1
|
Bloodworth N, Chen W, Hunter K, Patrick D, Palubinsky A, Phillips E, Roeth D, Kalkum M, Mallal S, Davies S, Ao M, Moretti R, Meiler J, Harrison DG. Posttranslationally modified self-peptides promote hypertension in mouse models. J Clin Invest 2024; 134:e174374. [PMID: 39145457 PMCID: PMC11324298 DOI: 10.1172/jci174374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/13/2024] [Indexed: 08/16/2024] Open
Abstract
Posttranslational modifications can enhance immunogenicity of self-proteins. In several conditions, including hypertension, systemic lupus erythematosus, and heart failure, isolevuglandins (IsoLGs) are formed by lipid peroxidation and covalently bond with protein lysine residues. Here, we show that the murine class I major histocompatibility complex (MHC-I) variant H-2Db uniquely presents isoLG-modified peptides and developed a computational pipeline that identifies structural features for MHC-I accommodation of such peptides. We identified isoLG-adducted peptides from renal proteins, including sodium glucose transporter 2, cadherin 16, Kelch domain-containing protein 7A, and solute carrier family 23, that are recognized by CD8+ T cells in tissues of hypertensive mice, induce T cell proliferation in vitro, and prime hypertension after adoptive transfer. Finally, we find patterns of isoLG-adducted antigen restriction in class I human leukocyte antigens that are similar to those in murine analogs. Thus, we have used a combined computational and experimental approach to define likely antigenic peptides in hypertension.
Collapse
Affiliation(s)
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine
| | - Kuniko Hunter
- Division of Clinical Pharmacology, Department of Medicine
| | - David Patrick
- Division of Clinical Pharmacology, Department of Medicine
| | | | - Elizabeth Phillips
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel Roeth
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Markus Kalkum
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Simon Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Sean Davies
- Division of Clinical Pharmacology, Department of Medicine
| | - Mingfang Ao
- Division of Clinical Pharmacology, Department of Medicine
| | | | - Jens Meiler
- Center for Structural Biology, and
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Institute for Drug Discovery, Universität Leipzig Medical School, Leipzig, Germany
| | | |
Collapse
|
2
|
Rathmacher JA, Fuller JC, Abumrad NN, Flynn CR. Inflammation Biomarker Response to Oral 2-Hydroxybenzylamine (2-HOBA) Acetate in Healthy Humans. Inflammation 2023; 46:1343-1352. [PMID: 36935449 PMCID: PMC10025056 DOI: 10.1007/s10753-023-01801-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
Inflammation is associated with the formation of reactive oxygen species (ROS) and the formation of lipid-derived compounds, such as isolevuglandins (IsoLGs), malondialdehyde, 4-hydroxy-nonenal, and 4-oxo-nonenal. The most reactive of these are the IsoLGs, which form covalent adducts with lysine residues and other cellular primary amines leading to changes in protein function, immunogenicity, and epigenetic alterations and have been shown to contribute to a number of inflammatory diseases. 2-Hydroxybenzylamine (2-HOBA) is a natural compound found in buckwheat seeds and reacts with all IsoLG adducts preventing adduct formation with proteins and DNA. Therefore, 2-HOBA is well positioned as an agent for the prevention of inflammatory-prone diseases. In this study, we examined the potential beneficial effects of 2-HOBA on oxidative stress and inflammatory biomarkers in two cohorts of healthy younger and older adults. We utilized the Olink® targeted inflammation panel before and after an oral 15-day treatment regimen with 2-HOBA. We found significant relative changes in the plasma concentration of 15 immune proteins that may reflect the in vivo immune targets of 2-HOBA. Treatment of 2-HOBA resulted in significant increased levels of CCL19, IL-12β, IL-20Rα, and TNFβ, whereas levels of TWEAK significantly decreased. Ingenuity Pathway Analysis identified canonical pathways regulated by the differentially secreted cytokines, chemokines, and growth factors upon 2-HOBA treatment and further points to biofunctions related to the recruitment, attraction, and movement of different immune cell types. In conclusion, 2-HOBA significantly altered the protein biomarkers CCL19, IL-12β, IL-20Rα, TNFβ, and TWEAK, and these may be responsible for the protective effects of 2-HOBA against reactive electrophiles, such as IsoLGs, commonly expressed in conditions of excessive oxidative stress. 2-HOBA has a role as a IsoLG scavenger to proactively improve immune health in a variety of conditions.
Collapse
Affiliation(s)
- John A Rathmacher
- MTI BioTech, Inc, Iowa State University Research Park, Ames, IA, USA
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Naji N Abumrad
- MTI BioTech, Inc, Iowa State University Research Park, Ames, IA, USA
- Metabolic Technologies, LLC, Missoula, MT, USA
- Department of Surgery, Vanderbilt University Medical Center, MRBIV Room 8465A, Nashville, TN, 37232, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, MRBIV Room 8465A, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Gobert AP, Asim M, Smith TM, Williams KJ, Barry DP, Allaman MM, McNamara KM, Hawkins CV, Delgado AG, Zhao S, Piazuelo MB, Washington MK, Coburn LA, Rathmacher JA, Wilson KT. Electrophilic reactive aldehydes as a therapeutic target in colorectal cancer prevention and treatment. Oncogene 2023; 42:1685-1691. [PMID: 37037901 PMCID: PMC10182918 DOI: 10.1038/s41388-023-02691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Colorectal cancer (CRC) is a major health problem worldwide. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation and form covalent adducts with amine-containing macromolecules. We have shown high levels of adducts of isoLGs in colonic epithelial cells of patients with CRC. We thus investigated the role of these reactive aldehydes in colorectal cancer development. We found that 2-hydroxybenzylamine (2-HOBA), a natural compound derived from buckwheat seeds that acts as a potent scavenger of electrophiles, is bioavailable in the colon of mice after supplementation in the drinking water and does not affect the colonic microbiome. 2-HOBA reduced the level of isoLG adducts to lysine as well as tumorigenesis in models of colitis-associated carcinogenesis and of sporadic CRC driven by specific deletion of the adenomatous polyposis coli gene in colonic epithelial cells. In parallel, we found that oncogenic NRF2 activation and signaling were decreased in the colon of 2-HOBA-treated mice. Additionally, the growth of xenografted human HCT116 CRC cells in nude mice was significantly attenuated by 2-HOBA supplementation. In conclusion, 2-HOBA represents a promising natural compound for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kamery J Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - John A Rathmacher
- MTI BioTech Inc., Iowa State University Research Park, Ames, IA, USA
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
4
|
Aschner M, Nguyen TT, Sinitskii AI, Santamaría A, Bornhorst J, Ajsuvakova OP, da Rocha JBT, Skalny AV, Tinkov AA. Isolevuglandins (isoLGs) as toxic lipid peroxidation byproducts and their pathogenetic role in human diseases. Free Radic Biol Med 2021; 162:266-273. [PMID: 33099003 DOI: 10.1016/j.freeradbiomed.2020.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Lipid peroxidation results in generation of a variety of lipid hydroperoxides and other highly reactive species that covalently modify proteins, nucleic acids, and other lipids, thus resulting in lipotoxicity. Although biological relevance of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) is well studied, the existing data on the role of isolevuglandins (isoLGs) in pathology are insufficient. Therefore, the objective of the present study was to review the existing data on biological effects of isoLG and isoLG adducts and their role in multiple diseases. Sixty four highly reactive levuglandin-like γ-ketoaldehyde (γ-KA, or isoketals, IsoK, or isolevuglandins, IsoLG) regio- and stereo-isomers are formed as products of arachidonic acid oxidation. IsoLGs react covalently with lysyl residues of proteins to form a stable adduct and intramolecular aminal, bispyrrole, and trispyrrole cross-links. Phosphatidylethanolamine was also shown to be the target for isoLG binding as compared to proteins and DNA. Free IsoLGs are not detectable in vivo, although isolevuglandin adduction to amino acid residues of particular proteins may be evaluated with liquid chromatography-tandem mass spectrometry. Adducts formed were shown to play a significant role in the development and maintenance of oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and inflammation. These, and more specific molecular pathways, link isoLG and isoLG-adduct formation to develop a variety of pathologies, including cardiovascular diseases (atherosclerosis, hypertension, heart failure), obesity and diabetes, cancer, neurodegeneration, eye diseases (retinal degeneration and glaucoma), as well as ageing. Hypothetically, isoLGs and isoLG adduct formation may be considered as the potential target for treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Thuy T Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Olga P Ajsuvakova
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
5
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Guad RM, Udupa K, Fuloria NK. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants (Basel) 2020; 9:1075. [PMID: 33147856 PMCID: PMC7692604 DOI: 10.3390/antiox9111075] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Bedong 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Kaviraja Udupa
- Department of Neurophysiology, NIMHANS, Bangalore 560029, India;
| | | |
Collapse
|
6
|
May-Zhang LS, Kirabo A, Huang J, Linton MF, Davies SS, Murray KT. Scavenging Reactive Lipids to Prevent Oxidative Injury. Annu Rev Pharmacol Toxicol 2020; 61:291-308. [PMID: 32997599 DOI: 10.1146/annurev-pharmtox-031620-035348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidative injury due to elevated levels of reactive oxygen species is implicated in cardiovascular diseases, Alzheimer's disease, lung and liver diseases, and many cancers. Antioxidant therapies have generally been ineffective at treating these diseases, potentially due to ineffective doses but also due to interference with critical host defense and signaling processes. Therefore, alternative strategies to prevent oxidative injury are needed. Elevated levels of reactive oxygen species induce lipid peroxidation, generating reactive lipid dicarbonyls. These lipid oxidation products may be the most salient mediators of oxidative injury, as they cause cellular and organ dysfunction by adducting to proteins, lipids, and DNA. Small-molecule compounds have been developed in the past decade to selectively and effectively scavenge these reactive lipid dicarbonyls. This review outlines evidence supporting the role of lipid dicarbonyls in disease pathogenesis, as well as preclinical data supporting the efficacy of novel dicarbonyl scavengers in treating or preventing disease.
