1
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Electron-Vibration Couplings Open New Channels for Energy Redistribution of Self-Assembled Monolayers on Plasmonic Nanoparticles. J Phys Chem Lett 2025; 16:3571-3578. [PMID: 40172294 DOI: 10.1021/acs.jpclett.4c02930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Unveiling how the interaction between self-assembled monolayers and plasmonic nanoparticles (PNPs) impacts molecular vibrational energy redistribution (VER) is crucial for optimizing plasmon-mediated chemical reactions (PMCRs). However, direct experimental evidence for molecule-PNP interactions opening new energy channels, such as up-pumping energy transfer and self-trapping of vibrational excitation, for VER has yet to be validated. Here, we demonstrate that electron-vibration coupling (EVC) induced by molecule-PNP interactions can open these new pathways for VER by utilizing femtosecond time-resolved sum-frequency generation vibrational spectroscopy. Using self-assembled 4-nitrothiophenol (4-NTP) monolayers on PNPs as a model, we observed that EVC opens a "forbidden" up-pumping energy transfer channel from 4-NTP nitro symmetric stretching (νNO2) to phenyl ring C═C stretching (νC═C) modes. The self-trapped state of excited νC═C modes is found, which originates from EVC-driven intermolecular coupling. These findings contribute to a better understanding of PMCR mechanisms and help guide the design of plasmonic catalysts with excellent performance.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
2
|
Dong J, Qiu J, Bai X, Wang Z, Xiao B, Wang L. SPADE 1.0: A Simulation Package for Non-Adiabatic Dynamics in Extended Systems. J Chem Theory Comput 2025; 21:3300-3320. [PMID: 40126212 DOI: 10.1021/acs.jctc.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Nonadiabatic molecular dynamics (NAMD) simulations are crucial for revealing the underlying mechanisms of photochemical and photophysical processes. Typical NAMD simulation software packages rely on on-the-fly ab initio electronic structure and nonadiabatic coupling calculations, and thus become challenging when dealing with large complex systems. We here introduce a new Simulation Package for non-Adiabatic Dynamics in Extended systems (SPADE), which is designed to address the limitations of traditional surface hopping methods in dealing with these problems. By design, SPADE enables the users to define arbitrary quasi-diabatic Hamiltonians through parametrized functions and incorporates a variety of algorithms (e.g., global flux hopping probabilities, complex crossing and decoherence corrections), which can realize efficient and reliable NAMD simulations without using nonadiabatic couplings at all. All the employed methods and expressions for diabatic Hamiltonian matrix elements can be flexibly set through the input files. SPADE is mainly written in Fortran based on a modular design and has a great capacity for further implementation of new methods. SPADE can be used to simulate both model and atomistic systems as long as proper Hamiltonians are provided. As demonstrations, a series of representative models are studied to show the main features and capabilities.
Collapse
Affiliation(s)
- Jiawei Dong
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jing Qiu
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xin Bai
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zedong Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bingyang Xiao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Kwon H, Choi H, Yoon Y, Jeon B, Kang M, Park JY, Kim HY, Lee SW. Electronic Switching between Hot Electrons and Hot Holes via Schottky Junctions during Chemical Reactions. ACS NANO 2025; 19:11450-11462. [PMID: 40065735 DOI: 10.1021/acsnano.5c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Hot carriers, generated through nonadiabatic energy dissipation during exothermic catalytic reactions, play a pivotal role in enhancing catalytic performance. Upon generation, hot electrons typically reside in the sp-band above the Fermi level, while hot holes are formed in the d-band below the Fermi level, following the energy distribution of the metal's electronic structure. However, it has been technically challenging to simultaneously capture and understand the flow of these two opposite charges during chemical reactions. In this study, we employed Pt/Si Schottky nanodiodes to detect reaction-induced hot carriers. The flux of hot electrons and hot holes was observed to vary depending on whether the Pt catalyst was deposited on n-Si or p-Si, respectively. Indeed, the detection probability of hot holes was lower compared to hot electrons, attributed to the shorter mean free path of hot holes. This demonstrates that for quantitative capture of hot carriers at the metal-semiconductor Schottky junction, the transport process through which the excited carrier passes the metal must also be considered. When a forward bias was applied to the Pt/p-Si nanodiode, a switch from hot hole to hot electron transfer was observed, due to the perturbation of the band structures. Our first prototype platforms, which self-control the transfer of hot carriers during the chemical reaction using Schottky junctions, may offer insights into potential applications of hot carriers in catalytic devices, energy conversion-based devices, or chemical sensors.
Collapse
Affiliation(s)
- Hyekyung Kwon
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk 28173, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Yeji Yoon
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mincheol Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Si Woo Lee
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk 28173, Republic of Korea
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Lee GR, Song K, Hong D, An J, Roh Y, Kim M, Kim D, Jung YS, Park JY. Unraveling oxygen vacancy-driven catalytic selectivity and hot electron generation on heterointerfaces using nanostructured platform. Nat Commun 2025; 16:2909. [PMID: 40133268 PMCID: PMC11937275 DOI: 10.1038/s41467-025-57946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Modulating the physicochemical properties of oxides is crucial to achieve efficient and desirable reactions in heterogeneous catalysis. However, their catalytic role is not clearly identified because unevenly distributed interfaces and close conjugation with metal catalysts may hinder distinguishing their contribution in complex random structures. Here, we demonstrate a model platform composed of well-aligned CeOx nanowire arrays on Pt catalysts to observe their catalytic role systematically. Independently modulating the crystallinity and oxygen vacancy concentration of oxide nanowires, while preserving heterogeneous interfaces, enables quantitative analysis of their individual effects on partial oxidation selectivity, resulting in hot electron generation during methanol oxidation reactions. CeOx treated with vacuum annealing on Pt exhibits 1.47- and 2.12-times higher selectivity to methyl formate and chemicurrent yield than CeOx without annealing on Pt. Density-functional theory calculations reveal that the promoted charge transfer from the electron-accumulated interface driven by oxygen vacancy acts as a key parameter in enhancing selectivity.
Collapse
Affiliation(s)
- Gyu Rac Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyoungjae Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Doosun Hong
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Juyoung An
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yujin Roh
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Minyoung Kim
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Donghun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Srivastava P, Mazhar H, Redington M, Crossley Q, Miller DP, Morgenstern K. Size-Dependent Effects of Electron Solvation on the Kinetics of Ammonia Revealed on the Molecular Scale. J Phys Chem Lett 2025:2265-2272. [PMID: 39988852 DOI: 10.1021/acs.jpclett.4c03656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The high relevance of electron solvation in several branches of physics, chemistry, and environmental science arises from its efficient electron transfer mechanism. The effect of solvated electrons on solvent structure has been considered local and transient due to a lack of real-space studies. An experiment was designed to study the impact of solvated electrons on the ammonia structure while adsorbed to Cu(110) using low-temperature scanning tunneling microscopy with an adjoined femtosecond laser. The enhanced molecular kinetics induced by the solvated electrons are explained using density functional theory and first-principles molecular dynamics. The electrons have a substantially different impact on the kinetics of ammonia within clusters below and above a cluster size threshold, reflecting hydrogen bond rearrangement (mass transport) and hydrogen bond cleavage (desorption), respectively. This size-dependent effect has implications on the efficiency of processes that involve solvated electrons. Altering the solvent structure more than transiently demands the subsequent solvation of two electrons.
