1
|
Sun B, Liu Y, Fan H, An Y, Liu W, Wang Q, Han J. The discovery of novel antifungal phenylpyridines derivatives based on CYP53 binding model. Eur J Med Chem 2022; 242:114676. [PMID: 35994951 DOI: 10.1016/j.ejmech.2022.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Benzoates as toxic intermediate are naturally produced by fungal intracellular metabolism, and CYP53 can specific transform the substrates. In the study, we constructed the CYP53 homology model and analyzed the corresponding active region. At the same time, the molecular docking and the structure-based pharmacophore model (SBP) were performed to explore the bind mode of representative CYP53 inhibitors. On the basis, a series of phenylpyridines derivatives were designed as novel CYP53 inhibitors, and their molecular structures were synthesized and evaluated. Compared with the positive control groups, their antifungal activity showed the obvious upward trend. In particular, target compounds (13a, 15b) possessed the excellent biological activity against pathogenic fungi and drug-resistant fungi in vivo and in vitro. The preliminary action mechanism has confirmed that target compounds could inhibit CYP53 activity, and block the metabolism of toxic intermediates (Benzoates). This further induced the accumulation of reactive oxygen species (ROS) through the pattern of mitochondrial depolarization, which eventually caused fungal lysis and death. In summary, the study provided the reasonable computational models, and effectively guided the generation of novel CYP53 antifungal inhibitors.
Collapse
Affiliation(s)
- Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China.
| | - Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Haiyan Fan
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Yunfei An
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Wenxia Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| |
Collapse
|
2
|
Yu Y, Tan H, Liu T, Liu L, Tang J, Peng W. Dual RNA-Seq Analysis of the Interaction Between Edible Fungus Morchella sextelata and Its Pathogenic Fungus Paecilomyces penicillatus Uncovers the Candidate Defense and Pathogenic Factors. Front Microbiol 2021; 12:760444. [PMID: 34925269 PMCID: PMC8675245 DOI: 10.3389/fmicb.2021.760444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Morels (Morchella spp.) are economically important mushrooms cultivated in many countries. However, their production and quality are hindered by white mold disease because of Paecilomyces penicillatus infection. In this study, we aimed to understand the genetic mechanisms of interactions between P. penicillatus and Morchella. M. sextelata, the most prevalent species of Morchella in China, was inoculated with P. penicillatus; then, the expression profiles of both fungi were determined simultaneously at 3 and 6 days post-inoculation (dpi) using a dual RNA-Seq approach. A total of 460 and 313 differentially expressed genes (DEGs) were identified in P. penicillatus and M. sextelata, respectively. The CAZymes of β-glucanases and mannanases, as well as subtilase family, were upregulated in P. penicillatus, which might be involved in the degradation of M. sextelata cell walls. Chitin recognition protein, caffeine-induced death protein, and putative apoptosis-inducing protein were upregulated, while cyclin was downregulated in infected M. sextelata. This indicates that P. penicillatus could trigger programmed cell death in M. sextelata after infection. Laccase-2, tyrosinases, and cytochrome P450s were also upregulated in M. sextelata. The increased expression levels of these genes suggest that M. sextelata could detoxify the P. penicillatus toxins and also form a melanin barrier against P. penicillatus invasion. The potential pathogenic mechanisms of P. penicillatus on M. sextelata and the defense mechanisms of M. sextelata against P. penicillatus were well described.
Collapse
Affiliation(s)
- Yang Yu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Hao Tan
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China.,School of Bioengineering, Jiangnan University, Wuxi, China
| | - Tianhai Liu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lixu Liu
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jie Tang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Weihong Peng
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China.,National Observing and Experimental Station of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
3
|
Castillo-Castañeda A, Cañas-Duarte SJ, Guevara-Suarez M, Guarro J, Restrepo S, Celis Ramírez AM. Transcriptional response of Fusarium oxysporum and Neocosmospora solani challenged with amphotericin B or posaconazole. MICROBIOLOGY (READING, ENGLAND) 2020; 166:936-946. [PMID: 32644917 PMCID: PMC7660915 DOI: 10.1099/mic.0.000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Some species of fusaria are well-known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (ERG5), the sterol 24-C-methyltransferase (ERG6) gene, the glutathione S-transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to commonly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.