Collapse
Affiliation(s)
- Linda S May-Zhang
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Jiansheng Huang
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - MacRae F Linton
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Sean S Davies
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Katherine T Murray
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| |
Collapse
|
7
|
Davies SS, May-Zhang LS, Boutaud O, Amarnath V, Kirabo A, Harrison DG. Isolevuglandins as mediators of disease and the development of dicarbonyl scavengers as pharmaceutical interventions. Pharmacol Ther 2019; 205:107418. [PMID: 31629006 DOI: 10.1016/j.pharmthera.2019.107418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Products of lipid peroxidation include a number of reactive lipid aldehydes such as malondialdehyde, 4-hydroxy-nonenal, 4-oxo-nonenal, and isolevuglandins (IsoLGs). Although these all contribute to disease processes, the most reactive are the IsoLGs, which rapidly adduct to lysine and other cellular primary amines, leading to changes in protein function, cross-linking and immunogenicity. Their rapid reactivity means that only IsoLG adducts, and not the unreacted aldehyde, can be readily measured. This high reactivity also makes it challenging for standard cellular defense mechanisms such as aldehyde reductases and oxidases to dispose of them before they react with proteins and other cellular amines. This led us to seek small molecule primary amines that might trap and inactivate IsoLGs before they could modify cellular proteins or other endogenous cellular amines such as phosphatidylethanolamines to cause disease. Our studies identified 2-aminomethylphenols including 2-hydroxybenzylamine as IsoLG scavengers. Subsequent studies showed that they also trap other lipid dicarbonyls that react with primary amines such as 4-oxo-nonenal and malondialdehyde, but not hydroxyalkenals like 4-hydroxy-nonenal that preferentially react with soft nucleophiles. This review describes the use of these 2-aminomethylphenols as dicarbonyl scavengers to assess the contribution of IsoLGs and other amine-reactive lipid dicarbonyls to disease and as therapeutic agents.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States.
| | - Linda S May-Zhang
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Olivier Boutaud
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Venkataraman Amarnath
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| | - David G Harrison
- Division of Clinical Pharmacology and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
8
|
Yermalitsky VN, Matafonova E, Tallman K, Li Z, Zackert W, Roberts LJ, Amarnath V, Davies SS. Simplified LC/MS assay for the measurement of isolevuglandin protein adducts in plasma and tissue samples. Anal Biochem 2019; 566:89-101. [DOI: 10.1016/j.ab.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
|
9
|
Davies SS, May-Zhang LS. Isolevuglandins and cardiovascular disease. Prostaglandins Other Lipid Mediat 2018; 139:29-35. [PMID: 30296489 DOI: 10.1016/j.prostaglandins.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 11/30/2022]
Abstract
Isolevuglandins are 4-ketoaldehydes formed by peroxidation of arachidonic acid. Isolevuglandins react rapidly with primary amines including the lysyl residues of proteins to form irreversible covalent modifications. This review highlights evidence for the potential role of isolevuglandin modification in the disease processes, especially atherosclerosis, and some of the tools including small molecule dicarbonyl scavengers utilized to assess their contributions to disease.
Collapse
Affiliation(s)
- Sean S Davies
- Department of Pharmacology, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Linda S May-Zhang
- Department of Pharmacology, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
10
|
Nguyen TT, Caito SW, Zackert WE, West JD, Zhu S, Aschner M, Fessel JP, Roberts LJ. Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7. Aging (Albany NY) 2017; 8:1759-80. [PMID: 27514077 PMCID: PMC5032694 DOI: 10.18632/aging.101011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension.
Collapse
Affiliation(s)
- Thuy T Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samuel W Caito
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - William E Zackert
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - James D West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shijun Zhu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joshua P Fessel
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Serbulea V, DeWeese D, Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radic Biol Med 2017; 111:156-168. [PMID: 28232205 PMCID: PMC5511074 DOI: 10.1016/j.freeradbiomed.2017.02.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/26/2022]
Abstract
Oxidized phospholipids are products of lipid oxidation that are found on oxidized low-density lipoproteins and apoptotic cell membranes. These biologically active lipids were shown to affect a variety of cell types and attributed pro-as well as anti-inflammatory effects. In particular, macrophages exposed to oxidized phospholipids drastically change their gene expression pattern and function. These 'Mox,'macrophages were identified in atherosclerotic lesions, however, it remains unclear how lipid oxidation products are sensed by macrophages and how they influence their biological function. Here, we review recent developments in the field that provide insight into the structure, recognition, and downstream signaling of oxidized phospholipids in macrophages.
Collapse
Affiliation(s)
- Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Dory DeWeese
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| |
Collapse
|
12
|
Davies SS, Zhang LS. Reactive Carbonyl Species Scavengers-Novel Therapeutic Approaches for Chronic Diseases. ACTA ACUST UNITED AC 2017; 3:51-67. [PMID: 28993795 DOI: 10.1007/s40495-017-0081-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF THE REVIEW To summarize recent evidence supporting the use of reactive carbonyl species scavengers in the prevention and treatment of disease. RECENT FINDINGS The newly developed 2-aminomethylphenol class of scavengers shows great promise in preclinical trials for a number of diverse conditions including neurodegenerative diseases and cardiovascular disease. In addition, new studies with the thiol-based and imidazole-based scavengers have found new applications outside of adjunctive therapy for chemotherapeutics. SUMMARY Reactive oxygen species (ROS) generated by cells and tissues act as signaling molecules and as cytotoxic agents to defend against pathogens, but ROS also cause collateral damage to vital cellular components. The polyunsaturated fatty acyl chains of phospholipids in the cell membranes are particularly vulnerable to damaging peroxidation by ROS. Evidence suggests that the breakdown of these peroxidized lipids to reactive carbonyls species plays a critical role in many chronic diseases. Antioxidants that abrogate ROS-induced formation of reactive carbonyl species also abrogate normal ROS signaling and thus exert both beneficial and adverse functional effects. The use of scavengers of reactive dicarbonyl species represent an alternative therapeutic strategy to potentially mitigate the adverse effects of ROS without abrogating normal signaling by ROS. In this review, we focus on three classes of reactive carbonyl species scavengers: thiol-based scavengers (2-mercaptoethanesulfonate and amifostine), imidazole-based scavengers (carnosine and its analogs), and 2-aminomethylphenols-based scavengers (pyridoxamine, 2-hydroxybenzylamine, and 5'-O-pentyl-pyridoxamine) that are either undergoing pre-clinical studies, advancing to clinical trials, or are already in clinical use.
Collapse
Affiliation(s)
- Sean S Davies
- Department of Pharmacology and Division of Clinical Pharmacology, Vanderbilt University, 556 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602
| | - Linda S Zhang
- Department of Pharmacology and Division of Clinical Pharmacology, Vanderbilt University, 556 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6602
| |
Collapse
|
13
|
Longato L, Andreola F, Davies SS, Roberts JL, Fusai G, Pinzani M, Moore K, Rombouts K. Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro. Free Radic Biol Med 2017; 102:162-173. [PMID: 27890721 DOI: 10.1016/j.freeradbiomed.2016.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
AIMS Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of HSC. RESULTS Primary human HSC were exposed to 15-E2-IsoLG for up to 48h. Exposure to 5μM 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500nM) 15-E2-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response. INNOVATION This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis. CONCLUSIONS IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy.