Collapse
Affiliation(s)
- Prashant Srivastava
- Physical Chemistry I, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| | - Hussain Mazhar
- Physical Chemistry I, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| | - Morgan Redington
- Department of Chemistry, State University of New York at Buffalo, 359 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Quinlan Crossley
- Department of Chemistry, Hofstra University, 106 Berliner Hall, Hempstead, New York 11549, United States
| | - Daniel P Miller
- Department of Chemistry, Hofstra University, 106 Berliner Hall, Hempstead, New York 11549, United States
| | - Karina Morgenstern
- Physical Chemistry I, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| |
Collapse
|
6
|
Hu C, Dong Y, Shi Q, Long R, Xiong Y. Catalysis under electric-/magnetic-/electromagnetic-field coupling. Chem Soc Rev 2025; 54:524-559. [PMID: 39698872 DOI: 10.1039/d4cs00869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The ultimate goal of catalysis is to control the cleavage and formation of chemical bonds at the molecular or even atomic level, enabling the customization of catalytic products. The essence of chemical bonding is the electromagnetic interaction between atoms, which makes it possible to directly manipulate the dynamic behavior of molecules and electrons in catalytic processes using external electric, magnetic and electromagnetic fields. In this tutorial review, we first introduce the feasibility and importance of field effects in regulating catalytic reaction processes and then outline the basic principles of electric-/magnetic-/electromagnetic-field interaction with matter, respectively. In each section, we further summarize the relevant important advances from two complementary perspectives: the macroscopic molecular motion (including translation, vibration and rotation) and the microscopic intramolecular electron state alteration (including spin polarization, transfer or excitation, and density of states redistribution). Finally, we discuss the challenges and opportunities for further development of catalysis under electric-/magnetic-/electromagnetic-field coupling.
Collapse
Affiliation(s)
- Canyu Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yueyue Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Qianqi Shi
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
7
|
Nilsson A. Time-resolved x-ray absorption spectroscopy probe in ultrafast surface chemistry. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:011301. [PMID: 39935452 PMCID: PMC11811907 DOI: 10.1063/4.0000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
To celebrate the scientific achievement of Jo Stöhr, I present here a personal account of the use of x-ray absorption spectroscopy to probe dynamics on surfaces using x-ray lasers. In particular, I will review the investigation of ultrafast processes in adsorbates on surfaces using an optical pump and an x-ray absorption spectroscopy probe. Here, it is shown that it is possible to gain insight into the effects of electronic excitations in metals on adsorbates as well as laser-induced vibrational motions. Furthermore, the ultrafast optical pump allows the detection of the CO precursor state in the desorption channel, species close to the transition state in CO oxidation, and the transient HCO intermediate during CO hydrogenation on Ru(0001).
Collapse
Affiliation(s)
- Anders Nilsson
- Department of Physics, Stockholm University, 10691 Stockholm, Sweden and SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
8
|
Sang L, Ren Z, Zhao Y. Localized surface plasmon energy dissipation in bimetallic core-shell nanostructures. J Chem Phys 2024; 161:034106. [PMID: 39007372 DOI: 10.1063/5.0204144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Exploring the plasmon energy dissipation mechanism of bimetallic nanostructures after photoexcitation is of great significance for controlling energy transfer in plasmonic applications. The absorption, scattering, and extinction spectra of Ag@Cu, Ag@Pt, and Ag@Co core-shell nanostructures are calculated by finite element method, and the energy dissipation process is visualized by using particle trajectory and the absorbed power density distribution. The absorption/scattering ratio of the core-shell nanostructures, the shell absorptivity, the time-domain electric field as well as the extra-core electron arrangements of Ag, Cu, Pt, and Co atoms are analyzed for figuring out the energy dissipation mechanism. The results show that when a non-plasmonic metal is coated on the surface of a plasmonic metal, the plasmon energy dissipates preferentially in the shell, and the degree of dissipation depends on the imaginary part of the dielectric constant of the shell and the core. A larger dielectric constant of the shell can cause more energy to be transferred from the plasmonic metal to the shell region. This study provides the fundamental physical framework and design principles for plasmonic nanostructures.
Collapse
Affiliation(s)
- Lixia Sang
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
| | - Zhiyong Ren
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
| | - Yue Zhao
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Rotteger CH, Jarman CK, Sutton SF, Sayres SG. Size onset of metallic behavior in neutral aluminum clusters. NANOSCALE 2024; 16:13516-13524. [PMID: 38946195 DOI: 10.1039/d4nr02032d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The excited state lifetimes of neutral (Al)n clusters up to ∼1 nm in diameter in size, where n ≤ 43, are systematically measured with femtosecond time-resolved mass spectrometry. The onset of metallic behavior is identified as a distinct change in the relaxation behavior initiated with single ultraviolet (400 nm) photon excitation. The experimentally measured excited state lifetimes gradually decrease with size for small molecular scale clusters (n < 10) before becoming indistinguishable for larger clusters (n > 9), where the measurements are comparable to electron-lattice relaxation time of bulk Al (∼300 fs). Particularly intense, or magic, Aln clusters do not exhibit any significant excited state lifetime behavior. Time-dependent density functional theory quantify the excited state properties and are presented to show that dynamics are strongly tied to the excited state charge carrier distributions and overlap, rather than detailed changes related to changes in the cluster's electronic and geometric structure. The consistency in excited state lifetimes for clusters larger than n = 9 is attributed to the hybridization of the s- and p-orbitals as well as increasing delocalization. Al3 exhibits unique temporal delay in its transient behavior that is attributed to a transition from triangular ground state to linear structure upon excitation.
Collapse
Affiliation(s)
- Chase H Rotteger
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Carter K Jarman
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Shaun F Sutton
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Scott G Sayres
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
10
|
Žugec I, Tetenoire A, Muzas AS, Zhang Y, Jiang B, Alducin M, Juaristi JI. Understanding the Photoinduced Desorption and Oxidation of CO on Ru(0001) Using a Neural Network Potential Energy Surface. JACS AU 2024; 4:1997-2004. [PMID: 38818055 PMCID: PMC11134377 DOI: 10.1021/jacsau.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
The study of ultrafast photoinduced dynamics of adsorbates on metal surfaces requires thorough investigation of laser-excited electrons and, in many cases, the highly excited surface lattice. While ab initio molecular dynamics with electronic friction and thermostats (Te, Tl)-AIMDEF addresses such complex modeling, it imposes severe computational costs, hindering quantitative comparison with experimental desorption probabilities. In order to bypass this limitation, we utilize the embedded atom neural network method to construct a potential energy surface (PES) for the coadsorption of CO and O on Ru(0001). Our results demonstrate that this PES not only reproduces the short-time ab initio dynamics but is also able to yield statistically significant data for long lasting trajectories that correlate well with experimental findings. Furthermore, the analysis of the laser-induced dynamics reveals the existence of a dynamic trapping state that acts as a precursor for CO desorption, and it is not observed under thermal conditions. Altogether, our results validate the underlying theoretical framework, providing robust support for the description of not only the photoinduced desorption but also the oxidation of CO in terms of nonequilibrated but thermal hot electrons and phonons.
Collapse
Affiliation(s)
- Ivan Žugec
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Auguste Tetenoire
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Alberto S. Muzas
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, Facultad de Química, UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián, Spain
| | - Yaolong Zhang
- Key
Laboratory of Precision and Intelligent Chemistry Department of Chemical
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Key
Laboratory of Precision and Intelligent Chemistry Department of Chemical
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Maite Alducin
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - J. Iñaki Juaristi
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, Facultad de Química, UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
11
|
Zhang Q, Li W, Zhao R, Tang P, Zhao J, Wu G, Chen X, Hu M, Yuan K, Li J, Yang X. Real-time observation of two distinctive non-thermalized hot electron dynamics at MXene/molecule interfaces. Nat Commun 2024; 15:4406. [PMID: 38782991 PMCID: PMC11116487 DOI: 10.1038/s41467-024-48842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The photoinduced non-thermalized hot electrons at an interface play a pivotal role in determining plasmonic driven chemical events. However, understanding non-thermalized electron dynamics, which precedes electron thermalization (~125 fs), remains a grand challenge. Herein, we simultaneously captured the dynamics of both molecules and non-thermalized electrons in the MXene/molecule complexes by femtosecond time-resolved spectroscopy. The real-time observation allows for distinguishing non-thermalized and thermalized electron responses. Differing from the thermalized electron/heat transfer, our results reveal two non-thermalized electron dynamical pathways: (i) the non-thermalized electrons directly transfer to attached molecules at an interface within 50 fs; (ii) the non-thermalized electrons scatter at the interface within 125 fs, inducing adsorbed molecules heating. These two distinctive pathways are dependent on the irradiating wavelength and the energy difference between MXene and adsorbed molecules. This research sheds light on the fundamental mechanism and opens opportunities in photocatalysis and interfacial heat transfer theory.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P.R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Wei Li
- Suzhou Laboratory, Suzhou, 215123, Jiangsu, China
- GuSu Laboratory of Materials, Suzhou, 215123, Jiangsu, China
| | - Ruixuan Zhao
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Jie Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Xin Chen
- Suzhou Laboratory, Suzhou, 215123, Jiangsu, China
- GuSu Laboratory of Materials, Suzhou, 215123, Jiangsu, China
| | - Mingjun Hu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China.
