (Dn-CSK-Advirus) or wild-type CSK (Wt-CSK-Advirus), which activate or inhibit SFK, respectively, or using the chemical inhibitor, PP2, with its inactive control, PP3. CCK (0.3, 100 nM) and TPA (1 μM) activated SFK and altered the activation of FAK proteins (PYK2, p125(FAK)), adaptor proteins (p130(CAS), paxillin), MAPK (p42/44, JNK, p38), Shc, PKC (PKD, MARCKS), Akt but not GSK3-β. Changes in SFK activity by using the three methods of altering SFK activity affected CCK/TPAs activation of SFK, PYK2, p125(FAK), p130(CAS), Shc, paxillin, Akt but not p42/44, JNK, p38, PKC (PKD, MARCKS) or GSK3-β. With chemical inhibition the active SFK inhibitor, PP2, but not the inactive control analogue, PP3, showed these effects. For all stimulated changes pre-incubation with both adenoviruses showed similar effects to chemical inhibition of SFK activity. In conclusion, using three different approaches to altering Src activity allowed us to define fully for the first time the roles of SFKs in acinar cell signaling. Our results show that in pancreatic acinar cells, SFKs play a much wider role than previously reported in activating a number of important cellular signaling cascades shown to be important in mediating both acinar cell physiological and pathophysiological responses.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Paola Moreno
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R. T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
4
|
Berna MJ, Hoffmann KM, Tapia JA, Thill M, Pace A, Mantey SA, Jensen RT. CCK causes PKD1 activation in pancreatic acini by signaling through PKC-delta and PKC-independent pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:483-501. [PMID: 17306383 PMCID: PMC1924924 DOI: 10.1016/j.bbamcr.2006.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 12/02/2006] [Accepted: 12/18/2006] [Indexed: 12/25/2022]
Abstract
Protein kinase D1 (PKD1) is involved in cellular processes including protein secretion, proliferation and apoptosis. Studies suggest PKD1 is activated by various stimulants including gastrointestinal (GI) hormones/neurotransmitters and growth factors in a protein kinase C (PKC)-dependent pathway. However, little is known about the mechanisms of PKD1 activation in physiologic GI tissues. We explored PKD1 activation by GI hormones/neurotransmitters and growth factors and the mediators involved in rat pancreatic acini. Only hormones/neurotransmitters activating phospholipase C caused PKD1 phosphorylation (S916, S744/748). CCK activated PKD1 and caused a time- and dose-dependent increase in serine phosphorylation by activation of high- and low-affinity CCK(A) receptor states. Inhibition of CCK-stimulated increases in phospholipase C, PKC activity or intracellular calcium decreased PKD1 S916 phosphorylation by 56%, 62% and 96%, respectively. PKC inhibitors GF109203X/Go6976/Go6983/PKC-zeta pseudosubstrate caused a 62/43/49/0% inhibition of PKD1 S916 phosphorylation and an 87/13/82/0% inhibition of PKD1 S744/748 phosphorylation. Expression of dominant negative PKC-delta, but not PKC-epsilon, or treatment with PKC-delta translocation inhibitor caused marked inhibition of PKD phosphorylation. Inhibition of Src/PI3K/MAPK/tyrosine phosphorylation had no effect. In unstimulated cells, PKD1 was mostly located in the cytoplasm. CCK stimulated translocation of total and phosphorylated PKD1 to the membrane. These results demonstrate that CCK(A) receptor activation leads to PKD activation by signaling through PKC-dependent and PKC-independent pathways.
Collapse
Affiliation(s)
- Marc J. Berna
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, 20892-1804, USA
| | - K. Martin Hoffmann
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, 20892-1804, USA
| | - Jose A. Tapia
- Departamento de Fisiología, Universidad de Extremadura, Cáceres, 10071, Spain
| | - Michelle Thill
- National Eye Institute, NIH, Bethesda, Maryland, 20892-1804, USA
| | - Andrea Pace
- Medizinische Klinik I, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, 20892-1804, USA
| |
Collapse
|
5
|
Langmesser S, Cerezo-Guisado MI, Lorenzo MJ, Garcia-Marin LJ, Bragado MJ. CCK1 and 2 receptors are expressed in immortalized rat brain neuroblasts: Intracellular signals after cholecystokinin stimulation. J Cell Biochem 2007; 100:851-64. [PMID: 17226751 DOI: 10.1002/jcb.21193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cholecystokinin (CCK) is one of the most abundant neuropeptides in the central nervous system (CNS) where it promotes important functions by activation of receptors CCK1 and CCK2. Our aim was to investigate CCK receptors expression and their downstream intracellular signaling in immortalized rat brain neuroblasts. Results show that CCK1 and CCK2 receptor mRNAs and CCK2 receptor protein are expressed in neuroblasts. CCK incubation of neuroblasts leads to stimulation in a time-dependent manner of several signaling pathways, such as tyrosine phosphorylation of adaptor proteins paxillin and p130(Cas), phosphorylation of p44/p42 ERKs as well as PKB (Ser473). Moreover, CCK-8 stimulates the DNA-binding activity of the transcription factor AP-1. The CCK2 receptor agonist gastrin stimulates ERK1/2 phosphorylation in a comparable degree as CCK does. ERK1/2 phosphorylation activated by CCK-8 was markedly inhibited by the CCK2 receptor antagonist CR2945. Incubation for 48 h with CCK-8 increases neuroblasts viability in a similar degree as EGF. In summary, our data clearly identify CCK1 and CCK2 receptor mRNAs and CCK2 receptor protein in brain neuroblasts and show that incubation with CCK promotes cell proliferation and activates the phosphorylation of survival transduction pathways. Stimulation of ERK1/2 phosphorylation by CCK is mainly mediated by the CCK2 receptor. Moreover, this work might provide a novel model of proliferating neuronal cells to further study the biochemical mechanisms by which the neuropeptide CCK exerts its actions in the CNS.
