1
|
Cerri DH, Albaugh DL, Walton LR, Katz B, Wang TW, Chao THH, Zhang W, Nonneman RJ, Jiang J, Lee SH, Etkin A, Hall CN, Stuber GD, Shih YYI. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat Commun 2024; 15:1916. [PMID: 38429266 PMCID: PMC10907631 DOI: 10.1038/s41467-024-46088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.
Collapse
Affiliation(s)
- Domenic H Cerri
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Albaugh
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lindsay R Walton
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany Katz
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randal J Nonneman
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sung-Ho Lee
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Catherine N Hall
- Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Garret D Stuber
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Avula AK, Goyal A, Rusheen AE, Yuen J, Dennis WO, Eaker DR, Boesche JB, Blaha CD, Bennet KE, Lee KH, Shin H, Oh Y. Improved circuitry and post-processing for interleaved fast-scan cyclic voltammetry and electrophysiology measurements. FRONTIERS IN SIGNAL PROCESSING 2023; 3:1195800. [PMID: 39554594 PMCID: PMC11567673 DOI: 10.3389/frsip.2023.1195800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The combination of electrophysiology and electrochemistry acquisition methods using a single carbon fiber microelectrode (CFM) in the brain has enabled more extensive analysis of neurochemical release, neural activity, and animal behavior. Predominantly, analog CMOS (Complementary Metal Oxide Semiconductor) switches are used for these interleaved applications to alternate the CFM output between electrophysiology and electrochemistry acquisition circuitry. However, one underlying issue with analog CMOS switches is the introduction of transient voltage artifacts in recorded electrophysiology signals resulting from CMOS charge injection. These injected artifacts attenuate electrophysiology data and delay reliable signal observation after every switch actuation from electrochemistry acquisition. Previously published attempts at interleaved electrophysiology and electrochemistry were able to recover reliable electrophysiology data within approximately 10-50 ms after switch actuation by employing various high-pass filtering methods to mitigate the observed voltage artifacts. However, high-pass filtering of this nature also attenuates valuable portions of the local-field potential (LFP) frequency range, thus limiting the extent of network-level insights that can be derived from in vivo measurements. This paper proposes a solution to overcome the limitation of charge injection artifacts that affect electrophysiological data while preserving important lower-frequency LFP bands. A voltage follower operational amplifier was integrated before the CMOS switch to increase current flow to the switch and dissipate any injected charge. This hardware addition resulted in a 16.98% decrease in electrophysiology acquisition delay compared to circuitry without a voltage follower. Additionally, single-term exponential modeling was implemented in post-processing to characterize and subtract remaining transient voltage artifacts in recorded electrophysiology data. As a result, electrophysiology data was reliably recovered 3.26 ± 0.22 ms after the beginning of the acquisition period (a 60% decrease from previous studies), while also minimizing LFP attenuation. Through these advancements, coupled electrophysiology and electrochemistry measurements can be conducted at higher scan rates while retaining data integrity for a more comprehensive analysis of neural activity and neurochemical release.
Collapse
Affiliation(s)
- Ashwin K. Avula
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Warren O. Dennis
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Diane R. Eaker
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | | | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Zarrabian S, Jamali S, Fazli-Tabaei S, Haghparast A. Dopaminergic and nitric oxide systems interact to regulate the electrical activity of neurons in the medial septal nucleus in rats. Exp Brain Res 2022; 240:2581-2594. [PMID: 35976391 DOI: 10.1007/s00221-022-06435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
Abstract
Research characterizing the neuronal substrate of anxiety has implicated different brain areas, including the medial septal nucleus (m-SEPT). Previous reports indicated a role of dopamine and nitric oxide (NO) in anxiety-related behaviors. In this study, the extracellular single-unit recording was performed from the m-SEPT in adult male albino Wistar rats. Baseline activity was recorded for 5 min, and the post-injection recording was performed for another 5 min after the microinjection of each drug. The results showed that (1) both D1- and D2-like receptor agonists (SKF-38393 and quinpirole) enhanced the firing rate of m-SEPT neurons; (2) both D1- and D2-like antagonists (SCH-23390 and sulpiride) attenuated the firing rate of m-SEPT neurons; (3) L-arginine (NO precursor) increased the firing rate of m-SEPT neurons, but a non-specific NOS inhibitor, L-NAME, elicited no significant alterations; (4) the non-specific NOS inhibitor reversed the enhanced firing rate produced by SKF-38393 and quinpirole; (5) neither of the dopaminergic antagonists changed the enhanced activity resulted from the application of the NO precursor. These results contribute to our understanding of the complex neurotransmitter interactions in the m-SEPT and showed that both dopaminergic and NO neurotransmission are involved in the modulation of the firing rate of neurons in the m-SEPT.
