1
|
Zhang X, Li L, Xie Z, Ma J, Li YF, Cai M, Ren NQ, Kallenborn R, Zhang ZF, Zhang X, C.G. Muir D. Exploring global oceanic persistence and ecological effects of legacy persistent organic pollutants across five decades. SCIENCE ADVANCES 2024; 10:eado5534. [PMID: 39321284 PMCID: PMC11423884 DOI: 10.1126/sciadv.ado5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Global monitoring of persistent organic pollutants (POPs) has intensified following regulatory efforts aimed at reducing their release. In this context, we compiled over 10,000 POP measurements, reported from 1980 to 2023, to assess the effectiveness of these legislative measures in the global marine environments. While a general decreasing trend in legacy POP concentrations is evident across various maritime regions, highlighting the success of source control measures, the Arctic Ocean and its marginal seas have experienced a rise in POP levels. This increase suggests the northward migration of pollutants via ocean currents from mid-latitude regions to polar areas. Despite global efforts to reduce emissions, the continued transport and accumulation of pollutants to the Arctic regions may have substantial ecological impacts. Addressing these environmental challenges demands a thorough understanding of POP dynamics, including response times, multiphase transport, and biogeochemical cycling. Continued research into these processes is vital to accurately map their distribution and temporal variations within marine systems.
Collapse
Affiliation(s)
- Xue Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Li Li
- School of Public Health, University of Nevada, Reno NV 89557, USA
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| | - Minghong Cai
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai 200136, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nan-Qi Ren
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
- University of the Arctic, Rovaniemi, Finland
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
- Department of Geography, Planning & Environment, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Derek C.G. Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S1A1, Canada
| |
Collapse
|
2
|
Liu X, Kümmel S, Wu L, Richnow HH. Tracking the transformation of persistent organic pollutants in food webs using multi element isotope and enantiomer fractionation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134046. [PMID: 38513442 DOI: 10.1016/j.jhazmat.2024.134046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/14/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
In order to track the transformation of persistent organic pollutants (POPs) in food webs, field experiments were conducted at two sites using stable isotope and enantiomer fractionation concepts. The enantiomers of α-hexachlorocyclohexane (α-HCH) were selected as representative compounds for POPs. Isotope and enantiomer fractionation allowed the characterization of α-HCH enantiomer biotransformation processes along trophic levels of the food web - from soil and plants to animal livers, fat tissues and milk. The enrichment of heavy isotopes in soils, plants and sediments as well as the changes of enantiomer fractionation indicate that the biotransformation of α-HCH occurred in these compartments. Moreover, the increase of carbon and chlorine isotopic compositions as well as the changes of enantiomer fractionation of liver, fat tissues and milk demonstrated that the overall HCH exposure was much higher than estimates based on concentration levels, while the isotope and enantiomer fractionation revealed the enantiomer specific enantiomer uptake across the blood-brain barriers. Dual element isotope analysis suggested that complex transformation processes have occurred along the potential food web from the HCH sources over different environmental compartments to animal livers, fat tissues and milk. The results imply that the analyses of stable isotope compositions and concentrations has potential to reconstruct the exposure of higher organisms to POPs.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Ecometrix Incorporated, 6800 Campobello Road, Mississauga, ON L5N 2L8, Canada; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany.
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany.
| |
Collapse
|
3
|
Xu J, Wang Y, Zhang Q, Sun H, Zhang W. Uptake and Enantiomeric Selectivity of β-Blockers in Lettuce ( Lactuca sativa L.) and Tomato ( Lycopersicon esculentum M.) in Soil-Pot Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8816-8824. [PMID: 37276344 DOI: 10.1021/acs.jafc.3c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The uptake and translocation of β-blockers in lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum M.) were investigated by carrying out a 70-day soil-pot cultivation. The root uptake parameters of β-blockers in lettuce decreased in the order of atenolol (ATE) > sotalol (SOT) > propranolol (PRO) with root bioconcentration factors (BCFsroot/soil) of 0.158, 0.136, and 0.096, respectively, which were positively correlated with their water solubility. The BCFroot/soil of β-blockers in tomato was higher than those in lettuce. ATE and PRO were prone to migrate to the aerial parts of tomato with translocation factors of 3.31 and 4.11, respectively. In tomato fruits, the enantiomeric profile of PRO and ATE shifted to that dominated by the more toxic enantiomer, i.e., (S)-PRO and (R)-ATE. The enantiomeric selectivity of β-blockers in the edible parts of lettuce and tomato indicated the potential ecotoxicity of these pharmaceuticals for plants and the human exposure risk via vegetable intake.
