1
|
Abbad L, Esteve E, Chatziantoniou C. Advances and challenges in kidney fibrosis therapeutics. Nat Rev Nephrol 2025; 21:314-329. [PMID: 39934355 DOI: 10.1038/s41581-025-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Chronic kidney disease (CKD) is a major global health burden that affects more than 10% of the adult population. Current treatments, including dialysis and transplantation, are costly and not curative. Kidney fibrosis, defined as an abnormal accumulation of extracellular matrix in the kidney parenchyma, is a common outcome in CKD, regardless of disease aetiology, and is a major cause of loss of kidney function and kidney failure. For this reason, research efforts have focused on identifying mediators of kidney fibrosis to inform the development of effective anti-fibrotic treatments. Given the prominent role of the transforming growth factor-β (TGFβ) family in fibrosis, efforts have focused on inhibiting TGFβ signalling. Despite hopes raised by the efficacy of this approach in preclinical models, translation into clinical practice has not met expectations. Antihypertensive and antidiabetic drugs slow the decline in kidney function and could slow fibrosis but, owing to the lack of technologies for in vivo renal imaging, their anti-fibrotic effect cannot be truly assessed at present. The emergence of new drugs targeting pro-fibrotic signalling, or enabling cell repair and cell metabolic reprogramming, combined with better stratification of people with CKD and the arrival of nanotechnologies for kidney-specific drug delivery, open up new perspectives for the treatment of this major public health challenge.
Collapse
Affiliation(s)
- Lilia Abbad
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Emmanuel Esteve
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos Chatziantoniou
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France.
| |
Collapse
|
2
|
Verma DK, Singh A. Self-assembly kinetics of miktoarm star polymers in diverse solvent environments: insights from dissipative particle dynamics simulations. SOFT MATTER 2025. [PMID: 40261009 DOI: 10.1039/d5sm00205b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
We present the self-assembly kinetics of miktoarm star polymers (MSPs) with compositional and topological asymmetries in various solvents using three-dimensional dissipative particle dynamics simulations. Morphological evolution, analyzed via radial distribution, spatial correlation functions, and domain growth exponents, reveals distinct structures driven by solvent-MSP interactions. Good solvents promote a mostly slow domain growth rate, resulting in a porous morphology, whereas poor solvents facilitate a faster growth rate and lead to denser and localized lamellar or cylindrical structures. Domain growth follows a power-law behavior with an exponent of nearly 1/3 in the early diffusive regime; however, the growth rate and saturation of the domain size vary with solvent quality. Topologically asymmetric MSPs form interconnected bicontinuous morphologies in good solvents and localized lamellae in poor solvents. The correlation function scaling deviates from universality in symmetric interactions but exhibits better collapse when one arm is solvophilic. Thermodynamic analysis shows that increasing solvophobicity reduces entropy, raises enthalpy, and thus influences self-assembly kinetics. These findings significantly improve our understanding of complex MSP self-assembly under different solvent conditions and offer pathways for designing polymeric materials with diverse functionalities.
Collapse
Affiliation(s)
- Devendra Kumar Verma
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| |
Collapse
|
3
|
Li Y, Pirhadi E, Demirci S, Dey UK, Rawah T, Chaudary A, Ortega R, Thorpe C, Huang B, Yong X, Jiang S. A novel dilution strategy for tuning Janus particle morphology. J Colloid Interface Sci 2025; 693:137613. [PMID: 40267781 DOI: 10.1016/j.jcis.2025.137613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/22/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Morphology plays a critical role in determining the properties of colloidal particles. To better understand the morphological evolution of Janus particles formed via seeded emulsion polymerization, we constructed a phase diagram based on the seed-to-monomer ratio and cross-linking density. We found that systematically diluting swollen seed particles before polymerization induces distinct morphological transitions. Quantitative analysis of monomer uptake in seed particles revealed that these transitions are primarily driven by monomer diffusion during dilution. Computational simulations supported our experimental findings, demonstrating a sphere-to-dumbbell transition as seed cross-linking density increased. Simulations also captured changes in the interfacial curvature between the seed and monomer lobes, which were further validated through particle etching experiments. Using this new dilution strategy, we successfully synthesized amphiphilic Janus particles with fluorinated monomers. When combined with homogeneous binder particles, these Janus particles formed stratified coatings that significantly improved water resistance. Notably, the water contact angle remained stable even after repeated solvent rinsing and mechanical abrasion. This dilution approach provides a simple yet effective method for controlling Janus particle morphology and optimizing their functional properties.
Collapse
Affiliation(s)
- Yifan Li
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA
| | - Emad Pirhadi
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Serkan Demirci
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA; Department of Chemistry, Amasya University, Amasya 05100, Turkey
| | - Utsav Kumar Dey
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA
| | - Thamer Rawah
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA
| | - Aneeba Chaudary
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA
| | - Ricardo Ortega
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA
| | - Connor Thorpe
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA
| | - Bingrui Huang
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA
| | - Xin Yong
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA.
| | - Shan Jiang
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA; Division of Materials Science & Engineering, Ames National Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Munkaila S, Torres KJ, Wang J, Weck M. Dielectrophoretic Assembly of Customized Colloidal Trimers. ACS NANOSCIENCE AU 2025; 5:100-110. [PMID: 40255981 PMCID: PMC12006858 DOI: 10.1021/acsnanoscienceau.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
The controlled assembly of colloidal trimers with both shape and surface anisotropy remains a challenge. In this work, polymeric dielectric colloidal trimers selectively functionalized with gold nanoparticles are used to create four distinct particles. The shape and surface anisotropy provided by the metallodielectric particles allows for directive assembly in a dielectrophoretic field. When subjected to varied frequencies and media permittivities, the particles assemble with different packing densities and orientations. On-demand assembly and disassembly of the particles are achieved by switching on or off the applied voltage. These multicomponent colloidal particles and their subsequent assemblies presented here provide a promising platform for engineering complex structures with versatile functionalities.
Collapse
Affiliation(s)
- Samira Munkaila
- Molecular Design Institute,
Department of Chemistry, New York University, New York, New York 10003, United States
| | - Kevin J. Torres
- Molecular Design Institute,
Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jennifer Wang
- Molecular Design Institute,
Department of Chemistry, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Molecular Design Institute,
Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
5
|
Cheng H, Ma B, Ji A, Yao H, Chen P, Zhai W, Gao S, Shi L, Hu H. Janus-Structured Micro/Nanomotors: Self-Propelled Mechanisms and Biomedical Applications. Biomater Res 2025; 29:0155. [PMID: 40191071 PMCID: PMC11971528 DOI: 10.34133/bmr.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/19/2025] [Accepted: 02/09/2025] [Indexed: 04/09/2025] Open
Abstract
Self-propelled micro/nanomotors (MNMs), which can convert other energy into mechanical motion, have attracted considerable attention due to their potential applications in diverse fields. Due to the asymmetric structures and 2 or more chemically discrepant composites constructed in the Janus nanoparticles, asymmetrical forces can be created in the physical environment. Thus, MNMs with Janus structures have been widely studied for revealing possible driving mechanisms. This tutorial review covers the most representative examples of Janus-structured MNMs developed so far, which are self-propelled by different mechanisms. We focus on Janus MNMs that exhibit self-propelled motion in liquid environments and their potential applications in biomedicine, including drug delivery, cancer therapy, bioimaging, and biosensing. The driving mechanisms and challenges associated with constructing asymmetric fields are deeply discussed, along with future opportunities for these versatile and promising MNMs. This review provides an overview of the rapidly evolving field of MNMs and their potential applications, serving as a valuable resource for researchers and others interested in this field.
Collapse
Affiliation(s)
- Haoyan Cheng
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Beng Ma
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Anqi Ji
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Haonan Yao
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Pan Chen
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Wenyang Zhai
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Hao Hu
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
6
|
Cui C, Ma H, Du J, Xie L, Chen A. Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials. SMALL METHODS 2025; 9:e2401580. [PMID: 39865857 DOI: 10.1002/smtd.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials. Meanwhile, a variety of construction strategies of asymmetric structures, including template method, nanoemulsion assembly method, and self-assembly method, are described in detail. In addition, the contradictions between material synthesis and application are pointed out, such as the limitations of synthesis methods and morphology modulation means, as well as the trade-off between property improvement and production costs. Finally, the future development path of ACBMs is envisioned, emphasizing the importance of the close integration of theory and practice, and looking forward to promoting the research and development of a new generation of high-performance materials through the in-depth understanding of the design principles and action mechanisms of ACBMs.