Collapse
Affiliation(s)
- Sonja Langmesser
- Departamento de Fisiología, Biología Molecular y Genética, Universidad de Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
6
|
Hoffmann KM, Tapia JA, Berna MJ, Thill M, Braunschweig T, Mantey SA, Moody TW, Jensen RT. Gastrointestinal hormones cause rapid c-Met receptor down-regulation by a novel mechanism involving clathrin-mediated endocytosis and a lysosome-dependent mechanism. J Biol Chem 2006; 281:37705-37719. [PMID: 17035232 DOI: 10.1074/jbc.m602583200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The activated c-Met receptor has potent effects on normal tissues and tumors. c-Met levels are regulated by hepatocyte growth factor (HGF); however, it is unknown if they can be regulated by gastrointestinal (GI) hormones. c-Met is found in many GI tissues/tumors that possess GI hormone receptors. We studied the effect of GI hormones on c-Met in rat pancreatic acini, which possess both receptors. CCK-8, carbachol, and bombesin, but not VIP/secretin, decreased c-Met. CCK-8 caused rapid and potent c-Met down-regulation and abolished HGF-induced c-Met and Gab1 tyrosine phosphorylation, while stimulating c-Met serine phosphorylation. The effect of cholecystokinin (CCK) was also seen in intact acini using immunofluorescence, in a biotinylated fraction representing membrane proteins, in single acinar cells, in Panc-1 tumor cells, and in vivo in rats injected with CCK. CCK-8 did not decrease cell viability or overall responsiveness. GF109203X, thapsigargin, or their combination partially reversed the effect of CCK-8. In contrast to HGF-induced c-Met down-regulation, the effect of CCK was decreased by a lysosome inhibitor (concanamycin) but not the proteasome inhibitor lactacystin. Inhibitors of clathrin-mediated endocytosis blocked the effect of CCK. HGF but not CCK-8 caused c-Met ubiquitination. These results show CCK and other GI hormones can cause rapid c-Met down-regulation, which occurs by a novel mechanism. These results could be important for c-Met regulation in normal as well as in neoplastic tissue in the GI tract.
Collapse
Affiliation(s)
- K Martin Hoffmann
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pace A, Tapia JA, Garcia-Marin LJ, Jensen RT. The Src family kinase, Lyn, is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors which stimulate its association with numerous other signaling molecules. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:356-365. [PMID: 16713446 DOI: 10.1016/j.bbamcr.2006.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/16/2022]
Abstract
Src family kinases (SFK) play a central signaling role for growth factors, cytokines, G-protein-coupled receptors and other stimuli. SFKs play important roles in pancreatic acinar cell secretion, endocytosis, growth, cytoskeletal integrity and apoptosis, although little is known of the specific SFKs involved. In this study we demonstrate the SFK, Lyn, is present in rat pancreatic acini and investigate its activation/signaling. Ca(2+)-mobilizing agents, cAMP-mobilizing agents and pancreatic growth factors activated Lyn. CCK, a physiological regulator of pancreatic function, rapidly activated Lyn. The specific SFK inhibitor, PP2, decreased Lyn activation; however, the inactive analogue, PP3, had no effect. Inhibition of CCK-stimulated changes in [Ca(2+)](i) decreased Lyn activation by 55%; GFX, a PKC inhibitor by 36%; and the combination by 95%. CCK activation of Lyn required stimulation of high and low affinity CCK(A) receptor states. CCK stimulated an association of Lyn with PKC-delta, Shc, p125(FAK) and PYK2 as well as with their autophosphorylated forms, but not with Cbl, p85, p130(CAS) or ERK 1/2. These results show Lyn is activated by diverse pancreatic stimulants. CCK's activation of Lyn is likely an important mediator of its ability to cause tyrosine phosphorylation of numerous important cellular mediators such as p125(FAK), PYK2, PKC-delta and Shc, which play central roles in CCK's effects on acinar cell function.
Collapse
Affiliation(s)
- Andrea Pace
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | |
Collapse
|
8
|
Andreolotti AG, Bragado MJ, Tapia JA, Jensen RT, Garcia-Marin LJ. Adapter protein CRKII signaling is involved in the rat pancreatic acini response to reactive oxygen species. J Cell Biochem 2006; 97:359-367. [PMID: 16187300 DOI: 10.1002/jcb.20624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies demonstrate that reactive oxygen species (ROS) are important mediators of acute pancreatitis, whether induced experimentally or in necrotizing pancreatitis in humans; however, the cellular processes involved remain unclear. Adapter protein CrkII, plays a central role for convergence of cellular signals from different stimuli. Cholecystokinin (CCK), which induces pancreatitis, stimulates CrkII tyrosine phosphorylation and CrkII protein complexes, raising the possibility it can be important in the acinar cell responses to ROS. Therefore, our aim was to investigate whether CrkII signaling is involved in the biological response of rat pancreatic acini to H2O2 and the intracellular mediators implicated. Treatment of isolated rat pancreatic acini with H2O2 rapidly stimulates CrkII phosphorylation, measured as electrophoretic mobility shift and by using a phosphospecific antibody (pTyr221). Tyrosine kinase blocker B44 inhibits the higher phosphorylation state, demonstrating that it occurs mainly in tyrosine residues. H2O2-induced CrkII phosphorylation is time- and concentration-dependent, showing maximal effect with 3 mM H2O2 at 5 min. The intracellular pathways induced by H2O2 leading to CrkII tyrosine phosphorylation do not involve PKC, intracellular calcium, PI3-K or the actin cytoskeleton integrity. ROS generation clearly promotes the formation of protein complex CrkII-PYK2. In conclusion, ROS clearly affect the key adapter protein CrkII signaling by two ways: stimulation of CkII phosphorylation and a functional consequence: formation of CrkII-protein complexes. Because of its central role in activating more distal pathways, CrkII might likely play an important role in the ability of ROS to induce pancreatic cellular injury and pancreatitis.
Collapse
|
9
|
Tapia JA, Jensen RT, García-Marín LJ. Rottlerin inhibits stimulated enzymatic secretion and several intracellular signaling transduction pathways in pancreatic acinar cells by a non-PKC-delta-dependent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:25-38. [PMID: 16364465 DOI: 10.1016/j.bbamcr.2005.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 09/28/2005] [Accepted: 10/12/2005] [Indexed: 12/17/2022]
Abstract
Protein kinase C-delta (PKC-delta) becomes activated in pancreatic acini in response to cholecystokinin (CCK) and plays a pivotal role in the exocrine pancreatic secretion. Rottlerin, a polyphenolic compound, has been widely used as a potent and specific PKC-delta inhibitor. However, some recent studies showed that rottlerin was not effective in inhibiting PKCdelta activity in vitro and that may display unspecific effects. The aims of this work were to investigate the specificity of rottlerin as an inhibitor of PKC-delta activity in intact cells and to elucidate the biochemical causes of its unspecificity. Preincubation of pancreatic acini with rottlerin (6 microM) inhibited CCK-stimulated translocation, tyrosine phosphorylation (TyrP) and activation of PKC-delta in pancreatic acini in a time-dependent manner. Rottlerin inhibited amylase secretion stimulated by both PKC-dependent pathways (CCK, bombesin, carbachol, TPA) and also by PKC-independent pathways (secretin, VIP, cAMP analogue). CCK-stimulation of MAPK activation and p125(FAK) TyrP which are mediated by PKC-dependent and -independent pathways were also inhibited by rottlerin. Moreover, rottlerin rapidly depleted ATP content in pancreatic acini in a similar way as the mitochondrial uncouplers CCCP and FCCP. All studied inhibitory effects of rottlerin in pancreatic acini were mimicked by FCCP (agonists-stimulated amylase secretion, p125(FAK) TyrP, MAPK activation and PKC-delta TyrP and translocation). Finally, rottlerin as well as FCCP display a potent inhibitory effect on the activation of other PKC isoforms present in pancreatic acini. Our results suggest that rottlerin effects in pancreatic acini are not due to a specific PKC-delta blockade, but likely due to its negative effect on acini energy resulting in ATP depletion. Therefore, to study the role of PKC-delta in cellular processes using rottlerin it is essential to keep in mind that may deplete ATP levels and inhibit different PKC isoforms. Our results give reasons for a more careful choice of rottlerin for PKC-delta investigation.