Collapse
Affiliation(s)
- Jiayao Xu
- MOE Key Laboratory of Regional Environment and Eco-Restoration, College of Environment, Shenyang University, Shenyang 110044, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weiwei Zhang
- MOE Key Laboratory of Regional Environment and Eco-Restoration, College of Environment, Shenyang University, Shenyang 110044, China
| |
Collapse
|
4
|
Borgå K, McKinney MA, Routti H, Fernie KJ, Giebichenstein J, Hallanger I, Muir DCG. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1544-1576. [PMID: 35179539 DOI: 10.1039/d1em00469g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review summarizes current understanding of how climate change-driven physical and ecological processes influence the levels of persistent organic pollutants (POPs) and contaminants of emerging Arctic concern (CEACs) in Arctic biota and food webs. The review also highlights how climate change may interact with other stressors to impact contaminant toxicity, and the utility of modeling and newer research tools in closing knowledge gaps on climate change-contaminant interactions. Permafrost thaw is influencing the concentrations of POPs in freshwater ecosystems. Physical climate parameters, including climate oscillation indices, precipitation, water salinity, sea ice age, and sea ice quality show statistical associations with POPs concentrations in multiple Arctic biota. Northward range-shifting species can act as biovectors for POPs and CEACs into Arctic marine food webs. Shifts in trophic position can alter POPs concentrations in populations of Arctic species. Reductions in body condition are associated with increases in levels of POPs in some biota. Although collectively understudied, multiple stressors, including contaminants and climate change, may act to cumulatively impact some populations of Arctic biota. Models are useful for predicting the net result of various contrasting climate-driven processes on POP and CEAC exposures; however, for some parameters, especially food web changes, insufficient data exists with which to populate such models. In addition to the impact of global regulations on POP levels in Arctic biota, this review demonstrates that there are various direct and indirect mechanisms by which climate change can influence contaminant exposure, accumulation, and effects; therefore, it is important to attribute POP variations to the actual contributing factors to inform future regulations and policies. To do so, a broad range of habitats, species, and processes must be considered for a thorough understanding and interpretation of the consequences to the distribution, accumulation, and effects of environmental contaminants. Given the complex interactions between climate change, contaminants, and ecosystems, it is important to plan for long-term, integrated pan-Arctic monitoring of key biota and ecosystems, and to collect ancillary data, including information on climate-related parameters, local meteorology, ecology, and physiology, and when possible, behavior, when carrying out research on POPs and CEACs in biota and food webs of the Arctic.
Collapse
Affiliation(s)
- Katrine Borgå
- Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | | | | | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
5
|
McGovern M, Warner NA, Borgå K, Evenset A, Carlsson P, Skogsberg E, Søreide JE, Ruus A, Christensen G, Poste AE. Is Glacial Meltwater a Secondary Source of Legacy Contaminants to Arctic Coastal Food Webs? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6337-6348. [PMID: 35472293 PMCID: PMC9118541 DOI: 10.1021/acs.est.1c07062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Climate change-driven increases in air and sea temperatures are rapidly thawing the Arctic cryosphere with potential for remobilization and accumulation of legacy persistent organic pollutants (POPs) in adjacent coastal food webs. Here, we present concentrations of selected POPs in zooplankton (spatially and seasonally), as well as zoobenthos and sculpin (spatially) from Isfjorden, Svalbard. Herbivorous zooplankton contaminant concentrations were highest in May [e.g., ∑polychlorinated biphenyls (8PCB); 4.43, 95% CI: 2.72-6.3 ng/g lipid weight], coinciding with the final stages of the spring phytoplankton bloom, and lowest in August (∑8PCB; 1.6, 95% CI: 1.29-1.92 ng/g lipid weight) when zooplankton lipid content was highest, and the fjord was heavily impacted by sediment-laden terrestrial inputs. Slightly increasing concentrations of α-hexachlorocyclohexane (α-HCH) in zooplankton from June (1.18, 95% CI: 1.06-1.29 ng/g lipid weight) to August (1.57, 95% CI: 1.44-1.71 ng/g lipid weight), alongside a higher percentage of α-HCH enantiomeric fractions closer to racemic ranges, indicate that glacial meltwater is a secondary source of α-HCH to fjord zooplankton in late summer. Except for α-HCH, terrestrial inputs were generally associated with reduced POP concentrations in zooplankton, suggesting that increased glacial melt is not likely to significantly increase exposure of legacy POPs in coastal fauna.
Collapse
Affiliation(s)
- Maeve McGovern
- Norwegian
Institute for Water Research, Tromsø 9007, Norway
- Department
of Arctic Marine Biology, UiT, The Arctic
University of Norway, Tromsø 9019, Norway
- University
Centre on Svalbard, Longyearbyen 9170, Norway
| | - Nicholas A. Warner
- The
Fram Centre, NILU-Norwegian Institute for
Air Research, Tromsø 9007, Norway
- Department
of Chemistry, UiT, The Arctic University
of Norway, Tromsø 9019, Norway
- Thermo Fischer
Scientific, Bremen 28199, Germany
| | - Katrine Borgå
- Department
of Biosciences, University of Oslo, Oslo 0316, Norway
- Centre
for Biogeochemistry in the Anthropocene (CBA), University of Oslo, Oslo 0316, Norway
| | - Anita Evenset
- Department
of Arctic Marine Biology, UiT, The Arctic
University of Norway, Tromsø 9019, Norway
- Akvaplan-niva,
Fram Centre, Tromsø 9007, Norway
| | | | - Emelie Skogsberg
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås 1430, Norway
- Norwegian Institute for Water Research, Oslo 0579, Norway
| | | | - Anders Ruus
- Department
of Biosciences, University of Oslo, Oslo 0316, Norway
- Norwegian Institute for Water Research, Oslo 0579, Norway
| | | | - Amanda E. Poste
- Norwegian
Institute for Water Research, Tromsø 9007, Norway
- Department
of Arctic Marine Biology, UiT, The Arctic
University of Norway, Tromsø 9019, Norway
| |
Collapse
|
6
|
Liu X, Wu L, Kümmel S, Richnow HH. Characterizing the biotransformation of hexachlorocyclohexanes in wheat using compound-specific stable isotope analysis and enantiomer fraction analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124301. [PMID: 33144013 DOI: 10.1016/j.jhazmat.2020.124301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Hexachlorocyclohexane isomers (HCHs) are persistent organic pollutants being responsible for environmental contamination worldwide. In order to characterize transformation of HCHs in different plant compartments during uptake, a hydroponic experimental setup was designed using wheat as the test plant. The extent of transformation was determined by using compound-specific isotope analysis (CSIA) and enantiomer fraction (EF) analysis. In nutrient solutions, no change of carbon (δ13C) and chlorine isotope ratios (δ37Cl) of α-HCH and β-HCH was detected throughout the experiment indicating no transformation there. In wheat leaves, stems and roots, however, transformation of α-HCH due to a C‒Cl bond cleavage was indicated by increasing δ13C and δ37Cl compared to the nutrient solution. In addition, 1,3,4,5,6-pentachlorocyclohexene (PCCH) was identified as the major metabolite of α-HCH transformation. For β-HCH, in contrast, no transformation was detected. The evaluation of enantiomer fraction analysis revealed no change of the EF(-) in the nutrient solution or on root surface but a decrease in the wheat compartments, providing an evidence for the preferential biological transformation of (-)α-HCH in wheat. The current study provides the first experimental evidence for biotransformation of α-HCH in wheat using CSIA and EF and provides a concept to evaluate processes during phytoremediation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Department of Civil & Mineral Engineering, University of Toronto, 35 St. George St., Toronto, ON M5S 1A4, Canada