Collapse
Affiliation(s)
- Chenqi Cui
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Haoxuan Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| |
Collapse
|
7
|
Song S, Xu JT, Zhou H, Manners I, Winnik MA. Focal Point Association of Core-Crystalline Micelles with an Amphiphilic Corona Block. J Am Chem Soc 2025; 147:9919-9930. [PMID: 40052526 DOI: 10.1021/jacs.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
We report the preparation of star-like supermicelles by the secondary association of triblock comicelles or scarf-like micelles driven by a change in solvency. These building blocks were synthesized by seeded growth in which crystallites of a triblock terpolymer, either PFS27-b-PTDMA81-b-POEGMA45 (to form triblock comicelles) or PFS66-b-PTDMA81-b-POEGMA45 (to form scarf-like micelles), served as seeds for crystallization-driven self-assembly (CDSA). PFS-b-PTDMA unimers were added in the seeded growth step. The corona-forming block PTDMA-POEGMA is amphiphilic and sensitive to polarity changes of the solvents. We sought solvents in which the upper critical solution temperature (UCST, TUCST) of POEGMA was slightly above room temperature (RT). Examples included 1-decanol and 1-decanol/decane mixtures. Seeded growth proceeded normally in solvents above the UCST of POEGMA. When the solution temperature was lowered below TUCST, or when the triblock comicelles or scarf-like micelles were transferred to a solvent (e.g., 1-decanol) below its TUCST, the center blocks associated to form star-like supermicelles. The addition of small amounts of THF to the medium to increase the solvency for POEGMA led to dissociation of the supermicelles. Transfer of the triblock comicelles to 1-pentanol at RT, below the UCST of PTDMA, also led to controlled secondary association to form supermicelles with a different morphology. Seeded growth with PFS25-b-PDMAEMA184 unimers led to supermicelles in which the poly(dimethylaminoethyl methacrylate) corona chains could serve as carriers for gold nanoparticles (AuNPs). These AuNP@supermicelle complexes could serve as recoverable catalysts, for example to catalyze the condensation polymerization of bis(dimethylsilyl)benzene and pentanediol. They were highly active catalysts and showed excellent mechanical robustness for recovery and reuse.
Collapse
Affiliation(s)
- Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
8
|
Equy E, Ibarboure E, Grelet E, Lecommandoux S. Janus Polymeric Giant Vesicles on Demand: A Predictive Phase Separation Approach for Efficient Formation. J Am Chem Soc 2025; 147:9727-9738. [PMID: 40066799 DOI: 10.1021/jacs.4c18003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Janus particles, with their intrinsic asymmetry, are attracting major interest in various applications, including emulsion stabilization, micro/nanomotors, imaging, and drug delivery. In this context, Janus polymersomes are particularly attractive for synthetic cell development and drug delivery systems. While they can be achieved by inducing a phase separation within their membrane, their fabrication method remains largely empirical. Here, we propose a rational approach, using Flory-Huggins theory, to predict the self-assembly of amphiphilic block copolymers into asymmetric Janus polymersomes. Our predictions are experimentally validated by forming highly stable Janus giant unilamellar vesicles (JGUVs) with a remarkable yield exceeding 90% obtained from electroformation of various biocompatible block copolymers. We also present a general phase diagram correlating mixing energy with polymersome morphology, offering a valuable tool for JGUV design. These polymersomes can be extruded to achieve quasi-monodisperse vesicles while maintaining their Janus-like morphology, paving the way for their asymmetric functionalization and use as active carriers.
Collapse
Affiliation(s)
- Eloise Equy
- Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France
- Univ. Bordeaux, CNRS, CRPP UMR 5031, , Pessac F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France
| | - Eric Grelet
- Univ. Bordeaux, CNRS, CRPP UMR 5031, , Pessac F-33600, France
| | | |
Collapse
|
9
|
Sun YW, Li ZW. Nanohelix Arrays with Giant Circular Dichroism through Patch-Enthalpy-Driven Self-Confined Self-Assembly of Janus Nanoparticles. NANO LETTERS 2025; 25:4540-4548. [PMID: 40062726 DOI: 10.1021/acs.nanolett.5c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plasmonic nanohelix arrays, exhibiting strong circular dichroism, are among the most promising optical chiral metamaterials. However, achieving chiral plasmonic effects in the visible range remains challenging with current manufacturing techniques, as it requires structures small enough to resonate at visible wavelengths. Herein, we propose a novel strategy for constructing nanohelix arrays through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles. The hexagonal columnar structures, self-assembled from Janus nanoparticles, create a cylindrical self-confined environment within each column, where patch-enthalpy drives the particles to form helical structures. Numerical simulations reveal that patch-enthalpy induces the sequential formation of helical structures within each column, from multiple helices to double helix and finally to single helix. Additionally, optical property calculations demonstrate that these nanohelix arrays exhibit giant circular dichroism and high g-factors at visible frequencies. Our proposed construction strategy offers a promising route for developing optical chiral metamaterials through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles.
Collapse
Affiliation(s)
- Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Yang T, Skirtach AG. Nanoarchitectonics of Sustainable Food Packaging: Materials, Methods, and Environmental Factors. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1167. [PMID: 40077396 PMCID: PMC11901949 DOI: 10.3390/ma18051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Nanoarchitectonics influences the properties of objects at micro- and even macro-scales, aiming to develop better structures for protection of product. Although its applications were analyzed in different areas, nanoarchitectonics of food packaging-the focus of this review-has not been discussed, to the best of our knowledge. The (A) structural and (B) functional hierarchy of food packaging is discussed here for the enhancement of protection, extending shelf-life, and preserving the nutritional quality of diverse products including meat, fish, dairy, fruits, vegetables, gelled items, and beverages. Interestingly, the structure and design of packaging for these diverse products often possess similar principles and methods including active packaging, gas permeation control, sensor incorporation, UV/pulsed light processing, and thermal/plasma treatment. Here, nanoarchitechtonics serves as the unifying component, enabling protection against oxidation, light, microbial contamination, temperature, and mechanical actions. Finally, materials are an essential consideration in food packaging, particularly beyond commonly used polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) plastics, with emphasis on biodegradable (polybutylene succinate (PBS), polyvinyl alcohol (PVA), polycaprolactone (PCL), and polybutylene adipate co-terephthalate (PBAT)) as well as green even edible (bio)-materials: polysaccharides (starch, cellulose, pectin, gum, zein, alginate, agar, galactan, ulvan, galactomannan, laccase, chitin, chitosan, hyaluronic acid, etc.). Nanoarchitechnotics design of these materials eventually determines the level of food protection as well as the sustainability of the processes. Marketing, safety, sustainability, and ethics are also discussed in the context of industrial viability and consumer satisfaction.
Collapse
Affiliation(s)
| | - Andre G. Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
11
|
Kuroiwa K, Takeuchi K, Hirai T, Nakamura Y, Oaki Y, Fujii S. Janus Particles Synthesized via Vapor-Phase Coupling Polymerization Protocol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5439-5448. [PMID: 39985468 DOI: 10.1021/acs.langmuir.4c05061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The vapor-phase polymerization of pyrrole in the presence of polystyrene (PS) particles adsorbed at the air-water interface successfully leads to the formation of PS/polypyrrole (PPy) Janus particles where only the surface in contact with the air phase is regioselectively covered with the PPy nanolayer. The coverage area of the PPy nanolayer on the Janus particles, and therefore the contact angle of Janus particles at the air-liquid interface, decreases with a decrease in surface tension of liquid by the addition of isopropanol. The contact angle of particles at the interface decreases after the polymerization, which should be because the pyrrole monomer dissolved in the water phase from the gas phase promotes the wetting of the liquid to the PS particles by decreasing the surface tension of the liquid. Controlling the PS particle size realizes the formation of PS/PPy Janus particles with sizes ranging between 5 and 1000 μm. Furthermore, the Janus particles are demonstrated to be oriented at the air-water interface with the hydrophilic PS side toward the water phase and the hydrophobic PPy side toward the air phase, realizing stabilization of an armored bubble in the water medium.
Collapse
Affiliation(s)
- Kazuma Kuroiwa
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
12
|
Te Vrugt M, Wittkowski R. Metareview: a survey of active matter reviews. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:12. [PMID: 40035927 PMCID: PMC11880143 DOI: 10.1140/epje/s10189-024-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025]
Abstract
In the past years, the amount of research on active matter has grown extremely rapidly, a fact that is reflected in particular by the existence of more than 1000 reviews on this topic. Moreover, the field has become very diverse, ranging from theoretical studies of the statistical mechanics of active particles to applied work on medical applications of microrobots and from biological systems to artificial swimmers. This makes it very difficult to get an overview over the field as a whole. Here, we provide such an overview in the form of a metareview article that surveys the existing review articles and books on active matter. Thereby, this article provides a useful starting point for finding literature about a specific topic.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
13
|
Tan X, Song Y, Wan C, Huang C, Chai Y, Yang Z. Magnetic Janus Particles: Synthesis and Multifunctional Applications. Macromol Rapid Commun 2025; 46:e2400866. [PMID: 39668799 DOI: 10.1002/marc.202400866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Magnetic Janus particles (MJPs) with compositional compartmentalization and strong magnetic responsiveness play a pivotal role in various application fields, such as biotechnology, medicine, and materials science. However, comprehensive reviews of the field of MJPs remain limited. Here, this article attempts to fill the gap by reviewing the current common synthetic strategies for MJPs, including masking, microfluidics, self-assembly, phase separation, and seeded emulsion polymerization, among others. It then covers the multifunctional applications of MJPs, beneficial from their magnetic properties and anisotropic topological structure, primarily involving environmental remediation, biomedicine, smart displays, interfacial catalysis, emulsion stabilization, and structured liquid materials are presented, as well. Finally, the current challenges and future perspectives for MJPs are also discussed, aiming to fully harness the potential for broader applications.
