1
|
Matthews PGD. Buoyancy Regulation in Insects. Physiology (Bethesda) 2025; 40:0. [PMID: 39319858 DOI: 10.1152/physiol.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Multiple insect lineages have successfully reinvaded the aquatic environment, evolving to complete either part or all of their life cycle submerged in water. Although these insects vary in their reliance on atmospheric oxygen, with many having the ability to extract dissolved oxygen directly from the water, all retain an internal air-filled respiratory system, their tracheal system, due to their terrestrial origins. However, carrying air within their tracheal system, and even augmenting this volume with additional air bubbles carried on their body, dramatically increases their buoyancy, which can make it challenging to remain submerged. But by manipulating this air volume a few aquatic insects can deliberately alter or regulate their position in the water column. Unlike cephalopods and teleost fish that control the volume of gas within their hydrostatic organs by either using osmosis to pull liquid from a rigid chamber or secreting oxygen at high pressure to inflate a flexible chamber, insects have evolved hydrostatic control mechanisms that rely either on the temporary stabilization of a compressible air bubble volume with O2 unloaded from hemoglobin or on the mechanical expansion and contraction of a gas-filled volume with rigid, gas-permeable walls. The ability to increase their buoyancy while submerged separates aquatic insects from the buoyancy compensation achieved by other air-breathing aquatic animals that also use air within their respiratory systems to offset their submerged weight. The mechanisms they have evolved to achieve this are unique and provide new insights into the function and evolution of mechanochemical systems.
Collapse
Affiliation(s)
- Philip G D Matthews
- Department of ZoologyUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Huang SC, Zhu YJ, Huang XY, Xia XX, Qian ZG. Programmable adhesion and morphing of protein hydrogels for underwater robots. Nat Commun 2024; 15:195. [PMID: 38172123 PMCID: PMC10764313 DOI: 10.1038/s41467-023-44564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Soft robots capable of efficiently implementing tasks in fluid-immersed environments hold great promise for diverse applications. However, it remains challenging to achieve robotization that relies on dynamic underwater adhesion and morphing capability. Here we propose the construction of such robots with designer protein materials. Firstly, a resilin-like protein is complexed with polyoxometalate anions to form hydrogels that can rapidly switch between soft adhesive and stiff non-adhesive states in aqueous environments in response to small temperature variation. To realize remote control over dynamic adhesion and morphing, Fe3O4 nanoparticles are then integrated into the hydrogels to form soft robots with photothermal and magnetic responsiveness. These robots are demonstrated to undertake complex tasks including repairing artificial blood vessel, capturing and delivering multiple cargoes in water under cooperative control of infrared light and magnetic field. These findings pave an avenue for the creation of protein-based underwater robots with on-demand functionalities.
Collapse
Affiliation(s)
- Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao-Ying Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
4
|
Hutin S, Kumita JR, Strotmann VI, Dolata A, Ling WL, Louafi N, Popov A, Milhiet PE, Blackledge M, Nanao MH, Wigge PA, Stahl Y, Costa L, Tully MD, Zubieta C. Phase separation and molecular ordering of the prion-like domain of the Arabidopsis thermosensory protein EARLY FLOWERING 3. Proc Natl Acad Sci U S A 2023; 120:e2304714120. [PMID: 37399408 PMCID: PMC10334799 DOI: 10.1073/pnas.2304714120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is an important mechanism enabling the dynamic compartmentalization of macromolecules, including complex polymers such as proteins and nucleic acids, and occurs as a function of the physicochemical environment. In the model plant, Arabidopsis thaliana, LLPS by the protein EARLY FLOWERING3 (ELF3) occurs in a temperature-sensitive manner and controls thermoresponsive growth. ELF3 contains a largely unstructured prion-like domain (PrLD) that acts as a driver of LLPS in vivo and in vitro. The PrLD contains a poly-glutamine (polyQ) tract, whose length varies across natural Arabidopsis accessions. Here, we use a combination of biochemical, biophysical, and structural techniques to investigate the dilute and condensed phases of the ELF3 PrLD with varying polyQ lengths. We demonstrate that the dilute phase of the ELF3 PrLD forms a monodisperse higher-order oligomer that does not depend on the presence of the polyQ sequence. This species undergoes LLPS in a pH- and temperature-sensitive manner and the polyQ region of the protein tunes the initial stages of phase separation. The liquid phase rapidly undergoes aging and forms a hydrogel as shown by fluorescence and atomic force microscopies. Furthermore, we demonstrate that the hydrogel assumes a semiordered structure as determined by small-angle X-ray scattering, electron microscopy, and X-ray diffraction. These experiments demonstrate a rich structural landscape for a PrLD protein and provide a framework to describe the structural and biophysical properties of biomolecular condensates.
Collapse
Affiliation(s)
- Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, University Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Institut de recherche interdisciplinaire de Grenoble, Grenoble38054, France
| | - Janet R. Kumita
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Vivien I. Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Anika Dolata
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Wai Li Ling
- University Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Institut de Biologie Structurale, Institut de recherche interdisciplinaire de Grenoble, Grenoble38000, France
| | - Nessim Louafi
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Anton Popov
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Martin Blackledge
- University Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, Centre national de la recherche scientifique, Institut de Biologie Structurale, Institut de recherche interdisciplinaire de Grenoble, Grenoble38000, France
| | - Max H. Nanao
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Philip A. Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, 14979Grossbeeren, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476Potsdam, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, DüsseldorfD-40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, DüsseldorfD-40225, Germany
| | - Luca Costa
- Centre de Biologie Structurale, University Montpellier, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Montpellier34090, France
| | - Mark D. Tully
- European Synchrotron Radiation Facility, Structural Biology Group, Grenoble38000, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, University Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Institut de recherche interdisciplinaire de Grenoble, Grenoble38054, France
| |
Collapse
|
5
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
6
|
Tian KK, Qian ZG, Xia XX. Synthetic biology-guided design and biosynthesis of protein polymers for delivery. Adv Drug Deliv Rev 2023; 194:114728. [PMID: 36791475 DOI: 10.1016/j.addr.2023.114728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Vehicles derived from genetically engineered protein polymers have gained momentum in the field of biomedical engineering due to their unique designability, remarkable biocompatibility and excellent biodegradability. However, the design and production of these protein polymers with on-demand sequences and supramolecular architectures remain underexplored, particularly from a synthetic biology perspective. In this review, we summarize the state-of-the art strategies for constructing the highly repetitive genes encoding the protein polymers, and highlight the advanced approaches for metabolically engineering expression hosts towards high-level biosynthesis of the target protein polymers. Finally, we showcase the typical protein polymers utilized to fabricate delivery vehicles.