Collapse
Affiliation(s)
- J A Tapia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
10
|
Bravo MM, Aparicio IM, Garcia-Herreros M, Gil MC, Peña FJ, Garcia-Marin LJ. Changes in tyrosine phosphorylation associated with true capacitation and capacitation-like state in boar spermatozoa. Mol Reprod Dev 2005; 71:88-96. [PMID: 15736131 DOI: 10.1002/mrd.20286] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Capacitation is defined as a series of events that render boar sperm competent to fertilize, either in vivo or in vitro. Moreover, preliminary stages of cryopreservation of spermatozoa involving cooling to 5 degrees C have been shown to induce capacitation-like changes in boar spermatozoa. Capacitation of boar spermatozoa is accompanied by protein phosphorylation, however the relationship between both processes is poorly understood. Capacitation status was assessed by chlortetracycline (CTC) staining. Changes in protein tyrosine phosphorylation were examined in pre-cleared whole cell lysates using a specific anti-phosphotyrosine monoclonal antibody. Our results in boar spermatozoa show a significant positive correlation between p32 tyrosine phosphorylation levels and percentage of capacitated (CTC pattern B) spermatozoa. Moreover, incubation of boar spermatozoa with two unrelated tyrosine kinase inhibitors induces a significant reduction in the percentages of capacitated and acrosome-reacted (AR) boar spermatozoa and a reduction in the p32 tyrosine phosphorylation. In our conditions, cooling boar spermatozoa to 5 degrees C and rewarming to 39 degrees C in a noncapacitating medium results in similar CTC staining patterns to those obtained after incubation of boar sperm for 1 or 4 hr at 39 degrees C in a capacitating medium. However, cooled-rewarmed fails to induce an increase in p32 tyrosine phosphorylation in boar spermatozoa. Moreover, CTC staining patterns of cooled-rewarmed spermatozoa do not change after incubation with a tyrosine kinase inhibitor. In conclusion, our results show a direct relationship between capacitation and tyrosine phosphorylation and suggest that p32 tyrosine phosphorylation levels could be used as a marker of the true capacitation changes observed in boar spermatozoa. Moreover, our results show that true capacitation and capacitation-like changes induced after cooling involve alternative intracellular tyrosine phosphorylation pathways in boar spermatozoa.
Collapse
Affiliation(s)
- M M Bravo
- Departamento de Medicina y Sanidad Animal, Area de Reproducción, Universidad de Extremadura, Caceres, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Aparicio IM, Gil MC, Garcia-Herreros M, Peña FJ, Garcia-Marin LJ. Inhibition of phosphatidylinositol 3-kinase modifies boar sperm motion parameters. Reproduction 2005; 129:283-9. [PMID: 15749955 DOI: 10.1530/rep.1.00447] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Motility is the most widely used indicator of sperm quality. Besides modulation by the cAMP pathway little is known regarding the intracellular pathways that regulate boar sperm motility. Recently the role of phosphatidylinositol 3-kinase (PI3-K) in the regulation of human sperm motility has been described. Therefore, the aim of this study was to investigate the role of PI3-K in boar sperm kinematics by using the specific PI3-K inhibitor, LY294002. Boar sperm was incubated up to 1 h in non-capacitating medium in the presence or absence of the cAMP analog, 8Br-cAMP or the PI3-K inhibitor, LY294002 or both. Boar sperm incubated in capacitating medium was treated in the presence or absence of LY294002. First, we have clearly identified that PI3-K is present in whole lysates of boar spermatozoa. Inhibition of PI3-K significantly increased boar sperm straight-line velocity, circular velocity and average velocity without an effect on the percentage of progressively motile spermatozoa in both media. Inhibition of PI3-K induced the same effects on boar sperm velocities as activation of the cAMP/protein kinase A (PKA) pathway and treatment with the PI3-K inhibitor, LY294002 had neither summatory nor synergic effects on boar sperm motion parameters when treated simultaneously with the cAMP analog 8Br-cAMP. Our data suggest that PI3-K plays a negative role, regulating boar sperm motion parameters through a possible inhibition of the cAMP/PKA activating pathway, and since some Computer Aided Sperm Analysis (CASA)-derived parameters have been related to field fertility our results point to the possibility of modulating sperm motile quality by modifying the PI3-K cellular pathway.
Collapse
Affiliation(s)
- I M Aparicio
- Departamento de Fisiología, Universidad de Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
12
|
Satoh A, Gukovskaya AS, Nieto JM, Cheng JH, Gukovsky I, Reeve JR, Shimosegawa T, Pandol SJ. PKC-delta and -epsilon regulate NF-kappaB activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G582-91. [PMID: 15117677 DOI: 10.1152/ajpgi.00087.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although NF-kappaB plays an important role in pancreatitis, mechanisms underlying its activation remain unclear. We investigated the signaling pathways mediating NF-kappaB activation in pancreatic acinar cells induced by high-dose cholecystokinin-8 (CCK-8), which causes pancreatitis in rodent models, and TNF-alpha, which contributes to inflammatory responses of pancreatitis, especially the role of PKC isoforms. We determined subcellular distribution and kinase activities of PKC isoforms and NF-kappaB activation in dispersed rat pancreatic acini. We applied isoform-specific, cell-permeable peptide inhibitors to assess the role of individual PKC isoforms in NF-kappaB activation. Both CCK-8 and TNF-alpha activated the novel isoforms PKC-delta and -epsilon and the atypical isoform PKC-zeta but not the conventional isoform PKC-alpha. Inhibition of the novel PKC isoforms but not the conventional or the atypical isoform resulted in the prevention of NF-kappaB activation induced by CCK-8 and TNF-alpha. NF-kappaB activation by CCK-8 and TNF-alpha required translocation but not tyrosine phosphorylation of PKC-delta. Activation of PKC-delta, PKC-epsilon, and NF-kappaB with CCK-8 involved both phosphatidylinositol-specific PLC and phosphatidylcholine (PC)-specific PLC, whereas with TNF-alpha they only required PC-specific PLC for activation. Results indicate that CCK-8 and TNF-alpha initiate NF-kappaB activation by different PLC pathways that converge at the novel PKCs (delta and epsilon) to mediate NF-kappaB activation in pancreatic acinar cells. These findings suggest a key role for the novel PKCs in pancreatitis.