- Hefei National Laboratory, Hefei, 230088, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiebo Li
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P.R. China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- Hefei National Laboratory, Hefei, 230088, China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Farcaş AA, Bende A. Theoretical insights into dopamine photochemistry adsorbed on graphene-type nanostructures. Phys Chem Chem Phys 2024; 26:14937-14947. [PMID: 38738904 DOI: 10.1039/d4cp00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The equilibrium geometry structures and light absorption properties of the dopamine (DA) and dopamine-o-quinone (DAQ) adsorbed on the graphene surface have been investigated using the ground state and linear-response time-dependent density functional theories. Two types of graphene systems were considered, a rectangular form of hexagonal lattice with optimized C-C bond length as the model system for graphene nanoparticles (GrNP) and a similar system but with fixed C-C bond length (1.42 Å) as the model system for graphene 2D sheet (GrS). The analysis of the vertical excitations showed that three types of electronic transitions are possible, namely, localized on graphene, localized on the DA or DAQ, and charge transfer (CT). In the case of the graphene-DA complex, the charge transfer excitations were characterized by the molecule-to-surface (MSCT) character, whereas the graphene-DAQ was characterized by the reverse, i.e. surface-to-molecule (SMCT). The difference between the two cases is given by the presence of an energetically low-lying unoccupied orbital (LUMO+1) that allows charge transfer from the surface to the molecule in the case of DAQ. However, it was also shown that the fingerprints of excited electronic states associated with the adsorbed molecules cannot be seen in the spectrum, as they are mostly suppressed by the characteristic spectral shape of graphene.
Collapse
Affiliation(s)
- Alex-Adrian Farcaş
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| | - Attila Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Schunke C, Schweer P, Engelage E, Austin D, Switzer ED, Rahman TS, Morgenstern K. Increased Selectivity in Photolytic Activation of Nanoassemblies Compared to Thermal Activation in On-Surface Ullmann Coupling. ACS NANO 2024; 18:11665-11674. [PMID: 38661485 DOI: 10.1021/acsnano.3c11509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
On-surface synthesis is a powerful method that has emerged recently to fabricate a large variety of atomically precise nanomaterials on surfaces based on polymerization. It is very successful for thermally activated reactions within the framework of heterogeneous catalysis. As a result, it often lacks selectivity. We propose to use selective activation of specific bonds as a crucial ingredient to synthesize desired molecules with high selectivity. In this approach, thermally nonaccessible products are expected to arise in photolytically activated on-surface reactions with high selectivity. We demonstrate for assembled 2,2'-dibromo biphenyl clusters on Cu(111) that the thermal and photolytic activations yield distinctly different products, combining submolecular resolution of individual product molecules in real-space imaging by scanning tunneling microscopy with chemical identification in X-ray photoelectron spectroscopy and supported by ab initio calculations. The photolytically activated Ullmann coupling of 2,2'-dibromo biphenyl is highly selective, with only one identified product. It starkly contrasts the thermal reaction, which yields various products because alternate pathways are activated at the reaction temperature. Our study extends on-surface synthesis to a directed formation of thermally inaccessible products by direct bond activation. It promises tailored reactions of nanomaterials within the framework of on-surface synthesis based on the photolytic activation of specific bonds.
Collapse
Affiliation(s)
- Christina Schunke
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Paul Schweer
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Elric Engelage
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Dave Austin
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Eric D Switzer
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Karina Morgenstern
- Lehrstuhl für Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| |
Collapse
|
14
|
Zhu Y, Raschke MB, Natelson D, Cui L. Molecular scale nanophotonics: hot carriers, strong coupling, and electrically driven plasmonic processes. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2281-2322. [PMID: 39633666 PMCID: PMC11501151 DOI: 10.1515/nanoph-2023-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/07/2024] [Indexed: 12/07/2024]
Abstract
Plasmonic modes confined to metallic nanostructures at the atomic and molecular scale push the boundaries of light-matter interactions. Within these extreme plasmonic structures of ultrathin nanogaps, coupled nanoparticles, and tunnelling junctions, new physical phenomena arise when plasmon resonances couple to electronic, exitonic, or vibrational excitations, as well as the efficient generation of non-radiative hot carriers. This review surveys the latest experimental and theoretical advances in the regime of extreme nano-plasmonics, with an emphasis on plasmon-induced hot carriers, strong coupling effects, and electrically driven processes at the molecular scale. We will also highlight related nanophotonic and optoelectronic applications including plasmon-enhanced molecular light sources, photocatalysis, photodetection, and strong coupling with low dimensional materials.
Collapse
Affiliation(s)
- Yunxuan Zhu
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Markus B. Raschke
- Department of Physics, and JILA, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas Natelson
- Department of Physics and Astronomy, Electrical and Computer Engineering, Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Longji Cui
- Department of Mechanical Engineering, Materials Science and Engineering Program, & Center for Experiments on Quantum Materials (CEQM), University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
15
|
S. Muzas A, Serrano Jiménez A, Zhang Y, Jiang B, Juaristi JI, Alducin M. Multicoverage Study of Femtosecond Laser-Induced Desorption of CO from Pd(111). J Phys Chem Lett 2024; 15:2587-2594. [PMID: 38416783 PMCID: PMC10926157 DOI: 10.1021/acs.jpclett.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
We study the strong coverage dependence of the femtosecond laser-induced desorption of CO from Pd(111) using molecular dynamics simulations that consistently include the effect of the laser-induced hot electrons on both the adsorbates and surface atoms. Adiabatic forces are obtained from a multicoverage neural network potential energy surface that we construct using data from density functional theory calculations for 0.33 and 0.75 monolayer (ML). Our molecular dynamics simulations performed for these two trained coverages and an additional intermediate coverage of 0.60 ML reproduce well the peculiarities of the experimental findings. The performed simulations also permit us to disentangle the relative role played by the excited electrons and phonons on the desorption process and discover interesting properties of the reaction dynamics as the relevance that the precursor physisorption well acquires during the dynamics as coverage increases.