Collapse
Affiliation(s)
- Kai-Kai Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Otis JB, Sharpe S. Sequence Context and Complex Hofmeister Salt Interactions Dictate Phase Separation Propensity of Resilin-like Polypeptides. Biomacromolecules 2022; 23:5225-5238. [PMID: 36378745 DOI: 10.1021/acs.biomac.2c01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resilin is an elastic material found in insects with exceptional durability, resilience, and extensibility, making it a promising biomaterial for tissue engineering. The monomeric precursor, pro-resilin, undergoes thermo-responsive self-assembly through liquid-liquid phase separation (LLPS). Understanding the molecular details of this assembly process is critical to developing complex biomaterials. The present study investigates the interplay between the solvent, sequence syntax, structure, and dynamics in promoting LLPS of resilin-like-polypeptides (RLPs) derived from domains 1 and 3 of Drosophila melanogaster pro-resilin. NMR, UV-vis, and microscopy data demonstrate that while kosmotropic salts and low pH promote LLPS, the effects of chaotropic salts with increasing pH are more complex. Subtle variations between the repeating amino acid motifs of resilin domain 1 and domain 3 lead to significantly different salt and pH dependence of LLPS, with domain 3 sequence motifs more strongly favoring phase separation under most conditions. These findings provide new insight into the molecular drivers of RLP phase separation and the complex roles of both RLP sequence and solution composition in fine-tuning assembly conditions.
Collapse
Affiliation(s)
- James Brandt Otis
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
8
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
9
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
10
|
Huang SC, Fan RX, Tian KK, Xia XX, Qian ZG. Controllable Fibrillization Reinforces Genetically Engineered Rubberlike Protein Hydrogels. Biomacromolecules 2021; 22:961-970. [PMID: 33455161 DOI: 10.1021/acs.biomac.0c01653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rubberlike protein hydrogels are unique in their remarkable stretchability and resilience but are usually low in strength due to the largely unstructured nature of the constitutive protein chains, which limits their applications. Thus, reinforcing protein hydrogels while retaining their rubberlike properties is of great interest and has remained difficult to achieve. Here, we propose a fibrillization strategy to reinforce hydrogels from engineered protein copolymers with photo-cross-linkable resilin-like blocks and fibrillizable silklike blocks. First, the designer copolymers with an increased ratio of the silk to resilin blocks were photochemically cross-linked into rubberlike hydrogels with reinforced mechanical properties. The increased silk-to-resilin ratio also enabled self-assembly of the resulting copolymers into fibrils in a time-dependent manner. This allowed controllable fibrillization of the copolymer solutions at the supramolecular level for subsequent photo-cross-linking into reinforced hydrogels. Alternatively, the as-prepared chemically cross-linked hydrogels could be reinforced at the material level by inducing fibrillization of the constitutive protein chains. Finally, we demonstrated the advantage of reinforcing these hydrogels for use as piezoresistive sensors to achieve an expanded pressure detection range. We anticipate that this strategy may provide intriguing opportunities to generate robust rubberlike biomaterials for broad applications.
Collapse
Affiliation(s)
- Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ru-Xia Fan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Kai-Kai Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
11
|
Balu R, Dutta NK, Dutta AK, Choudhury NR. Resilin-mimetics as a smart biomaterial platform for biomedical applications. Nat Commun 2021; 12:149. [PMID: 33420053 PMCID: PMC7794388 DOI: 10.1038/s41467-020-20375-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins have dramatically changed the structure-function paradigm of proteins in the 21st century. Resilin is a native elastic insect protein, which features intrinsically disordered structure, unusual multi-stimuli responsiveness and outstanding resilience. Advances in computational techniques, polypeptide synthesis methods and modular protein engineering routines have led to the development of novel resilin-like polypeptides (RLPs) including modular RLPs, expanding their applications in tissue engineering, drug delivery, bioimaging, biosensors, catalysis and bioelectronics. However, how the responsive behaviour of RLPs is encoded in the amino acid sequence level remains elusive. This review summarises the milestones of RLPs, and discusses the development of modular RLP-based biomaterials, their current applications, challenges and future perspectives. A perspective of future research is that sequence and responsiveness profiling of RLPs can provide a new platform for the design and development of new modular RLP-based biomaterials with programmable structure, properties and functions.
Collapse
Affiliation(s)
- Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Naba K Dutta
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Ankit K Dutta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
12
|
Formation and functionalization of membraneless compartments in Escherichia coli. Nat Chem Biol 2020; 16:1143-1148. [DOI: 10.1038/s41589-020-0579-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
|
13
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
14
|
Su RSC, Galas RJ, Lin CY, Liu JC. Redox-Responsive Resilin-Like Hydrogels for Tissue Engineering and Drug Delivery Applications. Macromol Biosci 2019; 19:e1900122. [PMID: 31222972 PMCID: PMC6776424 DOI: 10.1002/mabi.201900122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Resilin, a protein found in insect cuticles, is renowned for its outstanding elastomeric properties. The authors' laboratory previously developed a recombinant protein, which consisted of consensus resilin-like repeats from Anopheles gambiae, and demonstrated its potential in cartilage and vascular engineering. To broaden the versatility of the resilin-like protein, this study utilizes a cleavable crosslinker, which contains a disulfide bond, to develop smart resilin-like hydrogels that are redox-responsive. The hydrogels exhibit a porous structure and a stable storage modulus (G') of ≈3 kPa. NIH/3T3 fibroblasts cultured on hydrogels for 24 h have a high viability (>95%). In addition, the redox-responsive hydrogels show significant degradation in a reducing environment (10 mm glutathione (GSH)). The release profiles of fluorescently labeled dextrans encapsulated within the hydrogels are assessed in vitro. For dextran that is estimated to be larger than the mesh size of the gel, faster release is observed in the presence of reducing agents due to degradation of the hydrogel networks. These studies thus demonstrate the potential of using these smart hydrogels in a variety of applications ranging from scaffolds for tissue engineering to drug delivery systems that target the intracellular reductive environments of tumors.