Collapse
Affiliation(s)
- A. Castillo-Castañeda
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - S. J. Cañas-Duarte
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Harvard University, Boston, MA, USA
| | - M. Guevara-Suarez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - J. Guarro
- Facultat de Medicina I Ciéncies de la Salut, Departament de Ciéncies Médiques Básiques, Unitat de Microbiología. Universitat de Rovira I Virgili, Reus, España
| | - S. Restrepo
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - A. M. Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
4
|
Chandra S, Wang Z, Tao X, Chen O, Luo X, Ji RR, Bortsov AV. Computer-aided Discovery of a New Nav1.7 Inhibitor for Treatment of Pain and Itch. Anesthesiology 2020; 133:611-627. [PMID: 32788559 DOI: 10.1097/aln.0000000000003427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Voltage-gated sodium channel Nav1.7 has been validated as a perspective target for selective inhibitors with analgesic and anti-itch activity. The objective of this study was to discover new candidate compounds with Nav1.7 inhibitor properties. The authors hypothesized that their approach would yield at least one new compound that inhibits sodium currents in vitro and exerts analgesic and anti-itch effects in mice. METHODS In silico structure-based similarity search of 1.5 million compounds followed by docking to the Nav1.7 voltage sensor of Domain 4 and molecular dynamics simulation was performed. Patch clamp experiments in Nav1.7-expressing human embryonic kidney 293 cells and in mouse and human dorsal root ganglion neurons were conducted to test sodium current inhibition. Formalin-induced inflammatory pain model, paclitaxel-induced neuropathic pain model, histamine-induced itch model, and mouse lymphoma model of chronic itch were used to confirm in vivo activity of the selected compound. RESULTS After in silico screening, nine compounds were selected for experimental assessment in vitro. Of those, four compounds inhibited sodium currents in Nav1.7-expressing human embryonic kidney 293 cells by 29% or greater (P < 0.05). Compound 9 (3-(1-benzyl-1H-indol-3-yl)-3-(3-phenoxyphenyl)-N-(2-(pyrrolidin-1-yl)ethyl)propanamide, referred to as DA-0218) reduced sodium current by 80% with a 50% inhibition concentration of 0.74 μM (95% CI, 0.35 to 1.56 μM), but had no effects on Nav1.5-expressing human embryonic kidney 293 cells. In mouse and human dorsal root ganglion neurons, DA-0218 reduced sodium currents by 17% (95% CI, 6 to 28%) and 22% (95% CI, 9 to 35%), respectively. The inhibition was greatly potentiated in paclitaxel-treated mouse neurons. Intraperitoneal and intrathecal administration of the compound reduced formalin-induced phase II inflammatory pain behavior in mice by 76% (95% CI, 48 to 100%) and 80% (95% CI, 68 to 92%), respectively. Intrathecal administration of DA-0218 produced acute reduction in paclitaxel-induced mechanical allodynia, and inhibited histamine-induced acute itch and lymphoma-induced chronic itch. CONCLUSIONS This study's computer-aided drug discovery approach yielded a new Nav1.7 inhibitor that shows analgesic and anti-pruritic activity in mouse models.
Collapse
Affiliation(s)
- Sharat Chandra
- From the Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (S.C., Z.W., X.T., O.C., X.L., R.-R.J., A.V.B.) the Departments of Cell Biology (O.C., R.-R.J.) Neurobiology (R.-R.J.), Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
5
|
Theron CW, Labuschagné M, Albertyn J, Smit MS. Heterologous coexpression of the benzoate-para-hydroxylase CYP53B1 with different cytochrome P450 reductases in various yeasts. Microb Biotechnol 2019; 12:1126-1138. [PMID: 30341814 PMCID: PMC6801163 DOI: 10.1111/1751-7915.13321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 monooxygenases (P450) are enzymes with high potential as biocatalysts for industrial applications. Their large-scale applications are, however, limited by instability and requirement for coproteins and/or expensive cofactors. These problems are largely overcome when whole cells are used as biocatalysts. We previously screened various yeast species heterologously expressing self-sufficient P450s for their potential as whole-cell biocatalysts. Most P450s are, however, not self-sufficient and consist of two or three protein component systems. Therefore, in the present study, we screened different yeast species for coexpression of P450 and P450-reductase (CPR) partners, using CYP53B1 from Rhodotorula minuta as an exemplary P450. The abilities of three different coexpressed CPR partners to support P450 activity were investigated, two from basidiomycetous origin and one from an ascomycete. The various P450-CPR combinations were cloned into strains of Saccharomyces cerevisiae, Kluyveromyces marxianus, Hansenula polymorpha, Yarrowia lipolytica and Arxula adeninivorans, using a broad-range yeast expression vector. The results obtained supported the previous finding that recombinant A. adeninivorans strains perform excellently as whole-cell biocatalysts. This study also demonstrated for the first time the P450 reductase activity of the CPRs from R. minuta and U. maydis. A very interesting observation was the variation in the supportive activity provided by the different reductase partners tested and demonstrated better P450 activity enhancement by a heterologous CPR compared to its natural partner CPR. This study highlights reductase selection as a critical variable for consideration in the pursuit of optimal P450-based catalytic systems. The usefulness of A. adeninivorans as both a host for recombinant P450s and whole-cell biocatalyst was emphasized, supporting earlier findings.