Collapse
Affiliation(s)
- Shahram Zarrabian
- Department of Anatomical Sciences and Cognitive Neuroscience, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shole Jamali
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Fazli-Tabaei
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
4
|
Walton LR, Verber M, Lee SH, Chao THH, Wightman RM, Shih YYI. Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales. Neuroimage 2021; 244:118634. [PMID: 34624504 PMCID: PMC8667333 DOI: 10.1016/j.neuroimage.2021.118634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular contributions of neurotransmitters to the hemodynamic response are gaining more attention in neuroimaging studies, as many neurotransmitters are vasomodulatory. To date, well-established electrochemical techniques that detect neurotransmission in high magnetic field environments are limited. Here, we propose an experimental setting enabling simultaneous fast-scan cyclic voltammetry (FSCV) and blood oxygenation level-dependent functional magnetic imaging (BOLD fMRI) to measure both local tissue oxygen and dopamine responses, and global BOLD changes, respectively. By using MR-compatible materials and the proposed data acquisition schemes, FSCV detected physiological analyte concentrations with high temporal resolution and spatial specificity inside of a 9.4 T MRI bore. We found that tissue oxygen and BOLD correlate strongly, and brain regions that encode dopamine amplitude differences can be identified via modeling simultaneously acquired dopamine FSCV and BOLD fMRI time-courses. This technique provides complementary neurochemical and hemodynamic information and expands the scope of studying the influence of local neurotransmitter release over the entire brain.
Collapse
Affiliation(s)
- Lindsay R Walton
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Matthew Verber
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - R Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| |
Collapse
|
5
|
Abstract
Fast-scan cyclic voltammetry (FSCV) is used with carbon-fiber microelectrodes for the real-time detection of neurotransmitters on the subsecond time scale. With FSCV, the potential is ramped up from a holding potential to a switching potential and back, usually at a 400 V s-1 scan rate and a frequency of 10 Hz. The plot of current vs. applied potential, the cyclic voltammogram (CV), has a very different shape for FSCV than for traditional cyclic voltammetry collected at scan rates which are 1000-fold slower. Here, we explore the theory of FSCV, with a focus on dopamine detection. First, we examine the shape of the CVs. Background currents, which are 100-fold higher than faradaic currents, are subtracted out. Peak separation is primarily due to slow electron transfer kinetics, while the symmetrical peak shape is due to exhaustive electrolysis of all the adsorbed neurotransmitters. Second, we explain the origins of the dopamine waveform, and the factors that limit the holding potential (oxygen reduction), switching potential (water oxidation), scan rate (electrode instability), and repetition rate (adsorption). Third, we discuss data analysis, from data visualization with color plots, to the automated algorithms like principal components regression that distinguish dopamine from pH changes. Finally, newer applications are discussed, including optimization of waveforms for analyte selectivity, carbon nanomaterial electrodes that trap dopamine, and basal level measurements that facilitate neurotransmitter measurements on a longer time scale. FSCV theory is complex, but understanding it enables better development of new techniques to monitor neurotransmitters in vivo.
Collapse
Affiliation(s)
- B Jill Venton
- Dept. of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
6
|
Abstract
Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) is a versatile electrochemical technique to probe neurochemical dynamics in vivo. Progress in FSCV methodology continues to address analytical challenges arising from biological needs to measure low concentrations of neurotransmitters at specific sites. This review summarizes recent advances in FSCV method development in three areas: (1) waveform optimization, (2) electrode development, and (3) data analysis. First, FSCV waveform parameters such as holding potential, switching potential, and scan rate have been optimized to monitor new neurochemicals. The new waveform shapes introduce better selectivity toward specific molecules such as serotonin, histamine, hydrogen peroxide, octopamine, adenosine, guanosine, and neuropeptides. Second, CFMEs have been modified with nanomaterials such as carbon nanotubes or replaced with conducting polymers to enhance sensitivity, selectivity, and antifouling properties. Different geometries can be obtained by 3D-printing, manufacturing arrays, or fabricating carbon nanopipettes. Third, data analysis is important to sort through the thousands of CVs obtained. Recent developments in data analysis include preprocessing by digital filtering, principal components analysis for distinguishing analytes, and developing automated algorithms to detect peaks. Future challenges include multisite measurements, machine learning, and integration with other techniques. Advances in FSCV will accelerate research in neurochemistry to answer new biological questions about dynamics of signaling in the brain.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
7
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the Synapse. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:297-321. [PMID: 30707593 PMCID: PMC6989097 DOI: 10.1146/annurev-anchem-061318-115434] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20-100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.
Collapse
Affiliation(s)
| | | | - Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| |
Collapse
|
9
|
Cryan MT, Ross AE. Subsecond detection of guanosine using fast-scan cyclic voltammetry. Analyst 2019; 144:249-257. [PMID: 30484441 DOI: 10.1039/c8an01547c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Guanosine is an important neuromodulator and neuroprotector in the brain and is involved in many pathological conditions, including ischemia and neuroinflammation. Traditional methods to detect guanosine in the brain, like HPLC, offer low limits of detection and are robust; however, subsecond detection is not possible. Here, we present a method for detecting rapid fluctuations of guanosine concentration in real-time using fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes. The optimized waveform scanned from -0.4 V to 1.3 V and back at a rate of 400 V s-1 and application frequency of 10 Hz. Potential limits were chosen to increase selectivity of guanosine over the structurally similar interferent adenosine. Two oxidation peaks were detected with the optimized waveform: the primary oxidation reaction occurred at 1.3 V and the secondary oxidation at 0.8 V. Guanosine detection was stable over time with a limit of detection of 30 ± 10 nM, which permits its use to monitor low nanomolar fluctuations in the brain. To demonstrate the feasibility of the method for in-tissue detection, guanosine was exogenously applied and detected within live rat brain slices. This paper demonstrates the first characterization of guanosine using FSCV, and will be a valuable method for measuring signaling dynamics during guanosine neuromodulation and protection.