Collapse
Affiliation(s)
- Renay S-C Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
| | - Richard J Galas
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
| | - Charng-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907-2100, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907-2032, USA
| |
Collapse
|
15
|
Wang Y, Katyal P, Montclare JK. Protein-Engineered Functional Materials. Adv Healthc Mater 2019; 8:e1801374. [PMID: 30938924 PMCID: PMC6703858 DOI: 10.1002/adhm.201801374] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Proteins are versatile macromolecules that can perform a variety of functions. In the past three decades, they have been commonly used as building blocks to generate a range of biomaterials. Owing to their flexibility, proteins can either be used alone or in combination with other functional molecules. Advances in synthetic and chemical biology have enabled new protein fusions as well as the integration of new functional groups leading to biomaterials with emergent properties. This review discusses protein-engineered materials from the perspectives of domain-based designs as well as physical and chemical approaches for crosslinked materials, with special emphasis on the creation of hydrogels. Engineered proteins that organize or template metal ions, bear noncanonical amino acids (NCAAs), and their potential applications, are also reviewed.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
- Department of Chemistry, New York University, New York, NY
10003, United States
- Department of Biomaterials, New York University College of
Dentistry, New York, NY 10010, United States
- Department of Radiology, New York University School of
Medicine, New York, New York, 10016, United States
| |
Collapse
|
16
|
Dignon G, Zheng W, Kim YC, Mittal J. Temperature-Controlled Liquid-Liquid Phase Separation of Disordered Proteins. ACS CENTRAL SCIENCE 2019; 5:821-830. [PMID: 31139718 PMCID: PMC6535772 DOI: 10.1021/acscentsci.9b00102] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 05/18/2023]
Abstract
The liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) is a commonly observed phenomenon within the cell, and such condensates are also highly attractive for applications in biomaterials and drug delivery. A better understanding of the sequence-dependent thermoresponsive behavior is of immense interest as it will aid in the design of protein sequences with desirable properties and in the understanding of cellular response to heat stress. In this work, we use a transferable coarse-grained model to directly probe the sequence-dependent thermoresponsive phase behavior of IDPs. To achieve this goal, we develop a unique knowledge-based amino acid potential that accounts for the temperature-dependent effects on solvent-mediated interactions for different types of amino acids. Remarkably, we are able to distinguish between more than 35 IDPs with upper or lower critical solution temperatures at experimental conditions, thus providing direct evidence that incorporating the temperature-dependent solvent-mediated interactions to IDP assemblies can capture the difference in the shape of the resulting phase diagrams. Given the success of the model in predicting experimental behavior, we use it as a high-throughput screening framework to scan through millions of disordered sequences to characterize the composition dependence of protein phase separation.
Collapse
Affiliation(s)
- Gregory
L. Dignon
- Department
of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Wenwei Zheng
- College
of Integrative Sciences and Arts, Arizona
State University, Mesa, Arizona 85212, United
States
| | - Young C. Kim
- Center
for Materials Physics and Technology, Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Jeetain Mittal
- Department
of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
17
|
Hu X, Xia XX, Huang SC, Qian ZG. Development of Adhesive and Conductive Resilin-Based Hydrogels for Wearable Sensors. Biomacromolecules 2019; 20:3283-3293. [DOI: 10.1021/acs.biomac.9b00389] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
18
|
Su RSC, Gill EE, Kim Y, Liu JC. Characterization of resilin-like proteins with tunable mechanical properties. J Mech Behav Biomed Mater 2019; 91:68-75. [PMID: 30544024 PMCID: PMC6774346 DOI: 10.1016/j.jmbbm.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/18/2018] [Accepted: 11/18/2018] [Indexed: 11/17/2022]
Abstract
Resilin is an elastomeric protein abundant in insect cuticle. Its exceptional properties, which include high resilience and efficient energy storage, motivate its potential use in tissue engineering and drug delivery applications. Our lab has previously developed recombinant proteins based on the resilin-like sequence derived from Anopheles gambiae and demonstrated their promise as a scaffold for cartilage and vascular engineering. In this work, we describe a more thorough investigation of the physical properties of crosslinked resilin-like hydrogels. The resilin-like proteins rapidly form crosslinked hydrogels in physiological conditions. We also show that the mechanical properties of these resilin-like hydrogels can be modulated simply by varying the protein concentration or the stoichiometric ratio of crosslinker to crosslinking sites. Crosslinked resilin-like hydrogels were hydrophilic and had a high water content when swollen. In addition, these hydrogels exhibited moderate resilience values, which were comparable to those of common synthetic rubbers. Cryo-scanning electron microscopy showed that the crosslinked resilin-like hydrogels at 16 wt% featured a honeycomb-like structure. These studies thus demonstrate the potential to use recombinant resilin-like proteins in a wide variety of applications such as tissue engineering and drug delivery due to their tunable physical properties.
Collapse
Affiliation(s)
- Renay S-C Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, United States
| | - Emily E Gill
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2032, United States
| | - Yeji Kim
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, United States
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2032, United States.