Collapse
Affiliation(s)
- Alberto S. Muzas
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, Facultad de Químicas (UPV/EHU), Apartado 1072, 20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC−UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Alfredo Serrano Jiménez
- Centro
de Física de Materiales CFM/MPC (CSIC−UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Yaolong Zhang
- Hefei
National Laboratory for Physical Science at the Microscale, Key Laboratory
of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher
Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s
Republic of China
| | - Bin Jiang
- Hefei
National Laboratory for Physical Science at the Microscale, Key Laboratory
of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher
Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s
Republic of China
| | - J. Iñaki Juaristi
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, Facultad de Químicas (UPV/EHU), Apartado 1072, 20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC−UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Maite Alducin
- Centro
de Física de Materiales CFM/MPC (CSIC−UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
16
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Farahvash A, Agrawal M, Peterson AA, Willard AP. Modeling Surface Vibrations and Their Role in Molecular Adsorption: A Generalized Langevin Approach. J Chem Theory Comput 2023; 19:6452-6460. [PMID: 37682532 DOI: 10.1021/acs.jctc.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The atomic vibrations of a solid surface can play a significant role in the reactions of surface-bound molecules, as well as their adsorption and desorption. Relevant phonon modes can involve the collective motion of atoms over a wide array of length scales. In this paper, we demonstrate how the generalized Langevin equation can be utilized to describe these collective motions weighted by their coupling to individual sites. Our approach builds upon the generalized Langevin oscillator (GLO) model originally developed by Tully. We extend the GLO by deriving parameters from atomistic simulation data. We apply this approach to study the memory kernel of a model platinum surface and demonstrate that the memory kernel has a bimodal form due to coupling to both low-energy acoustic modes and high-energy modes near the Debye frequency. The same bimodal form was observed across a wide variety of solids of different elemental compositions, surface structures, and solvation states. By studying how these dominant modes depend on the simulation size, we argue that the acoustic modes are frozen in the limit of macroscopic lattices. By simulating periodically replicated slabs of various sizes, we quantify the influence of phonon confinement effects in the memory kernel and their concomitant effect on simulated sticking coefficients.
Collapse
Affiliation(s)
- Ardavan Farahvash
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mayank Agrawal
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Andrew A Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Lyu P, Espinoza R, Nguyen SC. Photocatalysis of Metallic Nanoparticles: Interband vs Intraband Induced Mechanisms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15685-15698. [PMID: 37609384 PMCID: PMC10440817 DOI: 10.1021/acs.jpcc.3c04436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Indexed: 08/24/2023]
Abstract
Photocatalysis induced by localized surface plasmon resonance of metallic nanoparticles has been studied for more than a decade, but photocatalysis originating from direct interband excitations is still under-explored. The spectral overlap and the coupling of these two optical regimes also complicate the determination of hot carriers' energy states and eventually hinder the accurate assignment of their catalytic role in studied reactions. In this Featured Article, after reviewing previous studies, we suggest classifying the photoexcitation via intra- and interband transitions where the physical states of hot carriers are well-defined. Intraband transitions are featured by creating hot electrons above the Fermi level and suitable for reductive catalytic pathways, whereas interband transitions are featured by generating hot d-band holes below the Fermi level and better for oxidative catalytic pathways. Since the contribution of intra- and interband transitions are different in the spectral regions of localized surface plasmon resonance and direct interband excitations, the wavelength dependence of the photocatalytic activities is very helpful in assigning which transitions and carriers contribute to the observed catalysis.
Collapse
Affiliation(s)
- Pin Lyu
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Randy Espinoza
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C. Nguyen
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
19
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
20
|
Tetenoire A, Juaristi JI, Alducin M. Disentangling the role of electrons and phonons in the photoinduced CO desorption and CO oxidation on (O,CO)-Ru(0001). Front Chem 2023; 11:1235176. [PMID: 37521015 PMCID: PMC10380958 DOI: 10.3389/fchem.2023.1235176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
The role played by electronic and phononic excitations in the femtosecond laser induced desorption and oxidation of CO coadsorbed with O on Ru(0001) is investigated using ab initio molecular dynamics with electronic friction. To this aim, simulations that account for both kind of excitations and that only consider electronic excitations are performed. Results for three different surface coverages are obtained. We unequivocally demonstrate that CO desorption is governed by phononic excitations. In the case of oxidation the low statistics does not allow to give a categorical answer. However, the analysis of the adsorbates kinetic energy gain and displacements strongly suggest that phononic excitations and surface distortion also play an important role in the oxidation process.
Collapse
Affiliation(s)
- Auguste Tetenoire
- Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
| | - J. Iñaki Juaristi
- Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química (UPV/EHU), Donostia-San Sebastian, Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastian, Spain
| | - Maite Alducin
- Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
21
|
Yuan L, Bourgeois BB, Carlin CC, da Jornada FH, Dionne JA. Sustainable chemistry with plasmonic photocatalysts. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2745-2762. [PMID: 39635497 PMCID: PMC11501645 DOI: 10.1515/nanoph-2023-0149] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/01/2023] [Indexed: 12/07/2024]
Abstract
There is a pressing global need to increase the use of renewable energy sources and limit greenhouse gas emissions. Towards this goal, highly efficient and molecularly selective chemical processes that operate under mild conditions are critical. Plasmonic photocatalysis uses optically-resonant metallic nanoparticles and their resulting plasmonic, electronic, and phononic light-matter interactions to drive chemical reactions. The promise of simultaneous high-efficiency and product-selective reactions with plasmon photocatalysis provides a compelling opportunity to rethink how chemistry is achieved. Plasmonic nanoparticles serve as nanoscale 'antennas' that enable strong light-matter interactions, surpassing the light-harvesting capabilities one would expect purely from their size. Complex composite structures, combining engineered light harvesters with more chemically active components, are a focal point of current research endeavors. In this review, we provide an overview of recent advances in plasmonic catalysis. We start with a discussion of the relevant mechanisms in photochemical transformations and explain hot-carrier generation and distributions from several ubiquitous plasmonic antennae. Then we highlight three important types of catalytic processes for sustainable chemistry: ammonia synthesis, hydrogen production and CO2 reduction. To help elucidate the reaction mechanism, both state-of-art electromagnetic calculations and quantum mechanistic calculations are discussed. This review provides insights to better understand the mechanism of plasmonic photocatalysis with a variety of metallic and composite nanostructures toward designing and controlling improved platforms for green chemistry in the future.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, CA, 94305, USA
| | - Briley B. Bourgeois
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, CA, 94305, USA
| | - Claire C. Carlin
- Department of Applied Physics, Stanford University School of Humanities and Sciences, Stanford, CA, 94305, USA
| | - Felipe H. da Jornada
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, CA, 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 95024, USA
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
22
|
Plasmonic photocatalysis: mechanism, applications and perspectives. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
23
|
|
24
|
Schreck S, Diesen E, Dell'Angela M, Liu C, Weston M, Capotondi F, Ogasawara H, LaRue J, Costantini R, Beye M, Miedema PS, Halldin Stenlid J, Gladh J, Liu B, Wang HY, Perakis F, Cavalca F, Koroidov S, Amann P, Pedersoli E, Naumenko D, Nikolov I, Raimondi L, Abild-Pedersen F, Heinz TF, Voss J, Luntz AC, Nilsson A. Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-Ray Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 129:276001. [PMID: 36638285 DOI: 10.1103/physrevlett.129.276001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100 fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.
Collapse
Affiliation(s)
- Simon Schreck
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Elias Diesen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | - Chang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Flavio Capotondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jerry LaRue
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | - Roberto Costantini
- CNR-IOM, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
- Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Martin Beye
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Piter S Miedema
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Joakim Halldin Stenlid
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jörgen Gladh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Boyang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Hsin-Yi Wang
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Filippo Cavalca
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sergey Koroidov
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Peter Amann
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Emanuele Pedersoli
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Denys Naumenko
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Ivaylo Nikolov
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Lorenzo Raimondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Johannes Voss
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alan C Luntz
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
25
|
Osterloh N, Pan T, Morgenstern K. Locally varying formation of nanoclusters across a low-intensity ultra-short laser spot. NANOSCALE HORIZONS 2022; 8:55-62. [PMID: 36331373 DOI: 10.1039/d2nh00386d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultra-short laser illumination is an intriguing tool for engineering material by light. It is usually employed at or above the ablation threshold. Practical applications profit from tailoring surface properties, for instance, by structural changes to the surface layer of an irradiated target. A target-orientated restructuring of surfaces on the nanoscale is much less explored. In particular, an intrinsic intensity variation across a laser spot has not yet been considered or employed. We image the unexpected nanoscale clusters formed on the Cu(111) surface upon illumination of a Cu sample far below its ablation threshold by femtosecond laser light, employing a specifically-developed multi-scale approach. We unravel that these clusters vary significantly in size and shape across the micrometer-scale 400 nm 50 fs laser spot (repetition rate: 250 kHz). There are three qualitatively different regions separated by sharp changes. The observations highlight the importance of local fluence for specific types of nanoclusters. Ultra-short laser illumination represents a non-trivial interplay between photo-thermal and electron-induced mechanisms, transport of heat and electrons, and material properties, which we discuss for identifying the underlying principles. Our study demonstrates that a multitude of as yet unconsidered processes are involved in the tailoring of nanoscale materials by ultra-short laser light.