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
7
|
Yin S, Zhang J, Guo F, Zhao L, Poma G, Covaci A, Liu W. Transplacental transfer of organochlorine pesticides: Concentration ratio and chiral properties. ENVIRONMENT INTERNATIONAL 2019; 130:104939. [PMID: 31252166 DOI: 10.1016/j.envint.2019.104939] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Currently, there is limited information about the mechanism of the human transplacental transfer for organochlorine pesticides (OCPs). This study aimed to evaluate the transplacental transfer of OCPs to better understand the influencing factors of exposure and transplacental efficiency. The study involved quantitative determination of OCPs and the enantiomer fraction (EF) of chiral OCPs in pregnant women from Wuhan, China. The results indicate that the exposure levels of OCPs varied in the order: maternal serum > cord serum > placenta. Chiral contaminants, such as α-HCH, o,p'-DDD and o,p'-DDT, were non-racemic in the three biological matrices, wherein EFα-HCH < 0.5, EFo,p'-DDD < 0.5, EFo,p'-DDT > 0.5. For HCHs, the concentration ratio between cord serum and maternal serum (Rcm) <1, while for DDXs, the Rcm ≈ 1, indicating that the transport efficiency of different pollutants is related to the physicochemical properties. These results showed that placenta seems to be a more efficient barrier for β-HCH than for p,p'-DDE. The concentration ratios across placenta significantly lower than 1 and the enantiomeric selective transfer imply that some OCPs may have more complicated maternal-fetus transfer mechanisms, involving both simple diffusion and active transport. To the best of our knowledge, this is the first study to investigate the transfer of OCPs and their enantiomer fractions across placenta. These findings could expand the database of chemical exposure in biological matrices and improve the understanding of the mechanisms of transplacental transfer of OCPs.
Collapse
Affiliation(s)
- Shanshan Yin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianyun Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangjie Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Zhao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Carlsson P, Breivik K, Brorström-Lundén E, Cousins I, Christensen J, Grimalt JO, Halsall C, Kallenborn R, Abass K, Lammel G, Munthe J, MacLeod M, Odland JØ, Pawlak J, Rautio A, Reiersen LO, Schlabach M, Stemmler I, Wilson S, Wöhrnschimmel H. Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes: a comprehensive review combined with ArcRisk project results. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22499-22528. [PMID: 29956262 PMCID: PMC6096556 DOI: 10.1007/s11356-018-2625-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/20/2018] [Indexed: 05/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from ArcRisk-a major European Union-funded project aimed at examining the effects of climate change on the transport of contaminants to and their behaviour of in the Arctic-to provide a case study on the behaviour and impact of PCBs over time in the Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB composition and behaviour showed some increases in environmental concentrations in a warmer Arctic, but the general decline in PCB levels is still the most prominent feature. 'Within-Arctic' processing of PCBs will be affected by climate change-related processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further.
Collapse
Affiliation(s)
| | - Knut Breivik
- NILU-Norwegian Institute for Air Research, 2027, Kjeller, Norway
| | | | - Ian Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 11418, Stockholm, Sweden
| | - Jesper Christensen
- Department of Bioscience, Arctic Research Centre, Aarhus University, 4000, Roskilde, Denmark
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council for Scientific Research (CSIC), 0834, Barcelona, Spain
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Christian Magnus Falsen Veg 1, 1432, Ås, Norway
- Department of Arctic Technology (AT), University Centre in Svalbard (UNIS), 9171, Longyearbyen, Svalbard, Norway
| | - Khaled Abass
- Department of Pesticides, Menoufia University, P.O. Box 32511, Shebeen El-Kom, Egypt
- Arctic Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Gerhard Lammel
- Max Planck Institute for Chemistry, 55128, Mainz, Germany
- Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500, Brno, Czech Republic
| | - John Munthe
- IVL Swedish Environment Research Institute, 411 33, Göteborg, Sweden
| | - Matthew MacLeod
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 11418, Stockholm, Sweden
| | - Jon Øyvind Odland
- Department of Community Medicine, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Janet Pawlak
- Arctic Monitoring and Assessment Programme (AMAP), AMAP Secretariat, Gaustadalléen 21, 0349, Oslo, Norway
| | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Lars-Otto Reiersen
- Arctic Monitoring and Assessment Programme (AMAP), AMAP Secretariat, Gaustadalléen 21, 0349, Oslo, Norway
| | - Martin Schlabach
- NILU-Norwegian Institute for Air Research, 2027, Kjeller, Norway
| | - Irene Stemmler
- Max Planck Institute for Chemistry, 55128, Mainz, Germany
- Max Planck Institute for Meteorology, 20146, Hamburg, Germany
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP), AMAP Secretariat, Gaustadalléen 21, 0349, Oslo, Norway
| | - Henry Wöhrnschimmel
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zürich, 8092, Zürich, Switzerland
- Swiss Federal Office for the Environment, Worblentalstrasse 68, 3063, Ittigen, Switzerland
| |
Collapse
|
9
|
Zhou S, Pan Y, Zhang L, Xue B, Zhang A, Jin M. Biomagnification and enantiomeric profiles of organochlorine pesticides in food web components from Zhoushan Fishing Ground, China. MARINE POLLUTION BULLETIN 2018; 131:602-610. [PMID: 29886987 DOI: 10.1016/j.marpolbul.2018.04.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Trophodynamics and chiral signatures of organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), and chlordanes in a food web from Zhoushan Fishing Ground, China, were studied. Residues of OCPs in all teleost fishes were within food safety levels. Strong positive correlations were found between trophic levels (TLs) and wet weight concentrations of target chemicals, with trophic magnification factors (TMFs) from 4.17 to 9.77. Lipid contents and TLs significantly correlated, which indirectly affect the bioaccumulation processes of OCPs. The consistently racemic EF values of α-HCH, as well as invariability of the relative proportions of HCH isomers in different marine species implied that HCHs in animals originate directly from the surrounding environment. However, in vivo biotransformation and/or elimination of o,p'-DDT cannot be precluded. TMFs of the individual enantiomers further suggest that the influence of achiral biotransformation is too minor to induce enantioselective biomagnification of chiral OCPs through the studied food web.