Collapse
Affiliation(s)
- Michael T Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
10
|
Kyme AZ, Angelis GI, Eisenhuth J, Fulton RR, Zhou V, Hart G, Popovic K, Akhtar M, Ryder WJ, Clemens KJ, Balleine BW, Parmar A, Pascali G, Perkins G, Meikle SR. Open-field PET: Simultaneous brain functional imaging and behavioural response measurements in freely moving small animals. Neuroimage 2018; 188:92-101. [PMID: 30502443 DOI: 10.1016/j.neuroimage.2018.11.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022] Open
Abstract
A comprehensive understanding of how the brain responds to a changing environment requires techniques capable of recording functional outputs at the whole-brain level in response to external stimuli. Positron emission tomography (PET) is an exquisitely sensitive technique for imaging brain function but the need for anaesthesia to avoid motion artefacts precludes concurrent behavioural response studies. Here, we report a technique that combines motion-compensated PET with a robotically-controlled animal enclosure to enable simultaneous brain imaging and behavioural recordings in unrestrained small animals. The technique was used to measure in vivo displacement of [11C]raclopride from dopamine D2 receptors (D2R) concurrently with changes in the behaviour of awake, freely moving rats following administration of unlabelled raclopride or amphetamine. The timing and magnitude of [11C]raclopride displacement from D2R were reliably estimated and, in the case of amphetamine, these changes coincided with a marked increase in stereotyped behaviours and hyper-locomotion. The technique, therefore, allows simultaneous measurement of changes in brain function and behavioural responses to external stimuli in conscious unrestrained animals, giving rise to important applications in behavioural neuroscience.
Collapse
Affiliation(s)
- Andre Z Kyme
- Biomedical Engineering, School of Aerospace, Mechanical & Mechatronic Engineering, Faculty of Engineering and IT, The University of Sydney, Sydney, NSW, 2006, Australia; Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Georgios I Angelis
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - John Eisenhuth
- Faculty of Health Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Roger R Fulton
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW, 2006, Australia; Department of Medical Physics, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - Victor Zhou
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Genevra Hart
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kata Popovic
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mahmood Akhtar
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - William J Ryder
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bernard W Balleine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Arvind Parmar
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Australian Nuclear Science and Technology Organisation, Sydney, NSW, 2234, Australia
| | - Giancarlo Pascali
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Australian Nuclear Science and Technology Organisation, Sydney, NSW, 2234, Australia
| | - Gary Perkins
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, 2234, Australia
| | - Steven R Meikle
- Imaging Physics Laboratory, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
11
|
Kirkpatrick DC, McKinney CJ, Manis PB, Wightman RM. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements. Analyst 2018; 141:4902-11. [PMID: 27314130 DOI: 10.1039/c6an00933f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations.
Collapse
Affiliation(s)
- D C Kirkpatrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - C J McKinney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - P B Manis
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and The Curriculum of Neurobiology, University of North Carolina, Chapel Hill, NC, USA and Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - R M Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA. and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
12
|
Budai D, Vizvári AD, Bali ZK, Márki B, Nagy LV, Kónya Z, Madarász D, Henn-Mike N, Varga C, Hernádi I. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology. PLoS One 2018; 13:e0193836. [PMID: 29513711 PMCID: PMC5841794 DOI: 10.1371/journal.pone.0193836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Optical microelectrodes (optrodes) are used in neuroscience to transmit light into the brain of a genetically modified animal to evoke and record electrical activity from light-sensitive neurons. Our novel micro-optrode solution integrates a light-transmitting 125 micrometer optical fiber and a 9 micrometer carbon monofilament to form an electrical lead element, which is contained in a borosilicate glass sheathing coaxial arrangement ending with a micrometer-sized carbon tip. This novel unit design is stiff and slender enough to be used for targeting deep brain areas, and may cause less tissue damage compared with previous models. The center-positioned carbon fiber is less prone to light-induced artifacts than side-lit metal microelectrodes previously presented. The carbon tip is capable of not only recording electrical signals of neuronal origin but can also provide valuable surface area for electron transfer, which is essential in electrochemical (voltammetry, amperometry) or microbiosensor applications. We present details of design and manufacture as well as operational examples of the newly developed single micro-optrode, which includes assessments of 1) carbon tip length-impedance relationship, 2) light transmission capabilities, 3) photoelectric artifacts in carbon fibers, 4) responses to dopamine using fast-scan cyclic voltammetry in vivo, and 5) optogenetic stimulation and spike or local field potential recording from the rat brain transfected with channelrhodopsin-2. With this work, we demonstrate that our novel carbon tipped single micro-optrode may open up new avenues for use in optogenetic stimulation when needing to be combined with extracellular recording, electrochemical, or microbiosensor measurements performed on a millisecond basis.