Collapse
Affiliation(s)
- Niklas Osterloh
- Ruhr-Universität Bochum, Physical Chemistry I, Universitätsstr. 150, D-44801, Bochum, Germany.
| | - Tianluo Pan
- Ruhr-Universität Bochum, Physical Chemistry I, Universitätsstr. 150, D-44801, Bochum, Germany.
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Karina Morgenstern
- Ruhr-Universität Bochum, Physical Chemistry I, Universitätsstr. 150, D-44801, Bochum, Germany.
| |
Collapse
|
26
|
Wu X, Liu B, Frauenheim T, Tretiak S, Yam C, Zhang Y. Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics. J Chem Phys 2022; 157:214201. [DOI: 10.1063/5.0127435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hot carriers generated from the decay of plasmon excitation can be harvested to drive a wide range of physical or chemical processes. However, their generation efficiency is limited by the concomitant phonon-induced relaxation processes by which the energy in excited carriers is transformed into heat. However, simulations of dynamics of nanoscale clusters are challenging due to the computational complexity involved. Here, we adopt our newly developed Trajectory Surface Hopping (TSH) nonadiabatic molecular dynamics algorithm to simulate plasmon relaxation in Au20 clusters, taking the atomistic details into account. The electronic properties are treated within the Linear Response Time-Dependent Tight-binding Density Functional Theory (LR-TDDFTB) framework. The relaxation of plasmon due to coupling to phonon modes in Au20 beyond the Born–Oppenheimer approximation is described by the TSH algorithm. The numerically efficient LR-TDDFTB method allows us to address a dense manifold of excited states to ensure the inclusion of plasmon excitation. Starting from the photoexcited plasmon states in Au20 cluster, we find that the time constant for relaxation from plasmon excited states to the lowest excited states is about 2.7 ps, mainly resulting from a stepwise decay process caused by low-frequency phonons of the Au20 cluster. Furthermore, our simulations show that the lifetime of the phonon-induced plasmon dephasing process is ∼10.4 fs and that such a swift process can be attributed to the strong nonadiabatic effect in small clusters. Our simulations demonstrate a detailed description of the dynamic processes in nanoclusters, including plasmon excitation, hot carrier generation from plasmon excitation dephasing, and the subsequent phonon-induced relaxation process.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Longhua District, Shenzhen 518110, China
| | - Baopi Liu
- Shenzhen JL Computational Science and Applied Research Institute, Longhua District, Shenzhen 518110, China
| | - Thomas Frauenheim
- Shenzhen JL Computational Science and Applied Research Institute, Longhua District, Shenzhen 518110, China
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center of Integrated Nanotechnlogies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - ChiYung Yam
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China
- Hong Kong Quantum AI Lab Limited, Hong Kong, China
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
27
|
Lee SW, Jeon B, Lee H, Park JY. Hot Electron Phenomena at Solid-Liquid Interfaces. J Phys Chem Lett 2022; 13:9435-9448. [PMID: 36194546 DOI: 10.1021/acs.jpclett.2c02319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the role of energy dissipation and charge transfer under exothermic chemical reactions on metal catalyst surfaces is important for elucidating the fundamental phenomena at solid-gas and solid-liquid interfaces. Recently, many surface chemistry studies have been conducted on the solid-liquid interface, so correlating electronic excitation in the liquid-phase with the reaction mechanism plays a crucial role in heterogeneous catalysis. In this review, we introduce the detection principle of electron transfer at the solid-liquid interface by developing cutting-edge technologies with metal-semiconductor Schottky nanodiodes. The kinetics of hot electron excitation are well correlated with the reaction rates, demonstrating that the operando method for understanding nonadiabatic interactions is helpful in studying the reaction mechanism of surface molecular processes. In addition to the detection of hot electrons excited by a catalytic reaction, we highlight recent results on how the transfer of the hot electrons influences surface chemical and photoelectrochemical reactions.
Collapse
Affiliation(s)
- Si Woo Lee
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk28173, Republic of Korea
| | - Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon34141, Republic of Korea
| | - Hyosun Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul04066, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon34141, Republic of Korea
| |
Collapse
|
28
|
Li L, Yang J, Wei J, Jiang C, Liu Z, Yang B, Zhao B, Song W. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. LIGHT, SCIENCE & APPLICATIONS 2022; 11:286. [PMID: 36180470 PMCID: PMC9525678 DOI: 10.1038/s41377-022-00968-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 06/03/2023]
Abstract
Currently, artificial enzymes-based photodynamic therapy (PDT) is attractive due to its efficient capacity to change the immunosuppressive tumor microenvironment (TME). It is of great significance to study the therapeutic mechanism of novel artificial enzymes in TME through a monitoring strategy and improve the therapeutic effect. In this study, Au@carbon dots (Au@CDs) nanohybrids with a core-shell structure are synthesized, which not only exhibit tunable enzyme-mimicking activity under near-infrared (NIR) light, but also excellent surface-enhanced Raman scattering (SERS) properties. Therefore, Au@CDs show a good capability for monitoring NIR-photoinduced peroxidase-like catalytic processes via a SERS strategy in tumor. Moreover, the Au@CDs deplete glutathione with the cascade catalyzed reactions, thus elevating intratumor oxidative stress amplifying the reactive oxygen species damage based on the NIR-photoinduced enhanced peroxidase and glutathione oxidase-like activities, showing excellent and fast PDT therapeutic effect promoted by photothermal property in 3 min, finally leading to apoptosis in cancer cells. Through SERS monitoring, it is further found that after removing the NIR light source for 33 min, the reactive oxygen species (ROS) activity of the TME is counteracted and eliminated due to the presence of glutathione. This work presents a guidance to rationally design of artificial enzyme for ROS-involved therapeutic strategies and a new spectroscopic tool to evaluate the tumor catalytic therapy.
Collapse
Affiliation(s)
- Linjia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Department of Vascular Surgery of China-Japan Union Hospital, Jilin University, Changchun, 130031, China
| | - Jin Yang
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiahui Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhuo Liu
- Department of Vascular Surgery of China-Japan Union Hospital, Jilin University, Changchun, 130031, China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
29
|
Koval NE, Sánchez-Portal D, Borisov AG, Díez Muiño R. Time-dependent density functional theory calculations of electronic friction in non-homogeneous media. Phys Chem Chem Phys 2022; 24:20239-20248. [PMID: 35996966 DOI: 10.1039/d2cp01972h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excitation of low-energy electron-hole pairs is one of the most relevant processes in the gas-surface interaction. An efficient tool to account for these excitations in simulations of atomic and molecular dynamics at surfaces is the so-called local density friction approximation (LDFA). The LDFA is based on a strong approximation that simplifies the dynamics of the electronic system: a local friction coefficient is defined using the value of the electronic density for the unperturbed system at each point of the dynamics. In this work, we apply real-time time-dependent density functional theory to the problem of the electronic friction of a negative point charge colliding with spherical jellium metal clusters. Our non-adiabatic, parameter-free results provide a benchmark for the widely used LDFA approximation and allow the discussion of various processes relevant to the electronic response of the system in the presence of the projectile.