Collapse
Affiliation(s)
- Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yongqiang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lina Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Xue
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
| | - Anping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiqing Jin
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
10
|
Xie W, Yang F. CYP450 enzyme-specific enantioselective species-specific response for metalaxyl in in vitro hepatic cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:10-18. [PMID: 29145161 DOI: 10.1016/j.ecoenv.2017.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Although enantioselective accumulation of chiral pesticide has been reported in organisms, the mechanisms remain unclear. In this study, the effects of chiral pesticide metalaxyl on CYP1A1, CYP1A2, CYP2B1, CYP2B2, CYP2E1 and CYP3A were investigated in human hepatoma HepG2, rat hepatic H4IIE, chicken hepatic LMH and grass carp hepatic L8824 cells. Moreover, the residual concentrations and enantiomeric ratios (ERs) of metalaxyl were also detected in the medium. The results showed the responses of these CYP450s to metalaxyl were enzyme-dependent and species-dependent in the four cells. CYP1A1, CYP1A2, and CYP2B1 were induced in HepG2 cells, CYP2A1 and CYP2B1 were induced in H4IIE cells, CYP1A1 and CYP2B1 were induced in LMH cells, and CYP2B1 was induced in L8824 cells. The enantioselective residual of metalaxyl was detected in the medium and found to be species-specific. HepG2, H4IIE and LMH cells were inclined to attenuate S-metalaxyl and lead to decrease of ER of metalaxyl, while L8824 cells were inclined to remove R-metalaxyl and resulted in an inverse shift of ER. These findings suggest an enantioselective metabolism of metalaxyl in various species which is not only related with CYP450s and CYP450 enzyme-specific, but also species-specific.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Environmental Remediation and Ecological Health MOE, College of Environmental and Resource Sciences, Zhejiang University, No. 388, Yuhangtang Road, Hangzhou 310058, China; China Nuclear Power Engineering Co., Ltd, Beijing 100840, China
| | - Fangxing Yang
- Key Laboratory of Environmental Remediation and Ecological Health MOE, College of Environmental and Resource Sciences, Zhejiang University, No. 388, Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
11
|
Jin M, Fu J, Xue B, Zhou S, Zhang L, Li A. Distribution and enantiomeric profiles of organochlorine pesticides in surface sediments from the Bering Sea, Chukchi Sea and adjacent Arctic areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:109-117. [PMID: 28069371 DOI: 10.1016/j.envpol.2016.12.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
The spatial distribution, compositional profiles, and enantiomer fractions (EFs) of organochlorine pesticides (OCPs), including hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and chlordanes (CHLs), in the surface sediments in the Bering Sea, Chukchi Sea and adjacent areas were investigated. The total concentrations of DDTs, HCHs and CHLs varied from 0.64 to 3.17 ng/g dw, 0.19-0.65 ng/g dw, and 0.03-0.16 ng/g dw, respectively. No significant difference was observed between the Bering Sea and Chukchi Sea for most pollutants except for trans-CHL, ΣCHLs (sum of trans- and cis-chlordane) and p,p'-DDD. Concentration ratios (e.g., α-HCH/γ-HCH, o,p'-DDT/p,p'-DDT) indicated that the contamination in the studied areas may result from inputs from multiple sources (e.g., historical usage of technical HCHs as well as new input of dicofol). Chiral analysis showed great variation in the enantioselective degradation of OCPs, resulting in excess of (+)-enantiomer for α-HCH in thirty of the 32 detectable samples, preferential depletion of (-)-enantiomer for o,p'-DDT in nineteen of the 35 detectable samples, and nonracemic in most samples for trans- and cis-chlordane. The ecological risks of the individual OCPs as well as the mixture were assessed based on the calculation of toxic units (TUs), and the results showed the predominance of DDT and γ-HCH in the mixture toxicity of the sediment. Overall, the TUs of OCPs in sediments from both the Bering and Chukchi Seas are less than one, indicating low ecological risk potential.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, PR China
| | - Jie Fu
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Bin Xue
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, State Oceanic Administration, Hangzhou, PR China
| | - Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China.
| | - Lina Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - An Li
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China; School of Public Health, University of Illinois at Chicago, Chicago, United States
| |
Collapse
|
12
|
Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography. Molecules 2016; 21:molecules21111509. [PMID: 27834934 PMCID: PMC6273052 DOI: 10.3390/molecules21111509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (−) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.