| |
Collapse
|
19
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
20
|
Luo F, Qian ZG, Xia XX. Responsive Protein Hydrogels Assembled from Spider Silk Carboxyl-Terminal Domain and Resilin Copolymers. Polymers (Basel) 2018; 10:E915. [PMID: 30960840 PMCID: PMC6403847 DOI: 10.3390/polym10080915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/16/2022] Open
Abstract
Responsive protein hydrogels are known to respond to target external stimuli that cause changes in their properties, attracting considerable attention for diverse applications. Here we report the design and recombinant biosynthesis of protein copolymers via genetic fusion of repeating units of resilin with spider silk carboxyl-terminal (CT) domain. The resulting copolymers were thermoresponsive in aqueous solutions, and formed reversible hydrogels at low temperatures and irreversible hydrogels at high temperatures within minutes, a peculiar dual thermogelation feature endowed by the CT domain. The incorporation of resilin blocks upshifted the temperature range of reversible gelation and hydrogel stiffness, whereas the temperature of irreversible gelation was differentially affected by the length of the resilin blocks. In addition, sodium chloride and potassium phosphate at moderate concentrations downregulated both the reversible and irreversible gelation temperatures and hydrogel mechanical properties, proving the salts as another level of control over dual thermogelation. Surprisingly, the copolymers were prone to gelate at body temperature in a time-dependent manner, and the resulting hydrogels were pH-responsive to release a highly polar model drug in vitro. The newly developed resilin-CT copolymers and the multistimuli-responsive hydrogels may be potentially useful in biomedicine, such as for drug delivery.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Kovalev A, Filippov A, Gorb SN. Slow viscoelastic response of resilin. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:409-417. [PMID: 29368167 DOI: 10.1007/s00359-018-1248-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
The high importance of resilin in invertebrate biomechanics is widely known. It is generally assumed to be an almost perfect elastomer in different tissues. Whereas mechanical properties of resilin were previously determined mainly in tension, here we aimed at studying its mechanical properties in compression. Microindentation of resilin from the wing hinge of Locusta migratoria revealed the clear viscoelastic response of resilin: about a quarter of the mechanical response was assigned to a viscous component in our experiments. Mechanical properties were characterized using a generalized Maxwell model with two characteristic time constants, poroelasticity theory, and alternatively using a 1D model with just one characteristic time constant. Slow viscous responses with 1.7 and 16 s characteristic times were observed during indentation. These results demonstrate that the locust flight system is adapted to both fast and slow mechanical processes. The fast highly elastic process is related to the flight function and the slow viscoelastic process may be related to the wing folding.
Collapse
Affiliation(s)
- Alexander Kovalev
- Department Functional Morphology and Biomechanics, Zoological Institute of the Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Alexander Filippov
- Department Functional Morphology and Biomechanics, Zoological Institute of the Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.,Donetsk Institute for Physics and Engineering, National Academy of Science, Donetsk, 340114, Ukraine
| | - Stanislav N Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute of the Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
22
|
Huang SC, Qian ZG, Dan AH, Hu X, Zhou ML, Xia XX. Rational Design and Hierarchical Assembly of a Genetically Engineered Resilin–Silk Copolymer Results in Stiff Hydrogels. ACS Biomater Sci Eng 2017; 3:1576-1585. [DOI: 10.1021/acsbiomaterials.7b00353] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Ao-Huan Dan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xiao Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Ming-Liang Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
23
|
Li L, Stiadle JM, Lau HK, Zerdoum AB, Jia X, Thibeault SL, Kiick KL. Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 2016; 108:91-110. [PMID: 27619243 PMCID: PMC5035639 DOI: 10.1016/j.biomaterials.2016.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023]
Abstract
Vocal folds are soft laryngeal connective tissues with distinct layered structures and complex multicomponent matrix compositions that endow phonatory and respiratory functions. This delicate tissue is easily damaged by various environmental factors and pathological conditions, altering vocal biomechanics and causing debilitating vocal disorders that detrimentally affect the daily lives of suffering individuals. Modern techniques and advanced knowledge of regenerative medicine have led to a deeper understanding of the microstructure, microphysiology, and micropathophysiology of vocal fold tissues. State-of-the-art materials ranging from extracecullar-matrix (ECM)-derived biomaterials to synthetic polymer scaffolds have been proposed for the prevention and treatment of voice disorders including vocal fold scarring and fibrosis. This review intends to provide a thorough overview of current achievements in the field of vocal fold tissue engineering, including the fabrication of injectable biomaterials to mimic in vitro cell microenvironments, novel designs of bioreactors that capture in vivo tissue biomechanics, and establishment of various animal models to characterize the in vivo biocompatibility of these materials. The combination of polymeric scaffolds, cell transplantation, biomechanical stimulation, and delivery of antifibrotic growth factors will lead to successful restoration of functional vocal folds and improved vocal recovery in animal models, facilitating the application of these materials and related methodologies in clinical practice.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jeanna M Stiadle
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Hang K Lau
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA.
| |
Collapse
|
24
|
Muiznieks LD, Keeley FW. Biomechanical Design of Elastic Protein Biomaterials: A Balance of Protein Structure and Conformational Disorder. ACS Biomater Sci Eng 2016; 3:661-679. [DOI: 10.1021/acsbiomaterials.6b00469] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lisa D. Muiznieks
- Molecular
Structure and Function Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Fred W. Keeley
- Molecular
Structure and Function Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
- Department
of Biochemistry and Department of Laboratory Medicine and Pathobiology, 1 King’s College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
25
|
Khandaker MSK, Dudek DM, Beers EP, Dillard DA, Bevan DR. Molecular modeling of the elastomeric properties of repeating units and building blocks of resilin, a disordered elastic protein. J Mech Behav Biomed Mater 2016; 61:110-121. [PMID: 26851528 DOI: 10.1016/j.jmbbm.2016.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
Abstract
The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties.
Collapse
Affiliation(s)
- Md Shahriar K Khandaker
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States.
| | - Daniel M Dudek
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States
| | - Eric P Beers
- Horticulture Department, Virginia Polytechnic Institute and State University, United States.
| | - David A Dillard
- Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute and State University, United States.
| | - David R Bevan
- Biochemistry Department, Virginia Polytechnic Institute and State University, United States.
| |
Collapse
|
26
|
Li L, Mahara A, Tong Z, Levenson EA, McGann CL, Jia X, Yamaoka T, Kiick KL. Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications. Adv Healthc Mater 2016; 5:266-75. [PMID: 26632334 PMCID: PMC4754112 DOI: 10.1002/adhm.201500411] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Indexed: 12/22/2022]
Abstract
The outstanding elasticity, excellent resilience at high-frequency, and hydrophilic capacity of natural resilin have motivated investigations of recombinant resilin-based biomaterials as a new class of bio-elastomers in the engineering of mechanically active tissues. Accordingly, here the comprehensive characterization of modular resilin-like polypeptide (RLP) hydrogels is presented and their suitability as a novel biomaterial for in vivo applications is introduced. Oscillatory rheology confirmed that a full suite of the RLPs can be rapidly cross-linked upon addition of the tris(hydroxymethyl phosphine) cross-linker, achieving similar in situ shear storage moduli (20 k ± 3.5 Pa) across various material compositions. Uniaxial stress relaxation tensile testing of hydrated RLP hydrogels under cyclic loading and unloading showed negligible stress reduction and hysteresis, superior reversible extensibility, and high resilience with Young's moduli of 30 ± 7.4 kPa. RLP hydrogels containing MMP-sensitive domains are susceptible to enzymatic degradation by matrix metalloproteinase-1 (MMP-1). Cell culture studies revealed that RLP-based hydrogels supported the attachment and spreading (2D) of human mesenchymal stem cells and did not activate cultured macrophages. Subcutaneous transplantation of RLP hydrogels in a rat model, which to our knowledge is the first such reported in vivo analysis of RLP-based hydrogels, illustrated that these materials do not elicit a significant inflammatory response, suggesting their potential as materials for tissue engineering applications with targets of mechanically demanding tissues such as vocal fold and cardiovascular tissues.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai Suita, Osaka, 565-8565, Japan
| | - Zhixiang Tong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Eric A Levenson
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher L McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai Suita, Osaka, 565-8565, Japan
| | - Kristi L Kiick
- Department of Materials Science and Engineering, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
27
|
McGann CL, Akins RE, Kiick KL. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure. Biomacromolecules 2016; 17:128-40. [PMID: 26646060 PMCID: PMC4850080 DOI: 10.1021/acs.biomac.5b01255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds.