Collapse
Affiliation(s)
- Natalia E Koval
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain.,CIC Nanogune BRTA, Tolosa Hiribidea 76, E-20018 San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Andrei G Borisov
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS-Université Paris-Saclay, Bât. 520, F-91405 Orsay CEDEX, France
| | - Ricardo Díez Muiño
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
30
|
Zhou J, Guo J, Mebel AM, Ghimire G, Liang F, Chang S, He J. Probing the Intermediates of Catalyzed Dehydration Reactions of Primary Amide to Nitrile in Plasmonic Junctions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianghao Zhou
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jing Guo
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Alexander Moiseevich Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Govinda Ghimire
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
31
|
Muzas A, Serrano Jiménez A, Ovčar J, Lončarić I, Alducin M, Juaristi JI. Absence of isotope effects in the photo-induced desorption of CO from saturated Pd(111) at high laser fluence. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a FEL. Nat Commun 2022; 13:2741. [PMID: 35585096 PMCID: PMC9117673 DOI: 10.1038/s41467-022-30404-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron momentum maps of excited states of a bilayer pentacene film on Ag(110). We use optical pump and FEL probe pulses by keeping FEL source conditions to minimize space charge effects and radiation damage. From the momentum microscopy signal, we obtain time-dependent momentum maps of the excited-state dynamics of both pentacene layers separately. In a combined experimental and theoretical study, we interpret the observed signal for the bottom layer as resulting from the charge redistribution between the molecule and the substrate induced by excitation. We identify that the dynamics of the top pentacene layer resembles excited-state molecular dynamics. Ultrafast pulses are useful to investigate the electron dynamics in excited atoms, molecules and other complex systems. Here, the authors measure transient photoelectron momentum maps following the free-electron laser pulse-induced ionization of a bilayer pentacene thin film on Ag (110) by using time-resolved orbital tomography.
Collapse
|
33
|
Qiu J, Lu Y, Wang L. Multilayer Subsystem Surface Hopping Method for Large-Scale Nonadiabatic Dynamics Simulation with Hundreds of Thousands of States. J Chem Theory Comput 2022; 18:2803-2815. [PMID: 35380833 DOI: 10.1021/acs.jctc.2c00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a multilayer subsystem surface hopping (MSSH) method to deal with nonadiabatic dynamics in large-scale systems. A small subsystem instead of the full system is adopted for surface hopping and is updated on-the-fly to achieve a reliable description of important adiabatic states and the wave function evolution. Additional subsystems for molecular dynamics and statistical description are introduced to further improve the simulation reliability. The global flux hopping probabilities with optimal state assignments are utilized to treat the complex surface crossings. As demonstrated in a series of one- and two-dimensional Holstein models with up to hundreds of thousands of states, MSSH shows weak parameter dependence in all investigated systems. Especially, the computational costs are reduced by 2-6 orders of magnitude compared to traditional surface hopping simulations in full systems, and size-independent results are achieved with a large time-step size of 2-5 fs. The new method is compatible with different decoherence correction strategies and achieves a much better balance between efficiency and reliability, thus promising for applications in general charge and exciton dynamics simulations.
Collapse
Affiliation(s)
- Jing Qiu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yao Lu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Lee M, Kazuma E, Jung J, Trenary M, Kim Y. Dissociation of Single O 2 Molecules on Ag(110) by Electrons, Holes, and Localized Surface Plasmons. CHEM REC 2022; 22:e202200011. [PMID: 35332649 DOI: 10.1002/tcr.202200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Indexed: 11/06/2022]
Abstract
A detailed understanding of the dissociation of O2 molecules on metal surfaces induced by various excitation sources, electrons/holes, light, and localized surface plasmons, is crucial not only for controlling the reactivity of oxidation reactions but also for developing various oxidation catalysts. The necessity of mechanistic studies at the single-molecule level is increasingly important for understanding interfacial interactions between O2 molecules and metal surfaces and to improve the reaction efficiency. We review single-molecule studies of O2 dissociation on Ag(110) induced by various excitation sources using a scanning tunneling microscope (STM). The comprehensive studies based on the STM and density functional theory calculations provide fundamental insights into the excitation pathway for the dissociation reaction.
Collapse
Affiliation(s)
- Minhui Lee
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Nam-gu, Ulsan 44776, Republic of Korea
| | - Michael Trenary
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
35
|
Lončarić I, Alducin M, Juaristi JI. O2 on Ag(110): A puzzle for exchange-correlation functionals. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Mou T, Quiroz J, Camargo PHC, Wang B. Localized Orbital Excitation Drives Bond Formation in Plasmonic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60115-60124. [PMID: 34874713 DOI: 10.1021/acsami.1c21607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Localized surface plasmons generated on metallic nanostructures can be used to accelerate molecular transformations; however, the efficiency is limited by the challenge to control the energy/charge transfer at the interfaces. Here, we combine density functional theory (DFT) calculations and experiments to reveal the mechanism of nitrophenol reduction on Au nanoparticles under visible-light irradiation and propose a strategy to further enhance the reaction rates. DFT calculations show a reduced activation barrier under electronic excitation on Au(111), thus explaining the measured higher rates under visible-light irradiation. Furthermore, we propose a heterostructure with Au nanoparticles covered by a thin film of hexagonal boron nitride; the latter is used to decouple the molecular orbitals from the metal to enable charge localization in the molecule. DFT calculations show that by this electronic decoupling, the activation barrier can be lowered by a factor of five. This work thus provides a valuable strategy for optimizing catalytic efficiency in plasmonic photocatalysis.
Collapse
Affiliation(s)
- Tong Mou
- Center for Interfacial Reaction Engineering and School of Chemical, Biological and Materials Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, Guangdong 518131, China
| | - Jhon Quiroz
- Department of Chemistry, University of Helsinki, 00560 Helsinki, Finland
| | - Pedro H C Camargo
- Department of Chemistry, University of Helsinki, 00560 Helsinki, Finland
| | - Bin Wang
- Center for Interfacial Reaction Engineering and School of Chemical, Biological and Materials Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
37
|
Garcia JM, Heald LF, Shaffer RE, Sayres SG. Effect of oxidation on excited state dynamics of neutral Ti nO 2n-x (n < 10, x < 4) clusters. J Chem Phys 2021; 155:211102. [PMID: 34879680 DOI: 10.1063/5.0071264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Excited state lifetimes of neutral titanium oxide clusters (TinO2n-x, n < 10, x < 4) were measured using a sequence of 400 nm pump and 800 nm probe femtosecond laser pulses. Despite large differences in electronic properties between the closed shell stoichiometric TinO2n clusters and the suboxide TinO2n-x (x = 1-3) clusters, the transient responses for all clusters contain a fast response of 35 fs followed by a sub-picosecond (ps) excited state lifetime. In this non-scalable size regime, subtle changes in the sub-ps lifetimes are attributed to variations in the coordination of Ti atoms and localization of charge carriers following UV photoexcitation. In general, clusters exhibit longer lifetimes with increased size and also with the addition of O atoms. This suggests that the removal of O atoms develops stronger Ti-Ti interactions as the system transitions from a semiconducting character to a fast metallic electronic relaxation mechanism.
Collapse
Affiliation(s)
- Jacob M Garcia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Lauren F Heald
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Ryan E Shaffer
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Scott G Sayres
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
38
|
Podder C, Gong X, Pan H. Ultrafast, Non-Equilibrium and Transient Heating and Sintering of Nanocrystals for Nanoscale Metal Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103436. [PMID: 34617399 DOI: 10.1002/smll.202103436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The carrier excitation, relaxation, energy transport, and conversion processes during light-nanocrystal (NC) interactions have been intensively investigated for applications in optoelectronics, photocatalysis, and photovoltaics. However, there are limited studies on the non-equilibrium heating under relatively high laser excitation that leads to NCs sintering. Here, the authors use femtosecond laser two-pulse correlation and in-situ optical transmission probing to investigate the non-equilibrium heating of NCs and transient sintering dynamics. First, a two-pulse correlation study reveals that the sintering rate strongly increases when the two heating laser pulses are temporally separated by <10 ps. Second, the sintering rate is found to increase nonlinearly with laser fluence when heating with ≈700 fs laser pulses. By three-temperature modeling, the NC sintering mechanism mediated by electron induced ligand transformation is suggested. The ultrafast and non-equilibrium process facilitates sintering in dry (spin-coated) and wet (solvent suspended) environments. The nonlinear dependence of sintering rate on laser fluence is exploited to print sub-diffraction-limited features in NC suspension. The smallest feature printed is ≈200 nm, which is ≈¼ of the laser wavelength. These findings provide a new perspective toward nanomanufacturing development based on probing and engineering ultrafast transport phenomena in functional NCs.