Collapse
Affiliation(s)
- Lisa Longato
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jackson L Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Giuseppe Fusai
- Division of Surgery, University College London, Royal Free, London, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Kevin Moore
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK.
| |
Collapse
|
14
|
Abstract
4-Oxo-2-nonenal (ONE), a product of cellular lipid oxidation, reacts nonspecifically with the lysine residues of proteins and is generated in increased amounts during degenerative diseases and cancer. We show that pyridoxamine, salicylamine, and related 2-aminomethylphenols react with ONE, to form pyrrolo[2,1-b][1,3]oxazines with the participation of both the amino and the phenolic groups. 2-Aminomethylphenols react with ONE as well as with the Michael adducts of ONE much more rapidly than lysine, suggesting their use for therapeutically scavenging ONE.
Collapse
Affiliation(s)
- Venkataraman Amarnath
- Department of Pathology, Microbiology and Immunology, and ‡Division of Clinical Pharmacology Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Kalyani Amarnath
- Department of Pathology, Microbiology and Immunology, and ‡Division of Clinical Pharmacology Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| |
Collapse
|
15
|
Carrier EJ, Zagol-Ikapitte I, Amarnath V, Boutaud O, Oates JA. Levuglandin forms adducts with histone h4 in a cyclooxygenase-2-dependent manner, altering its interaction with DNA. Biochemistry 2014; 53:2436-41. [PMID: 24684440 PMCID: PMC4004227 DOI: 10.1021/bi401673b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Inflammation and subsequent cyclooxygenase-2
(COX-2) activity has
long been linked with the development of cancer, although little is
known about any epigenetic effects of COX-2. A product of COX-2 activation,
levuglandin (LG) quickly forms covalent bonds with nearby primary
amines, such as those in lysine, which leads to LG-protein adducts.
Here, we demonstrate that COX-2 activity causes LG-histone adducts
in cultured cells and liver tissue, detectable through LC–MS,
with the highest incidence in histone H4. Adduction is blocked by
a γ-ketoaldehyde scavenger, which has no effect on COX-2 activity
as measured by PGE2 production. Formation of the LG-histone
adduct is associated with an increased histone solubility in NaCl,
indicating destabilization of the nucleosome structure; this is also
reversed with scavenger treatment. These data demonstrate that COX-2
activity can cause histone adduction and loosening of the nucleosome
complex, which could lead to altered transcription and contribute
to carcinogenesis.
Collapse
Affiliation(s)
- Erica J Carrier
- Departments of †Pharmacology, ‡Pathology, and §Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | | | |
Collapse
|
16
|
Aldrovandi M, Hammond VJ, Podmore H, Hornshaw M, Clark SR, Marnett LJ, Slatter DA, Murphy RC, Collins PW, O'Donnell VB. Human platelets generate phospholipid-esterified prostaglandins via cyclooxygenase-1 that are inhibited by low dose aspirin supplementation. J Lipid Res 2013; 54:3085-97. [PMID: 23883581 PMCID: PMC3793613 DOI: 10.1194/jlr.m041533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxidized phospholipids (oxPLs) generated nonenzymatically display pleiotropic biological actions in inflammation. Their generation by cellular cyclooxygenases (COXs) is currently unknown. To determine whether platelets generate prostaglandin (PG)-containing oxPLs, then characterize their structures and mechanisms of formation, we applied precursor scanning-tandem mass spectrometry to lipid extracts of agonist-activated human platelets. Thrombin, collagen, or ionophore activation stimulated generation of families of PGs comprising PGE2 and D2 attached to four phosphatidylethanolamine (PE) phospholipids (16:0p/, 18:1p/, 18:0p/, and 18:0a/). They formed within 2 to 5 min of activation in a calcium, phospholipase C, p38 MAP kinases, MEK1, cPLA2, and src tyrosine kinase-dependent manner (28.1 ± 2.3 pg/2 × 108 platelets). Unlike free PGs, they remained cell associated, suggesting an autocrine mode of action. Their generation was inhibited by in vivo aspirin supplementation (75 mg/day) or in vitro COX-1 blockade. Inhibitors of fatty acyl reesterification blocked generation significantly, while purified COX-1 was unable to directly oxidize PE in vitro. This indicates that they form in platelets via rapid esterification of COX-1 derived PGE2/D2 into PE. In summary, COX-1 in human platelets acutely mediates membrane phospholipid oxidation via formation of PG-esterified PLs in response to pathophysiological agonists.
Collapse
Affiliation(s)
- Maceler Aldrovandi
- Institute of Infection and Immunity, School of Medicine, Cardiff University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
El-Ansary A, Al-Ayadhi L. Lipid mediators in plasma of autism spectrum disorders. Lipids Health Dis 2012; 11:160. [PMID: 23170784 PMCID: PMC3557222 DOI: 10.1186/1476-511x-11-160] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/26/2012] [Indexed: 12/31/2022] Open
Abstract
Background Inflammation is increasingly recognized as being of both physiological and pathological importance in the immature brain. Cerebellar pathology occurs in autism, as a neurodevelopmental disorder with genetic and environmental origins. The genesis of this disorder is still not understood but inflammation in utero or early in childhood is an environmental risk factor. Methods Prostaglandin E2 (PGE2), cysteinyl leukotriene as two important lipid mediators together with 8 isoprostane as marker of oxidative stress were measured using ELISA in plasma of 20 male autistic patients compared to 19 age and gender matching control participants. Results PGE2, leukotrienes and isoprostanes recorded significantly elevated levels in autistics compared to controls. Role of these measured parameters in inflammation and autoimmunity as two etiological factors in autism were discussed in details. Conclusion Receiver Operating Characteristic (ROC) curve analysis shows satisfactory values of area under the curve (AUC) which could reflect the high degree of specificity and sensitivity of the altered PGE2, leukotrienes and isoprostanes as predictive biomarkers in autistic patients from Saudi Arabia.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
18
|
Yu R, Xiao L, Zhao G, Christman JW, van Breemen RB. Competitive enzymatic interactions determine the relative amounts of prostaglandins E2 and D2. J Pharmacol Exp Ther 2011; 339:716-25. [PMID: 21865441 PMCID: PMC3199988 DOI: 10.1124/jpet.111.185405] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/22/2011] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins (PGs) are a family of cellular messengers exerting diverse homeostatic and pathophysiologic effects. Recently, several studies reported significant increases of PGI(2) and PGF(2α) after the inhibition of microsomal PGE synthase-1 (mPGES-1) expression, which indicated that PGH(2) metabolism might be redistributed when the PGE(2) pathway is blocked. To address the determinants that govern the relative amounts of PGs, we developed an in vitro cell-free method, based on liquid chromatography-tandem mass spectrometry, to measure the exact amounts of these PGs formed in response to the addition of recombinant isomerases and their selective inhibitors. Our in vitro cell-free assay results were confirmed in cells using bone marrow-derived macrophage. Initially, we determined the in vitro stability of PGH(2) and noted that there was spontaneous nonenzymatic conversion to PGD(2) and PGE(2). mPGES-1 markedly increased the conversion to PGE(2) and decreased conversion to PGD(2). Reciprocally, the addition of hematopoietic or lipocalin PGD synthase resulted in a relative increase of PGD(2) and decrease of PGE(2). A detailed titration study showed that the ratio of PGE(2)/PGD(2) was closely correlated with the ratio of PGE synthase/PGD synthase. Our redistribution results also provide the foundation for understanding how PGH(2) metabolism is redistributed by the presence of distal isomerases or by blocking the major metabolic outlet, which could determine the relative benefits and risks resulting from interdiction in nonrated-limiting components of PG synthesis pathways.
Collapse
Affiliation(s)
- Rui Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612-7231, USA
| | | | | | | | | |
Collapse
|
19
|
Zhang M, Li W, Li T. Generation and detection of levuglandins and isolevuglandins in vitro and in vivo. Molecules 2011; 16:5333-48. [PMID: 21705973 PMCID: PMC6264246 DOI: 10.3390/molecules16075333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 02/02/2023] Open
Abstract
Levuglandins (LGs) and isolevuglandins (isoLGs), formed by rearrangement of endoperoxide intermediates generated through the cyclooxygenase and free radical induced oxidation of polyunsaturated fatty acids (PUFAs), are extraordinarily reactive, forming covalent adducts incorporating protein lysyl ε-amino groups. Because they accumulate, these adducts provide a dosimeter of oxidative injury. This review provides an updated and comprehensive overview of the generation of LG/isoLG in vitro and in vivo and the detection methods for the adducts of LG/isoLG and biological molecules in vivo.