Collapse
Affiliation(s)
- Christopher L. McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Robert E. Akins
- Nemours – Alfred I. duPont Hospital for Children, Department of Biomedical Research, Wilmington, DE 19803, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19711, United States
| |
Collapse
|
28
|
McGann CL, Dumm RE, Jurusik AK, Sidhu I, Kiick KL. Thiol-ene Photocrosslinking of Cytocompatible Resilin-Like Polypeptide-PEG Hydrogels. Macromol Biosci 2016; 16:129-38. [PMID: 26435299 PMCID: PMC4834209 DOI: 10.1002/mabi.201500305] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/16/2015] [Indexed: 12/22/2022]
Abstract
A range of chemical strategies have been used for crosslinking recombinant polypeptide hydrogels, although only a few have employed photocrosslinking approaches. Here, we capitalize on the novel insect protein, resilin, and the versatility of click reactions to introduce a resilin-like polypeptide (RLP) that is capable of photoinitiated thiol-ene crosslinking. Lysine residues of the RLP were functionalized with norbornene acid as confirmed via 1H-NMR spectroscopy. The RLPNs were subsequently photocrosslinked with multi-arm PEG thiols in the presence of a photoinitiator to form elastic hybrid hydrogels. The crosslinking reaction and resulting RLP-PEG networks demonstrated cytocompatibility with human mesenchymal stem cells in both 2D cell-adhesion and 3D photoencapsulation studies.
Collapse
Affiliation(s)
- Christopher L McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rebekah E Dumm
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Anna K Jurusik
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Ishnoor Sidhu
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States.
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19711, United States.
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
| |
Collapse
|
29
|
Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant Technology in the Development of Materials and Systems for Soft-Tissue Repair. Adv Healthc Mater 2015; 4:2423-55. [PMID: 26172311 DOI: 10.1002/adhm.201500152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The field of biomedicine is constantly investing significant research efforts in order to gain a more in-depth understanding of the mechanisms that govern the function of body compartments and to develop creative solutions for the repair and regeneration of damaged tissues. The main overall goal is to develop relatively simple systems that are able to mimic naturally occurring constructs and can therefore be used in regenerative medicine. Recombinant technology, which is widely used to obtain new tailored synthetic genes that express polymeric protein-based structures, now offers a broad range of advantages for that purpose by permitting the tuning of biological and mechanical properties depending on the intended application while simultaneously ensuring adequate biocompatibility and biodegradability of the scaffold formed by the polymers. This Progress Report is focused on recombinant protein-based materials that resemble naturally occurring proteins of interest for use in soft tissue repair. An overview of recombinant biomaterials derived from elastin, silk, collagen and resilin is given, along with a description of their characteristics and suggested applications. Current endeavors in this field are continuously providing more-improved materials in comparison with conventional ones. As such, a great effort is being made to put these materials through clinical trials in order to favor their future use.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Doriana Orbanic
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Constancio Gonzalez-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| |
Collapse
|
30
|
Whittaker JL, Dutta NK, Knott R, McPhee G, Voelcker NH, Elvin C, Hill A, Choudhury NR. Tunable Thermoresponsiveness of Resilin via Coassembly with Rigid Biopolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8882-8891. [PMID: 26177160 DOI: 10.1021/acs.langmuir.5b01014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability to tune the thermoresponsiveness of recombinant resilin protein, Rec1-resilin, through a facile coassembly system was investigated in this study. The effects of change in conformation and morphology with time and the responsive behavior of Rec1-resilin in solution were studied in response to the addition of a rigid model polypeptide (poly-l-proline) or a hydrophobic rigid protein (Bombyx mori silk fibroin). It was observed that by inducing more ordered conformations and increasing the hydrophobicity the lower critical solution temperature (LCST) of the system was tuned to lower values. Time and temperature were found to be critical parameters in controlling the coassembly behavior of Rec1-resilin in both the model polypeptide and more complex protein systems. Such unique properties are useful for a wide range of applications, including drug delivery and soft tissue engineering applications.
Collapse
Affiliation(s)
- Jasmin L Whittaker
- †Ian Wark Research Institute, University of South Australia, Mawson Lakes Boulevard, Adelaide, South Australia 5095, Australia
| | - Naba K Dutta
- †Ian Wark Research Institute, University of South Australia, Mawson Lakes Boulevard, Adelaide, South Australia 5095, Australia
| | - Robert Knott
- ‡Bragg Institute, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Gordon McPhee
- §Mawson Institute, University of South Australia, Mawson Lakes Boulevard, Adelaide, South Australia 5095, Australia
| | - Nicolas H Voelcker
- §Mawson Institute, University of South Australia, Mawson Lakes Boulevard, Adelaide, South Australia 5095, Australia
| | - Chris Elvin
- ∥CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Anita Hill
- ⊥CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Namita Roy Choudhury
- †Ian Wark Research Institute, University of South Australia, Mawson Lakes Boulevard, Adelaide, South Australia 5095, Australia
| |
Collapse
|
31
|
Degtyar E, Mlynarczyk B, Fratzl P, Harrington MJ. Recombinant engineering of reversible cross-links into a resilient biopolymer. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Pastuszka MK, MacKay JA. Engineering structure and function using thermoresponsive biopolymers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:123-38. [PMID: 26112277 DOI: 10.1002/wnan.1350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 11/09/2022]
Abstract
Self-assembly enables exquisite control at the smallest scale and generates order among macromolecular-building blocks that remain too small to be manipulated individually. Environmental cues, such as heating, can trigger the organization of these materials from individual molecules to multipartixcle assemblies with a variety of compositions and functions. Synthetic as well as biological polymers have been engineered for these purposes; however, biological strategies can offer unparalleled control over the composition of these macromolecular-building blocks. Biologic polymers are macromolecules composed of monomeric units that can be precisely tailored at the genetic level; furthermore, they can often utilize endogenous biodegradation pathways, which may enhance their potential clinical applications. DNA (nucleotides), polysaccharides (carbohydrates), and proteins (amino acids) have all been engineered to self-assemble into nanostructures in response to a change in temperature. This focus article reviews the growing body of literature exploring temperature-dependent nano-assembly of these biological macromolecules, summarizes some of their physical properties, and discusses future directions.