Collapse
Affiliation(s)
- Dénes Budai
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Attila D. Vizvári
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Zsolt K. Bali
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| | - Balázs Márki
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Lili V. Nagy
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Hungary
| | - Dániel Madarász
- Department of Applied and Environmental Chemistry, University of Szeged, Hungary
| | - Nóra Henn-Mike
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- NAP-B Entorhinal Microcircuits Research Group, Department of Physiology, University of Pécs, Hungary
| | - Csaba Varga
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- NAP-B Entorhinal Microcircuits Research Group, Department of Physiology, University of Pécs, Hungary
| | - István Hernádi
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| |
Collapse
|
13
|
Bamford NS, Wightman RM, Sulzer D. Dopamine's Effects on Corticostriatal Synapses during Reward-Based Behaviors. Neuron 2018; 97:494-510. [PMID: 29420932 PMCID: PMC5808590 DOI: 10.1016/j.neuron.2018.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/30/2017] [Accepted: 01/01/2018] [Indexed: 12/31/2022]
Abstract
Many learned responses depend on the coordinated activation and inhibition of synaptic pathways in the striatum. Local dopamine neurotransmission acts in concert with a variety of neurotransmitters to regulate cortical, thalamic, and limbic excitatory inputs to drive the direct and indirect striatal spiny projection neuron outputs that determine the activity, sequence, and timing of learned behaviors. We review recent advances in the characterization of stereotyped neuronal and operant responses that predict and then obtain rewards. These depend on the local release of dopamine at discrete times during behavioral sequences, which, acting with glutamate, provides a presynaptic filter to select which excitatory synapses are inhibited and which signals pass to indirect pathway circuits. This is followed by dopamine-dependent activation of specific direct pathway circuits to procure a reward. These steps may provide a means by which higher organisms learn behaviors in response to feedback from the environment.
Collapse
Affiliation(s)
- Nigel S Bamford
- Departments of Pediatrics, Neurology, Cellular and Molecular Physiology, Yale University, New Haven, CT 06510, USA.
| | - R Mark Wightman
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Medical Campus, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
14
|
Affiliation(s)
- James G. Roberts
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| | - Leslie A. Sombers
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| |
Collapse
|
15
|
Hobbs CN, Holzberg G, Min AS, Wightman RM. Comparison of Spreading Depolarizations in the Motor Cortex and Nucleus Accumbens: Similar Patterns of Oxygen Responses and the Role of Dopamine. ACS Chem Neurosci 2017; 8:2512-2521. [PMID: 28820571 PMCID: PMC5691918 DOI: 10.1021/acschemneuro.7b00266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spreading depolarizations (SD) are pathophysiological phenomena that spontaneously arise in traumatized neural tissue and can promote cellular death. Most investigations of SD are performed in the cortex, a brain region that is susceptible to these depolarizing waves and accessible via a variety of monitoring techniques. Here, we describe SD responses in the cortex and the deep brain region of the nucleus accumbens (NAc) of the anesthetized rat with a minimally invasive, implantable sensor. With high temporal resolution, we characterize the time course of oxygen responses to SD in relation to the electrophysiological depolarization signal. The predominant oxygen pattern consists of four phases: (1) a small initial decrease, (2) a large increase during the SD, (3) a delayed increase, and (4) a persistent decrease from baseline after the SD. Oxygen decreases during SD were also recorded. The latter response occurred more often in the NAc than the cortex (56% vs 20% of locations, respectively), which correlates to denser cortical vascularization. We also find that SDs travel more quickly in the cortex than NAc, likely affected by regional differences in cell type populations. Finally, we investigate the previously uncharacterized effects of dopamine release during SD in the NAc with dopamine receptor blockade. Our results support an inhibitory role of the D2 receptor on SD. As such, the data presented here expands the current understanding of within- and between-region variance in responses to SD.
Collapse
Affiliation(s)
- Caddy N. Hobbs
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gordon Holzberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Akira S. Min
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - R. Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Walton LR, Boustead NG, Carroll S, Wightman RM. Effects of Glutamate Receptor Activation on Local Oxygen Changes. ACS Chem Neurosci 2017; 8:1598-1608. [PMID: 28425701 PMCID: PMC5685152 DOI: 10.1021/acschemneuro.7b00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
![]()
Glutamate is ubiquitous
throughout the brain and serves as the
primary excitatory neurotransmitter. Neurons require energy to fire,
and energetic substrates (i.e., O2, glucose) are renewed
via cerebral blood flow (CBF) to maintain metabolic homeostasis. Magnetic
resonance brain functionality studies rely on the assumption that
CBF and neuronal activity are coupled consistently throughout the
brain; however, the origin of neuronal activity does not always coincide
with signals indicative of energy consumption (e.g., O2 decreases) at high spatial resolutions. Therefore, relationships
between excitatory neurotransmission and energy use must be evaluated
at higher resolutions. In this study, we showed that both endogenously
released and exogenously ejected glutamate decrease local tissue O2 concentrations, but whether hyperemic O2 restoration
followed depended on the stimulus method. Electrically stimulating
the glutamatergic corticostriatal pathway evoked biphasic O2 responses at striatal terminals: first O2 decreased,
then concentrations increased above baseline. Using iontophoresis
to locally eject ionotropic glutamate receptor antagonists revealed
that these receptors only influenced the O2 decrease. We
compared electrical stimulation to iontophoretic glutamate stimulation,
and measured concurrent single-unit activity and O2 to
limit both stimulation and recordings to <50 μm radius from
our sensor. Similarly, iontophoretic glutamate delivery elicited monophasic
O2 decreases without subsequent increases.