Collapse
Affiliation(s)
- Xuemei Tan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yuhang Song
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Gaoxin District, Shenzhen, 518057, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Karner C, Bianchi E. Partially Bonded Crystals: A Pathway to Porosity and Polymorphism. ACS NANO 2025; 19:5146-5157. [PMID: 39875319 PMCID: PMC11823632 DOI: 10.1021/acsnano.4c06489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
In recent years, experimental and theoretical investigations have shown that anisotropic colloids can self-organize into ordered porous monolayers, where the interplay of localized bonding sites, so-called patches, with the particle's shape is responsible for driving the systems away from close-packing and toward porosity. Until now it has been assumed that patchy particles have to be fully bonded with their neighboring particles for crystals to form, and that, if full bonding cannot be achieved due to the choice of patch placement, disordered assemblies will form instead. In contrast, we show that by deliberately displacing the patches such that full bonding is disfavored, a different route to porous crystalline monolayers emerges, where geometric frustration and partial bonding are decisive process. The resulting dangling bonds lead to the emergence of effectively chiral units which then act as building blocks for energetically equivalent crystal polymorphs.
Collapse
Affiliation(s)
- Carina Karner
- Institut
für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - Emanuela Bianchi
- Institut
für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC,
Uos Sapienza, Piazzale
A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
15
|
Yang B, Liang H, Xu J, Liu Y, Ma S, Li Y, Wang C. Multi-drug sequential release systems: Construction and application for synergistic tumor treatment. Int J Pharm 2025; 670:125156. [PMID: 39746586 DOI: 10.1016/j.ijpharm.2024.125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
In tumor treatment, the sequence and timing of drug action have a large influence on therapeutic efficacy. Multi-drug sequential release systems (MDSRS) enable the sequential and/or on-demand release of multiple drugs following the single administration of a therapeutic agent. Several researchers have explored MDSRS, providing fresh strategies for synergistic cancer therapy. This review article first introduces the main characteristics of MDSRS. It then elaborates on the design principles of MDSRS. Subsequently, it summarizes the various structures of carriers used for constructing MDSRS, including core-shell structure, Layer-by-layer structure, Janus structure and hydrogel. Next, through specific examples, the article emphasizes the application of MDSRS in cancer treatment, focusing on their role in remodeling the tumor microenvironment (TME) and enhancing therapeutic effects through multiple mechanisms. Finally, the article discusses the current limitations and challenges of these systems and proposes potential future solutions. Overall, this review underscores the importance of the sequence and timing of drug therapy in cancer treatment, providing valuable theoretical and technical guidance for pharmaceutical research.
Collapse
Affiliation(s)
- Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Huijuan Liang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Jiahao Xu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yuqiu Li
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, China.
| |
Collapse
|
16
|
Ghazy AR, Abdel Gawad SA, Ashraf A, Ahmed S, Ghazy R, El-Sharkawy AN. Tuning the optical and photophysical characteristics of DR1 through mixing with JGB. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125238. [PMID: 39368184 DOI: 10.1016/j.saa.2024.125238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
A dye mixture of Disperse red1 (DR1) and Janus green B (JGB) was prepared with different concentrations of the two dyes. The optical properties were studied for the two dyes and their mixtures in terms of the absorbance spectra. The direct optical energy gap in addition to the refractive index, extinction coefficient, dielectric constant and optical conductivity were estimated to the two dyes and their mixtures. The experimental energy gap was found to be 2.234 and 1.666 eV for DR1 and JGB respectively, while the values of the energy gaps for the mixtures were found to be ranging between these two values. On the other hand, the refractive index was found to be changed in a systematic way by changing the contents of the dye mixture. The same behavior was also observed for the dielectric constant and optical conductivity. The emission of the two dyes and their mixtures was studied in terms of fluorescence spectra using excitation wavelength of 300 nm where a change in the fluorescence intensity was observed by changing the contents of the mixture. Finally, TD-DFT simulations were performed for the two dyes and their mixture to study the electron density, electrostatic potential, energy gap and optical absorption spectrum and found to be compatible with the experimental measurements.
Collapse
Affiliation(s)
- Ahmed R Ghazy
- Laser Laboratory, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - S A Abdel Gawad
- Basic Science Center, Misr University for Science and Technology (MUST), 6 of October, Egypt
| | - Alaa Ashraf
- Laser Laboratory, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Samia Ahmed
- Laser Laboratory, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - R Ghazy
- Laser Laboratory, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - A N El-Sharkawy
- Basic Science Center, Misr University for Science and Technology (MUST), 6 of October, Egypt
| |
Collapse
|
17
|
Chaudhary S, Jain S, Ghosal D, Kumar S. Harnessing Theraoenergetics for Cartilage Regeneration: Development of a Therapeutic and Bioenergetic Loaded Janus Nanofiber Reinforced Hydrogel Composite for Cartilage Regeneration. ACS Biomater Sci Eng 2025. [PMID: 39900505 DOI: 10.1021/acsbiomaterials.4c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Advancements in tissue engineering and regenerative medicine have highlighted different strategies of engineering and designing hydrogels to replicate the intricate structure of cartilage extracellular matrix (ECM) for effective cartilage regeneration. However, despite efforts to meet the elevated structural and mechanical demands of cartilage repair, researchers often overlook the challenging environmental conditions at damaged cartilage sites such as inflammation, hypoxia, and the limited availability of nutrients and energy, which are critical for supporting tissue regeneration. The insufficient oxygen, nutrient availability, and oxidative stress in avascular cartilage limit the oxidative phosphorylation-mediated bioenergetics in cells needed for energy demands required for anabolic biosynthesis, cell division, and migration during tissue repair. Thus, there is a need to develop an advanced approach to engineer a unique hydrogel system that not only provides intricate structural properties but also integrates therapeutics (like anti-inflammatory, reactive oxygen species (ROS) scavenging) and bioenergetics (like oxygen, energy demand) into the hydrogel, which may offer a holistic and effective solution for repairing cartilage defects under a harsh microenvironment. In this study, we engineered an innovative approach to develop a new class of theraoenergetic hydrogel system by reinforcing a Janus nanofiber (JNF) carrying therapeutic (MgO) and bioenergetic (polyglutamic acid), PGA) components into a dual network photo-crosslinkable hydrogel. Reinforcement of JNF microfragments and the photo-crosslinking dual network of synthesized gelatin methacryloyl (GelMA) and carboxymethyl chitosan (CMCh) not only enhances the hydrogel's mechanical properties by 800% to withstand mechanical load but also ensures a controlled release of magnesium, oxygen, and PGA over 30 days. Co-delivery of magnesium and bioenergetic PGA with oxygen helped synergistically to reduce intracellular ROS and inflammatory markers IL-6 and TNF-α, providing a supportive environment for enhancing cell mitochondrial oxidative metabolism leading to active proliferation and chondrogenic differentiation of stem cells to deposit glycosaminoglycan (GAG)-rich extracellular matrix to regenerate cartilage. The developed theraoenergetic hydrogel system represents a promising solution for regenerating cartilage under a harsh microenvironment to treat osteoarthritis, a rising global health burden.
Collapse
Affiliation(s)
- Shivani Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sakshi Jain
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
18
|
Fu B, Scardaci V. Metal-Based Nanomaterials: Fabrications, Optical Properties, and Ultrafast Photonics. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:186. [PMID: 39940162 PMCID: PMC11820166 DOI: 10.3390/nano15030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Metals are known for conductivity and luster due to the abundance of free electrons [...].
Collapse
Affiliation(s)
- Bo Fu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Precision Opto-Mechatronics Technology of Education Ministry, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Vittorio Scardaci
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
19
|
Liu S, Sun C, Zhang X, Shu R, Zhang J, Wang B, Wang K, Dou L, Huang L, Yang Q, Wang J. Advances in enhancement-type signal tracers and analysis strategies driven Lateral flow immunoassay for guaranteeing the agri-food safety. Biosens Bioelectron 2025; 268:116920. [PMID: 39531800 DOI: 10.1016/j.bios.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a classical and continuously developing on-site sensor, Lateral flow immunoassay (LFIA) exhibits promising potential for advanced point-of-care testing (POCT). Especially given the significance of agri-food in human dietary structure and the ever-increasing agri-food safety concerns, improved analysis performance of LFIA is urgently required. Recently, flourishing enhancement-type signal tracers (STs) and brilliant enhancement-type analysis strategies have been actively pursued in the development of LFIA because these patterns endow immense feasibility in manufacturing target-oriented sensing platforms. To facilitate further advancements in this field, this review comprehensively examines the recent developments in enhancement-type STs (e.g., load-, green-, recognizable-, Janus-, and dyestuffs-type STs) and enhancement-type analysis strategies (e.g. immuno-network, in-situ growth, nanozymes, multi-signal readout, and software-assisted quantitative analytical strategies) that significantly improve precise analysis efficiency. Moreover, by conducting a comprehensive evaluation of the major advancements and aiming to identify future trends in LFIA-based sensor, the objective of this review is to provide recommendations for future research based on the challenges and opportunities of LFIA.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiyue Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kexin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lunjie Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, Sichuan, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Duan Y, Zhao X, Nan X, Sun Z, Lei X, Wang W, Hao H, Li J. Anisotropic Microparticles with a Controllable Structure via Soap-Free Seeded Emulsion Polymerization. Molecules 2025; 30:166. [PMID: 39795222 PMCID: PMC11721275 DOI: 10.3390/molecules30010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Anisotropic particles have a wide range of applications in materials science such as emulsion stabilization, oil-water separation, and catalysis due to their asymmetric structure and properties. Nevertheless, designing and synthesizing large quantities of anisotropic particles with controlled morphologies continue to present considerable challenges. In this study, we successfully synthesized anisotropic microspheres using a soap-free seed emulsion polymerization method. This approach combines the benefits of seed emulsion polymerization with emulsion interfacial polymerization. By varying the concentrations of dissolved polymeric monomers, 3-methacryloyloxypropyltrimethoxysilane (MPS), and the initiator of potassium persulfate (KPS), different shapes of bowl, cap, and three-sided concave particles were obtained in surfactant-free aqueous solutions, simplifying the post-treatment process. The cap particles are Janus particles with good emulsion stability to toluene/water emulsions over 30 days. The catalytic degradation of 4-nitrophenol (4-NP) was investigated after loading silver nanoparticles on the surface of the particles by in situ deposition. The anisotropic particles obtained in this work have potential applications in emulsion stabilization and catalysis.