Collapse
Affiliation(s)
- Martha K Pastuszka
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
An16-resilin: an advanced multi-stimuli-responsive resilin-mimetic protein polymer. Acta Biomater 2014; 10:4768-4777. [PMID: 25107894 DOI: 10.1016/j.actbio.2014.07.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/21/2014] [Accepted: 07/29/2014] [Indexed: 11/21/2022]
Abstract
Engineered protein polymers that display responsiveness to multiple stimuli are emerging as a promising class of soft material with unprecedented functionality. The remarkable advancement in genetic engineering and biosynthesis has created the opportunity for precise control over the amino acid sequence, size, structure and resulting functions of such biomimetic proteins. Herein, we describe the multi-stimuli-responsive characteristics of a resilin-mimetic protein, An16-resilin (An16), derived from the consensus sequence of resilin gene in the mosquito Anopheles gambiae. We demonstrate that An16 is an intrinsically disordered protein that displays unusual dual-phase thermal transition behavior along with responsiveness to pH, ion, light and humidity. Identifying the molecular mechanisms that allow An16 to sense and switch in response to varying environments furthers the ability to design intelligent biomacromolecules.
Collapse
|
34
|
Balu R, Whittaker J, Dutta NK, Elvin CM, Choudhury NR. Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers. J Mater Chem B 2014; 2:5936-5947. [PMID: 32261846 DOI: 10.1039/c4tb00726c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature, through evolution over millions of years, has perfected materials with amazing characteristics and awe-inspiring functionalities that exceed the performance of man-made synthetic materials. One such remarkable material is native resilin - an extracellular skeletal protein that plays a major role in the jumping, flying, and sound production mechanisms in many insects. It is one of the most resilient (energy efficient) elastomeric biomaterials known with a resilience of ∼97% and a fatigue life in excess of 300 million cycles. Recently, resilin-like polypeptides (RLPs) with exquisite control over the amino acid sequence (comprising repeat resilin motifs) and tuneable biological properties and/or functions have been generated by genetic engineering and cloning techniques. RLPs have been the subject of intensive investigation over a decade and are now recognized to be multi-functional and multi-stimuli responsive; including temperature (exhibiting both an upper and a lower critical solution temperature), pH, moisture, ion and photo-responsive with tuneable photo-physical properties. Such unusual multi-stimuli responsiveness has scarcely been offered and reported for either synthetic or natural biopolymers. Furthermore, the directed molecular self-assembly property of RLPs also exhibits promise as efficient templates for the synthesis and stabilization of metal nanoparticles. These developments and observations reveal the opportunities and new challenges for RLPs as novel materials for nanotechnology, nanobiotechnology and therapeutic applications. In this review, we discuss and highlight the design and synthesis of different RLPs, their unique molecular architecture, advanced responsive behaviour, and functionality of hydrogels, solid-liquid interfaces, nanoparticles and nanobioconjugates derived from RLPs.
Collapse
Affiliation(s)
- Rajkamal Balu
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | | | | | | | | |
Collapse
|
35
|
Li L, Kiick KL. Transient dynamic mechanical properties of resilin-based elastomeric hydrogels. Front Chem 2014; 2:21. [PMID: 24809044 PMCID: PMC4009447 DOI: 10.3389/fchem.2014.00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/07/2014] [Indexed: 11/13/2022] Open
Abstract
The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young's modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (<15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware Newark, DE, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware Newark, DE, USA ; Biomedical Engineering, University of Delaware Newark, DE, USA ; Delaware Biotechnology Institute Newark, DE, USA
| |
Collapse
|
36
|
Resilin: protein-based elastomeric biomaterials. Acta Biomater 2014; 10:1601-11. [PMID: 23831198 DOI: 10.1016/j.actbio.2013.06.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/14/2013] [Accepted: 06/21/2013] [Indexed: 12/20/2022]
Abstract
Resilin is an elastomeric protein found in insect cuticles and is remarkable for its high strain, low stiffness, and high resilience. Since the first resilin sequence was identified in Drosophilia melanogaster (fruit fly), researchers have utilized molecular cloning techniques to construct resilin-based proteins for a number of different applications. In addition to exhibiting the superior mechanical properties of resilin, resilin-based proteins are autofluorescent, display self-assembly properties, and undergo phase transitions in response to temperature. These properties have potential application in designing biosensors or environmentally responsive materials for use in tissue engineering or drug delivery. Furthermore, the capability of resilin-based biomaterials has been expanded by designing proteins that include both resilin-based sequences and bioactive domains such as cell-adhesion or matrix metalloproteinase sequences. These new materials maintain the superior mechanical and physical properties of resilin and also have the added benefit of controlling cell response. Because the mechanical and biological properties can be tuned through protein engineering, a wide range of properties can be achieved for tissue engineering applications including muscles, vocal folds, cardiovascular tissues, and cartilage.