Collapse
Affiliation(s)
- Chinmoy Podder
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiangtao Gong
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Heng Pan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| |
Collapse
|
39
|
Catalytic Oadsorbed + Oadsorbed = O2,gas desorption from c(2X2)-O and p(5X5)-O phases on single crystal Pd(1 0 0) surface: Observing the unseen using femtosecond laser spectroscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Banerjee S, Bera A, Chakraborty A, Ghosh J, Varghese SM, Bhattacharya A. Ultrafast dynamics of recombinative desorption of molecular oxygen from the single crystal Pd(1 1 0) surface. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Swearer DF, Bourgeois BB, Angell DK, Dionne JA. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy. Acc Chem Res 2021; 54:3632-3642. [PMID: 34492177 DOI: 10.1021/acs.accounts.1c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoparticle photocatalysts are essential to processes ranging from chemical production and water purification to air filtration and surgical instrument sterilization. Photochemical reactions are generally mediated by the illumination of metallic and/or semiconducting nanomaterials, which provide the necessary optical absorption, electronic band structure, and surface faceting to drive molecular reactions. However, with reaction efficiency and selectivity dictated by atomic and molecular interactions, imaging and controlling photochemistry at the atomic scale are necessary to both understand reaction mechanisms and to improve nanomaterials for next-generation catalysts. Here, we describe how advances in plasmonics, combined with advances in electron microscopy, particularly optically coupled transmission electron microscopy (OTEM), can be used to image and control light-induced chemical transformations at the nanoscale. We focus on our group's research investigating the interaction between hydrogen gas and Pd nanoparticles, which presents an important model system for understanding both hydrogenation catalysis and hydrogen storage. The studies described in this Account primarily rely on an environmental transmission electron microscope, a tool capable of circumventing traditional TEM's high-vacuum requirements, outfitted with optical sources and detectors to couple light into and out of the microscope. First, we describe the H2 loading kinetics of individual Pd nanoparticles. When confined to sizes of less than ∼100 nm, single-crystalline Pd nanoparticles exhibit coherent phase transformations between the hydrogen-poor α-phase and hydrogen-rich β-phase, as revealed through monitoring the bulk plasmon resonance with electron energy loss spectroscopy. Next, we describe how contrast imaging techniques, such as phase contrast STEM and displaced-aperture dark field, can be employed as real-time techniques to image phase transformations with 100 ms temporal resolution. Studies of multiply twinned Pd nanoparticles and high aspect ratio Pd nanorods demonstrate that internal strain and grain boundaries can lead to partial hydrogenation within individual nanoparticles. Finally, we describe how OTEM can be used to locally probe nanoparticle dynamics under optical excitation and in reactive chemical environments. Under illumination, multicomponent plasmonic photocatalysts consisting of a gold nanoparticle "antenna" and a Pd "reactor" show clear α-phase nucleation in regions close to electromagnetic "hot spots" when near plasmonic antennas. Importantly, these hot spots need not correspond to the traditionally active, energetically preferred sites of catalytic nanoparticles. Nonthermal effects imparted by plasmonic nanoparticles, including electromagnetic field enhancement and plasmon-derived hot carriers, are crucial to explaining the site selectivity observed in PdHx phase transformations under illumination. This Account demonstrates how light can contribute to selective chemical phenomena in plasmonic heterostructures, en route to sustainable, solar-driven chemical production.
Collapse
Affiliation(s)
- Dayne F. Swearer
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Briley B. Bourgeois
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Daniel K. Angell
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department of Material Science and Engineering, Stanford University School of Engineering, Stanford, California 94305, United States
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
42
|
Ayani CG, Pisarra M, Urgel JI, Navarro JJ, Díaz C, Hayashi H, Yamada H, Calleja F, Miranda R, Fasel R, Martín F, Vázquez de Parga AL. Efficient photogeneration of nonacene on nanostructured graphene. NANOSCALE HORIZONS 2021; 6:744-750. [PMID: 34165121 DOI: 10.1039/d1nh00184a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The on-surface photogeneration of nonacene from α-bisdiketone precursors deposited on nanostructured epitaxial graphene grown on Ru(0001) has been studied by means of low temperature scanning tunneling microscopy and spectroscopy. The presence of an unoccupied surface state, spatially localized in the regions where the precursors are adsorbed, and energetically accessible in the region of the electromagnetic spectrum where n-π* transitions take place, allows for a 100% conversion of the precursors into nonacenes. With the help of state-of-the-art theoretical calculations, we show that such a high yield is due to the effective population of the surface state by the incoming light and the ensuing electron transfer to the unoccupied states of the precursors through an inelastic scattering mechanism. Our findings are the experimental confirmation that surface states can play a prominent role in the surface photochemistry of complex molecular systems, in accordance with early theoretical predictions made on small molecules.
Collapse
Affiliation(s)
- Cosme G Ayani
- Dep Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vyshnepolsky M, Ding ZB, Srivastava P, Tesarik P, Mazhar H, Maestri M, Morgenstern K. The Influence of a Changing Local Environment during Photoinduced CO 2 Dissociation. Angew Chem Int Ed Engl 2021; 60:18217-18222. [PMID: 33999493 PMCID: PMC8456919 DOI: 10.1002/anie.202105468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Though largely influencing the efficiency of a reaction, the molecular-scale details of the local environment of the reactants are experimentally inaccessible hindering an in-depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate-limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single-molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano-like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.
Collapse
Affiliation(s)
- Michael Vyshnepolsky
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Zhao-Bin Ding
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156, Milano, Italy
| | - Prashant Srivastava
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Patrik Tesarik
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Hussain Mazhar
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156, Milano, Italy
| | - Karina Morgenstern
- Physikalische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
44
|
Vyshnepolsky M, Ding Z, Srivastava P, Tesarik P, Mazhar H, Maestri M, Morgenstern K. The Influence of a Changing Local Environment during Photoinduced CO
2
Dissociation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Vyshnepolsky
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Zhao‐Bin Ding
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia, Politecnico di Milano via La Masa 34 20156 Milano Italy
| | - Prashant Srivastava
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Patrik Tesarik
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Hussain Mazhar
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia, Politecnico di Milano via La Masa 34 20156 Milano Italy
| | - Karina Morgenstern
- Physikalische Chemie I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
45
|
Serrano Jiménez A, Sánchez Muzas AP, Zhang Y, Ovčar J, Jiang B, Lončarić I, Juaristi JI, Alducin M. Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach. J Chem Theory Comput 2021; 17:4648-4659. [PMID: 34278798 PMCID: PMC8389528 DOI: 10.1021/acs.jctc.1c00347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Modeling the ultrafast
photoinduced dynamics and reactivity of
adsorbates on metals requires including the effect of the laser-excited
electrons and, in many cases, also the effect of the highly excited
surface lattice. Although the recent ab initio molecular dynamics
with electronic friction and thermostats, (Te,Tl)-AIMDEF [AlducinM.;Phys. Rev. Lett.2019, 123, 246802]31922860, enables such complex
modeling, its computational cost may limit its applicability. Here,
we use the new embedded atom neural network (EANN) method [ZhangY.;J. Phys. Chem. Lett.2019, 10, 496231397157] to develop an accurate and extremely
complex potential energy surface (PES) that allows us a detailed and
reliable description of the photoinduced desorption of CO from the
Pd(111) surface with a coverage of 0.75 monolayer. Molecular dynamics
simulations performed on this EANN-PES reproduce the (Te,Tl)-AIMDEF results with
a remarkable level of accuracy. This demonstrates the outstanding
performance of the obtained EANN-PES that is able to reproduce available
density functional theory (DFT) data for an extensive range of surface
temperatures (90–1000 K); a large number of degrees of freedom,
those corresponding to six CO adsorbates and 24 moving surface atoms;
and the varying CO coverage caused by the abundant desorption events.