Collapse
Affiliation(s)
- Yanping Duan
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Xia Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Xiang Nan
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Zhifeng Sun
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Wei Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (X.Z.); (X.N.); (Z.S.); (X.L.); (W.W.)
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710127, China
| | - Jianfang Li
- Department of Energy and Power Engineering, Shanxi Institute of Energy, Jinzhong 030600, China;
| |
Collapse
|
21
|
Muhsin M, Adersh F, Sahoo M. Active magneto gyrator: Memory-induced trapped diamagnetism. Phys Rev E 2025; 111:015411. [PMID: 39972894 DOI: 10.1103/physreve.111.015411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/31/2024] [Indexed: 02/21/2025]
Abstract
We analytically explore the dynamics of a charged active particle coupled to two thermal baths kept at two different temperatures in two dimensions. The particle is confined to an asymmetric harmonic potential and a magnetic field of constant magnitude is applied perpendicular to the plane of motion of the particle. For such a system, as opposed to a Brownian gyrator, the potential asymmetry and temperature gradient are not the key factors for the gyration, as long as finite activity and magnetic field are present. The system shows only a paramagnetic behavior in the absence of either potential asymmetry or temperature gradient. However, by tuning the temperature gradient or potential asymmetry, the system as a function of the duration of activity can exhibit paramagnetic, diamagnetic, or coexistence of both the phases. Interestingly, the magnetic moment vanishes for parameters for which the system possesses a nonequilibrium steady state and hence, a magnetic transition is observed through these nonmagnetic points. Further, when the system is suspended in a viscoelastic medium characterized by a finite memory, it exhibits a magnetic transition in the activity-memory parameter space through a nonmagnetic line. This nonmagnetic line is sensitive to temperature gradient and potential asymmetry. It interestingly forms a closed loop with a diamagnetic phase inside the loop and the entire regime outside as paramagnetic. This results in the emergence of a trapped diamagnetic phase existing only within a finite regime of activity-memory parameter space. This phase eventually disappears as the temperature gradient increases (or decreases) depending on the sign of the potential asymmetry. Moreover, it is observed that by tuning the system parameters, one can obtain zero magnetic moment even for parameter ranges that defy the equilibrium condition of the system.
Collapse
Affiliation(s)
- M Muhsin
- University of Kerala, Department of Physics, Kariavattom, Thiruvananthapuram 695581, India
| | - F Adersh
- University of Kerala, Department of Physics, Kariavattom, Thiruvananthapuram 695581, India
| | - M Sahoo
- University of Kerala, Department of Physics, Kariavattom, Thiruvananthapuram 695581, India
| |
Collapse
|
22
|
Yadav A, Sharma R, Chandrasekar VK, Senthilkumar DV. Collective dynamics of pulse-coupled swarmalators. Phys Rev E 2025; 111:014313. [PMID: 39972911 DOI: 10.1103/physreve.111.014313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Collective motion in nature, from the murmurations of starlings to firefly flashes, showcases a remarkable level of self-organization. Swarmalator models are an emerging paradigm for describing collective behavior of oscillators which sync and swarm. Traditionally, most studies have focused on the self-organizing dynamics of swarmalators with continuous coupling. However, a key aspect of many biological systems, pulsed interactions, remains unexplored within the framework of swarmalators. In this paper, we analyze the collective behavior of pulse-coupled swarmalators with different characteristics of pulse and phase response curves. We report several collective states facilitated by the pulsatile interactions including bump state, active bump state, partial synchronized state, radial wave state, and death state. The stationary nature of spatial and phase dynamics characterizes the death state. Further, we provide an analytical estimate for the threshold coupling strength for the death state's existence by analyzing the minimal model's dynamics with two coupled swarmalators.
Collapse
Affiliation(s)
- Akash Yadav
- Indian Institute of Science Education and Research, School of Physics, Thiruvananthapuram, Kerala 695551, India
| | - Rakshita Sharma
- Indian Institute of Science Education and Research, School of Physics, Thiruvananthapuram, Kerala 695551, India
| | - V K Chandrasekar
- SASTRA Deemed University, Center for Nonlinear Science and Engineering, Thanjavur, Tamil Nadu 613401, India
| | - D V Senthilkumar
- Indian Institute of Science Education and Research, School of Physics, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
23
|
Li Y, Liu F, Demirci S, Dey UK, Rawah T, Chaudary A, Ortega R, Yang Z, Pirhadi E, Huang B, Yong X, Jiang S. Two sides of the coin: synthesis and applications of Janus particles. NANOSCALE 2024; 17:88-112. [PMID: 39564617 DOI: 10.1039/d4nr03652b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Named after the two-faced Roman god, Janus particles (JPs) are defined by their distinct dual chemical compositions on a single particle. Research on micron-sized JPs has yielded remarkable insights, showcasing their unique assembly behaviors both in bulk and at interfaces. However, significant challenges persist, particularly in the synthesis of smaller (<500 nm) JPs, which remains complex and difficult to scale up. To date, there has been no commercial success with JPs. Recently, seeded synthesis methods, such as emulsion polymerization that is already employed in industrial-scale manufacturing, have shown great promise. These methods enable the production of high-quality JPs with different sizes, morphologies, and functionalities. This advancement has inspired more efforts in exploring JP applications across various fields, including emulsion stabilization, drug delivery, electronic devices, and coatings. This review provides a comprehensive overview of the recent progress in the synthesis and application of polymeric JPs, with an emphasis on the seeded synthesis approach. It discusses the underlying reaction mechanisms and explores different strategies for controlling JP morphology. Serving as a roadmap, this review aims to guide the design of novel functional JPs and their potential future applications. The successful implementation of JPs will require careful consideration and a deep understanding of both synthesis and applications, as these are indeed two sides of the same coin.
Collapse
Affiliation(s)
- Yifan Li
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Fei Liu
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Serkan Demirci
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Utsav Kumar Dey
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Thamer Rawah
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Aneeba Chaudary
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Ricardo Ortega
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Zhengtao Yang
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Emad Pirhadi
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Bingrui Huang
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Xin Yong
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, IA 50011, USA
| |
Collapse
|
24
|
Sadafi M, da Mota AF, Mosallaei H. Electrostatic Orientation of Optically Asymmetric Janus Particles. ACS OMEGA 2024; 9:49172-49187. [PMID: 39713669 PMCID: PMC11656250 DOI: 10.1021/acsomega.4c05669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
Janus micro- and nanoparticles, featuring unique dual-interface designs, are at the forefront of rapidly advancing fields such as optics, medicine, and chemistry. Accessible control over the position and orientation of Janus particles within a cluster is crucial for unlocking versatile applications, including targeted drug delivery, self-assembly, micro- and nanomotors, and asymmetric imaging. Nevertheless, precise mechanical manipulation of Janus particles remains a significant practical challenge across these fields. The current predominant methods, based on fluid flow, thermal gradients, or chemical reactions, have their precision and applicability limited by the properties of their background fluids. Therefore, this study proposes electrostatics to deliberately control the local orientation of optically asymmetric Janus particles (spherical and matchstick-like hybrid metal-dielectric objects) within a cluster to overcome the aforementioned restraints. We introduce a sophisticated multiphysics platform and employ it to explore and unveil the infrastructural physics behind the mechanical behavior of the particles when subjected to electrostatic stimuli in an ionic environment. We investigate how different deterministic and stochastic variables affect the particles' short- and long-term responses. By judicious engineering of amplitude, direction, and polarization of the external excitation, we demonstrate that the particles tend to undergo the desired rotational motion and converge to favorable orientations. The functionality of our approach is showcased in the context of an asymmetric imaging system based on optically asymmetric Janus particles. Our findings suggest a viable platform for adequate mechanical manipulation of Janus particles and pave the way for enabling numerous state-of-the-art applications in various fields.