Collapse
Affiliation(s)
- Lindsay R. Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nick G. Boustead
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Susan Carroll
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - R. Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Davis AN, Travis AR, Miller DR, Cliffel DE. Multianalyte Physiological Microanalytical Devices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:93-111. [PMID: 28605606 PMCID: PMC9235322 DOI: 10.1146/annurev-anchem-061516-045334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Advances in scientific instrumentation have allowed experimentalists to evaluate well-known systems in new ways and to gain insight into previously unexplored or poorly understood phenomena. Within the growing field of multianalyte physiometry (MAP), microphysiometers are being developed that are capable of electrochemically measuring changes in the concentration of various metabolites in real time. By simultaneously quantifying multiple analytes, these devices have begun to unravel the complex pathways that govern biological responses to ischemia and oxidative stress while contributing to basic scientific discoveries in bioenergetics and neurology. Patients and clinicians have also benefited from the highly translational nature of MAP, and the continued expansion of the repertoire of analytes that can be measured with multianalyte microphysiometers will undoubtedly play a role in the automation and personalization of medicine. This is perhaps most evident with the recent advent of fully integrated noninvasive sensor arrays that can continuously monitor changes in analytes linked to specific disease states and deliver a therapeutic agent as required without the need for patient action.
Collapse
Affiliation(s)
- Anna Nix Davis
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - Adam R Travis
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - Dusty R Miller
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
18
|
Rodeberg NT, Sandberg SG, Johnson JA, Phillips PEM, Wightman RM. Hitchhiker's Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry. ACS Chem Neurosci 2017; 8:221-234. [PMID: 28127962 PMCID: PMC5783156 DOI: 10.1021/acschemneuro.6b00393] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fast-scan cyclic voltammetry (FSCV) has been used for over 20 years to study rapid neurotransmission in awake and behaving animals. These experiments were first carried out with carbon-fiber microelectrodes (CFMs) encased in borosilicate glass, which can be inserted into the brain through micromanipulators and guide cannulas. More recently, chronically implantable CFMs constructed with small diameter fused-silica have been introduced. These electrodes can be affixed in the brain with minimal tissue response, which permits longitudinal measurements of neurotransmission in single recording locations during behavior. Both electrode designs have been used to make novel discoveries in the fields of neurobiology, behavioral neuroscience, and psychopharmacology. The purpose of this Review is to address important considerations for the use of FSCV to study neurotransmitters in awake and behaving animals, with a focus on measurements of striatal dopamine. Common issues concerning experimental design, data collection, and calibration are addressed. When necessary, differences between the two methodologies (acute vs chronic recordings) are discussed. The topics raised in this Review are particularly important as the field moves beyond dopamine toward new neurochemicals and brain regions.
Collapse
Affiliation(s)
- Nathan T. Rodeberg
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| | - Stefan G. Sandberg
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| | - Justin A. Johnson
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| | - Paul E. M. Phillips
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| | - R. Mark Wightman
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| |
Collapse
|
19
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
20
|
Fox ME, Wightman RM. Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective. Pharmacol Rev 2017; 69:12-32. [PMID: 28267676 PMCID: PMC7558309 DOI: 10.1124/pr.116.012948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Catecholamine neurotransmission plays a key role in regulating a variety of behavioral and physiologic processes, and its dysregulation is implicated in both neurodegenerative and neuropsychiatric disorders. Over the last four decades, in vivo electrochemistry has enabled the discovery of contrasting catecholamine regulation in the brain. These rapid and spatially resolved measurements have been conducted in brain slices, and in anesthetized and freely behaving animals. In this review, we describe the methods enabling in vivo measurements of dopamine and norepinephrine, and subsequent findings regarding their release and regulation in intact animals. We thereafter discuss key studies in awake animals, demonstrating that these catecholamines are not only differentially regulated, but are released in opposition of each other during appetitive and aversive stimuli.