Collapse
Affiliation(s)
- Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; E-Mail: (M.Z.)
| | - Wei Li
- Office of the Texas State Chemist, Texas A&M University, College Station, TX 77845, USA; E-Mail: (W.L.)
| | - Tao Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +86-278-374-6960
| |
Collapse
|
20
|
Determination of 3-methoxysalicylamine levels in mouse plasma and tissue by liquid chromatography-tandem mass spectrometry: application to in vivo pharmacokinetics studies. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1098-104. [PMID: 21489890 DOI: 10.1016/j.jchromb.2011.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/07/2011] [Accepted: 03/12/2011] [Indexed: 11/23/2022]
Abstract
We report the development of a sensitive liquid chromatography-tandem mass spectrometric assay to quantitate 3-methoxysalicylamine (3-MoSA) in biological samples. Derivatization with 1,1'-thiocarbonyldiimidazole followed by C(18) reverse-phase chromatography allowed the detection of both analyte and internal standard (hexylsalicylamine) using electrospray ionization and selected reaction monitoring (SRM) in positive ion mode. We monitored the transitions from m/z 196.7 to 65.1 and from m/z 250.1 to 77.1 for 3-MoSA and HxSA, respectively. The method is validated with respect to linearity (r(2)=0.995), precision (<17% RSD), recovery (100% for 3-MoSA and HxSA), and stability (77% after storage up to 7 month at -80°C). The LOD and LOQ were 16.12 and 48.87 μg/l, respectively and the LLOQ of 1 pg/ml. In addition, we used this assay to analyze the pharmacokinetics of 3-MoSA in mouse plasma and tissues following both intraperitoneal and oral administration, providing new information regarding the distribution of this compound in vivo.
Collapse
|
21
|
Holinstat M, Boutaud O, Apopa PL, Vesci J, Bala M, Oates JA, Hamm HE. Protease-activated receptor signaling in platelets activates cytosolic phospholipase A2α differently for cyclooxygenase-1 and 12-lipoxygenase catalysis. Arterioscler Thromb Vasc Biol 2010; 31:435-42. [PMID: 21127289 DOI: 10.1161/atvbaha.110.219527] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The rate-limiting step in the biosynthesis of thromboxane A(2) (TxA(2)) and 12-hydroxyeicosatetraenoic acid (12-HETE) by platelets is activation of cytosolic phospholipase A(2α) (cPLA(2α)), which releases arachidonic acid, which is the substrate for cyclooxygenase-1 (COX-1) and 12-lipoxygenase. We evaluated signaling via the human platelet thrombin receptors, protease-activated receptor (PAR) 1 and PAR4, to the activation of cPLA(2α), which provides a substrate for the biosynthesis of TxA(2) and 12-HETE. METHODS AND RESULTS Stimulating washed human platelets resulted in delayed biosynthesis of 12-HETE, which continues after maximal formation of TxA(2) is completed, suggesting that 12-HETE is not formed by the same pool of arachidonic acid that provides a substrate to COX-1. PAR1-induced formation of TxA(2) was inhibited by the phosphatidylinositol kinase inhibitor LY294002, whereas this inhibitor did not block 12-HETE biosynthesis. Both 1-butanol and propranolol also blocked TxA(2) biosynthesis but did not inhibit 12-HETE formation. CONCLUSIONS The concerted evidence indicates that the platelet thrombin receptors signal activation of cPLA(2α) coupled to COX-1 by a pathway different from that signaling activation of the cPLA(2α) coupled to 12-lipoxygenase.
Collapse
Affiliation(s)
- Michael Holinstat
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zagol-Ikapitte I, Amarnath V, Bala M, Roberts LJ, Oates JA, Boutaud O. Characterization of scavengers of gamma-ketoaldehydes that do not inhibit prostaglandin biosynthesis. Chem Res Toxicol 2010; 23:240-50. [PMID: 20041722 DOI: 10.1021/tx900407a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of cyclooxygenase-2 (COX-2) is associated with the development of many pathologic conditions. The product of COX-2, prostaglandin H(2) (PGH(2)), can spontaneously rearrange to form reactive gamma-ketoaldehydes called levuglandins (LGs). This gamma-ketoaldehyde structure confers a high degree of reactivity on the LGs, which rapidly form covalent adducts with primary amines of protein residues. Formation of LG adducts of proteins has been demonstrated in pathologic conditions (e.g., increased levels in the hippocampus in Alzheimer's disease) and during physiologic function (platelet activation). On the basis of knowledge that lipid modification of proteins is known to cause their translocation and to alter their function, we hypothesize that modification of proteins by LG could have functional consequences. Testing this hypothesis requires an experimental approach that discriminates between the effects of protein modification by LG and the effects of cyclooxygenase-derived prostanoids acting through their G-protein coupled receptors. To achieve this goal, we have synthesized and evaluated a series of scavengers that react with LG with a potency more than 2 orders of magnitude greater than that with the epsilon-amine of lysine. A subset of these scavengers are shown to block the formation of LG adducts of proteins in cells without inhibiting the catalytic activity of the cyclooxygenases. Ten of these selective scavengers did not produce cytotoxicity. These results demonstrate that small molecules can scavenge LGs in cells without interfering with the formation of prostaglandins. They also provide a working hypothesis for the development of pharmacologic agents that could be used in experimental animals in vivo to assess the pathophysiological contribution of levuglandins in diseases associated with cyclooxygenase up-regulation.
Collapse
Affiliation(s)
- Irene Zagol-Ikapitte
- Departments of Pharmacology, Pathology, and Medicine, Vanderbilt University, Nashville, Tennessee 37232-6602, USA
| | | | | | | | | | | |
Collapse
|
23
|
Mosoni L, Balage M, Vazeille E, Combaret L, Morand C, Zagol-Ikapitte I, Boutaud O, Marzani B, Papet I, Dardevet D. Antioxidant supplementation had positive effects in old rat muscle, but through better oxidative status in other organs. Nutrition 2010; 26:1157-62. [PMID: 20080031 DOI: 10.1016/j.nut.2009.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Aged muscle is characterized by a defect in the ability of leucine to stimulate protein synthesis. We showed previously that antioxidant supplementation improved the anabolic response to leucine of old muscle and reduced inflammation. The aim of the present study was to determine if the positive effects observed in muscle could be related to an improvement of local muscle oxidative status. METHODS Two groups of 20-mo-old male Wistar rats were supplemented or not with rutin, vitamin E, vitamin A, zinc, and selenium during 7 wk. We measured body weight, food intake, oxidative status in muscle and other tissues, gastrocnemius muscle proteolytic activities, and liver glutathione metabolism. RESULTS Antioxidant supplementation had no effect on muscle antioxidant capacity, superoxide dismutase activities, and myofibrillar protein carbonyl content and induced an increase in muscle cathepsin activities. In other tissues, antioxidant supplementation increased liver glutathione (reduced plus oxidized glutathione) content, reduced oxidative damage in the liver and spleen (as measured by γ-keto-aldehyde content), and reduced heart thiobarbituric acid-reactive substances. CONCLUSION Our results showed that the positive effects of antioxidant supplementation observed previously on the anabolic response to leucine of old muscle were not directly related to an improvement of in situ muscle oxidative status. It could result from reduced systemic inflammation/oxidative stress. The dialog between muscle and other organs should be studied more thoroughly, especially during aging.
Collapse
Affiliation(s)
- Laurent Mosoni
- INRA, UMR 1019 Nutrition Humaine, Saint Genès Champanelle, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li W, Laird JM, Lu L, Roychowdhury S, Nagy LE, Zhou R, Crabb JW, Salomon RG. Isolevuglandins covalently modify phosphatidylethanolamines in vivo: detection and quantitative analysis of hydroxylactam adducts. Free Radic Biol Med 2009; 47:1539-52. [PMID: 19751823 PMCID: PMC2783230 DOI: 10.1016/j.freeradbiomed.2009.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 11/17/2022]
Abstract
Levuglandins (LGs) and isolevuglandins (isoLGs, also called "isoketals" or "isoKs") are extraordinarily reactive products of cyclooxygenase- and free radical-induced oxidation of arachidonates. We now report the detection in vivo and quantitative analysis of LG/isoLG adducts that incorporate the amino group of phosphatidylethanolamines (PEs) into LG/isoLG-hydroxylactams. Notably, LC-MS/MS detection of these hydroxylactams is achieved with samples that are an order of magnitude smaller and sample processing is much simpler and less time consuming than required for measuring protein-derived LG/isoLG-lysyl lactams. A key feature of our protocol is treatment of biological phospholipid extracts with phospholipase A(2) to generate mainly 1-palmitoyl-2-lysoPE-hydroxylactams from heterogeneous mixtures of phospholipids with a variety of acyl groups on the 2 position. Over 160% higher mean levels of LG/isoLG-PE-hydroxylactam (P<0.001) were detected in liver from chronic ethanol-fed mice (32.4+/-6.3 ng/g, n=6) compared to controls (12.1+/-1.5 ng/g, n=4), and mean levels in plasma from patients with age-related macular degeneration (5.2+/-0.4 ng/ml, n=15) were elevated approximately 53% (P<0.0001) compared to those of healthy volunteers (3.4+/-0.1 ng/ml, n=15). Just as LG/isoLG-protein adducts provide a dosimeter of oxidative injury, this study suggests that LG/isoLG-PE-hydroxylactams are potential biomarkers for assessing risk for oxidative stress-stimulated diseases.