Collapse
Affiliation(s)
- Mohammad
Mojtaba Sadafi
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Achiles Fontana da Mota
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Electrical Engineering, University of
Brasilia, Brasilia, Federal
District 70910-900, Brazil
| | - Hossein Mosallaei
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Otomo A, Wiemann J, Bhattacharyya S, Yamamoto M, Yu Y, Iino R. Visualizing Single V-ATPase Rotation Using Janus Nanoparticles. NANO LETTERS 2024; 24:15638-15644. [PMID: 39573818 PMCID: PMC11638961 DOI: 10.1021/acs.nanolett.4c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Understanding the function of rotary molecular motors, such as rotary ATPases, relies on our ability to visualize single-molecule rotation. Traditional imaging methods often involve tagging those motors with nanoparticles (NPs) and inferring their rotation from the translational motion of NPs. Here, we report an approach using "two-faced" Janus NPs to directly image the rotation of a single V-ATPase from Enterococcus hirae, an ATP-driven rotary ion pump. By employing a 500 nm silica/gold Janus NP, we exploit its asymmetric optical contrast, a silica core with a gold cap on one hemisphere, to achieve precise imaging of the unidirectional counterclockwise rotation of single V-ATPase motors immobilized on surfaces. Despite the added viscous load from the relatively large Janus NP probe, our approach provides accurate torque measurements of a single V-ATPase. This study underscores the advantages of Janus NPs over conventional probes, establishing them as powerful tools for the single-molecule analysis of rotary molecular motors.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute
for Molecular Science, National Institutes of National Sciences, Okazaki, Aichi 444-8787, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Jared Wiemann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Swagata Bhattacharyya
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mayuko Yamamoto
- Institute
for Molecular Science, National Institutes of National Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yan Yu
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ryota Iino
- Institute
for Molecular Science, National Institutes of National Sciences, Okazaki, Aichi 444-8787, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
26
|
Sun S, Li K, Li X, Shi S. Dual-Redox Responsive Interfaces Based on Donor-Acceptor Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65592-65599. [PMID: 39531015 DOI: 10.1021/acsami.4c14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanoparticle surfactant (NPS) is a highly competitive means for stabilizing liquid-liquid interfaces, endowing interfacial assemblies with functionalities, and enabling the construction of all-liquid devices. Integrating different types of supramolecular interactions into NPSs would open possibilities to generate interfaces that are responsive to multiple stimuli. Here, by using donor-acceptor interactions between polydopamine nanoparticles (PDA NPs) and methyl viologen (MV2+) terminated polystyrene, the formation, assembly, and jamming of a supramolecular NPS at the water-toluene interface is demonstrated. Harnessing the redox properties of both catechol and MV2+, the dual-redox responsiveness can be achieved, allowing the reconfiguration of NPS-based structured liquids. Using NPS as an emulsifier, oil-in-water (O/W), water-in-oil (W/O), and oil-in-water-in-oil (O/W/O) Pickering emulsions can be obtained in one step, which exhibit smart responsiveness to redox reagents. Taking advantage of the adsorption capacity of PDA NPs, the purification of dye-polluted water can be achieved through O/W Pickering emulsions. We envision that this unique dual-redox responsive biphasic system would hold great potential for developing sophisticated controlled-release systems as well as other intelligent, functional materials.
Collapse
Affiliation(s)
- Shuyi Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
27
|
Wang W, Yu Y, Wang M, Wang Y, Liu S, Xu J, Sun Z. Pickering Emulsion Promoted Interfacial Sequential Chemo-Biocatalytic Reaction for the Synthesis of Chiral Alcohols from Styrene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54799-54806. [PMID: 39315994 DOI: 10.1021/acsami.4c10461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chemo-biocatalytic cascades have emerged as a promising approach in the realm of advanced synthesis. However, reconciling the incompatible reaction conditions among distinct catalytic species presents a significant challenge. Herein, we introduce an innovative solution using an emulsion system stabilized by Janus silica nanoparticles, which serve as a bridge for both chemo-catalysts and biocatalysts at the interface. The chemo-catalyst is securely anchored within a hydrophobic polymer matrix, ensuring its residence in an organic environment. Meanwhile, the negatively charged E. coli cells containing enzymes are attracted to the aqueous phase at the interface, facilitating their optimal positioning. We demonstrate the efficacy of this system through a two-step cascade reaction. Initially, the oxidation of styrene to acetophenone using palladium as a chemocatalyst achieves a 6-fold increase in yield compared to the control system. Subsequently, the reduction of achiral acetophenone to its chiral alcohol derivative presents a 17-fold yield enhancement relative to that of the control reaction. Importantly, our system exhibits versatility, accommodating a wide range of substrates for both individual and sequential reactions. This work not only validates the concept but also paves the way for the integration of chemo- and biocatalysts in the synthesis of a broader array of high-value chemical compounds.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, 226001 Nantong, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, 226001 Nantong, China
| | - Mengyao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Shanqiu Liu
- College of Material Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| |
Collapse
|
28
|
Dutta D, Kundu A, Sabhapandit S, Basu U. Harmonically trapped inertial run-and-tumble particle in one dimension. Phys Rev E 2024; 110:044107. [PMID: 39562964 DOI: 10.1103/physreve.110.044107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/05/2024] [Indexed: 11/21/2024]
Abstract
We study the nonequilibrium stationary state of a one-dimensional inertial run-and-tumble particle (IRTP) trapped in a harmonic potential. We find that the presence of inertia leads to two distinct dynamical scenarios, namely, overdamped and underdamped, characterized by the relative strength of the viscous and the trap timescales. We also find that inertial nature of the active dynamics leads to the particle being confined in specific regions of the phase plane in the overdamped and underdamped cases, which we compute analytically. Moreover, the interplay of the inertial and active timescales gives rise to several subregimes, which are characterized by very different behavior of position and velocity fluctuations of the IRTP. In particular, in the underdamped regime, both the position and velocity undergo transitions from a novel multipeaked structure in the strongly active limit to a single-peaked Gaussian-like distribution in the passive limit. On the other hand, in the overdamped scenario, the position distribution shows a transition from a U shape to a dome shape, as activity is decreased. Interestingly, the velocity distribution in the overdamped scenario shows two transitions-from a single-peaked shape with an algebraic divergence at the origin in the strongly active regime to a double-peaked one in the moderately active regime to a dome-shaped one in the passive regime.
Collapse
|
29
|
Ai Y, Yangnan J, He J, Ohtsuka Y, Sakai M, Seki T, Yamanaka T, Tarutani N, Katagiri K, Takeoka Y. Influence of Sodium Ions and Carbon Black on the Formation and Structural Color of Photonic Balls by Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39264800 DOI: 10.1021/acs.langmuir.4c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
In this study, photonic balls─spherical aggregates of submicrometer-sized silica particles with uniform particle size─were investigated as structural colored materials. The structural color of these photonic balls is influenced by the ordered arrangement of the silica particles. The research focused on how the addition of electrolytes, specifically NaCl, affects the formation of photonic balls to achieve the desired structural color. Without NaCl, the photonic balls formed onion-shaped colloidal crystals. At NaCl concentrations above 0.006 mol/L, the particles aggregated into short-range ordered structures. When the concentration exceeded 0.05 mol/L, the aggregates lost their spherical shape. The study also explored the addition of carbon black (CB), a water-dispersible material due to its surface charge. The findings revealed that NaCl induced the phase separation between the charged silica particles and CB, resulting in Janus-shaped photonic balls─one side exhibiting structural color and the other side appearing black due to the presence of CB. Changing the silica particle size altered the hues of these Janus-shaped photonic balls, though they appeared uniformly colored to the naked eye. While this study did not specifically examine the applications of Janus-shaped photonic balls composed of silica particles and CB, CB is known for its ability to absorb near-infrared radiation and convert it into heat as well as its conductive properties. Silica, on the other hand, has a low thermal conductivity and acts as an electrical insulator. The structurally colored Janus-shaped photonic balls created in this study may serve as pigments in applications requiring anisotropic heat generation and electrical conduction. Additionally, the study's findings suggest the potential for creating various types of Janus-shaped photonic balls from materials with differing densities.
Collapse
Affiliation(s)
- Yuwen Ai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jiang Yangnan
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jialei He
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yumiko Ohtsuka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Sakai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Yamanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Naoki Tarutani
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kiyofumi Katagiri
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
30
|
Torrik A, Zarif M. Machine learning assisted sorting of active microswimmers. J Chem Phys 2024; 161:094907. [PMID: 39225539 DOI: 10.1063/5.0216862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Active matter systems, being in a non-equilibrium state, exhibit complex behaviors, such as self-organization, giving rise to emergent phenomena. There are many examples of active particles with biological origins, including bacteria and spermatozoa, or with artificial origins, such as self-propelled swimmers and Janus particles. The ability to manipulate active particles is vital for their effective application, e.g., separating motile spermatozoa from nonmotile and dead ones, to increase fertilization chance. In this study, we proposed a mechanism-an apparatus-to sort and demix active particles based on their motility values (Péclet number). Initially, using Brownian simulations, we demonstrated the feasibility of sorting self-propelled particles. Following this, we employed machine learning methods, supplemented with data from comprehensive simulations that we conducted for this study, to model the complex behavior of active particles. This enabled us to sort them based on their Péclet number. Finally, we evaluated the performance of the developed models and showed their effectiveness in demixing and sorting the active particles. Our findings can find applications in various fields, including physics, biology, and biomedical science, where the sorting and manipulation of active particles play a pivotal role.