Collapse
|
13
|
Zhao P, Deng M, Huang P, Yu J, Guo X, Zhao L. Solid-phase extraction combined with dispersive liquid-liquid microextraction and chiral liquid chromatography-tandem mass spectrometry for the simultaneous enantioselective determination of representative proton-pump inhibitors in water samples. Anal Bioanal Chem 2016; 408:6381-92. [DOI: 10.1007/s00216-016-9753-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
14
|
Zhou S, Tang Q, Jin M, Liu W, Niu L, Ye H. Residues and chiral signatures of organochlorine pesticides in mollusks from the coastal regions of the Yangtze River Delta: source and health risk implication. CHEMOSPHERE 2014; 114:40-50. [PMID: 25113182 DOI: 10.1016/j.chemosphere.2014.03.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/15/2014] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
The residues and enantiomeric fractions of organochlorine pesticides (OCPs) were measured in 11 mollusk species collected from the coastal areas along the Yangtze River Delta to evaluate the status, potential sources, and health risks of pollution in these areas. The concentrations of DDTs, HCHs, and chlordanes ranged from 6.22 to 398.19, 0.66-7.11, and 0.14-4.08 ng g(-1) based on wet weight, respectively; DDTs and HCHs have the highest values, globally. The DDTs increased and the HCHs decreased compared to historical data. Both the box-and-whisker plots and the one-way ANOVA tests indicated that the OCP levels varied little between sampling locations and organism species. The compositions of the DDTs and HCHs suggested a cocktail input pattern of fresh and weathered technical products. The comparative EF values for the α-HCH between the sediments and mollusks, as well as the lack of any discernible difference in the relative proportions of HCH isomers among different species from the same sampling site implied that the HCH residues in the mollusks came directly from the surrounding environment. However, the biotransformation of DDTs in mollusks cannot be precluded. The assessments performed based on several available guidelines suggested that although no significant human health risks were associated with the dietary intake of OCPs, the concentrations of DDTs exceeded the maximum residual limits of China and many developed nations. Moreover, an increased lifetime cancer risk from dietary exposure to either DDTs or HCHs remains a possibility. Because non-racemic OCP residues are common in the mollusk samples, our results suggest a need to further explore the levels and toxicity of the chiral contaminants in mollusks and other foodstuff to develop the human risk assessment framework based on chiral signatures.
Collapse
Affiliation(s)
- Shanshan Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Qiaozhi Tang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meiqing Jin
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Weiping Liu
- IJRC-PTS, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou 310058, PR China
| | - Lili Niu
- IJRC-PTS, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou 310058, PR China
| | - Hui Ye
- Hangzhou Environmental Monitoring Centre, Hangzhou 310007, PR China
| |
Collapse
|
15
|
Carlsson P, Warner NA, Hallanger IG, Herzke D, Kallenborn R. Spatial and temporal distribution of chiral pesticides in Calanus spp. from three Arctic fjords. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 192:154-161. [PMID: 24951967 DOI: 10.1016/j.envpol.2014.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Concentration and enantiomeric fractions (EFs) of chiral chlorinated pesticides (α-hexachlorocyclohexane (α-HCH), trans-, cis- and oxychlordane) were determined in Arctic zooplankton, mainly Calanus spp. collected in the period 2007-11 from Svalbard fjords and open pack-ice. The temporal and spatial enantiomer distribution varied considerably for all species and chiral pesticides investigated. An overall enantiomeric excess of (+)-oxychlordane (EF 0.53-0.86) were observed. Cis-chlordane was close to racemic (EF 0.46-0.55), while EF for trans-chlordane varied between 0.29 and 0.55, and between 0.38 and 0.59 for α-HCH. The biodegradation potential for trans-chlordane was higher compared to cis-chlordane. The comprehensive statistical evaluation of the data set revealed that the EF distribution of α-HCH was affected by ice cover to a higher extent compared to cis-chlordane. Potential impact from benthic processes on EFs in zooplankton is an interesting feature and should be further investigated. Enantiomeric selective analyses may be a suitable tool for investigations of climate change related influences on Arctic ecosystems.
Collapse
Affiliation(s)
- Pernilla Carlsson
- University Centre in Svalbard, P.O. Box 156, NO-9171 Longyearbyen, Norway; University of Tromsø, Hansine Hansens veg 14, NO-9007 Tromsø, Norway
| | - Nicholas A Warner
- Norwegian Institute for Air Research (NILU), FRAM - High North Research Centre on Climate and the Environment, Hjalmar Johansens gate 14, NO-9296 Tromsø, Norway
| | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), FRAM - High North Research Centre on Climate and the Environment, Hjalmar Johansens gate 14, NO-9296 Tromsø, Norway
| | - Roland Kallenborn
- University Centre in Svalbard, P.O. Box 156, NO-9171 Longyearbyen, Norway; Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, P.O. Box 5003, Christian M. Falsens veg 1, NO-1432 Ås, Norway.