Collapse
Affiliation(s)
- Wei Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - James M. Laird
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Liang Lu
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | | | - Laura E. Nagy
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
- Department of Pathobiology, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Gastroenterology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Rong Zhou
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - John W. Crabb
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Robert G. Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
25
|
Carrier EJ, Amarnath V, Oates JA, Boutaud O. Characterization of covalent adducts of nucleosides and DNA formed by reaction with levuglandin. Biochemistry 2009; 48:10775-81. [PMID: 19824699 DOI: 10.1021/bi9015132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhanced expression of cyclooxygenase-2 (COX-2) is associated with development of several cancers. The product of COX-2, prostaglandin H(2) (PGH(2)), can undergo spontaneous rearrangement and nonenzymatic ring cleavage to form the highly reactive levuglandin E(2) (LGE(2)) or D(2) (LGD(2)). Incubation with LGE(2) causes DNA-protein cross-linking in cultured cells, suggesting that levuglandins can directly react with DNA. We report the identification by liquid chromatography-tandem mass spectrometry of a stable levuglandin-deoxycytidine (LG-dC) adduct that forms upon reaction of levuglandin with DNA. We found that LGE(2) reacted with deoxycytidine, deoxyadenosine, or deoxyguanosine in vitro to form covalent adducts with a dihydroxypyrrolidine structure, as deduced from selective ion fragmentation. For LG-deoxycytidine adducts, the initial dihydroxypyrrolidine structure converted to a pyrrole structure over time. Reaction of LG with DNA yielded a stable LG-dC adduct with a pyrrole structure. These results describe the first structure of levuglandinyl-DNA adducts and provide the tools with which to evaluate the potential for LG-DNA adduct formation in vivo.
Collapse
Affiliation(s)
- Erica J Carrier
- Department of Medicine, Vanderbilt University, Nashville,Tennessee 37232, USA
| | | | | | | |
Collapse
|
26
|
On the mechanism of microsomal prostaglandin E synthase type-2--a theoretical study of endoperoxide reaction with MeS(-). Bioorg Med Chem Lett 2009; 20:338-40. [PMID: 19914067 DOI: 10.1016/j.bmcl.2009.10.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/25/2023]
Abstract
The reaction pathways of deprotonation versus nucleophilic substitution involving mPGES-2 enzyme catalysis were investigated by ab initio molecular orbital theory calculations for the reaction of methylthiolate with the endoperoxide core of PGH(2) and by the combined quantum mechanical molecular mechanical methods. The calculations showed that deprotonation mechanism is energetically more favorable than the nucleophilic substitution pathway.
Collapse
|
27
|
Bala M, Chin CN, Logan AT, Amin T, Marnett LJ, Boutaud O, Oates JA. Acetylation of prostaglandin H2 synthases by aspirin is inhibited by redox cycling of the peroxidase. Biochem Pharmacol 2008; 75:1472-81. [PMID: 18242581 PMCID: PMC2693035 DOI: 10.1016/j.bcp.2007.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/29/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Aspirin exerts its unique pharmacological effects by irreversibly acetylating a serine residue in the cyclooxygenase site of prostaglandin-H2-synthases (PGHSs). Despite the irreversibility of the inhibition, the potency of aspirin varies remarkably between cell types, suggesting that molecular determinants could contribute to cellular selectivity. Using purified enzymes, we found no evidence that aspirin is selective for either of the two PGHS isoforms, and we showed that hydroperoxide substrates of the PGHS peroxidase inhibited the rate of acetylation of PGHS-1 by 68%. Using PGHS-1 reconstituted with cobalt protoporphyrin, a heme devoid of peroxidase activity, we demonstrated that reversal by hydroperoxides of the aspirin-mediated acetylation depends upon the catalytic activity of the PGHS peroxidase. We demonstrated that inhibition of PGHS-2 by aspirin in cells in culture is reversed by 12-hydroperoxyeicosatetraenoic acid dose-dependently (ED50=0.58+/-0.15 microM) and that in cells with high levels of hydroperoxy-fatty acids (RAW264.7) the efficacy of aspirin is markedly decreased as compared to cells with low levels of hydroperoxides (A549; IC50s=256+/-22 microM and 11.0+/-0.9 microM, respectively). Together, these findings indicate that acetylation of the PGHSs by aspirin is regulated by the catalytic activity of the peroxidase, which yields a higher oxidative state of the enzyme.
Collapse
Affiliation(s)
- Manju Bala
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Cindy N. Chin
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Asha T. Logan
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Taneem Amin
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Lawrence J. Marnett
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - John A. Oates
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6602
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602
| |
Collapse
|
28
|
Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:718-36. [PMID: 17570293 DOI: 10.1016/j.bbadis.2007.04.009] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/21/2022]
Abstract
Oxidized lipids are generated from (poly)unsaturated diacyl- and alk(en)ylacyl glycerophospholipids under conditions of oxidative stress. The great variety of reaction products is defined by the degree of modification, hydrophobicity, chemical reactivity, physical properties and biological activity. The biological activities of these compounds may depend on both, the recognition of the particular molecular structures by specific receptors and on the unspecific physical and chemical effects on their target systems (membranes, proteins). In this review, we aim at highlighting the molecular features that are essential for the understanding of the biological actions of pure oxidized phospholipids. Firstly, their chemical structures are described as a basis for an understanding of their physical and (bio)chemical properties in membrane- and protein-bound form. Secondly, the biological activities of oxidized phospholipids are discussed in terms of their unspecific effects on the membrane level as well as their potential interactions with specific targets (receptors) affecting a large set of (signaling) molecules. Finally, the role of oxidized phospholipids as important mediators in pathophysiology is discussed with emphasis on atherosclerosis.
Collapse
Affiliation(s)
- Gilbert O Fruhwirth
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | | | |
Collapse
|
29
|
Davies SS, Brantley EJ, Voziyan PA, Amarnath V, Zagol-Ikapitte I, Boutaud O, Hudson BG, Oates JA, Roberts LJ. Pyridoxamine analogues scavenge lipid-derived gamma-ketoaldehydes and protect against H2O2-mediated cytotoxicity. Biochemistry 2006; 45:15756-67. [PMID: 17176098 PMCID: PMC2597444 DOI: 10.1021/bi061860g] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Isoketals and levuglandins are highly reactive gamma-ketoaldehydes formed by oxygenation of arachidonic acid in settings of oxidative injury and cyclooxygenase activation, respectively. These compounds rapidly adduct to proteins via lysyl residues, which can alter protein structure/function. We examined whether pyridoxamine, which has been shown to scavenge alpha-ketoaldehydes formed by carbohydrate or lipid peroxidation, could also effectively protect proteins from the more reactive gamma-ketoaldehydes. Pyridoxamine prevented adduction of ovalbumin and also prevented inhibition of RNase A and glutathione reductase activity by the synthetic gamma-ketoaldehyde, 15-E2-isoketal. We identified the major products of the reaction of pyridoxamine with the 15-E2-isoketal, including a stable lactam adduct. Two lipophilic analogues of pyridoxamine, salicylamine and 5'-O-pentylpyridoxamine, also formed lactam adducts when reacted with 15-E2-isoketal. When we oxidized arachidonic acid in the presence of pyridoxamine or its analogues, pyridoxamine-isoketal adducts were found in significantly greater abundance than the pyridoxamine-N-acyl adducts formed by alpha-ketoaldehyde scavenging. Therefore, pyridoxamine and its analogues appear to preferentially scavenge gamma-ketoaldehydes. Both pyridoxamine and its lipophilic analogues inhibited the formation of lysyl-levuglandin adducts in platelets activated ex vivo with arachidonic acid. The two lipophilic pyridoxamine analogues provided significant protection against H2O2-mediated cytotoxicity in HepG2 cells. These results demonstrate the utility of pyridoxamine and lipophilic pyridoxamine analogues to assess the potential contributions of isoketals and levuglandins in oxidant injury and inflammation and suggest their potential utility as pharmaceutical agents in these conditions.