Collapse
Affiliation(s)
- Abdolhalim Torrik
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| |
Collapse
|
31
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Kaushal A, Gendelman O, Shoval S, Kuroiwa K, Oaki Y, Fujii S, Bormashenko E. Motion and Orientation of Janus Spherical Particles at a Liquid-Air Interface Governed by the Moses Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17835-17842. [PMID: 39105726 DOI: 10.1021/acs.langmuir.4c02602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We investigated the motion of spherical polystyrene/polypyrrole-coated polystyrene Janus particles placed at an air/saline interface and driven by a permanent magnetic field of ca. 0.5 T. For the sake of comparison, the motion of pure floating polystyrene particles was studied. Both kinds of the studied particles moved toward the magnet and stopped at the boundary of the near-surface well produced by the magnetic field. The Moses effect-driven motion of floating Janus particles was analyzed and investigated under different strengths of the magnetic field and salt concentrations. The study of the Janus particle displacement led to the development of a unified theoretical framework explaining the mechanism of the motion. This framework predicts that the motion of particles placed at an air-salt solution interface is not only dictated by magnetic energy but also intricately influenced by the interplay of factors, including the curvature of the interface caused by the static magnetic field, gravitational potential, and capillary forces. The orientation of the particles was observed. A qualitative explanation of the observed phenomena is suggested. The investigated process has potential for the self-assembly of particles placed at the liquid/air interface.
Collapse
Affiliation(s)
- Abhishek Kaushal
- Engineering Faculty, Chemical Engineering Department, Ariel University, Ariel 407000, Israel
- Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, Ariel 407000, Israel
| | - Oleg Gendelman
- Faculty of Mechanical Engineering, Israel Institute of Technology, Technion, Haifa 3200003, Israel
| | - Shraga Shoval
- Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, Ariel 407000, Israel
| | - Kazuma Kuroiwa
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Edward Bormashenko
- Engineering Faculty, Chemical Engineering Department, Ariel University, Ariel 407000, Israel
| |
Collapse
|
33
|
Duszczak-Kaczmarek J, Mituła-Chmielowiec K, Rzonsowska M, Jankowski W, Hoffmann M, Walkowiak J, Dudziec B. Preparation of T 8 and double-decker silsesquioxane-based Janus-type molecules: molecular modeling and DFT insights. Sci Rep 2024; 14:18527. [PMID: 39122897 PMCID: PMC11316061 DOI: 10.1038/s41598-024-69481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
We present a methodology for the synthesis of inorganic-organic Janus-type molecules based on mono-T8 and difunctionalized double-decker silsesquioxanes (DDSQs) via hydrosilylation reactions, achieving exceptionally high yields and selectivities. The synthesized compounds were extensively characterized using various spectroscopic techniques, and their sizes and spatial arrangements were predicted through molecular modelling and density functional theory (DFT) calculations. Quantum chemical calculations were employed to examine the interactions among four molecules of the synthesized compounds. These computational results allowed us to determine the propensity for molecular aggregation, identify the functional groups involved in these interactions, and understand the changes in interatomic distances during aggregation. Understanding the aggregation behaviour of silsesquioxane molecules is crucial for tailoring their properties for specific applications, such as nanocomposites, surface coatings, drug delivery systems, and catalysts. Through a combination of experimental and computational approaches, this study provides valuable insights into the design and optimization of silsesquioxane-based Janus-type molecules for enhanced performance across various fields.
Collapse
Affiliation(s)
- Julia Duszczak-Kaczmarek
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Katarzyna Mituła-Chmielowiec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Monika Rzonsowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Wojciech Jankowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Beata Dudziec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
- Center for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
34
|
Wang K, Davies-Jones J, Graf A, Carravetta M, Davies PR, Pera-Titus M. Amphiphilic Janus Particles for Aerobic Alcohol Oxidation in Oil Foams. ACS Catal 2024; 14:11545-11553. [PMID: 39114089 PMCID: PMC11301628 DOI: 10.1021/acscatal.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Amphiphilic Janus silica particles, tunable with oleophobic-oleophilic properties and low fluorine content (8 wt % F), exhibited prominent foamability for a variety of aromatic alcohols at low particle concentrations (<1 wt %) compared to randomly functionalized silica particles. When selectively loaded with Pd nanoparticles on the oleophilic hemisphere, the particles displayed more than a 2-fold increase in catalytic activity for the aerobic oxidation of benzyl alcohol compared to nonfoam bulk catalysis under ambient O2 pressure. The particles were conveniently recycled with high foamability and catalytic activity maintained for at least five consecutive runs.
Collapse
Affiliation(s)
- Kang Wang
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Josh Davies-Jones
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Arthur Graf
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Marina Carravetta
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Philip R. Davies
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Marc Pera-Titus
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
35
|
Fan X, Wang X, Ye Y, Ye Y, Su Y, Zhang Y, Wang C. Printing 3D Metallic Structures in Porous Matrix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312071. [PMID: 38446075 DOI: 10.1002/smll.202312071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Indexed: 03/07/2024]
Abstract
The fabrication of metallic micro/nanostructures has great potential for advancing optoelectronic microdevices. Over the past decade, femtosecond laser direct writing (FsLDW) technology has played a crucial role in driving progress in this field. In this study, silica gel glass is used as a supporting medium, and FsLDW is employed to reduce gold and palladium ions using 7-Diethylamino-3-thenoylcoumarin (DETC) as a two-photon sensitizer, enabling the printing of conductive multilayered and 3D metallic structures. How the pore size of the silica gel glass affects the electrical conductivity of printed metal wires is systematically examined. This 3D printing method is versatile and offers expanded opportunities for applying metallic micro/nanostructures in optoelectronic devices.
Collapse
Affiliation(s)
- Xiaolin Fan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xue Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuanxiang Ye
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| | - Ying Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuming Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yusheng Zhang
- Suzhou Institute for Advanced Research, University of Science and Technology of China (USTC), Suzhou, 215127, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
36
|
Li Z, Zhang JH, Li J, Wang S, Zhang L, He CY, Lin P, Melhi S, Yang T, Yamauchi Y, Xu X. Dynamical Janus-Like Behavior Excited by Passive Cold-Heat Modulation in the Earth-Sun/Universe System: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309397. [PMID: 38644343 DOI: 10.1002/smll.202309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Indexed: 04/23/2024]
Abstract
The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.
Collapse
Affiliation(s)
- Zhengtong Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot, 010021, China
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiaoyang Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Song Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Lvfei Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Peng Lin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Tao Yang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Xingtao Xu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
37
|
Wang H, Wang S, Mu Y, Cheng Y. Janus droplet microreactors for preparing polyaniline/AgCl nanocomposites. Chem Commun (Camb) 2024; 60:8079-8082. [PMID: 38990216 DOI: 10.1039/d4cc01321b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We report a novel method to conduct heterogeneous reactions using aqueous-ionic liquid Janus microdroplets as a series of isolated bi-phasic microreactors where AgCl@polyaniline core-shell nanoparticles are successfully synthesized accompanied by polyaniline nano-needles, and enhanced visualization of reaction progression through the color changes in Janus droplets is achieved.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Shiteng Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Yao Mu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
38
|
Marqués MI, Edelstein S, Serena PA, de Larrinzar BCL, Garcia-Martín A. Magneto-optical Particles in Isotropic Spinning Fields Mimic Magnetic Monopoles. PHYSICAL REVIEW LETTERS 2024; 133:046901. [PMID: 39121417 DOI: 10.1103/physrevlett.133.046901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 08/11/2024]
Abstract
In contrast with the typical electric currents accelerated under the influence of a Coulombic force, there are only a few condensed matter examples of particles experiencing a force proportional to a constant, external magnetic field. In this Letter, we present a new alternative, based on an isotropic radiation spinning field and the magneto-optical effect, in which a particle is propelled by a magnetic field just like a magnetic monopole will do. This is a purely nonreciprocal effect as the reciprocal equivalent (a chiral dipole), despite presenting a dichroic response, does not experience any force when illuminated by the spinning field. The "magnetic charge" induced by impinging radiation on the magneto-optical dipole is found to depend linearly on the helicity of the field. In addition, this artificial monopole experiences a dichroic permanent optical torque and does not interact with an external electric field.