| |
Collapse
|
16
|
Bidleman TF, Stern GA, Tomy GT, Hargrave BT, Jantunen LM, Macdonald RW. Scavenging amphipods: sentinels for penetration of mercury and persistent organic chemicals into food webs of the deep Arctic Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5553-5561. [PMID: 23627492 DOI: 10.1021/es304398j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Archived specimens of the scavenging amphipod Eurythenes gryllus, collected from 2075 to 4250 m below the surface on five expeditions to the western and central Arctic Ocean between 1983 and 1998, were analyzed for total mercury (∑Hg), methyl mercury (MeHg), polychlorinated biphenyls (PCBs) and other industrial or byproduct organochlorines (chlorobenzenes, pentachloroanisole, octachlorostyrene), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). Median ∑Hg concentrations ranged from 70 to 366 ng g(-1) wet weight (ww). MeHg concentrations (3.55 to 23.5 ng g(-1) ww) accounted for 1.7 to 20.1% (median 3.7%) of ∑Hg. ∑Hg and MeHg were positively and significantly correlated with ww (∑Hg r(2) = 0.18, p = 0.0004, n = 63; MeHg r(2) = 0.42, p = 0.0004, n = 25), but not significantly with δ(13)C nor δ(15)N. Median concentrations of total persistent organic pollutants (POPs) ranged from 9750 to 156,000 ng g(-1) lipid weight, with order of abundance: ∑TOX (chlorobornanes quantified as technical toxaphene) > ∑PCBs > ∑DDTs > ∑chlordanes > ∑mirex compounds > ∑BDEs ∼ ∑chlorobenzenes ∼ octachlorostyrene > α-hexachlorocyclohexane ∼ hexachlorobenzene ∼ pentachloroanisole. Enantioselective accumulation was found for the chiral OCPs o,p'-DDT, cis- and trans-chlordane, nonachlor MC6 and oxychlordane. Lipid-normalized POPs concentrations were elevated in amphipods with lipid percentages ≤10%, suggesting that utilization of lipids resulted in concentration of POPs in the remaining lipid pool. Multidimensional Scaling (MDS) analysis using log-transformed physiological variables and lipid-normalized organochlorine concentrations distinguished amphipods from the central vs western arctic stations. This distinction was also seen for PCB homologues, whereas profiles of other compound classes were more related to specific stations rather than central-west differences.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Pućko M, Walkusz W, Macdonald RW, Barber DG, Fuchs C, Stern GA. Importance of Arctic zooplankton seasonal migrations for α-hexachlorocyclohexane bioaccumulation dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4155-4163. [PMID: 23570325 DOI: 10.1021/es304472d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Like most zooplankton, Calanus hyperboreus undergoes seasonal migration spending late spring and summer grazing at the surface and the rest of the year in diapause at depth. As a result, in the Arctic Ocean this copepod resides for part of the year in the hexachlorocyclohexane (HCH) enriched surface water and for part of the year at depth where HCH undergoes significant microbial degradation resulting in far lower concentrations (~3 times for α-HCH). We collected C. hyperboreus from summer and winter from the Amundsen Gulf and measured their α-HCH concentrations, enantiomeric compositions, and bioaccumulation factors (BAFs) to investigate how this copepod responds to the change in exposure to α-HCH. C. hyperboreus collected in winter were also cultured for 5 weeks under surface water conditions without feeding to investigate bioconcentration dynamics following spring ascent. Concentration of α-HCH was 2-3 times higher in individuals from the summer than those from the winter. Log BAF from the summer (feeding period) does not exceed log BCF (bioconcentration factor) from the culturing experiment (no feeding) suggesting that α-HCH concentration in C. hyperboreus is maintained through equilibration rather than feeding. After the spring ascent from deep waters, C. hyperboreus approach equilibrium partitioning with the higher surface water concentrations of α-HCH within 3-4 weeks with about 60% of bioconcentration taking place in the first week. The C. hyperboreus α-HCH chiral signature also reflects ambient seawater and can therefore be used as a determinant of residence depth. Even though a single cycle of seasonal migration does not result in a significant redistribution of α-HCH in the water column, this process could have a significant cumulative effect over longer time scales with particular local importance where the zooplankton biomass is high and the ocean depth is great enough to provide substantial vertical concentration gradients.
Collapse
Affiliation(s)
- Monika Pućko
- Centre for Earth Observation Science, University of Manitoba, 460 Wallace Building, 125 Dysart Road, Winnipeg R3T 2N2, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Vorkamp K, Bester K, Rigét FF. Species-specific time trends and enantiomer fractions of hexabromocyclododecane (HBCD) in biota from East Greenland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10549-10555. [PMID: 22994606 DOI: 10.1021/es301564z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Time trends of hexabromocyclododecane (HBCD) isomers were studied for glaucous gull and ringed seal from East Greenland. The ringed seal results extended a previous time trend (1986-2008) to 2010. α-HBCD was the only isomer consistently above quantification limits. For glaucous gull liver, annual median values of α-HBCD (1994-2010) ranged from 22 to 120 ng/g lipid weight (lw) with no significant trend, while HBCD in ringed seal blubber from the same area showed a significant increase from 3.9 to 11 ng/g lw (1986-2010). Reasons for this difference are unknown, but might include different feeding habits and species-specific metabolisation processes. Concentrations of several organochlorine (OC) compounds were determined for glaucous gull and ringed seal samples collected from the same area in 2004. HBCD concentrations in glaucous gull liver appeared relatively low when compared to OC concentrations in the same tissue and to both HBCD and OCs in ringed seal blubber from the same area. Enantiomer fractions (EF) deviated significantly from racemic for all annual mean EFs in glaucous gull suggesting metabolisation processes toward an enrichment of (-)α-HBCD. For ringed seal, this enrichment was less pronounced and only significant for two of the ten years. For neither species, significant changes in EF were found over time.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | | | | |
Collapse
|
19
|
|
20
|
Zhang X, Wang S, Wang Y, Xia T, Chen J, Cai X. Differential enantioselectivity of quizalofop ethyl and its acidic metabolite: direct enantiomeric separation and assessment of multiple toxicological endpoints. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:876-882. [PMID: 21159424 DOI: 10.1016/j.jhazmat.2010.11.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/24/2010] [Accepted: 11/21/2010] [Indexed: 05/30/2023]