Collapse
Affiliation(s)
- Megan E Fox
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| | - R Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Owesson-White C, Belle AM, Herr NR, Peele JL, Gowrishankar P, Carelli RM, Wightman RM. Cue-Evoked Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens During Motivated Behavior. J Neurosci 2016; 36:6011-21. [PMID: 27251622 PMCID: PMC4887565 DOI: 10.1523/jneurosci.0393-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/23/2016] [Accepted: 04/20/2016] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Dopaminergic neurons that project from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) fire in response to unpredicted rewards or to cues that predict reward delivery. Although it is well established that reward-related events elicit dopamine release in the NAc, the role of rapid dopamine signaling in modulating NAc neurons that respond to these events remains unclear. Here, we examined dopamine's actions in the NAc in the rat brain during an intracranial self-stimulation task in which a cue predicted lever availability for electrical stimulation of the VTA. To distinguish actions of dopamine at select receptors on NAc neurons during the task, we used a multimodal sensor that probes three aspects of neuronal communication simultaneously: neurotransmitter release, cell firing, and identification of dopamine receptor type. Consistent with prior studies, we first show dopamine release events in the NAc both at cue presentation and after lever press (LP). Distinct populations of NAc neurons encode these behavioral events at these same locations selectively. Using our multimodal sensor, we found that dopamine-mediated responses after the cue involve exclusively a subset of D2-like receptors (D2Rs), whereas dopamine-mediated responses proximal to the LP are mediated by both D1-like receptors (D1R) and D2Rs. These results demonstrate for the first time that dopamine-mediated responses after cues that predict reward availability are specifically linked to its actions at a subset of neurons in the NAc containing D2Rs. SIGNIFICANCE STATEMENT Successful reward procurement typically involves the completion of a goal-directed behavior in response to appropriate environmental cues. Although numerous studies link the mesolimbic dopamine system with these processes, how dopamine's effects are mediated on the receptor level within a key neural substrate, the nucleus accumbens, remains elusive. Here, we used a unique multimodal sensor that reveals three aspects of neuronal interactions: neurotransmitter release, cell firing, and dopamine-receptor type. We identified a key role of D2-like receptor (D2R)-expressing neurons in response to a reward-predicting cue, whereas both the D2R and D1R types modulate responses of neurons proximal to the goal-directed action. This work provides novel insight into the unique role of D2R-mediated neuronal activity to reward-associated cues, a fundamental aspect of motivated behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | - Regina M Carelli
- Department of Psychology and Neuroscience, and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - R Mark Wightman
- Department of Chemistry, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
22
|
Kirkpatrick DC, Wightman RM. Evaluation of Drug Concentrations Delivered by Microiontophoresis. Anal Chem 2016; 88:6492-9. [PMID: 27212615 DOI: 10.1021/acs.analchem.6b01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microiontophoresis uses an electric current to eject a drug solution from a glass capillary and is often utilized for targeted delivery in neurochemical investigations. The amount of drug ejected, and its effective concentration at the tip, has historically been difficult to determine, which has precluded its use in quantitative studies. To address this, a method called controlled iontophoresis was developed which employs a carbon-fiber microelectrode incorporated into a multibarreled iontophoretic probe to detect the ejection of electroactive species. Here, we evaluate the accuracy of this method. To do this, we eject different concentrations of quinpirole, a D2 receptor agonist, into a brain slice containing the dorsal striatum, a brain region with a high density of dopamine terminals. Local electrical stimulation was used to evoke dopamine release, and inhibitory actions of quinpirole on this release were examined. The amount of drug ejected was estimated by detection of a coejected electrochemical marker. Dose response curves generated in this manner were compared to curves generated by conventional perfusion of quinpirole through the slice. We find several experimental conditions must be optimized for accurate results. First, selection of a marker with an identical charge was necessary to mimic the ejection of the cationic agonist. Next, evoked responses were more precise following longer periods between the end of the ejection and stimulation. Lastly, the accuracy of concentration evaluations was improved by longer ejections. Incorporation of these factors into existing protocols allows for greater certainty of concentrations delivered by controlled iontophoresis.
Collapse
Affiliation(s)
- Douglas C Kirkpatrick
- Department of Chemistry and ‡Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina, 27599-3290, United States
| | - R Mark Wightman
- Department of Chemistry and ‡Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina, 27599-3290, United States
| |
Collapse
|
23
|
Cullen M, Wong-Lin K. Integrated dopaminergic neuronal model with reduced intracellular processes and inhibitory autoreceptors. IET Syst Biol 2016; 9:245-58. [PMID: 26577159 DOI: 10.1049/iet-syb.2015.0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dopamine (DA) is an important neurotransmitter for multiple brain functions, and dysfunctions of the dopaminergic system are implicated in neurological and neuropsychiatric disorders. Although the dopaminergic system has been studied at multiple levels, an integrated and efficient computational model that bridges from molecular to neuronal circuit level is still lacking. In this study, the authors aim to develop a realistic yet efficient computational model of a dopaminergic pre-synaptic terminal. They first systematically perturb the variables/substrates of an established computational model of DA synthesis, release and uptake, and based on their relative dynamical timescales and steady-state changes, approximate and reduce the model into two versions: one for simulating hourly timescale, and another for millisecond timescale. They show that the original and reduced models exhibit rather similar steady and perturbed states, whereas the reduced models are more computationally efficient and illuminate the underlying key mechanisms. They then incorporate the reduced fast model into a spiking neuronal model that can realistically simulate the spiking behaviour of dopaminergic neurons. In addition, they successfully include autoreceptor-mediated inhibitory current explicitly in the neuronal model. This integrated computational model provides the first step toward an efficient computational platform for realistic multiscale simulation of dopaminergic systems in in silico neuropharmacology.
Collapse
Affiliation(s)
- Maell Cullen
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Northland Road, L'Derry BT48 7JL, Northern Ireland, UK
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Northland Road, L'Derry BT48 7JL, Northern Ireland, UK.
| |
Collapse
|
24
|
Kirkpatrick DC, Walton LR, Edwards MA, Wightman RM. Quantitative analysis of iontophoretic drug delivery from micropipettes. Analyst 2016; 141:1930-8. [PMID: 26890395 PMCID: PMC4783294 DOI: 10.1039/c5an02530c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microiontophoresis is a drug delivery method in which an electric current is used to eject molecular species from a micropipette. It has been primarily utilized for neurochemical investigations, but is limited due to difficulty controlling and determining the ejected quantity. Consequently the concentration of an ejected species and the extent of the affected region are relegated to various methods of approximation. To address this, we investigated the principles underlying ejection rates and examined the concentration distribution in microiontophoresis using a combination of electrochemical, chromatographic, and fluorescence-based approaches. This involved a principal focus on how the iontophoretic barrel solution affects ejection characteristics. The ion ejection rate displayed a direct correspondence to the ionic mole fraction, regardless of the ejection current polarity. In contrast, neutral molecules are ejected by electroosmotic flow (EOF) at a rate proportional to the barrel solution concentration. Furthermore, the presence of EOF was observed from barrels containing high ionic strength solutions. In practice, use of a retaining current draws extracellular ions into the barrel and will alter the barrel solution composition. Even in the absence of a retaining current, diffusional exchange at the barrel tip will occur. Thus behavior of successive ejections may slightly differ. To account for this, electrochemical or fluorescence markers can be incorporated into the barrel solution in order to compare ejection quantities. These may also be used to provide an estimate of the ejected amount and distribution provided accurate use of calibration procedures.