Collapse
Affiliation(s)
- Alfredo Serrano Jiménez
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Alberto P Sánchez Muzas
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Juraj Ovčar
- Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - J Iñaki Juaristi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain.,Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
| | - Maite Alducin
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
46
|
Linic S, Chavez S, Elias R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. NATURE MATERIALS 2021; 20:916-924. [PMID: 33398116 DOI: 10.1038/s41563-020-00858-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 05/21/2023]
Abstract
Strong interactions of electromagnetic fields with plasmonic nanomaterials have been exploited in various applications. These applications have centred on plasmon-enhanced scattering rates in nearby molecules or plasmon-induced heating. A question that has emerged recently is whether it is possible to use plasmonic nanostructures in a range of hot electron (hole) applications, including photocatalysis, photovoltaics and photodetection. These applications require coupling of a plasmonic component, which amplifies the interaction of light with the material, to an attached non-plasmonic component that extracts this energy in the form of electronic excitations to perform a function. In this Perspective, we discuss recent work in the emerging field of hybrid plasmonics. We focus on fundamental questions related to the nanoscopic flow of energy and excited charge carriers in these multicomponent materials. We also address critical misconceptions, challenges and opportunities that require more attention.
Collapse
|
47
|
Zaum C, Osterloh N, Darkins R, Duffy DM, Morgenstern K. Real-space observation of surface structuring induced by ultra-fast-laser illumination far below the melting threshold. Sci Rep 2021; 11:13269. [PMID: 34168174 PMCID: PMC8225848 DOI: 10.1038/s41598-021-91894-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Intense short laser pulses are an intriguing tool for tailoring surface properties via ultra-fast melting of the surface layer of an irradiated target. Despite extensive studies on the interaction of femto-second laser interaction with matter, the initial steps of the morphological changes are not yet fully understood. Here, we reveal that substantial surface structure changes occur at energy densities far below the melting threshold. By using low-temperature scanning tunneling microscopy we resolve atomic-scale changes, i.e. the creation of nanosized adatom and vacancy clusters. The two cluster types have distinct non-linear fluence-dependencies. A theoretical analysis reveals their creation and motion to be non-thermal in nature. The formation of these atomistic changes, individually resolved here for the first time, recast our understanding of how surfaces respond to low-intensity ultra-short laser illumination. A visualization and control of the initial morphological changes upon laser illumination are not only of fundamental interest, but pave the way for the designing material properties through surface structuring.
Collapse
Affiliation(s)
- Ch Zaum
- Abteilung für atomare und molekulare Strukturen (ATMOS), Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover, Germany
| | - N Osterloh
- Lehrstuhl für physikalische Chemie I, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - R Darkins
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London, WC1E6BT, UK
| | - D M Duffy
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London, WC1E6BT, UK
| | - K Morgenstern
- Lehrstuhl für physikalische Chemie I, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
48
|
Manuel AP, Shankar K. Hot Electrons in TiO 2-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1249. [PMID: 34068571 PMCID: PMC8151081 DOI: 10.3390/nano11051249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
Plasmonic photocatalysis enables innovation by harnessing photonic energy across a broad swathe of the solar spectrum to drive chemical reactions. This review provides a comprehensive summary of the latest developments and issues for advanced research in plasmonic hot electron driven photocatalytic technologies focusing on TiO2-noble metal nanoparticle heterojunctions. In-depth discussions on fundamental hot electron phenomena in plasmonic photocatalysis is the focal point of this review. We summarize hot electron dynamics, elaborate on techniques to probe and measure said phenomena, and provide perspective on potential applications-photocatalytic degradation of organic pollutants, CO2 photoreduction, and photoelectrochemical water splitting-that benefit from this technology. A contentious and hitherto unexplained phenomenon is the wavelength dependence of plasmonic photocatalysis. Many published reports on noble metal-metal oxide nanostructures show action spectra where quantum yields closely follow the absorption corresponding to higher energy interband transitions, while an equal number also show quantum efficiencies that follow the optical response corresponding to the localized surface plasmon resonance (LSPR). We have provided a working hypothesis for the first time to reconcile these contradictory results and explain why photocatalytic action in certain plasmonic systems is mediated by interband transitions and in others by hot electrons produced by the decay of particle plasmons.
Collapse
Affiliation(s)
- Ajay P. Manuel
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
- Future Energy Systems Research Institute, University of Alberta, Edmonton, AB T6G 1K4, Canada
| |
Collapse
|
49
|
Bünermann O, Kandratsenka A, Wodtke AM. Inelastic Scattering of H Atoms from Surfaces. J Phys Chem A 2021; 125:3059-3076. [PMID: 33779163 PMCID: PMC8154602 DOI: 10.1021/acs.jpca.1c00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/09/2021] [Indexed: 11/29/2022]
Abstract
We have developed an instrument that uses photolysis of hydrogen halides to produce nearly monoenergetic hydrogen atom beams and Rydberg atom tagging to obtain accurate angle-resolved time-of-flight distributions of atoms scattered from surfaces. The surfaces are prepared under strict ultrahigh vacuum conditions. Data from these experiments can provide excellent benchmarks for theory, from which it is possible to obtain an atomic scale understanding of the underlying dynamical processes governing H atom adsorption. In this way, the mechanism of adsorption on metals is revealed, showing a penetration-resurfacing mechanism that relies on electronic excitation of the metal by the H atom to succeed. Contrasting this, when H atoms collide at graphene surfaces, the dynamics of bond formation involving at least four carbon atoms govern adsorption. Future perspectives of H atom scattering from surfaces are also outlined.
Collapse
Affiliation(s)
- Oliver Bünermann
- Institute
for Physical Chemistry, Georg-August-University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Alexander Kandratsenka
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Alec M. Wodtke
- Institute
for Physical Chemistry, Georg-August-University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
- Department
of Dynamics at Surfaces, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Devasia D, Das A, Mohan V, Jain PK. Control of Chemical Reaction Pathways by Light-Matter Coupling. Annu Rev Phys Chem 2021; 72:423-443. [PMID: 33481640 DOI: 10.1146/annurev-physchem-090519-045502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because plasmonic metal nanostructures combine strong light absorption with catalytically active surfaces, they have become platforms for the light-assisted catalysis of chemical reactions. The enhancement of reaction rates by plasmonic excitation has been extensively discussed. This review focuses on a less discussed aspect: the induction of new reaction pathways by light excitation. Through commentary on seminal reports, we describe the principles behind the optical modulation of chemical reactivity and selectivity on plasmonic metal nanostructures. Central to these phenomena are excited charge carriers generated by plasmonic excitation, which modify the energy landscape available to surface reactive species and unlock pathways not conventionally available in thermal catalysis. Photogenerated carriers can trigger bond dissociation or desorption in an adsorbate-selective manner, drive charge transfer and multielectron redox reactions, and generate radical intermediates. Through one or more of these mechanisms, a specific pathway becomes favored under light. By improved control over these mechanisms, light-assisted catalysis can be transformational for chemical synthesis and energy conversion.
Collapse
Affiliation(s)
- Dinumol Devasia
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Ankita Das
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Varun Mohan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; .,Department of Physics, Materials Research Lab, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|