Collapse
|
37
|
Reichheld SE, Muiznieks LD, Stahl R, Simonetti K, Sharpe S, Keeley FW. Conformational transitions of the cross-linking domains of elastin during self-assembly. J Biol Chem 2014; 289:10057-68. [PMID: 24550393 DOI: 10.1074/jbc.m113.533893] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Elastin is the intrinsically disordered polymeric protein imparting the exceptional properties of extension and elastic recoil to the extracellular matrix of most vertebrates. The monomeric precursor of elastin, tropoelastin, as well as polypeptides containing smaller subsets of the tropoelastin sequence, can self-assemble through a colloidal phase separation process called coacervation. Present understanding suggests that self-assembly is promoted by association of hydrophobic domains contained within the tropoelastin sequence, whereas polymerization is achieved by covalent joining of lysine side chains within distinct alanine-rich, α-helical cross-linking domains. In this study, model elastin polypeptides were used to determine the structure of cross-linking domains during the assembly process and the effect of sequence alterations in these domains on assembly and structure. CD temperature melts indicated that partial α-helical structure in cross-linking domains at lower temperatures was absent at physiological temperature. Solid-state NMR demonstrated that β-strand structure of the cross-linking domains dominated in the coacervate state, although α-helix was predominant after subsequent cross-linking of lysine side chains with genipin. Mutation of lysine residues to hydrophobic amino acids, tyrosine or alanine, leads to increased propensity for β-structure and the formation of amyloid-like fibrils, characterized by thioflavin-T binding and transmission electron microscopy. These findings indicate that cross-linking domains are structurally labile during assembly, adapting to changes in their environment and aggregated state. Furthermore, the sequence of cross-linking domains has a dramatic effect on self-assembly properties of elastin-like polypeptides, and the presence of lysine residues in these domains may serve to prevent inappropriate ordered aggregation.
Collapse
Affiliation(s)
- Sean E Reichheld
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 and
| | | | | | | | | | | |
Collapse
|
38
|
Whittaker J, Balu R, Choudhury NR, Dutta NK. Biomimetic protein-based elastomeric hydrogels for biomedical applications. POLYM INT 2014. [DOI: 10.1002/pi.4670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jasmin Whittaker
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Rajkamal Balu
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Namita R. Choudhury
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Naba K. Dutta
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| |
Collapse
|
39
|
Su RSC, Renner JN, Liu JC. Synthesis and characterization of recombinant abductin-based proteins. Biomacromolecules 2013; 14:4301-8. [PMID: 24147646 DOI: 10.1021/bm401162g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II β-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.
Collapse
Affiliation(s)
- Renay S-C Su
- School of Chemical Engineering, Purdue University , West Lafayette, Indiana 47907-2100, United States
| | | | | |
Collapse
|
40
|
Abstract
Resilin, an insect structural protein, exhibits rubber-like elasticity characterized by low stiffness, high extensibility, efficient energy storage, and exceptional resilience and fatigue lifetime. The outstanding mechanical properties of natural resilin have motivated recent research in the engineering of resilin-like polypeptide-based biomaterials, with a wide range of applications including use as bio-rubbers, nanosprings, elements in biosensors, and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States; Biomedical Engineering, University of Delaware, Newark, 19716, United States; Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | | |
Collapse
|
41
|
Li L, Tong Z, Jia X, Kiick KL. Resilin-Like Polypeptide Hydrogels Engineered for Versatile Biological Functions. SOFT MATTER 2013; 9:665-673. [PMID: 23505396 PMCID: PMC3595062 DOI: 10.1039/c2sm26812d] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Natural resilin, the rubber-like protein that exists in specialized compartments of most arthropods, possesses excellent mechanical properties such as low stiffness, high resilience and effective energy storage. Recombinantly-engineered resilin-like polypeptides (RLPs) that possess the favorable attributes of native resilin would be attractive candidates for the modular design of biomaterials for engineering mechanically active tissues. Based on our previous success in creating a novel RLP-based hydrogel and demonstrating useful mechanical and cell-adhesive properties, we have produced a suite of new RLP-based constructs, each equipped with 12 repeats of the putative resilin consensus sequence and a single, distinct biologically active domain. This approach allows independent control over the concentrations of cell-binding, MMP-sensitive, and polysaccharide-sequestration domains in hydrogels comprising mixtures of the various RLPs. The high purity, molecular weight and correct compositions of each new polypeptide have been confirmed via high performance liquid chromatography (HPLC), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and amino acid analysis. These RLP-based polypeptides exhibit largely random-coil conformation, both in solution and in the cross-linked hydrogels, as indicated by circular dichroic and infrared spectroscopic analyses. Hydrogels of various compositions, with a range of elastic moduli (1kPa to 25kPa) can be produced from these polypeptides, and the activity of the cell-binding and matrix metalloproteinase (MMP) sensitive domains was confirmed. Tris(hydroxymethyl phosphine) cross-linked RLP hydrogels were able to maintain their mechanical integrity as well as the viability of encapsulated primary human mesenchymal stem cells (MSCs). These results validate the promising properties of these RLP-based elastomeric biomaterials.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware,19716,USA
| | - Zhixiang Tong
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware,19716,USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware,19716,USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware,19716,USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware,19711,USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware,19716,USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware,19716,USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware,19711,USA
- 212 DuPont Hall, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA. Fax: +1-302-831- 4545; Tel: +1-302-831- 0201;
| |
Collapse
|
42
|
McGann CL, Levenson EA, Kiick KL. Resilin-Based Hybrid Hydrogels for Cardiovascular Tissue Engineering. Macromolecules 2012; 214:203-213. [PMID: 23956463 DOI: 10.1002/macp.201200412] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The outstanding elastomeric properties of natural resilin, an insect protein, have motivated the engineering of resilin-like polypeptides (RLPs) as a potential material for cardiovascular tissue engineering. The RLPs, which incorporate biofunctional domains for cell-matrix interactions, are cross-linked into RLP-PEG hybrid hydrogels via a Michael-type addition of cysteine residues on the RLP with vinyl sulfones of an end-functionalized multi-arm star PEG. Oscillatory rheology indicated the useful mechanical properties of these materials. Assessments of cell viability via con-focal microscopy clearly show the successful encapsulation of human aortic adventitial fibroblasts in the three-dimensional matrices and the adoption of a spread morphology following 7 days of culture.