Abstract
Transformation products usually differ in environmental and toxicological properties compared to the parent contaminants, thus causing potential and unknown environmental risks. To elucidate differential chiral recognition of the aryloxypropanoate herbicide quizalofop ethyl (QE) and its primary product (quizalofop acid, QA), their enantiomeric separation and toxicological impacts to two freshwater algae were investigated. Addition of trace water (0.02-0.08%, v/v) to the mobile phase selectively affected retention of analyte and induced simultaneous enantio-separation for the two compounds with intrinsical water-specific resolution mechanisms, although they both possessed a chiral center in the 2-position of propionates. In algal suspensions, QE was rapidly degraded to produce the acid metabolite (QA), and the product further declined, whereas a reduction of QA as starting compound did not occur. Uptake and/or transformation of QE and QA were found a lack of enantioselectivity and isomer inversion, while cellular membrane permeability, membrane potential and algal growth showed enantioselectivity to different extents. These results suggested the presence of receptor chirality that was involved in the toxicological processes but invalid for uptake and transformation. Therefore, quizalofop acid, identified as environmentally relevant contaminant associated with application of the herbicide, participated in the toxicological processes of the parent compound, and exhibited distinct toxicological and chromatographic retention properties.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | | | | | | | | | | |
Collapse
|
21
|
Chopra AK, Sharma MK, Chamoli S. Bioaccumulation of organochlorine pesticides in aquatic system--an overview. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 173:905-916. [PMID: 20306340 DOI: 10.1007/s10661-010-1433-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 02/25/2010] [Indexed: 05/29/2023]
Abstract
In recent years, various environmental issues have aroused a concern on the pollution of pesticides in rivers and in their various intercompartments. Multiple residues of pesticides discharged from industries or as a result of extensive use of agrochemicals in agriculture have been monitored. These pesticide residues contaminate the river ecosystem and its intercompartments such as sediments, and aquatic biota, and make it harmful to humans when they contaminate food and drinking water. The pesticide contamination in water, sediments, and aquatic biota has been reported to be beyond the acceptable range. The most commonly found pesticides are organochlorine, namely, dichlorodiphenyltrichloroethane, hexachlorocyclohexane, endosulfan, heptachlor, lindane, dieldrin, aldrin, endrin, and others. The paper discusses the general description, classification, and toxicity of pesticides; it also aims to create public awareness among people and appraise them with various alternate methods to combat the problem of pesticide contamination. An attempt has also been made to elucidate the findings of various works on pesticides in aquatic system and to highlight the challenging aspects of pesticide contamination, which have not attracted the attention of investigators yet.
Collapse
Affiliation(s)
- A K Chopra
- Department of Zoology and Environmental Science, Gurukula Kangri University, Haridwar, 249 404, India
| | | | | |
Collapse
|
22
|
Chen L, Zeng G, Zhang Y, Tang L, Huang D, Liu C, Pang Y, Luo J. Trace detection of picloram using an electrochemical immunosensor based on three-dimensional gold nanoclusters. Anal Biochem 2010; 407:172-9. [PMID: 20709012 DOI: 10.1016/j.ab.2010.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Picloram, a herbicide widely used for broadleaf weed control, is persistent and mobile in soil and water with adverse health and environmental effects. It is important to develop a sensitive method for accurate detection of trace picloram in the environment. In this article, a type of ordered three-dimensional (3D) gold (Au) nanoclusters obtained by two-step electrodeposition using the spatial obstruction/direction of the polycarbonate membrane is reported. Bovine serum albumin (BSA)-picloram was immobilized on the 3D Au nanoclusters by self-assembly, and then competitive immunoreaction with picloram antibody and target picloram was executed. The horseradish peroxidase (HRP)-labeled secondary antibody was applied for enzyme-amplified amperometric measurement. The electrodeposited Au nanoclusters built direct electrical contact and immobilization interface with protein molecules without postmodification and positioning. Under the optimal conditions, the linear range for picloram determination was 0.001-10 μg/ml with a correlation coefficient of 0.996. The detection and quantification limits were 5.0 × 10(-4) and 0.0021 μg/ml, respectively. Picloram concentrations in peach and excess sludge supernatant extracts were tested by the proposed immunosensor, which exhibited good precision, sensitivity, selectivity, and storage stability.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dang VD, Walters DM, Lee CM. Transformation of chiral polychlorinated biphenyls (PCBs) in a stream food web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2836-2841. [PMID: 20058914 DOI: 10.1021/es902227a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The enantiomeric composition of chiral PCB congeners was determined in Twelvemile Creek (Clemson, SC) to examine potential mechanisms of biotransformation in a stream food web. We measured enantiomeric fractions (EFs) of six PCB atropisomers (PCBs 84, 91, 95, 136, 149, and 174) in surface sediment, fine benthic organic matter (FBOM), coarse particulate organic matter (CPOM), periphyton, Asian clam, mayflies, yellowfin shiner, and semipermeable membrane devices (SPMDs) using gas chromatography (GC-ECD). Nonracemic EFs of PCBs 91, 95, 136, and 149 were measured in almost all samples. Enantiomeric compositions of PCBs 84 and 174 were infrequently detected with racemic EFs measured in samples except for a nonracemic EF of PCB 84 in clams. Nonracemic EFs of PCBs 91, 136, and 149 in SPMDs may be due to desorption of nonracemic residues from FBOM. EFs for some atropisomers were significantly different among FBOM, CPOM, and periphyton, suggesting that their microbial communities have different biotransformation processes. Nonracemic EFs in clams and fish suggest both in vivo biotransformation and uptake of nonracemic residues from their food sources. Longitudinal variability in EFs was generally low among congeners observed in matrices.