Collapse
Affiliation(s)
- Sean S Davies
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Boutaud O, Montine TJ, Chang L, Klein WL, Oates JA. PGH2-derived levuglandin adducts increase the neurotoxicity of amyloid beta1-42. J Neurochem 2006; 96:917-23. [PMID: 16412101 PMCID: PMC1621054 DOI: 10.1111/j.1471-4159.2005.03586.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The body of evidence indicating that oligomers of amyloid beta(1-42) (Abeta(1-42)) produce toxicity to neurons, together with our demonstration that prostaglandin H(2) (PGH(2)) oligomerizes amyloid beta(1-42), led to the examination of the neurotoxicity of amyloid beta(1-42) treated with PGH(2). The neurotoxic effects of Abeta(1-42) incubated with PGH(2) was examined in primary cultures of cerebral neurons of mice, monitoring the reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as an indicator of cell toxicity. Whereas Abeta(1-42) itself, incubated for 24 h, has little or no effect on MTT reduction, Abeta(1-42) 24 h after exposure to PGH(2) produced a marked inhibition of MTT reduction, comparable with the inhibition resulting from Abeta(1-42) that has been oligomerized by incubation for 6 days. Similar results were obtained when Abeta(1-42) was incubated with levuglandin E(2) (LGE(2)), a reactive aldehyde formed by spontaneous rearrangement of PGH(2). The oligomers formed from reaction of Abeta(1-42) with LGE(2) exhibit immunochemical similarity with amyloid-derived diffusible ligands (ADDLs), as determined by analysis of the products of reaction of Abeta(1-42) with LGE(2) using western blotting with an antibody that is selective for ADDLs.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6602, Tennessee, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Autoxidation of polyunsaturated phosphatidylcholines (PCs) generates isolevuglandins (isoLGs) through rearrangements of isoprostanoid endoperoxides. Within seconds, isoLGs are sequestered by covalent adduction with proteins. Murine plasma isoLG-protein levels increased at least 2.5-fold in response to inflammation. IsoLG-protein adducts accumulate in vivo providing a convenient dosimeter of oxidative stress. Elevated blood isoLG-protein levels present in atherosclerosis (AS) patients point to an independent defect that is not associated with total cholesterol levels, which results in an abnormally high level of oxidative injury in AS. Protein adduction and cross-linking caused by isoLGs can obstruct protein function. For example, it interferes with proteosomal degradation of proteins and, consequently, may result in apoptotic death of smooth muscle cells and destabilization of atherosclerotic plaques. Phospholipid autoxidation also generates biologically active oxidatively truncated PCs through fragmentation of dihydroperoxydienes that can be promoted by alpha-tocopherol. The oxidatively truncated PCs in oxidized low-density lipoprotein (oxLDL) contribute to the etiology of AS by inhibiting enzymatic activities required for normal processing of oxLDL by macrophages. They promote interactions of monocytes with endothelial cells that may foster migration of monocytes into the subendothelial space. They are also ligands for unregulated receptor-mediated uptake of oxLDL by monocyte macrophages leading to foam cell formation.
Collapse
Affiliation(s)
- Wujuan Zhang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106-7078, USA
| | | |
Collapse
|
32
|
Abstract
Isolevuglandins (isoLGs) and oxidatively truncated phospholipids are products of lipid peroxidation. Some of these, especially isoLGs and gamma-hydroxyalkenal analogues (e.g., the 5-hydroxy-8-oxo-6-octenoic acid and 9-hydroxy-12-oxo-10-dodecenoic acid esters of 2-lysophosphatidylcholine, HOOA-PC or HODA-PC, respectively) of 4-hydroxy-2(E)-nonenal (HNE), damage proteins by covalent adduction, thereby interfering with their normal functions. These lipid-derived protein modifications may serve as dosimeters of oxidative injury. Elevated plasma levels of isoLG-protein epitopes are associated with atherosclerosis but are independent of total cholesterol, a classical risk factor. Both protein adducts and oxidatively truncated phospholipids (oxPL) can also elicit receptor-mediated cellular responses that include endocytosis of oxidized low-density lipoprotein (LDL) and expression of chemokines, which may foster infiltration of monocyte macrophages into the subendothelial space, where they become foam cells through unregulated endocytosis of oxidatively damaged LDL.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106-7078, USA.
| |
Collapse
|
33
|
Januszewski AS, Alderson NL, Jenkins AJ, Thorpe SR, Baynes JW. Chemical modification of proteins during peroxidation of phospholipids. J Lipid Res 2005; 46:1440-9. [PMID: 15805546 DOI: 10.1194/jlr.m400442-jlr200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemical modification of proteins by advanced glycation and lipoxidation end products is implicated in the pathogenesis of macrovascular disease in aging and diabetes. To identify biomarkers of the lipoxidative modification of protein, we studied the oxidation of phospholipids in the presence of the model protein RNase A and compared protein-bound products formed in these reactions with those formed during oxidation of plasma proteins. Metal-catalyzed oxidation of 1-palmitoyl-2-arachidonoyl-phosphatidylcholine or 1-palmitoyl-2-linoleoyl-phosphatidylcholine in the presence of RNase led to the loss of amino groups in RNase and the incorporation of phosphate, hexanoate, pentanedioate, nonanedioate, and palmitate into protein. Protein-bound palmitate and phosphate correlated strongly with one another, and protein-bound pentanedioate and nonanedioate, derived from arachidonate and linoleate, respectively, accounted for approximately 20% of the cross-linking of lipid phosphorus to protein. Similar results were obtained on oxidation of total plasma or isolated LDL. We conclude that alkanedioic acids are quantitatively important linkers of oxidized phospholipids to proteins and that measurement of protein-bound phosphate and long-chain fatty acids may be useful for assessing long-term lipid peroxidative damage to proteins in vivo. Analyses of plasma proteins from control and diabetic patients indicated significant increases in lipoxidative modification of protein in diabetic compared with control subjects.
Collapse
Affiliation(s)
- Andrzej S Januszewski
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
34
|
Boutaud O, Andreasson KI, Zagol-Ikapitte I, Oates JA. Cyclooxygenase-dependent lipid-modification of brain proteins. Brain Pathol 2005; 15:139-42. [PMID: 15912886 PMCID: PMC8096006 DOI: 10.1111/j.1750-3639.2005.tb00510.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Substantial evidence indicates that both beta-amyloid and cyclooxygenase activity contribute to the pathogenesis of Alzheimer disease. The immediate product of the cyclooxygenases, prostaglandin H2, rapidly rearranges in aqueous solution, with approximately 20% being converted to levuglandins E2 and D2. These gamma-ketoaldehydes are highly reactive and rapidly adduct to accessible amine groups on macromolecules, particularly the epsilon-amine of lysine residues on proteins. The immediate LG-lysine adducts are themselves reactive, and can covalently crosslink proteins. PGH2, acting via LGs, accelerates the formation of the type of oligomers of amyloid beta that has been associated with neurotoxicity. In this review, we discuss the cyclooxygenase-dependent lipid-modification of proteins by levuglandins in vitro, in cells in culture and in vivo in transgenic mice over-expressing COX in the brain.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | | | | | |
Collapse
|
35
|
Roberts LJ, Fessel JP, Davies SS. The biochemistry of the isoprostane, neuroprostane, and isofuran Pathways of lipid peroxidation. Brain Pathol 2005; 15:143-8. [PMID: 15912887 PMCID: PMC8095955 DOI: 10.1111/j.1750-3639.2005.tb00511.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Isoprostanes are prostaglandin-like compounds that are formed non-enzymatically by free radical-catalyzed peroxidation of arachidonic acid (C20:4omega6). Intermediates in the pathway of the formation of isoprostanes are labile prostaglandin H2-like bicyclic endoperoxides (H2-isoprostanes). H2-isoprostanes are reduced to form F-ring isoprostanes (F2-isoprostanes), but they also undergo chemical rearrangement in vivo to form E2- and D2-isoprostanes, isothromboxanes, and highly reactive acyclic y-ketoaldehdyes (isoketals). E2- and D2-isoprostanes also undergo dehydration in vivo to form cyclopentenone A2- and J2-isoprostanes. Docosahexaenoic acid (C22:6omega3) is highly enriched in neurons in the brain and is highly susceptible to oxidation. Free radical-catalyzed oxidation of docosahexaenoic acid results in the formation of isoprostane-like compounds (neuroprostanes). F4-, D4-, E4-, A4-, and J4-neuroprostanes and neuroketals have all been shown to be produced in vivo. In addition, we recently discovered a new pathway of lipid peroxidation that forms compounds with a substituted tetrahydrofuran ring (isofurans). Oxygen concentration differentially modulates the formation of isoprostanes and isofurans. As oxygen concentrations increase, the formation of isofurans is favored whereas the formation of isoprostanes becomes disfavored.