Collapse
Affiliation(s)
- Manuel I Marqués
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; and Instituto Nicolás Cabrera (INC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Zhao Z, Liu M, Duan L, Lin R, Wang L, Zhang P, Li J, Ma B, Yang Y, Bu F, Wang R, Zhou W, Chao D, Zhao Y, Yin S, Tang L, Zhang W, Li X, Zhao D. Ultrafine Asymmetric Soft/Stiff Nanohybrids with Tunable Patchiness via a Dynamic Surface-Mediated Assembly. J Am Chem Soc 2024. [PMID: 39025826 DOI: 10.1021/jacs.4c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Asymmetric soft-stiff patch nanohybrids with small size, spatially separated organics and inorganics, controllable configuration, and appealing functionality are important in applications, while the synthesis remains a great challenge. Herein, based on polymeric single micelles (the smallest assembly subunit of mesoporous materials), we report a dynamic surface-mediated anisotropic assembly approach to fabricate a new type of small asymmetric organic/inorganic patch nanohybrid for the first time. The size of this asymmetric organic/inorganic nanohybrid is ∼20 nm, which contains dual distinct subunits of a soft organic PS-PVP-PEO single micelle nanosphere (12 nm in size and 632 MPa in Young' modulus) and stiff inorganic SiO2 nanobulge (∼8 nm, 2275 MPa). Moreover, the number of SiO2 nanobulges anchored on each micelle can be quantitatively controlled (from 1 to 6) by dynamically tuning the density (fluffy or dense state) of the surface cap organic groups. This small asymmetric patch nanohybrid also exhibits a dramatically enhanced uptake level of which the total amount of intracellular endocytosis is about three times higher than that of the conventional nanohybrids.
Collapse
Affiliation(s)
- Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Mengli Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Runfeng Lin
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lipeng Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Jun Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yang Yang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ruicong Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wanhai Zhou
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Sixing Yin
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Weian Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
40
|
MacKenzie HK, Zhang Y, Zheng W, Shaikh H, MacFarlane LR, Musgrave RA, Manners I. Functional Noncentrosymmetric Nanoparticle-Nanofiber Hybrids via Selective Fragmentation. J Am Chem Soc 2024; 146:18504-18512. [PMID: 38946087 DOI: 10.1021/jacs.4c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Noncentrosymmetric nanostructures are an attractive synthetic target as they can exhibit complex interparticle interactions useful for numerous applications. However, generating uniform, colloidally stable, noncentrosymmetric nanoparticles with low aspect ratios is a significant challenge using solution self-assembly approaches. Herein, we outline the synthesis of noncentrosymmetric multiblock co-nanofibers by subsequent living crystallization-driven self-assembly of block co-polymers, spatially confined attachment of nanoparticles, and localized nanofiber fragmentation. Using this strategy, we have fabricated uniform diblock and triblock noncentrosymmetric π-conjugated nanofiber-nanoparticle hybrid structures. Additionally, in contrast to Brownian motion typical of centrosymmetric nanoparticles, we demonstrated that these noncentrosymmetric nanofibers undergo ballistic motion in the presence of H2O2 and thus could be employed as nanomotors in various applications, including drug delivery and environmental remediation.
Collapse
Affiliation(s)
- Harvey K MacKenzie
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Huda Shaikh
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Liam R MacFarlane
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Rebecca A Musgrave
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
41
|
King EM, Du CX, Zhu QZ, Schoenholz SS, Brenner MP. Programming patchy particles for materials assembly design. Proc Natl Acad Sci U S A 2024; 121:e2311891121. [PMID: 38913891 PMCID: PMC11228463 DOI: 10.1073/pnas.2311891121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 06/26/2024] Open
Abstract
Direct design of complex functional materials would revolutionize technologies ranging from printable organs to novel clean energy devices. However, even incremental steps toward designing functional materials have proven challenging. If the material is constructed from highly complex components, the design space of materials properties rapidly becomes too computationally expensive to search. On the other hand, very simple components such as uniform spherical particles are not powerful enough to capture rich functional behavior. Here, we introduce a differentiable materials design model with components that are simple enough to design yet powerful enough to capture complex materials properties: rigid bodies composed of spherical particles with directional interactions (patchy particles). We showcase the method with self-assembly designs ranging from open lattices to self-limiting clusters, all of which are notoriously challenging design goals to achieve using purely isotropic particles. By directly optimizing over the location and interaction of the patches on patchy particles using gradient descent, we dramatically reduce the computation time for finding the optimal building blocks.
Collapse
Affiliation(s)
- Ella M King
- Department of Physics, Harvard University, Cambridge, MA 02139
| | - Chrisy Xiyu Du
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139
- Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Qian-Ze Zhu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139
| | | | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139
- Google Research, Mountainview, CA 94043
| |
Collapse
|
42
|
Trindade AC. Controlled Surface Textures of Elastomeric Polyurethane Janus Particles: A Comprehensive Review. Polymers (Basel) 2024; 16:1835. [PMID: 39000690 PMCID: PMC11244459 DOI: 10.3390/polym16131835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Colloidal particle research has witnessed significant advancements in the past century, resulting in a plethora of studies, novel applications, and beneficial products. This review article presents a cost-effective and low-tech method for producing Janus elastomeric particles of varied geometries, including planar films, spherical particles, and cylindrical fibers, utilizing a single elastomeric material and easily accessible chemicals. Different surface textures are attained through strain application or solvent-induced swelling, featuring well-defined wavelengths ranging from sub-microns to millimeters and offering easy adjustability. Such versatility renders these particles potentially invaluable for medical applications, especially in bacterial adhesion studies. The coexistence of "young" regions (smooth, with a small surface area) and "old" regions (wrinkled, with a large surface area) within the same material opens up avenues for biomimetic materials endowed with additional functionalities; for example, a Janus micromanipulator where micro- or nano-sized objects are grasped and transported by an array of wrinkled particles, facilitating precise release at designated locations through wrinkle pattern adjustments. This article underscores the versatility and potential applications of Janus elastomeric particles while highlighting the intriguing prospects of biomimetic materials with controlled surface textures.
Collapse
Affiliation(s)
- Ana Catarina Trindade
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| |
Collapse
|
43
|
Vitecek B, Likos CN, Gârlea IC. Adsorption characteristics of Janus tadpole polymers. J Chem Phys 2024; 160:224902. [PMID: 38856071 DOI: 10.1063/5.0213433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The shape of Janus particles is directly connected to their adsorption behavior. Janus tadpole polymers offer a unique topological architecture that includes competition between entropic, enthalpic, and topological terms in the adsorption free energy; accordingly, non-trivial adsorption behavior patterns are expected. We study the surface adsorption of Janus tadpole polymers by means of Monte Carlo simulations, finding that, depending on which part of the tadpole polymers is preferentially adsorbing on the surface, very different types of behavior for both the adsorbed polymeric phase and of the brush arise. The adsorbed phase and the brush mutually influence each other, leading to a variety of phenomena such as nematic ordering of the adsorbed stiff tadpole tails and intriguing changes in the territoriality of adsorbed ring polymers on the surface. We analyze in detail our findings, revealing the mechanisms behind the organization and ordering, and opening up new possibilities to tune and control the structure of such systems.
Collapse
Affiliation(s)
- Benedikt Vitecek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Ioana C Gârlea
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
44
|
Melnyk IV, Tomina V, Yankovych H, Kolev H, Dutkova E, Breijaert TC, Kessler VG, Seisenbaeva GA. Insights into emulsion synthesis of self-assembled suprastructures formed by Janus silica particles with -NH 2/-SH surface groups. NANOSCALE ADVANCES 2024; 6:3146-3157. [PMID: 38868832 PMCID: PMC11166104 DOI: 10.1039/d3na00909b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
Spherical particles with tunable anisotropic structures enabled by multiple surface functionalities have garnered interest for their potential applications in adsorption technologies. The presence of diverse functional groups in the surface layer, exhibiting varying acidity and hydrophilicity, can lead to unique characteristics in terms of surface structure and behaviour. In this study, the particles were synthesised using a two-step approach involving surface functionalisation of previously synthesised SiO2 Stöber particles. This was achieved by employing 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) in a toluene-in-water emulsion. The resulting particles were found to be nonporous, with a specific surface area of 8 m2 g-1. Their sizes were determined to be up to 350 nm through photon cross-correlation spectroscopy. Moreover, the particles exhibited a high net content of functional groups (both amino and mercapto) of 2 mmol g-1. The organisation of the particles during synthesis was observed through SEM images, providing insights into their structural characteristics. Additionally, the study of Eu(iii), Au(iii), and Ag(i) ions and fluorescein adsorption demonstrated varying interactions on the surface, highlighting the potential applications and versatility of these functionalised particles.