Collapse
Affiliation(s)
- Chrispian W. Theron
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
- South African DST‐NRF Centre of Excellence in Catalysis, c*changeUniversity of Cape TownCape TownSouth Africa
| | - Michel Labuschagné
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
| | - Martha S. Smit
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
- South African DST‐NRF Centre of Excellence in Catalysis, c*changeUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
6
|
Berne S, Kovačič L, Sova M, Kraševec N, Gobec S, Križaj I, Komel R. Benzoic acid derivatives with improved antifungal activity: Design, synthesis, structure–activity relationship (SAR) and CYP53 docking studies. Bioorg Med Chem 2015; 23:4264-4276. [DOI: 10.1016/j.bmc.2015.06.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/29/2023]
|
7
|
Kües U, Nelson DR, Liu C, Yu GJ, Zhang J, Li J, Wang XC, Sun H. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles. PHYTOCHEMISTRY 2015; 114:18-37. [PMID: 25682509 DOI: 10.1016/j.phytochem.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Ganoderma is a fungal genus belonging to the Ganodermataceae family and Polyporales order. Plant-pathogenic species in this genus can cause severe diseases (stem, butt, and root rot) in economically important trees and perennial crops, especially in tropical countries. Ganoderma species are white rot fungi and have ecological importance in the breakdown of woody plants for nutrient mobilization. They possess effective machineries of lignocellulose-decomposing enzymes useful for bioenergy production and bioremediation. In addition, the genus contains many important species that produce pharmacologically active compounds used in health food and medicine. With the rapid adoption of next-generation DNA sequencing technologies, whole genome sequencing and systematic transcriptome analyses become affordable approaches to identify an organism's genes. In the last few years, numerous projects have been initiated to identify the genetic contents of several Ganoderma species, particularly in different strains of Ganoderma lucidum. In November 2013, eleven whole genome sequencing projects for Ganoderma species were registered in international databases, three of which were already completed with genomes being assembled to high quality. In addition to the nuclear genome, two mitochondrial genomes for Ganoderma species have also been reported. Complementing genome analysis, four transcriptome studies on various developmental stages of Ganoderma species have been performed. Information obtained from these studies has laid the foundation for the identification of genes involved in biological pathways that are critical for understanding the biology of Ganoderma, such as the mechanism of pathogenesis, the biosynthesis of active components, life cycle and cellular development, etc. With abundant genetic information becoming available, a few centralized resources have been established to disseminate the knowledge and integrate relevant data to support comparative genomic analyses of Ganoderma species. The current review carries out a detailed comparison of the nuclear genomes, mitochondrial genomes and transcriptomes from several Ganoderma species. Genes involved in biosynthetic pathways such as CYP450 genes and in cellular development such as matA and matB genes are characterized and compared in detail, as examples to demonstrate the usefulness of comparative genomic analyses for the identification of critical genes. Resources needed for future data integration and exploitation are also discussed.
Collapse
Affiliation(s)
- Ursula Kües
- University of Göttingen, Büsgen-Institute, Department for Molecular Wood Biotechnology and Technical Mycology, Büsgenweg 2, D-37077 Göttingen, Germany
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Guo-Jun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
| | - Jianhui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jianqin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xin-Cun Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Early state research on antifungal natural products. Molecules 2014; 19:2925-56. [PMID: 24609016 PMCID: PMC6271505 DOI: 10.3390/molecules19032925] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/01/2014] [Accepted: 01/09/2014] [Indexed: 01/20/2023] Open
Abstract
Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.
Collapse
|
9
|
Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, Stojan J, Podobnik B, Berne S, Zupanec N, Bunc M, Gobec S, Komel R. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J Appl Microbiol 2014; 116:955-66. [PMID: 24314266 DOI: 10.1111/jam.12417] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/06/2013] [Accepted: 11/25/2013] [Indexed: 11/27/2022]
Abstract
AIMS CYP53A15, from the sorghum pathogen Cochliobolus lunatus, is involved in detoxification of benzoate, a key intermediate in aromatic compound metabolism in fungi. Because this enzyme is unique to fungi, it is a promising drug target in fungal pathogens of other eukaryotes. METHODS AND RESULTS In our work, we showed high antifungal activity of seven cinnamic acid derivatives against C. lunatus and two other fungi, Aspergillus niger and Pleurotus ostreatus. To elucidate the mechanism of action of cinnamic acid derivatives with the most potent antifungal properties, we studied the interactions between these compounds and the active site of C. lunatus cytochrome P450, CYP53A15. CONCLUSION We demonstrated that cinnamic acid and at least four of the 42 tested derivatives inhibit CYP53A15 enzymatic activity. SIGNIFICANCE AND IMPACT OF THE STUDY By identifying selected derivatives of cinnamic acid as possible antifungal drugs, and CYP53 family enzymes as their targets, we revealed a potential inhibitor-target system for antifungal drug development.
Collapse
Affiliation(s)
- B Korošec
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|