Collapse
Affiliation(s)
- L Jackson Roberts
- Department of Pharmacology, 522 RRB, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | | | |
Collapse
|
36
|
Salomon RG. Distinguishing levuglandins produced through the cyclooxygenase and isoprostane pathways. Chem Phys Lipids 2005; 134:1-20. [PMID: 15752459 DOI: 10.1016/j.chemphyslip.2004.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 12/29/2004] [Accepted: 12/29/2004] [Indexed: 11/21/2022]
Abstract
The cyclooxygenase (COX) pathway generates enantiomerically pure levuglandin (LG) E(2) by a rearrangement of the prostaglandin (PG) endoperoxide PGH(2). The isoprostane pathway generates racemic LGE(2) together with stereoisomers, designated collectively as isoLGE(2), through free radical-induced lipid oxidation. Within seconds, both LGs and isoLGs are rapidly sequestered by protein adduction. In theory, the diastereomeric purity of LGE(2)-protein adduct-derived lysyl lactams can reveal the relative contributions of the COX and isoprostane pathways to LGE(2) stereoisomer production in vivo. Notably, however, the detection of LGE(2)-protein adducts does not provide a basis for inferring their formation through the isoprostane pathway in vivo unless the COX pathway can be rigorously excluded. In contrast, LGE(2)structural isomers, designated collectively as iso[n]LGE(2)s, are produced exclusively through the isoprostane pathway. Immunoassays that selectively recognize iso[n]LGE(2)-protein adducts are the only tools available to unambiguously detect and quantify the production of isolevuglandins in vivo through free radical-induced oxidation of arachidonates.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, 2074, Adelbert Road, Cleveland, OH 44106-7078, USA.
| |
Collapse
|
37
|
Abstract
Inspired by a reaction discovered through basic research on the chemistry of the bicyclic peroxide nucleus of the prostaglandin endoperoxide PGH2, we postulated that levulinaldehyde derivatives with prostaglandin side chains, levuglandins (LGs), and structurally isomeric analogues, isolevuglandins (iso[n]LGs), would be generated by nonenzymatic rearrangements of prostanoid and isoprostanoid endoperoxides. Two decades of subsequent studies culminated in our discoveries of the LG and isoLG pathways, branches of the cyclooxygenase and isoprostane pathways, respectively. In cells, PGH2 rearranges nonenzymatically to LGs even in the presence of enzymes that use PGH2 as a substrate. IsoLGs, also known as isoketals or neuroketals, are generated in vivo through free radical-induced autoxidation of polyunsaturated phospholipid esters. Hydrolysis occurs after rapid adduction of isoLG phospholipids to proteins. The proclivity of these reactive species to avidly bind covalently with and cross-link proteins and nucleic acids complicated the hunt for LGs and isoLGs in vivo. The extraordinary reactivity of these "stealthy toxins" underlies much, if not all, of the biological consequences of LG and isoLG generation. They interfere with protein function and are among the most potent neurotoxic products of lipid oxidation known. Because they can accumulate over the lifetimes of proteins, iso[n]LG-protein adducts represent a convenient dosimeter of oxidative stress.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106-7078, USA.
| |
Collapse
|
38
|
Bernoud-Hubac N, Fay LB, Armarnath V, Guichardant M, Bacot S, Davies SS, Roberts LJ, Lagarde M. Covalent binding of isoketals to ethanolamine phospholipids. Free Radic Biol Med 2004; 37:1604-11. [PMID: 15477011 DOI: 10.1016/j.freeradbiomed.2004.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 07/13/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
Free radicals have been strongly implicated in the pathogenesis of many human diseases. We previously identified the formation of highly reactive gamma-ketoaldehydes, isoketals, in vivo as products of free radical-induced peroxidation of arachidonic acid. Isoketals react with lysine residues on proteins at a rate that far exceeds that of 4-hydroxynonenal and demonstrate a unique proclivity to crosslink proteins. Hydroxynonenal has been shown to react with aminophospholipids, particularly phosphatidylethanolamine. We explored whether isoketals also react with phosphatidylethanolamine. Using liquid chromatography/electrospray mass spectrometry, we found that isoketals form pyrrole and Schiff base adducts with phosphatidylethanolamine. In addition, the ability of isoketals to covalently modify phosphatidylethanolamine is greater than that of 4-hydroxynonenal. These studies identify in vitro novel isoketal adducts. This provides the basis to explore the formation of isoketal-aminophospholipid adducts in vivo and the biological consequences of the formation of these adducts.
Collapse
Affiliation(s)
- Nathalie Bernoud-Hubac
- INSERM U585, Physiopathologie des Lipides et Membranes, INSA-Lyon, 69621 Villeurbanne, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Roberts LJ, Fessel JP. The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem Phys Lipids 2004; 128:173-86. [PMID: 15037162 DOI: 10.1016/j.chemphyslip.2003.09.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
F2-isoprostanes are prostaglandin F2-like compounds that are formed nonenzymatically by free radical mediated peroxidation of arachidonic acid. Intermediate in the pathway of the formation of isoprostanes are labile prostaglandin H2-like bicyclic endoperoxides (H2-isoprostanes), which are reduced to F2-isoprostanes and also undergo rearrangement in vivo to form E-ring and D-ring isoprostanes, isothromboxanes, and highly reactive acyclic gamma-ketoaldehdyes (isoketals). Docosahexaenoic acid (C22:6omega3) is highly enriched in neurons in the brain and is highly susceptible to oxidation. Free radical mediated oxidation of docosahexaenoic acid results in the formation of isoprostane-like compounds (neuroprostanes). F4- and E4/D4-neuroprostanes as well as neuroketals have been shown to be produced in vivo. Finally, we recently discovered a new pathway of lipid peroxidation that forms compounds with a substituted tetrahydrofuran ring (isofurans). Oxygen concentrations differentially modulate the formation of isoprostanes and isofurans; at elevated oxygen concentrations, the formation of isofurans is favored whereas the formation of isoprostanes is disfavored.
Collapse
Affiliation(s)
- L Jackson Roberts
- Departments of Pharmacology and Medicine, 522 RRB, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | |
Collapse
|
40
|
Brame CJ, Boutaud O, Davies SS, Yang T, Oates JA, Roden D, Roberts LJ. Modification of proteins by isoketal-containing oxidized phospholipids. J Biol Chem 2004; 279:13447-51. [PMID: 14715668 DOI: 10.1074/jbc.m313349200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress frequently leads to altered function of membrane proteins. Isoketals are highly reactive products of the isoprostane pathway of free radical-induced lipid peroxidation that rapidly form covalent protein adducts and exhibit a remarkable proclivity to form protein cross links in vitro. Examination of isoketal adducts from an animal model of oxidative injury revealed that initial adducts were formed by isoketals esterified in phospholipids, representing a novel oxidative injury-associated modification of proteins by phospholipids. Maturation of adducts involved cleavage from phospholipids and conversion of adducts to a more stable chemical form that can be detected for extended periods. Because initial adducts were formed by phospholipid-esterified isoketals, the functional consequence of isoketal adduction was examined using a model membrane protein (a cardiac K(+) channel). These studies revealed that isoketal adduction profoundly altered protein function, inhibiting potassium current in a dose-dependent manner. These findings indicate that phospholipid-esterified isoketals rapidly adduct membrane proteins and that such modification can alter protein function, suggesting a generalized cellular mechanism for alteration of membrane function as a consequence of oxidative stress.
Collapse
Affiliation(s)
- Cynthia J Brame
- Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 27232-6602, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Rouzer CA, Marnett LJ. Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chem Rev 2003; 103:2239-304. [PMID: 12797830 DOI: 10.1021/cr000068x] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carol A Rouzer
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
42
|
Boutaud O, Li J, Zagol I, Shipp EA, Davies SS, Roberts LJ, Oates JA. Levuglandinyl adducts of proteins are formed via a prostaglandin H2 synthase-dependent pathway after platelet activation. J Biol Chem 2003; 278:16926-8. [PMID: 12637576 DOI: 10.1074/jbc.m300940200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The product of oxygenation of arachidonic acid by the prostaglandin H synthases (PGHS), prostaglandin H(2) (PGH(2)), undergoes rearrangement to the highly reactive gamma-ketoaldehydes, levuglandin (LG) E(2), and LGD(2). We have demonstrated previously that LGE(2) reacts with the epsilon-amine of lysine to form both the levuglandinyl-lysine Schiff base and the pyrrole-derived levuglandinyl-lysine lactam adducts. We also have reported that these levuglandinyl-lysine adducts are formed on purified PGHSs following the oxygenation of arachidonic acid. We now present evidence that the levuglandinyl-lysine lactam adduct is formed in human platelets upon activation with exogenous arachidonic acid or thrombin. After proteolytic digestion of the platelet proteins, and isolation of the adducted amino acid residues, this adduct was identified by liquid chromatography-tandem mass spectrometry. We also demonstrate that formation of these adducts is inhibited by indomethacin, a PGHS inhibitor, and is enhanced by an inhibitor of thromboxane synthase. These data establish that levuglandinyl-lysine adducts are formed via a PGHS-dependent pathway in whole cells, even in the presence of an enzyme that metabolizes PGH(2). They also demonstrate that a physiological stimulus is sufficient to lead to the lipid modification of proteins through the levuglandin pathway in human platelets.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sawaoka H, Dixon DA, Oates JA, Boutaud O. Tristetraprolin binds to the 3'-untranslated region of cyclooxygenase-2 mRNA. A polyadenylation variant in a cancer cell line lacks the binding site. J Biol Chem 2003; 278:13928-35. [PMID: 12578839 DOI: 10.1074/jbc.m300016200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In human colorectal adenocarcinoma cell lines, we found two major transcripts of cyclooxygenase-2, the full-length mRNA and a short polyadenylation variant (2577 kb) lacking the distal segment of the 3'-untranslated region. Tristetraprolin, an mRNA-binding protein that promotes message instability, was shown to bind the cyclooxygenase-2 mRNA in the region of the 3'-untranslated region between nucleotides 3125 and 3432 and to reduce levels of the full-length mRNA. During cell growth and confluence, the expression of tristetraprolin mRNA was inversely correlated with that of the full-length cyclooxygenase-2 transcript, and transfection of tristetraprolin into HCA-7 cells reduced the level of full-length cyclooxygenase-2 mRNA. However, the truncated transcript escaped tristetraprolin binding and downregulation.