Collapse
Affiliation(s)
- D C Kirkpatrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - L R Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - M A Edwards
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - R M Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA. and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
25
|
Fanelli RR, Robinson DL. Dopamine D1 receptor blockade impairs alcohol seeking without reducing dorsal striatal activation to cues of alcohol availability. Brain Behav 2015; 5:e00305. [PMID: 25642390 PMCID: PMC4309894 DOI: 10.1002/brb3.305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/17/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Alcohol-associated cues activate both ventral and dorsal striatum in functional brain imaging studies of heavy drinkers. In rodents, alcohol-associated cues induce changes in neuronal firing frequencies and increase dopamine release in ventral striatum, but the impact of alcohol-associated cues on neuronal activity in dorsal striatum is unclear. We previously reported phasic changes in action potential frequency in the dorsomedial and dorsolateral striatum after cues that signaled alcohol availability, prompting approach behavior. METHODS We investigated the hypothesis that dopamine transmission modulates these phasic firing changes. Rats were trained to self-administer alcohol, and neuronal activity was monitored with extracellular electrophysiology during "anticipatory" cues that signaled the start of the operant session. Sessions were preceded by systemic administration of the D1-type dopamine receptor antagonist SCH23390 (0, 10, and 20 μg/kg). RESULTS SCH23390 significantly decreased firing rates during the 60 s prior to cue onset without reducing phasic excitations immediately following the cues. While neuronal activation to cues might be expected to initiate behavioral responses, in this study alcohol seeking was reduced despite the presence of dorsal striatal excitations to alcohol cues. CONCLUSIONS These data suggest that D1 receptor antagonism reduces basal firing rates in the dorsal striatum and modulates the ability of neuronal activation to "anticipatory" cues to initiate alcohol seeking in rats with an extensive history of alcohol self-administration.
Collapse
Affiliation(s)
- Rebecca R Fanelli
- Neurobiology Curriculum, University of North Carolina Chapel Hill, North Carolina ; Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, North Carolina
| | - Donita L Robinson
- Neurobiology Curriculum, University of North Carolina Chapel Hill, North Carolina ; Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, North Carolina ; Department of Psychiatry, University of North Carolina Chapel Hill, North Carolina
| |
Collapse
|
26
|
Nesbitt K, Varner EL, Jaquins-Gerstl A, Michael AC. Microdialysis in the rat striatum: effects of 24 h dexamethasone retrodialysis on evoked dopamine release and penetration injury. ACS Chem Neurosci 2015; 6:163-73. [PMID: 25491242 PMCID: PMC4304486 DOI: 10.1021/cn500257x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/04/2014] [Indexed: 12/25/2022] Open
Abstract
The power of microdialysis for in vivo neurochemical monitoring is a result of intense efforts to enhance microdialysis procedures, the probes themselves, and the analytical systems used for the analysis of dialysate samples. Our goal is to refine microdialysis further by focusing attention on what happens when the probes are implanted into brain tissue. It is broadly acknowledged that some tissue damage occurs, such that the tissue nearest the probes is disrupted from its normal state. We hypothesize that mitigating such disruption would refine microdialysis. Herein, we show that the addition of dexamethasone, an anti-inflammatory drug, to the perfusion fluid protects evoked dopamine responses as measured by fast-scan cyclic voltammetry next to the probes after 24 h. We also show that dexamethasone stabilizes evoked dopamine responses measured at the probe outlet over a 4-24 h postimplantation interval. The effects of dexamethasone are attributable to its anti-inflammatory actions, as dexamethasone had no significant effect on two histochemical markers for dopamine terminals, tyrosine hydroxylase and the dopamine transporter. Using histochemical assays, we confirmed that the actions of dexamethasone are tightly confined to the immediate, local vicinity of the probe.
Collapse
Affiliation(s)
- Kathryn
M. Nesbitt
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Erika L. Varner
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Bucher ES, Wightman RM. Electrochemical Analysis of Neurotransmitters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:239-61. [PMID: 25939038 PMCID: PMC4728736 DOI: 10.1146/annurev-anchem-071114-040426] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.
Collapse
|
28
|
Nguyen MD, Venton BJ. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release. Comput Struct Biotechnol J 2014; 13:47-54. [PMID: 26900429 PMCID: PMC4720017 DOI: 10.1016/j.csbj.2014.12.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.