Collapse
Affiliation(s)
- Akihiko Satoh
- Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Aparicio IM, Garcia-Marin LJ, Andreolotti AG, Bodega G, Jensen RT, Bragado MJ. Hepatocyte growth factor activates several transduction pathways in rat pancreatic acini. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1643:37-46. [PMID: 14654226 DOI: 10.1016/j.bbamcr.2003.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The receptor of hepatocyte growth factor (HGF), c-met induces different physiological responses in several cell types. Little is known about the role of HGF in exocrine pancreas. However, abnormal HGF signaling has been strongly implicated in pancreatic tumorigenesis and association of HGF with pancreatitis has been demonstrated. We have studied the presence of c-met and activation of their intracellular pathways associated in rat pancreatic acini in comparison with cholecystokinin (CCK) and epidermal growth factor (EGF). C-met expression in rat exocrine pancreas was identified by immunohistochemistry and immunoprecipitation followed by Western analysis. Tyrosine phosphorylation of c-met is strongly stimulated as well as kinase pathways leading to ERK1/2 cascade. HGF, but not CCK or EGF, selectively caused a consistent increase in the amount of p85 regulatory subunit of PI3-K present in anti-phosphotyrosine immunoprecipitates. Downstream of PI3-K, HGF increased Ser473 phosphorylation of Akt selectively, as CCK or EGF did not affect it. HGF selectively stimulated tyrosine phosphorylation of phosphatase PTP1D. HGF failed to promote the well-known CCK effects in pancreatic acini such as amylase secretion and intracellular calcium mobilization. Although HGF shares activation of ERK1/2 with CCK, we demonstrate that it promotes the selective activation of intracellular pathways not regulated by CCK or EGF. Our results suggest that HGF is an in vivo stimulus of pancreatic acini and provide novel insight into the transduction pathways and effects of c-met/HGF in normal pancreatic acinar cells.
Collapse
Affiliation(s)
- I M Aparicio
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n 10071 Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Bragado MJ, Perez-Marquez J, Garcia-Marin LJ. The cholecystokinin system in the rat retina: receptor expression and in vivo activation of tyrosine phosphorylation pathways. Neuropeptides 2003; 37:374-80. [PMID: 14698681 DOI: 10.1016/j.npep.2003.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High levels of endogenous cholecystokinin (CCK) are present in the rat retina and restricted to amacrine cells. Two types of CCK receptors exist but their expression and intracellular transduction pathways coupled in the rat retina are unknown. The aims of this study were to investigate CCK receptors expression in rat retina and to study downstream tyrosine phosphorylation pathways. For this purpose, total mRNA isolated from rat retina was subjected to RT-PCR analysis. Isolated rat retinas were incubated in presence of CCK. Soluble proteins in retinal homogenates were immunoprecipitated with anti-phoshpotyrosine or anti-p130(Cas) specific monoclonal antibodies and subjected to SDS-PAGE, followed by Western blotting analysis. Both types of CCK receptor mRNAs, A and B, are present in the rat retina. Incubation of retina with CCK induced a rapid increase in several phosphotyrosine-containing bands with molecular masses greater than 30 kDa. Western Blotting and immunoprecipitation with a specific monoclonal antibody identified one of the phosphotyrosine bands as the adapter protein p130(Cas). Tyrosine phosphorylation of p130(Cas) induced by CCK in rat retina was time and concentration dependent: CCK induced tyrosine phosphorylation of p130(Cas) occurred rapidly with the maximum effect observed at 2.5 min incubation with 1 microM CCK. Our data clearly identified CCK-A and CCK-B receptor mRNAs in the rat retina and demonstrated that they are functional, stimulating tyrosine phosphorylation pathways. Our results provide novel biochemical information to further understand the physiological role of CCK A and B receptors in rat retina.
Collapse
Affiliation(s)
- Maria J Bragado
- Department of Physiology, Universidad de Alcala, 28871 Alcala de Henares, Madrid, Spain.
| | | | | |
Collapse
|
15
|
Andreolotti AG, Bragado MJ, Tapia JA, Jensen RT, Garcia-Marin LJ. Cholecystokinin rapidly stimulates CrkII function in vivo in rat pancreatic acini. Formation of CrkII-protein complexes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:4706-4713. [PMID: 14622258 DOI: 10.1046/j.1432-1033.2003.03869.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Crk belongs to a family of adapter proteins whose structure allows interaction with tyrosine-phosphorylated proteins and is therefore an important modulator of downstream signals, representing a convergence of the actions of numerous stimuli. Recently, it was demonstrated that cholecystokinin (CCK) induced tyrosine phosphorylation of proteins related to fiber stress formation in rat pancreatic acini. Here, we investigated whether CCK receptor activation signals through CrkII and forms complexes with tyrosine-phosphorylated proteins in rat pancreatic acini. We demonstrated that CCK promoted the transient formation of CrkII-paxillin and CrkII-p130Cas complexes with maximal effect at 1 min. Additionally, CCK decreased the electrophoretic mobility of CrkII. This decrease was time- and concentration-dependent and inversely related with its function. Carbachol and bombesin also decreased CrkII electrophoretic mobility, whereas epidermal growth factor, vasoactive intestinal peptide, secretin or pituitary adenylate cyclase-activating polypeptide had no effect. CCK-induced CrkII electrophoretic shift was dependent on the Src family of tyrosine kinases and occurred in the intact animal, suggesting a physiological role of CrkII mediating CCK actions in the exocrine pancreas in vivo.