Collapse
Affiliation(s)
- Inna V Melnyk
- Chuiko Institute of Surface Chemistry of NAS of Ukraine 17, Generala Naumova Str. Kyiv 03164 Ukraine
- Institute of Geotechnics, Slovak Academy of Sciences 45, Watsonova Str. Kosice 04001 Slovak Republic
| | - Veronika Tomina
- Chuiko Institute of Surface Chemistry of NAS of Ukraine 17, Generala Naumova Str. Kyiv 03164 Ukraine
| | - Halyna Yankovych
- Institute of Geotechnics, Slovak Academy of Sciences 45, Watsonova Str. Kosice 04001 Slovak Republic
| | - Hristo Kolev
- Institute of Catalysis, Bulgarian Academy of Sciences 11, Acad. G. Bonchev Str. Sofia 1113 Bulgaria
| | - Erika Dutkova
- Institute of Geotechnics, Slovak Academy of Sciences 45, Watsonova Str. Kosice 04001 Slovak Republic
| | - Troy C Breijaert
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015, 5, Almas allé Uppsala 75007 Sweden
| | - Vadim G Kessler
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015, 5, Almas allé Uppsala 75007 Sweden
| | - Gulaim A Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015, 5, Almas allé Uppsala 75007 Sweden
| |
Collapse
|
45
|
Wang J, Wang X, Liu W, Hu H. Percolation thresholds of disks with random nonoverlapping patches on four regular two-dimensional lattices. Phys Rev E 2024; 109:064104. [PMID: 39020913 DOI: 10.1103/physreve.109.064104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
In percolation of patchy disks on lattices, each site is occupied by a disk, and neighboring disks are regarded as connected when their patches contact. Clusters of connected disks become larger as the patchy coverage of each disk χ increases. At the percolation threshold χ_{c}, an incipient cluster begins to span the whole lattice. For systems of disks with n symmetric patches on Archimedean lattices, a recent work [Wang et al., Phys. Rev. E 105, 034118 (2022)2470-004510.1103/PhysRevE.105.034118] found symmetric properties of χ_{c}(n), which are due to the coupling of the patches' symmetry and the lattice geometry. How does χ_{c} behave with increasing n if the patches are randomly distributed on the disks? We consider two typical random distributions of the patches, i.e., the equilibrium distribution and a distribution from random sequential adsorption. Combining Monte Carlo simulations and the critical polynomial method, we numerically determine χ_{c} for 106 models of different n on the square, honeycomb, triangular, and kagome lattices. The rules governing χ_{c}(n) are investigated in detail. They are quite different from those for disks with symmetric patches and could be useful for understanding similar systems.
Collapse
|
46
|
Yin Q, Liu J, Li Y, Marchesoni F. Diffusion of noiseless active particles in a planar convection array. Phys Rev E 2024; 109:064211. [PMID: 39020987 DOI: 10.1103/physreve.109.064211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
We investigated, both analytically and numerically, the dynamics of a noiseless overdamped active particle in a square lattice of planar counter-rotating convection rolls. Below a first threshold of the self-propulsion speed, a fraction of the simulated particle's trajectories spatially diffuse around the convection rolls, whereas the remaining trajectories remain trapped inside the injection roll. We detected two chaotic diffusion regimes: (i) below a second, higher threshold of the self-propulsion speed, the particle performs a random motion characterized by asymptotic normal diffusion. Long superdiffusive transients were observed for vanishing small self-propulsion speeds. (ii) above that threshold, the particle follows chaotic running trajectories with speed and orientation close to those of the self-propulsion vector at injection and its dynamics is superdiffusive. Chaotic diffusion disappears in the ballistic limit of extremely large self-propulsion speeds.
Collapse
Affiliation(s)
- Qingqing Yin
- MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianli Liu
- MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunyun Li
- MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fabio Marchesoni
- MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
| |
Collapse
|
47
|
Lin G, Tao J, Sun Y, Cui Y, Manners I, Qiu H. Breaking of Lateral Symmetry in Two-Dimensional Crystallization-Driven Self-Assembly on a Surface. J Am Chem Soc 2024; 146:14734-14744. [PMID: 38748980 DOI: 10.1021/jacs.4c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Symmetry breaking is prevalent in nature and provides distinctive access to hierarchical structures for artificial materials. However, it is rarely explored in two-dimensional (2D) entities, especially for lateral asymmetry. Herein, we describe a unique symmetry breaking process in surface-initiated 2D living crystallization-driven self-assembly. The 2D epitaxial growth occurs only at one lateral side of the immobilized cylindrical micelle seeds, accessing unilateral platelets with the yield increasing with the seed length, the growth temperature, and poly(2-vinylpyridine) corona length (maximum = 92%). Generally, the tilted immobilization of seeds blocks one lateral side and triggers the lateral symmetry breaking, where the intensity and spatial arrangement of seed-surface interactions dictate the regulation. Segmented unilateral platelets with segmented corona regions are further fabricated with the addition of different blended unimers. Remarkably, discrete slope-like and dense blade-like platelet arrays grow off the surface when seeds are compactly aligned either with spherical micelles or themselves. This strategy provides nanoscale insights into the symmetry breaking in long-range self-assembly and would be promising for the design of innovative colloids and smart surfaces.
Collapse
Affiliation(s)
- Geyu Lin
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiawei Tao
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Sun
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P5C2, Canada
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
48
|
Cao D, Yan Z, Cui D, Khan MY, Duan S, Xie G, He Z, Xing DY, Wang W. A Conceptual Framework to Understand the Self-Assembly of Chemically Active Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10884-10894. [PMID: 38756056 DOI: 10.1021/acs.langmuir.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Colloids that generate chemicals, or "chemically active colloids", can interact with their neighbors and generate patterns via forces arising from such chemical gradients. Examples of such assemblies of chemically active colloids are abundant in the literature, but a unified theoretical framework is needed to rationalize the scattered results. Combining experiments, theory, Brownian dynamics, and finite element simulations, we present here a conceptual framework for understanding how immotile, yet chemically active, colloids assemble. This framework is based on the principle of ionic diffusiophoresis and diffusioosmosis and predicts that a chemically active colloid interacts with its neighbors through short- and long-range interactions that can be either repulsive or attractive, depending on the relative diffusivity of the released cations and anions, and the relative zeta potential of a colloidal particle and the planar surface on which it resides. As a result, 4 types of pairwise interactions arise, leading to 4 different types of colloidal assemblies with distinct patterns. Using short-range attraction and long-range attraction (SALR) systems as an example, we show quantitative agreement between the framework and experiments. The framework is then applied to rationalize a wide range of patterns assembled from chemically active colloids in the literature exhibiting other types of pairwise interactions. In addition, the framework can predict what the assembly looks like with minimal experimental information and help infer ionic diffusivity and zeta potential values in systems where these values are inaccessible. Our results represent a solid step toward building a complete theory for understanding and controlling chemically active colloids, from the molecular level to their mesoscopic superstructures and ultimately to the macroscopic properties of the assembled materials.
Collapse
Affiliation(s)
- Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Ding Yu Xing
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
49
|
Adersh F, Muhsin M, Sahoo M. Inertial active harmonic particle with memory induced spreading by viscoelastic suspension. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:33. [PMID: 38753070 DOI: 10.1140/epje/s10189-024-00424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
We investigate the self-propulsion of an inertial active particle confined in a two-dimensional harmonic trap. The particle is suspended in a non-Newtonian or viscoelastic suspension with a friction kernel that decays exponentially with a time constant characterizing the memory timescale or transient elasticity of the medium. By solving the associated non-Markovian dynamics, we identify two regimes in parameter space distinguishing the oscillatory and non-oscillatory behavior of the particle motion. By simulating the particle trajectories and exactly calculating the steady-state probability distribution functions and mean square displacement; interestingly, we observe that with an increase in the memory time scale, the effective temperature of the environment increases. As a consequence, the particle becomes energetic and spread away from the center, covering larger space inside the confinement. On the other hand, with an increase in the duration of the activity, the particle becomes trapped by the harmonic confinement.
Collapse
Affiliation(s)
- F Adersh
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India
| | - M Muhsin
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India
| | - M Sahoo
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India.
| |
Collapse
|
50
|
Yang J, Shen P, de Groot A, Mocking-Bode HCM, Nikiforidis CV, Sagis LMC. Oil-water interface and emulsion stabilising properties of rapeseed proteins napin and cruciferin studied by nonlinear surface rheology. J Colloid Interface Sci 2024; 662:192-207. [PMID: 38341942 DOI: 10.1016/j.jcis.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
HYPOTHESIS Two major protein families are present in rapeseed, namely cruciferins and napins. The structural differences between the two protein families indicate that they might behave differently when their mixture stabilises oil-water interfaces. Therefore, this work focuses on elucidating the role of both proteins in interface and emulsion stabilisation. EXPERIMENTS Protein molecular properties were evaluated, using SEC, DSC, CD, and hydrophobicity analysis. The oil-water interface mechanical properties were studied using LAOS and LAOD. General stress decomposition (GSD) was used as a novel method to characterise the nonlinear response. Additionally, to evaluate the emulsifying properties of the rapeseed proteins, emulsions were prepared using pure napins or cruciferin and also their mixtures at 1:3, 1:1 and 3:1 (w:w) ratios. FINDINGS Cruciferins formed stiff viscoelastic solid-like interfacial layers (Gs' = 0.046 mN/m; Ed' = 30.1 mN/m), while napin formed weaker and more stretchable layers at the oil-water interface (Gs' = 0.010 mN/m; Ed' = 26.4 mN/m). As a result, cruciferin-formed oil droplets with much higher stability against coalescence (coalescence index, CI up to 10%) than napin-stabilised ones (CI up to 146%) during two months of storage. Both proteins have a different role in emulsions produced with napin-cruciferin mixtures, where cruciferin provides high coalescence stability, while napin induces flocculation. Our work showed the role of each rapeseed protein in liquid-liquid multiphase systems.
Collapse
Affiliation(s)
- Jack Yang
- TiFN, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands; Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Penghui Shen
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Anteun de Groot
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Helene C M Mocking-Bode
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Bornse Weilanden 9, 6700AA Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands.
| |
Collapse
|