Collapse
Affiliation(s)
- Christopher L McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
43
|
Renner JN, Cherry KM, Su RSC, Liu JC. Characterization of Resilin-Based Materials for Tissue Engineering Applications. Biomacromolecules 2012; 13:3678-85. [PMID: 23057410 DOI: 10.1021/bm301129b] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie N. Renner
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Kevin M. Cherry
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Renay S.-C. Su
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Julie C. Liu
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| |
Collapse
|
44
|
DiMarco RL, Heilshorn SC. Multifunctional materials through modular protein engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3923-40. [PMID: 22730248 DOI: 10.1002/adma.201200051] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Indexed: 05/20/2023]
Abstract
The diversity of potential applications for protein-engineered materials has undergone profound recent expansion through a rapid increase in the library of domains that have been utilized in these materials. Historically, protein-engineered biomaterials have been generated from a handful of peptides that were selected and exploited for their naturally evolved functionalities. In recent years, the scope of the field has drastically expanded to include peptide domains that were designed through computational modeling, identified through high-throughput screening, or repurposed from wild type domains to perform functions distinct from their primary native applications. The strategy of exploiting a diverse library of peptide domains to design modular block copolymers enables the synthesis of multifunctional protein-engineered materials with a range of customizable properties and activities. As the diversity of peptide domains utilized in modular protein engineering continues to expand, a tremendous and ever-growing combinatorial expanse of material functionalities will result.
Collapse
|
45
|
|
46
|
Abstract
Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin - two elastomeric biopolymers - and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Mark B. van Eldijk
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Christopher L. McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
47
|
Renner JN, Kim Y, Cherry KM, Liu JC. Modular cloning and protein expression of long, repetitive resilin-based proteins. Protein Expr Purif 2011; 82:90-6. [PMID: 22173203 DOI: 10.1016/j.pep.2011.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/19/2022]
Abstract
Resilin has emerged as a promising new biomaterial possessing attractive properties for tissue engineering applications. To date, proteins with repeating resilin motifs have been expressed with molecular weights less than 30 kDa. This work describes the development of resilin-based proteins (repeating motif derived from Anopheles gambiae) 50 kDa in size. A modular cloning scheme was utilized and features a recursive cloning technique that can seamlessly and precisely tune the number of resilin repeats. Previously-established resilin expression protocols (based on the Studier auto-induction method) were employed to express the proteins in Escherichia coli BL21(DE3)pLysS. Western blot and densitometry results demonstrated that only ~50% of expressed proteins were the desired molecular weight. This finding suggested that either protein truncation or degradation occurred during protein expression. Preventing leaky expression, lowering the culture temperature, and harvesting during exponential phase resulted in up to 94% of the expressed proteins having the desired molecular weight. These expression conditions differ from previously-published resilin expression methods and are recommended when expressing proteins with a larger number of repetitive resilin sequences.
Collapse
Affiliation(s)
- Julie N Renner
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | | | | | | |
Collapse
|
48
|
The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials 2011; 32:8462-73. [DOI: 10.1016/j.biomaterials.2011.07.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/20/2011] [Indexed: 11/23/2022]
|
49
|
Lyons RE, Wong DCC, Kim M, Lekieffre N, Huson MG, Vuocolo T, Merritt DJ, Nairn KM, Dudek DM, Colgrave ML, Elvin CM. Molecular and functional characterisation of resilin across three insect orders. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:881-90. [PMID: 21878390 DOI: 10.1016/j.ibmb.2011.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 05/26/2023]
Abstract
Resilin is an important elastomeric protein of insects, with roles in the storage and release of energy during a variety of different functional categories including flight and jumping. To date, resilin genes and protein function have been characterised only in a small number of flying insects, despite their importance in fleas and other jumping insects. Microscopy and immunostaining studies of resilin in flea demonstrate the presence of resilin pads in the pleural arch at the top of the hind legs, a region responsible for the flea's jumping ability. A degenerate primer approach was used to amplify resilin gene transcripts from total RNA isolated from flea (Ctenocephalides felis), buffalo fly (Haematobia irritans exigua) and dragonfly (Aeshna sp.) pharate adults, and full-length transcripts were successfully isolated. Two isoforms (A and B) were amplified from each of flea and buffalo fly, and isoform B only in dragonfly. Flea and buffalo fly isoform B transcripts were expressed in an Escherichia coli expression system, yielding soluble recombinant proteins Cf-resB and Hi-resB respectively. Protein structure and mechanical properties of each protein before and after crosslinking were assessed. This study shows that resilin gene and protein sequences are broadly conserved and that crosslinked recombinant resilin proteins share similar mechanical properties from flying to jumping insects. A combined use of degenerate primers and polyclonal sera will likely facilitate characterisation of resilin genes from other insect and invertebrate orders.
Collapse
|
50
|
Li L, Teller S, Clifton RJ, Jia X, Kiick KL. Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules 2011; 12:2302-10. [PMID: 21553895 PMCID: PMC3139215 DOI: 10.1021/bm200373p] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resilin, the highly elastomeric protein found in specialized compartments of most arthropods, possesses superior resilience and excellent high-frequency responsiveness. Enabled by biosynthetic strategies, we have designed and produced a modular, recombinant resilin-like polypeptide bearing both mechanically active and biologically active domains to create novel biomaterial microenvironments for engineering mechanically active tissues such as blood vessels, cardiovascular tissues, and vocal folds. Preliminary studies revealed that these recombinant materials exhibit promising mechanical properties and support the adhesion of NIH 3T3 fibroblasts. In this Article, we detail the characterization of the dynamic mechanical properties of these materials, as assessed via dynamic oscillatory shear rheology at various protein concentrations and cross-linking ratios. Simply by varying the polypeptide concentration and cross-linker ratios, the storage modulus G' can be easily tuned within the range of 500 Pa to 10 kPa. Strain-stress cycles and resilience measurements were probed via standard tensile testing methods and indicated the excellent resilience (>90%) of these materials, even when the mechanically active domains are intercepted by nonmechanically active biological cassettes. Further evaluation, at high frequencies, of the mechanical properties of these materials were assessed by a custom-designed torsional wave apparatus (TWA) at frequencies close to human phonation, indicating elastic modulus values from 200 to 2500 Pa, which is within the range of experimental data collected on excised porcine and human vocal fold tissues. The results validate the outstanding mechanical properties of the engineered materials, which are highly comparable to the mechanical properties of targeted vocal fold tissues. The ease of production of these biologically active materials, coupled to their outstanding mechanical properties over a range of compositions, suggests their potential in tissue regeneration applications.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|