Collapse
|
16
|
Tapia JA, García-Marin LJ, Jensen RT. Cholecystokinin-stimulated protein kinase C-delta kinase activation, tyrosine phosphorylation, and translocation are mediated by Src tyrosine kinases in pancreatic acinar cells. J Biol Chem 2003; 278:35220-35230. [PMID: 12842900 DOI: 10.1074/jbc.m303119200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein kinase C-delta (PKC-delta) is involved in growth, differentiation, tumor suppression, and regulation of other cellular processes. PKC-delta activation causes translocation, tyrosine phosphorylation, and serine-threonine kinase activity. However, little is known about the ability of G protein-coupled receptors to activate these processes or the mediators involved. In the present study, we explored the ability of the neurotransmitter/hormone, CCK, to stimulate these changes in PKC-delta and explored the mechanisms. In rat pancreatic acini under basal conditions, PKC-delta is almost exclusively located in cytosol. CCK and TPA stimulated a rapid PKC-delta translocation to membrane and nuclear fractions, which was transient with CCK. CCK stimulated rapid tyrosine phosphorylation of PKC-delta and increased kinase activity. Using tyrosine kinase (B44) and a tyrosine phosphatase inhibitor (orthovanadate), changes in both CCK- and TPA-stimulated PKC-delta tyrosine phosphorylation were shown to correlate with changes in its kinase activity but not translocation. Both PKC-delta tyrosine phosphorylation and activation occur exclusively in particulate fractions. The Src kinase inhibitors, SU6656 and PP2, but not the inactive related compound, PP3, inhibited CCK- and TPA-stimulated PKC-delta tyrosine phosphorylation and activation. In contrast, PP2 also had a lesser effect on CCK- but not TPA-stimulated PKC-delta translocation. CCK stimulated the association of Src kinases with PKC-delta, demonstrated by co-immunoprecipitation. These results demonstrate that CCKA receptor activation results in rapid translocation, tyrosine phosphorylation, and activation of PKC-delta. Stimulation of PKC-delta translocation precedes tyrosine phosphorylation, which is essential for activation to occur. Activation of Src kinases is essential for the tyrosine phosphorylation and kinase activation to occur and plays a partial role in translocation.
Collapse
Affiliation(s)
- Jose A Tapia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | |
Collapse
|
17
|
Konrad RJ, Gold G, Lee TN, Workman R, Broderick CL, Knierman MD. Glucose stimulates the tyrosine phosphorylation of Crk-associated substrate in pancreatic beta-cells. J Biol Chem 2003; 278:28116-22. [PMID: 12746446 DOI: 10.1074/jbc.m212899200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several years ago, we demonstrated that glucose induced tyrosine phosphorylation of a 125-kDa protein (p125) in pancreatic beta-cells (Konrad, R. J., Dean, R. M., Young, R. A., Bilings, P. C., and Wolf, B. A. (1996) J. Biol. Chem. 271, 24179-24186). Glucose induced p125 tyrosine phosphorylation in beta-TC3 insulinoma cells, beta-HC9 cells, and in freshly isolated rat islets, whereas increased tyrosine phosphorylation was not observed with other fuel secretagogues. Initial efforts to identify p125 were unsuccessful, so a new approach was taken. The protein was purified from betaTC6,F7 cells via an immunodepletion method. After electrophoresis and colloidal Coomassie Blue staining, the area of the gel corresponding to p125 was excised and subjected to tryptic digestion. Afterward, mass spectrometry was performed and the presence of Crk-associated substrate (Cas) was detected. Commercially available antibodies against Cas were obtained and tested directly in beta-cells, confirming glucose-induced tyrosine phosphorylation of Cas. Further experiments demonstrated that in beta-cells the glucose-induced increase in Cas tyrosine phosphorylation occurs immediately and is not accompanied by increased focal adhesion kinase tyrosine phosphorylation. Finally, it is also demonstrated via Western blotting that Cas is present in normal isolated rat islets. Together, these results show that the identity of the previously described p125 beta-cell protein is Cas and that Cas undergoes rapid glucose-induced tyrosine phosphorylation in beta-cells.
Collapse
Affiliation(s)
- Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Pace A, García-Marin LJ, Tapia JA, Bragado MJ, Jensen RT. Phosphospecific site tyrosine phosphorylation of p125FAK and proline-rich kinase 2 is differentially regulated by cholecystokinin receptor type A activation in pancreatic acini. J Biol Chem 2003; 278:19008-19016. [PMID: 12651850 DOI: 10.1074/jbc.m300832200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The focal adhesion kinases, p125FAK and proline-rich kinase 2 (PYK2), are involved in numerous processes as adhesion, cytoskeletal changes, and growth. These kinases have 45% homology and share three tyrosine phosphorylation (TyrP) sites. Little information exists on the ability of stimulants to cause TyrP of each kinase site and the cellular mechanism involved. We explored the ability of the neurotransmitter/hormone, CCK, to stimulate TyrP at each site. In rat pancreatic acini, CCK stimulated TyrP at each site in both kinases. TyrP was rapid except for pY397FAK. The magnitude of TyrP differed with the different FAK and PYK2 sites. The CCK dose-response curve for TyrP for sites in each kinase was similar. CCK-JMV, an agonist of the high affinity receptor state and antagonist of the low affinity receptor state, was less efficacious than CCK at each FAK/PYK2 site and inhibited CCK maximal stimulation. Thapsigargin decreased CCK-stimulated TyrP of pY402PYK2 and pY925FAK but not the other sites. GF109203X reduced TyrP of only the PYK2 sites, pY402 and pY580. GF109203X with thapsigargin decreased TyrP of pY402PYK2 and the three FAK sites more than either inhibitor alone. Basal TyrP of pY397FAK was greater than other sites. These results demonstrate that CCK stimulates tyrosine phosphorylation of each of the three homologous phosphorylation sites in FAK and PYK2. However, CCK-stimulated TyrP at these sites differs in kinetics, magnitude, and participation of the high/low affinity receptor states and by protein kinase C and [Ca2+]i. These results show that phosphorylation of these different sites is differentially regulated and involves different intracellular mechanisms in the same cell.