Collapse
Affiliation(s)
- Viet D Dang
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, USA
| | | | | |
Collapse
|
24
|
Li X, Bao C, Yang D, Zheng M, Li X, Tao S. Toxicities of fipronil enantiomers to the honeybee Apis mellifera L. and enantiomeric compositions of fipronil in honey plant flowers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:127-132. [PMID: 20821427 DOI: 10.1002/etc.17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fipronil is a chiral phenylpyrazole insecticide that is effective for control of a wide range of agricultural and domestic pests at low application rates. Wide application of fipronil also causes poisoning of some nontarget insects, such as honeybees. In the present study, toxicities of fipronil enantiomers and racemate to the honeybee Apis mellifera L. were determined to examine whether using formulations of single or enriched fipronil enantiomer is a possible option to reduce risks to bees. Contact toxicity tests yielded median lethal doses (LD50) of 3.45, 3.38, and 3.86 ng/bee for the R(-)-enantiomer, S(+)-enantiomer, and racemate, respectively. Analysis of variance indicates that the LD50 values are not statistically different (p = 0.41). Oral toxicities of the R-enantiomer, S-enantiomer, and racemate (nominal median lethal concentration = 0.037, 0.045, 0.053 mg/L, respectively) were also demonstrated to be not statistically different (p = 0.20). In addition, enantiomeric fractions of fipronil in the flowers of three honey plants (Brassica campestris, Cucumis sativus, and Chrysanthemum indicum L.) were examined after treatment with fipronil. It was found that degradation of fipronil in all three plants is not enantioselective. These results indicate that it is unlikely that use of formulations with single or enriched fipronil enantiomer would reduce the risk that fipronil poses to honeybees. Improved fipronil application practices (based on safest timing and bloom conditions) and reduction of overall fipronil usage seem to be more realistic options.
Collapse
Affiliation(s)
- Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 People's Republic of China.
| | | | | | | | | | | |
Collapse
|
25
|
Ross MS, Verreault J, Letcher RJ, Gabrielsen GW, Wong CS. Chiral organochlorine contaminants in blood and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:7181-7186. [PMID: 18939544 DOI: 10.1021/es8000147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Glaucous gulls (Larus hyperboreus) and their eggs from Svalbard (Norwegian Arctic) have been used as biomonitors of contaminants in the marine environment. In this study, the enantiomer fractions (EFs) of chiral chlordanes and atropisomeric polychlorinated biphenyl (PCB) congeners were determined in the blood plasma of adult male and female glaucous gulls from three breeding colonies in Svalbard. Plasma EFs were similar in magnitude and direction to EFs previously reported in glaucous gulls from other arctic food webs, suggesting overall similarities in the biochemical processes influencing the EFs of bioaccumulated organochlorine (OC) contaminants within the food webs at those locations. Additionally, EFs in yolk of eggs collected concurrently from within the same nesting colonies varied with location, laying date, and OC concentrations, and may be influenced by changes in the local feeding ecology between those colonies. No differences were found between the EFs for any analyte in female gulls compared to those found in egg yolk, indicating that processes involved in the maternal transfer of chlordanes and PCBs to eggs do not modulate the stereochemical ratio between enantiomers. Therefore, the use of eggs as a valuable and noninvasive means of OC biomonitoring may also extend to enantiomer compositions in glaucous gulls, and perhaps also in other seabird species from arctic regions.
Collapse
Affiliation(s)
- Matthew S Ross
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | | | | | | |
Collapse
|
26
|
Koblicková M, Ducek L, Jarkovský J, Hofman J, Bucheli TD, Klánová J. Can physicochemical and microbial soil properties explain enantiomeric shifts of chiral organochlorines? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5978-5984. [PMID: 18767654 DOI: 10.1021/es800625d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Enantiomeric fractions (EF) of PCB 95, 132, 149, and 174, alpha-HCH, o,p'-DDD, and o,p'-DDT were analyzed in 112 soil samples using two-dimensional gas chromatography and triple-quadrupole mass spectrometry. To assess the soil conditions that facilitate enantioselective fractionation of chiral compounds, EF values of selected PCBs were further correlated with a wide range of physicochemical and microbial soil parameters in an attempt to identify the influential factors and their mutual relations. It was evident that soils where nonracemic ratios of investigated compounds were found were more carbon rich but they also contained significantly more humic and fulvic acids and total nitrogen. These specific physicochemical properties were accompanied by significantly increased values of all key biotic variables, the amount of microbial biomass, and its respiration activity (both basal and substrate-induced). Therefore, the shifts from racemic ratios appeared to be associated with more sustainable and active soil microflora. Among other abiotic characteristics, most significant differences were detected in the soil texture. Soil samples with significant shifts contained increased amount of clay component and correspondingly decreased proportion of sand fraction. These differences can also be associated with more intensive microbial activity, because clay content and texture with an increased amount of microaggregates are known to be favorable for soil microflora and its viability.
Collapse
Affiliation(s)
- Martina Koblicková
- Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
27
|
Morrissey JA, Bleackley DS, Warner NA, Wong CS. Enantiomer fractions of polychlorinated biphenyls in three selected Standard Reference Materials. CHEMOSPHERE 2007; 66:326-31. [PMID: 16777177 DOI: 10.1016/j.chemosphere.2006.04.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 04/26/2006] [Accepted: 04/29/2006] [Indexed: 05/10/2023]
Abstract
The enantiomer composition of six chiral polychlorinated biphenyls (PCBs) were measured in three different certified Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST): SRM 1946 (Lake Superior fish tissue), SRM 1939a (PCB Congeners in Hudson River Sediment), and SRM 2978 (organic contaminants in mussel tissue--Raritan Bay, New Jersey) to aid in quality assurance/quality control methodologies in the study of chiral pollutants in sediments and biota. Enantiomer fractions (EFs) of PCBs 91, 95, 136, 149, 174, and 183 were measured using a suite of chiral columns by gas chromatography/mass spectrometry. Concentrations of target analytes were in agreement with certified values. Target analyte EFs in reference materials were measured precisely (<2% relative standard deviation), indicating the utility of SRM in quality assurance/control methodologies for analyses of chiral compounds in environmental samples. Measured EFs were also in agreement with previously published analyses of similar samples, indicating that similar enantioselective processes were taking place in these environmental matrices.
Collapse
Affiliation(s)
- Joshua A Morrissey
- Department of Chemistry, 11227 Saskatchewan Drive, University of Alberta, Edmonton, Alta., Canada T6G 2G2
| | | | | | | |
Collapse
|