Collapse
Affiliation(s)
- Hitoshi Sawaoka
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA
| | | | | | | |
Collapse
|
44
|
Reichardt P, Schreiber A, Wichmann G, Metzner G, Efer J, Raabe F. Identification and quantification of in vitro adduct formation between protein reactive xenobiotics and a lysine-containing model peptide. ENVIRONMENTAL TOXICOLOGY 2003; 18:29-36. [PMID: 12539141 DOI: 10.1002/tox.10097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Formation of in vitro adducts between different classes of xenobiotics and the lysine-containing peptide Lys-Tyr was monitored by high-performance liquid chromatography and electrospray ionization mass spectrometry. The molecular structures of the main resulting products could be sensitively analyzed by mass spectrometry (flow injection analysis), enabling the detection of characteristic binding formations. Aldehydes such as formaldehyde, acetaldehyde, and benzaldehyde were shown to form stable linkages to lysine amino groups via Schiff bases. Other electrophilic substances (e.g., toluene-2,4-diisocyanate, 2,4-dinitro-1-fluorobenzene, 2,4,6-trinitrobenzene sulfonic acid, dansyl chloride, and phthalic acid anhydride) also formed covalent adducts with lysine residues. The reactivity of the compounds was quantified by measuring the amount of peptide that remained unchanged after incubation for a certain period with the xenobiotic. Although reactivity levels within this group of aldehydes varied only to a small extent, as would be expected, extreme differences were seen among the structurally heterogeneous group of nonaldehyde xenobiotics. These results support the hypothesis that simple chemical reactions may lead to the adduction of nucleophilic macromolecules such as peptides or proteins. Such reactions, in particular, Schiff base formation of aldehydes, have previously been shown to be capable of specifically interfering with costimulatory signaling on T cells. Our results suggest that electrophilic xenobiotics of other classes may also inherit the capacity to exert similar effects. Forming covalent linkage to peptides may represent a possible molecular mechanism of electrophilic xenobiotics in vivo, yielding immunotoxic effects. The model utilized in this study is appropriate for monitoring the adduction of xenobiotics to basic peptides and for analyzing the resulting molecular structures.
Collapse
Affiliation(s)
- Peter Reichardt
- Children's Hospital of the University of Leipzig, Oststrasse 21-25, 04317 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Boutaud O, Li J, Chaurand P, Brame CJ, Marnett LJ, Roberts LJ, Oates JA. Oxygenation of arachidonic acid by cyclooxygenases generates reactive intermediates that form adducts with proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:133-7. [PMID: 11764925 DOI: 10.1007/978-1-4615-0667-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- O Boutaud
- Department of Medicine, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Boutaud O, Aronoff DM, Richardson JH, Marnett LJ, Oates JA. Determinants of the cellular specificity of acetaminophen as an inhibitor of prostaglandin H(2) synthases. Proc Natl Acad Sci U S A 2002; 99:7130-5. [PMID: 12011469 PMCID: PMC124540 DOI: 10.1073/pnas.102588199] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetaminophen has antipyretic and analgesic properties yet differs from the nonsteroidal antiinflammatory drugs and inhibitors of prostaglandin H synthase (PGHS)-2 by exhibiting little effect on platelets or inflammation. We find parallel selectivity at a cellular level; acetaminophen inhibits PGHS activity with an IC(50) of 4.3 microM in interleukin (IL)-1 alpha-stimulated human umbilical vein endothelial cells, in contrast with an IC(50) of 1,870 microM for the platelet, with 2 microM arachidonic acid as substrate. This difference is not caused by isoform selectivity, because acetaminophen inhibits purified ovine PGHS-1 and murine recombinant PGHS-2 equally. We explored the hypothesis that this difference in cellular responsiveness results from antagonism of the reductant action of acetaminophen on the PGHSs by cellular peroxides. Increasing the peroxide product of the PGHS-cyclooxygenase, prostaglandin G(2) (PGG(2)), by elevating the concentration of either enzyme or substrate reverses the inhibitory action of acetaminophen, as does the addition of PGG(2) itself. 12-Hydroperoxyeicosatetraenoic acid (0.3 microM), a major product of the platelet, completely reverses the action of acetaminophen on PGHS-1. Inhibition of PGHS activity by acetaminophen in human umbilical vein endothelial cells is abrogated by t-butyl hydroperoxide. Together these findings support the hypothesis that the clinical action of acetaminophen is mediated by inhibition of PGHS activity, and that hydroperoxide concentration contributes to its cellular selectivity.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Medicine, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | | | | | | | |
Collapse
|
47
|
Bernoud-Hubac N, Davies SS, Boutaud O, Montine TJ, Roberts LJ. Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway. J Biol Chem 2001; 276:30964-70. [PMID: 11413140 DOI: 10.1074/jbc.m103768200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroprostanes are prostaglandin-like compounds produced by free radical-induced peroxidation of docosahexaenoic acid, which is highly enriched in the brain. We previously described the formation of highly reactive gamma-ketoaldehydes (isoketals) as products of the isoprostane pathway of free radical-induced peroxidation of arachidonic acid. We therefore explored whether isoketal-like compounds (neuroketals) are also formed via the neuroprostane pathway. Utilizing mass spectrometric analyses, neuroketals were found to be formed in abundance in vitro during oxidation of docosahexaenoic acid and were formed in greater abundance than isoketals during co-oxidation of docosahexaenoic and arachidonic acid. Neuroketals were shown to rapidly adduct to lysine, forming lactam and Schiff base adducts. Neuroketal lysyl-lactam protein adducts were detected in nonoxidized rat brain synaptosomes at a level of 0.09 ng/mg of protein, which increased 19-fold following oxidation in vitro. Neuroketal lysyl-lactam protein adducts were also detected in vivo in normal human brain at a level of 9.9 +/- 3.7 ng/g of brain tissue. These studies identify a new class of highly reactive molecules that may participate in the formation of protein adducts and protein-protein cross-links in neurodegenerative diseases and contribute to the injurious effects of other oxidative pathologies in the brain.
Collapse
Affiliation(s)
- N Bernoud-Hubac
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602, USA
| | | | | | | | | |
Collapse
|
48
|
Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 2001; 21:185-210. [PMID: 11301410 DOI: 10.1002/med.1006] [Citation(s) in RCA: 470] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cyclopentenone prostaglandins PGA2, PGA1, and PGJ2 are formed by dehydration within the cyclopentane ring of PGE2, PGE1, and PGD2. PGJ2 is metabolized further to yield Delta(12)-PGJ(2) and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)). Various compounds within the cyclopentenone prostaglandin family possess potent anti-inflammatory, anti-neoplastic, and anti-viral activity. Most actions of the cyclopentenone prostaglandins do not appear to be mediated by binding to G-protein coupled prostanoid receptors. Rather, the bioactivity of these compounds results from their interaction with other cellular target proteins. 15-deoxy-Delta(12,14)-PGJ(2) is a high affinity ligand for the nuclear receptor PPARgamma and modulates gene transcription by binding to this receptor. Other activities of the cyclopentenone prostaglandins are mediated by the reactive alpha,beta-unsaturated carbonyl group located in the cyclopentenone ring. The transcription factor NF-kappaB and its activating kinase are key targets for the anti-inflammatory activity of 15d-PGJ2, which inhibits NF-kappaB-mediated transcriptional activation by PPARgamma-dependent and independent molecular mechanisms. Other cyclopentenone prostaglandins, such as Delta(7)-PGA1 and Delta(12)-PGJ2, have strong anti-tumor activity. These compounds induce cell cycle arrest or apoptosis of tumor cells depending on the cell type and treatment conditions. We review here recent progress in understanding the mechanisms of action of the cyclopentenone prostaglandins and their possible use as therapeutic agents.
Collapse
Affiliation(s)
- D S Straus
- Biomedical Sciences Division and Biology Department, University of California, Riverside, CA 92521-0121, USA.
| | | |
Collapse
|