Collapse
Affiliation(s)
- Andrea Pace
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Tapia JA, Bragado MJ, García-Marín LJ, Jensen RT. Cholecystokinin-stimulated tyrosine phosphorylation of PKC-delta in pancreatic acinar cells is regulated bidirectionally by PKC activation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1593:99-113. [PMID: 12431789 DOI: 10.1016/s0167-4889(02)00346-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PKC-delta is important in cell growth, apoptosis, and secretion. Recent studies show its stability is regulated by tyrosine phosphorylation (TYR-P), which can be stimulated by a number of agents. Many of these stimuli also activate phospholipase C (PLC) cascades and little is known about the relationship between these cascades and PKC-delta TYR-P. Cholecystokinin (CCK) stimulates PKCs but it is unknown if it causes PKC-delta TYR-P and if so, the relationship between these cascades is unknown. In rat pancreatic acini, CCK-8 stimulated rapid PKC-delta TYR-P by activation of the low affinity CCK(A) receptor state. TPA had a similar effect. BAPTA did not decrease CCK-stimulated PKC-delta TYR-P but instead, increased it. A23187 did not stimulate PKC-delta TYR-P. Wortmannin and LY 294002 did not alter CCK-stimulated PKC-delta TYR-P. GF 109203X, at low concentrations, increased PKC-delta TYR-P stimulated by CCK or TPA and at higher concentrations, inhibited it. The cPKC inhibitors, Gö 6976 and safingol, caused a similar increase in TPA- and CCK-stimulated PKC-delta TYR-P. These results demonstrate that CCK(A) receptor activation causes PKC-delta TYR-P through activation of only one of its two receptor affinity states. This PKC-delta TYR-P is not directly influenced by changes in [Ca(2+)](i); however, the resultant activation of PKC-alpha has an inhibitory effect. Therefore, CCK activates both stimulatory and inhibitory PKC cascades regulating PKC-delta TYR-P and, hence, likely plays an important role in regulating PKC-delta degradation and cellular abundance.
Collapse
Affiliation(s)
- Jose A Tapia
- Departamento de Fisiología, Universidad de Extremadura, Cáceres 10071, Spain
| | | | | | | |
Collapse
|
20
|
Bouton AH, Riggins RB, Bruce-Staskal PJ. Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 2001; 20:6448-58. [PMID: 11607844 DOI: 10.1038/sj.onc.1204785] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Since Cas was first identified as a highly phosphorylated 130 kilodalton protein that associated with the v-Src and v-Crk-oncoproteins, considerable effort has been made to determine its function. Its predicted role as a scaffolding molecule based on its domain structure has been largely confirmed. Through its ability to undergo rapid changes in phosphorylation, subcellular localization and association with heterologous proteins, Cas may spatially and temporally regulate the function of its binding partners. Numerous proteins have been identified that bind to Cas in vitro and/or in vivo, but in only a few cases is there an understanding of how Cas may function in these protein complexes. To date, Cas-Crk and Cas-Src complexes have been most frequently implicated in Cas function, particularly in regards to processes involving regulation of the actin cytoskeleton and proliferation. These and other Cas protein complexes contribute to the critical role of Cas in cell adhesion, migration, proliferation and survival of normal cycling cells. However, under conditions in which these processes are deregulated, Cas appears to play a role in oncogenic transformation and perhaps metastasis. Therefore, in its capacity as an adapter protein, Cas serves as a point of convergence for many distinct signaling inputs, ultimately contributing to the generation of specific cellular responses.
Collapse
Affiliation(s)
- A H Bouton
- Department of Microbiology, University of Virginia School of Medicine, Box 800734, Charlottesville, Virginia VA 22908, USA.
| | | | | |
Collapse
|
21
|
Williams JA. Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 2001; 63:77-97. [PMID: 11181949 DOI: 10.1146/annurev.physiol.63.1.77] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular signaling mechanisms by which cholecystokinin (CCK) and other secretagogues regulate pancreatic acinar function are more complex than originally realized. CCK couples through heterotrimeric G proteins of the Gq family to lead to an increase in intracellular free Ca2+, which shows spatial and temporal patterns of signaling. The actions of Ca2+ are mediated in part by activation of a number of Ca2+-activated protein kinases and the protein phosphatase calcineurin. By the process of exocytosis the intracellular messengers Ca2+, diacylglycerol, and cAMP activate the release of the zymogen granule content in a manner that is poorly understood. This fusion event most likely involves SNARE and Rab proteins present on zymogen granules and cellular membrane domains. More likely related to nonsecretory aspects of cell function, CCK also activates three MAPK cascades leading to activation of ERKs, JNKs, and p38 MAPK. Although the function of these pathways is not well understood, ERKs are probably related to cell growth, and through phosphorylation of hsp27, p38 can affect the actin cytoskeleton. The PI3K (phosphatidylinositol 3-kinase)-mTOR (mammalian target of rapamycin) pathway is important for regulation of acinar cell protein synthesis because it leads to both activation of p70S6K and regulation of the availability of eIF4E in response to CCK. CCK also activates a number of tyrosyl phosphorylation events including that of p125FAK and other proteins associated with focal adhesions.
Collapse
Affiliation(s)
- J A Williams
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| |
Collapse
|
22
|
Bruce-Staskal PJ, Bouton AH. PKC-dependent activation of FAK and src induces tyrosine phosphorylation of Cas and formation of Cas-Crk complexes. Exp Cell Res 2001; 264:296-306. [PMID: 11262186 DOI: 10.1006/excr.2000.5137] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SH-SY5Y neuroblastoma cells are a well-characterized model for studying the induction of neuronal differentiation. TPA treatment of these cells induces cytoskeletal rearrangements that ultimately result in neurite extension. However, the signaling pathways that precede these changes are poorly understood. Other investigators have shown that TPA treatment of SH-SY5Y cells results in increased tyrosine phosphorylation of cytoskeletal-associated proteins, including the adapter protein Cas. In this report, we examine the events upstream and downstream of Cas phosphorylation. We show that TPA treatment induces the PKC-dependent association of tyrosine-phosphorylated Cas with Crk. The activity of two protein tyrosine kinases, Src and FAK, was shown to be necessary and sufficient for TPA-induced Cas phosphorylation. We propose that the PKC-dependent phosphorylation of Cas by Src and FAK promotes the establishment of Cas-Crk complexes and that these interactions may play an important role in regulating the actin cytoskeleton during neuronal differentiation.
Collapse
Affiliation(s)
- P J Bruce-Staskal
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0734, USA
| | | |
Collapse
|
23
|
Abstract
The pancreatic acinar cell is a valuable cell model for understanding how activation of plasma membrane receptors generates signals that propagate, amplify, diversify, and integrate to control cellular function. A primary signaling system involves the activation of heterotrimeric G proteins that stimulate phospholipases, leading to the generation of phospholipid messengers. A major action of the phospholipid messengers is the control of cytoplasmic Ca(2+) levels. The complex mechanisms involved in controlling the initiation, form, and spatial pattern of Ca(2+) release are being revealed in increasing detail and complexity. The connections between the signaling networks and the final events of secretion are beginning to be revealed. Advances have also been made in understanding the processes that underlie the pathologic effects of receptor overactivation.