Collapse
Affiliation(s)
- Michael D Nguyen
- Department of Chemistry, University of Virginia, McCormick Road, PO BOX 400319, Charlottesville, VA 22904, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, McCormick Road, PO BOX 400319, Charlottesville, VA 22904, United States
| |
Collapse
|
29
|
Ikegami Y, Hozumi S, Shoji A, Hirano-Iwata A, Bliss T, Sugawara M. Real-time monitoring of extracellular l-glutamate levels released by high-frequency stimulation at region CA1 of hippocampal slices with a glass capillary-based l-glutamate sensor. SENSING AND BIO-SENSING RESEARCH 2014. [DOI: 10.1016/j.sbsr.2014.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
30
|
Cameron CM, Wightman RM, Carelli RM. Dynamics of rapid dopamine release in the nucleus accumbens during goal-directed behaviors for cocaine versus natural rewards. Neuropharmacology 2014; 86:319-28. [PMID: 25174553 PMCID: PMC4188722 DOI: 10.1016/j.neuropharm.2014.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 02/08/2023]
Abstract
Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n = 8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors.
Collapse
Affiliation(s)
- Courtney M Cameron
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, USA
| | - R Mark Wightman
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, USA; Department of Chemistry, The University of North Carolina, Chapel Hill, NC, USA
| | - Regina M Carelli
- Department of Psychology, The University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, The University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
31
|
Kirkpatrick D, Edwards MA, Flowers PA, Wightman RM. Characterization of solute distribution following iontophoresis from a micropipet. Anal Chem 2014; 86:9909-16. [PMID: 25157675 PMCID: PMC4188272 DOI: 10.1021/ac5026072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
Iontophoresis uses a current to eject solution from the tip of a barrel formed from a pulled glass capillary and has been employed as a method of drug delivery for neurochemical investigations. Much attention has been devoted to resolving perhaps the greatest limitation of iontophoresis, the inability to determine the concentration of substances delivered by ejections. To further address this issue, we evaluate the properties of typical ejections such as barrel solution velocity and its relation to the ejection current using an amperometric and liquid chromatographic approach. These properties were used to predict the concentration distribution of ejected solute that was then confirmed by fluorescence microscopy. Additionally, incorporation of oppositely charged fluorophores into the barrel investigated the role of migration on the mass transport of an ejected species. Results indicate that location relative to the barrel tip is the primary influence on the distribution of ejected species. At short distances (<100 μm), advection from electroosmotic transport of the barrel solution may significantly contribute to the distribution, but this effect can be minimized through the use of low to moderate ejection currents. However, as the distance from the source increases (>100 μm), even solute ejected using high currents exhibits diffusion-limited behavior. Lastly a time-dependent theoretical model was constructed and is used with experimental fluorescent profiles to demonstrate how iontophoresis can generate near-uniform concentration distributions near the ejection source.
Collapse
Affiliation(s)
- Douglas
C. Kirkpatrick
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Martin A. Edwards
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Paul A. Flowers
- Department
of Chemistry and Physics, University of
North Carolina at Pembroke, Pembroke, North Carolina 28372, United States
| | - R. Mark Wightman
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
32
|
Bass CE, Grinevich VP, Gioia D, Day-Brown JD, Bonin KD, Stuber GD, Weiner JL, Budygin EA. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Front Behav Neurosci 2013; 7:173. [PMID: 24324415 PMCID: PMC3840465 DOI: 10.3389/fnbeh.2013.00173] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/05/2013] [Indexed: 01/16/2023] Open
Abstract
There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA) dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2) on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.
Collapse
Affiliation(s)
- Caroline E Bass
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo Buffalo, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bucher ES, Brooks K, Verber MD, Keithley RB, Owesson-White C, Carroll S, Takmakov P, McKinney CJ, Wightman RM. Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis. Anal Chem 2013; 85:10344-53. [PMID: 24083898 PMCID: PMC3838858 DOI: 10.1021/ac402263x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the last several decades, fast-scan cyclic voltammetry (FSCV) has proved to be a valuable analytical tool for the real-time measurement of neurotransmitter dynamics in vitro and in vivo. Indeed, FSCV has found application in a wide variety of disciplines including electrochemistry, neurobiology, and behavioral psychology. The maturation of FSCV as an in vivo technique led users to pose increasingly complex questions that require a more sophisticated experimental design. To accommodate recent and future advances in FSCV application, our lab has developed High Definition Cyclic Voltammetry (HDCV). HDCV is an electrochemical software suite that includes data acquisition and analysis programs. The data collection program delivers greater experimental flexibility and better user feedback through live displays. It supports experiments involving multiple electrodes with customized waveforms. It is compatible with transistor-transistor logic-based systems that are used for monitoring animal behavior, and it enables simultaneous recording of electrochemical and electrophysiological data. HDCV analysis streamlines data processing with superior filtering options, seamlessly manages behavioral events, and integrates chemometric processing. Furthermore, analysis is capable of handling single files collected over extended periods of time, allowing the user to consider biological events on both subsecond and multiminute time scales. Here we describe and demonstrate the utility of HDCV for in vivo experiments.
Collapse
Affiliation(s)
- Elizabeth S. Bucher
- Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
| | - Kenneth Brooks
- Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
| | - Matthew D. Verber
- Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
| | | | - Catarina Owesson-White
- Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
| | - Susan Carroll
- Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
| | - Pavel Takmakov
- Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
| | - Collin J. McKinney
- Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
| | - R. Mark Wightman
- Department of Chemistry and Neuroscience Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3290
| |
Collapse
|