Collapse
Affiliation(s)
- C D Logsdon
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
24
|
Rosado JA, Salido GM, García LJ. Activation of m3 muscarinic receptors induces rapid tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin in rat pancreatic acini. Arch Biochem Biophys 2000; 377:85-94. [PMID: 10775445 DOI: 10.1006/abbi.2000.1761] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tyrosine phosphorylation plays a key role in transmembrane and cytoplasmic signal transduction mechanisms stimulated by oncogenes, integrins, growth factors, neuropeptides, and bioactive lipids. Moreover, recent studies show that stimulation of odd-numbered muscarinic receptors increases the tyrosine phosphorylation of several proteins in different cellular types. The present study was aimed at examining whether activation of m3 muscarinic receptors in rat pancreatic acini evokes tyrosine phosphorylation of p125(FAK), and its substrates, p130(cas) and paxillin. Results show that stimulation of pancreatic acini with carbachol resulted in a rapid and transient increase in tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin. Tyrosine phosphorylation of these proteins occurred in a time- and concentration-dependent manner. Simultaneous blockage of both PKC activation and increases in [Ca(2+)](i) partially decreased p125(FAK), p130(cas), and paxillin tyrosine phosphorylation stimulated by carbachol. Pretreatment of pancreatic acini with Clostridium botulinum C3 transferase, which specifically inactivates p21(rho), partially inhibited carbachol-induced p125(FAK), p130(cas), and paxillin tyrosine phosphorylation. In contrast, this treatment had no effect on amylase release stimulated by carbachol. Cytochalasin D, which disrupts actin microfilaments network, completely inhibited carbachol stimulated tyrosine phosphorylation of these proteins without having significant effects in carbachol-stimulated amylase secretion. These results dissociate tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin from amylase secretion after m3 muscarinic receptors occupation in rat pancreatic acini. Taken together, these data suggest that (a) activation of m3 muscarinic receptors in rat pancreatic acini increases tyrosine phosphorylation of p125(FAK) and its substrates, p130(cas) and paxillin by diacylglycerol-activated PKC- and calcium- dependent, and independent pathways, (b) these responses require activation of p21(rho) and an intact actin cytoskeleton, and (c) p125(FAK), p130(cas), and paxillin are unlikely related to secretion in rat pancreatic acinar cells.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Extremadura, Cáceres, 10080-, Spain
| | | | | |
Collapse
|
25
|
Stromal cell-derived factor-1α stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 2000. [DOI: 10.1182/blood.v95.8.2505] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe stromal cell-derived factor-1 (SDF-1) is an alpha chemokine that binds to the CXCR4 receptor. Knock-out studies in mice demonstrate that this ligand-receptor pair is essential in hematopoiesis. One function of SDF-1 appears to be the regulation of migration of hematopoietic progenitor cells. We previously characterized signal transduction pathways induced by SDF-1 in human hematopoietic progenitors and found tyrosine phosphorylation of focal adhesion components, including the related adhesion focal tyrosine kinase (RAFTK), the adaptor molecule p130 Cas, and the cytoskeletal protein paxillin. To better understand the functional role of signaling molecules connecting the CXCR4 receptor to the process of hematopoietic migration, we studied SDF-1–mediated pathways in a model hematopoietic progenitor cell line (CTS), as well as in primary human bone marrow CD34+cells. We observed that several other focal adhesion components, including focal adhesion kinase (FAK) and the adaptor molecules Crk and Crk-L, are phosphorylated on SDF-1 stimulation. Using a series of specific small molecule inhibitors, both protein kinase C (PKC) and phosphoinositide-3 kinase (PI-3K) appeared to be required for SDF-1–mediated phosphorylation of focal adhesion proteins and the migration of both CTS and primary marrow CD34+ cells, whereas the mitogen-activated protein kinases ERK-1 and -2 were not. These studies further delineate the molecular pathways mediating hematopoietic progenitor migration and response to an essential chemokine, SDF-1.
Collapse
|
26
|
Stromal cell-derived factor-1α stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 2000. [DOI: 10.1182/blood.v95.8.2505.008k24_2505_2513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stromal cell-derived factor-1 (SDF-1) is an alpha chemokine that binds to the CXCR4 receptor. Knock-out studies in mice demonstrate that this ligand-receptor pair is essential in hematopoiesis. One function of SDF-1 appears to be the regulation of migration of hematopoietic progenitor cells. We previously characterized signal transduction pathways induced by SDF-1 in human hematopoietic progenitors and found tyrosine phosphorylation of focal adhesion components, including the related adhesion focal tyrosine kinase (RAFTK), the adaptor molecule p130 Cas, and the cytoskeletal protein paxillin. To better understand the functional role of signaling molecules connecting the CXCR4 receptor to the process of hematopoietic migration, we studied SDF-1–mediated pathways in a model hematopoietic progenitor cell line (CTS), as well as in primary human bone marrow CD34+cells. We observed that several other focal adhesion components, including focal adhesion kinase (FAK) and the adaptor molecules Crk and Crk-L, are phosphorylated on SDF-1 stimulation. Using a series of specific small molecule inhibitors, both protein kinase C (PKC) and phosphoinositide-3 kinase (PI-3K) appeared to be required for SDF-1–mediated phosphorylation of focal adhesion proteins and the migration of both CTS and primary marrow CD34+ cells, whereas the mitogen-activated protein kinases ERK-1 and -2 were not. These studies further delineate the molecular pathways mediating hematopoietic progenitor migration and response to an essential chemokine, SDF-1.
Collapse
|
27
|
Rosado JA, Salido GM, García LJ. A role for phosphoinositides in tyrosine phosphorylation of p125 focal adhesion kinase in rat pancreatic acini. Cell Signal 2000; 12:173-82. [PMID: 10704824 DOI: 10.1016/s0898-6568(99)00083-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that different agonists increase tyrosine phosphorylation of the focal adhesion related proteins p125(FAK), p130(Cas), and paxillin in different cell types and that tyrosine phosphorylation depends on the integrity of the actin cytoskeleton. Because phosphoinositides are important for the maintenance of the cytoskeleton, the role of phosphoinositides in the tyrosine phosphorylation of these proteins in response to occupancy of m3 muscarinic and CCK(A) receptors has been investigated in pancreatic acini. Addition of carbachol or CCK-8 to pancreatic acini resulted in rapid increases in the tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin. Pretreatment of pancreatic acini with LY294002 or wortmannin resulted in a concentration-dependent inhibition of tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin stimulated by carbachol or CCK-8. Carbachol- or CCK-8-stimulated tyrosine phosphorylation of these proteins was not inhibited by rapamycin, PD 98059 or SB 203580, and thus it was dissociated from the activation of p70 S6 or MAP kinases. These results indicate that m3 muscarinic and CCK(A) receptor-mediated increase in p125(FAK), p130(Cas), and paxillin tyrosine phosphorylation in pancreatic acini depends on the ability of these cells to synthesise phosphoinositides.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Extremadura, 10080-, Cáceres, Spain.
| | | | | |
Collapse
|
28
|
Leser J, Beil MF, Musa OA, Adler G, Lutz MP. Regulation of adherens junction protein p120(ctn) by 10 nM CCK precedes actin breakdown in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2000; 278:G486-91. [PMID: 10712269 DOI: 10.1152/ajpgi.2000.278.3.g486] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The initial pathophysiological events that characterize CCK-hyperstimulation pancreatitis include the breakdown of the actin filament system and disruption of cadherin-catenin protein complexes. Cadherins and catenins are part of adherens junctions, which may act as anchor for the cellular actin filament system. We examined the composition and regulation of adherens junctions during CCK-induced acinar cell damage. Freshly isolated CCK-stimulated rat pancreatic acini were examined for actin filaments and functional adherens junctions by immunocytology and laser confocal scanning microscopy or by coprecipitation and immunoblotting for E-cadherin, beta- and alpha-catenin, p120(ctn), and phosphotyrosine. In addition to E-cadherin and beta-catenin, acinar cells express the cadherin-regulatory protein p120(ctn) and the attachment protein alpha-catenin. Both colocalize and coimmunoprecipitate with E-cadherin in one complex, and all colocalize with the terminal actin web. Supramaximal secretory CCK concentrations (10 nM) initiated tyrosine phosphorylation of p120(ctn) but not of beta-catenin within 2 min, preceding the breakdown of the terminal actin web by several minutes. Under these conditions, the cadherin-catenin association within the adherens junction complex remained intact. We describe for the first time supramaximal CCK-dependent tyrosine phosphorylation of the adherens junction protein p120(ctn) and demonstrate the presence of an intact adherens junction protein complex in acinar cells. p120(ctn) may participate in the actin filament breakdown during experimental conditions mimicking pancreatitis.
Collapse
Affiliation(s)
- J Leser
- Department of Internal Medicine I, University of Ulm, 89070 Ulm, Germany
| | | | | | | | | |
Collapse
|
29
|
Zhou J, Montrose-Rafizadeh C, Janczewski AM, Pineyro MA, Sollott SJ, Wang Y, Egan JM. Glucagon-like peptide-1 does not mediate amylase release from AR42J cells. J Cell Physiol 1999; 181:470-8. [PMID: 10528233 DOI: 10.1002/(sici)1097-4652(199912)181:3<470::aid-jcp11>3.0.co;2-p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, AR42J pancreatic acinar cells were used to investigate if glucagon-like peptide-1 (GLP-1) or glucagon might influence amylase release and acinar cell function. We first confirmed the presence of GLP-1 receptors on AR42J cells by reverse trasncriptase-polymerase chain reaction (RT-PCR), Western blotting, and partial sequencing analysis. While cholecystokinin (CCK) increased amylase release from AR42J cells, GLP-1, alone or in the presence of CCK, had no effect on amylase release but both CCK and GLP-1 increased intracellular calcium. Similar to GLP-1, glucagon increased both cyclic adenosine monophosphate (cAMP) and intracellular calcium in AR42J cells but it actually decreased CCK-mediated amylase release (n = 20, P < 0.01). CCK stimulation resulted in an increase in tyrosine phosphorylation of several cellular proteins, unlike GLP-1 treatment, where no such increased phosphorylation was seen. Instead, GLP-1 decreased such protein phosphorylations. Genestein blocked CCK-induced phosphorylation events and amylase secretion while vanadate increased amylase secretion. These results provide evidence that tyrosine phosphorylation is necessary for amylase release and that signaling through GLP-1 receptors does not mediate amylase release in AR42J cells. J. Cell. Physiol. 181:470-478, 1999. Published 1999 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J Zhou
- Diabetes Section, Gerontology Research Center, National Institute on Aging, National Institiutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Tapia JA, Ferris HA, Jensen RT, García LJ. Cholecystokinin activates PYK2/CAKbeta by a phospholipase C-dependent mechanism and its association with the mitogen-activated protein kinase signaling pathway in pancreatic acinar cells. J Biol Chem 1999; 274:31261-31271. [PMID: 10531323 DOI: 10.1074/jbc.274.44.31261] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PYK2/CAKbeta is a recently described cytoplasmic tyrosine kinase related to p125 focal adhesion kinase (p125(FAK)) that can be activated by a number of stimuli including growth factors, lipids, and some G protein-coupled receptors. Studies suggest PYK2/CAKbeta may be important for coupling various G protein-coupled receptors to the mitogen-activated protein kinase (MAPK) cascade. The hormone neurotransmitter cholecystokinin (CCK) is known to activate both phospholipase C-dependent cascades and MAPK signaling pathways; however, the relationship between these remain unclear. In rat pancreatic acini, CCK-8 (10 nM) rapidly stimulated tyrosine phosphorylation and activation of PYK2/CAKbeta by both activation of high affinity and low affinity CCK(A) receptor states. Blockage of CCK-stimulated increases in protein kinase C activity or CCK-stimulated increases in [Ca(2+)](i), inhibited by 40-50% PYK2/CAKbeta but not p125(FAK) tyrosine phosphorylation. Simultaneous blockage of both phospholipase C cascades inhibited PYK2/CAKbeta tyrosine phosphorylation completely and p125(FAK) tyrosine phosphorylation by 50%. CCK-8 stimulated a rapid increase in PYK2/CAKbeta kinase activity assessed by both an in vitro kinase assay and autophosphorylation. Total PYK2/CAKbeta under basal conditions was largely localized (77 +/- 7%) in the membrane fraction, whereas total p125(FAK) was largely localized (86 +/- 3%) in the cytosolic fraction. With CCK stimulation, both p125(FAK) and PYK2/CAKbeta translocated to the plasma membrane. Moreover CCK stimulation causes a rapid formation of both PYK2/CAKbeta-Grb2 and PYK2/CAKbeta-Crk complexes. These results demonstrate that PYK2/CAKbeta and p125(FAK) are regulated differently by CCK(A) receptor stimulation and that PYK2/CAKbeta is probably an important mediator of downstream signals by CCK-8, especially in its ability to activate the MAPK signaling pathway, which possibly mediates CCK growth effects in normal and neoplastic tissues.
Collapse
Affiliation(s)
- J A Tapia
- Departamento de Fisiología, Universidad de Extremadura, Cáceres 10071, Spain
| | | | | | | |
Collapse
|