1
|
Tiwary P, Kukreti S, Shridhar V, Pandey H, Rana S, Arunachalam K, Singh V. Assessment of light absorbing carbonaceous aerosol and its absorption properties from forest fire in Himalayan Critical Zone Observatory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178878. [PMID: 39987823 DOI: 10.1016/j.scitotenv.2025.178878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
The study aims to address the optical properties and source of light absorbing carbonaceous aerosols (LAC), during forest fire events at data-deficient Himalayan regions (1800 m a.s.l.) from 2022 to 2024 by using Aethalometer and satellite data. During entire study period equivalent Black Carbon (eBC) mass concentration varied considerably, with an average of 2.45 ± 1.57 μg m-3 having higher value during summer forest fire, likely due to increased fire intensity, long-range transport, and human activities. The absorption coefficient of eBC and BrC was observed to be 22.2 ± 13.50 M m-1 at 880 nm and 72.8 ± 70.86 M m-1 at 370 nm. BrC absorption exhibits greater variability compared to eBC absorption, suggesting that during forest fire events BrC contribution to aerosols absorption is more diverse and dynamic than eBC which more consistent across the events. There is an increasing trend in BrC absorption from 2022 to 2024, coupled with the strong correlation between BrC and eBC absorption (0.85), suggesting as forest fire intensifies, both BrC and eBC emissions increase. The % contribution of BrC absorption at 370 nm to total aerosol light absorption is about 55.1 %. The study addresses the gaps in understanding optical properties of LAC and uncertainties in climate models that tend to underestimate BrC's radiative forcing especially during events like forest fire. Also emphasizes the importance of managing biomass burning to mitigate the impact of atmospheric heating and snowmelt in sensitive Himalayan ecosystems.
Collapse
Affiliation(s)
- Priyanshu Tiwary
- School of Environment and Natural Resources, Doon University, Dehradun 248001, India
| | - Saurabh Kukreti
- School of Environment and Natural Resources, Doon University, Dehradun 248001, India
| | - Vijay Shridhar
- School of Environment and Natural Resources, Doon University, Dehradun 248001, India.
| | - Himanshi Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248001, India
| | - Shakuntala Rana
- School of Environment and Natural Resources, Doon University, Dehradun 248001, India
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun 248001, India
| | - Vimal Singh
- Department of Geology, Delhi University (DU), New Delhi 110007, India
| |
Collapse
|
2
|
Deegan A, Glenn CK, El Hajj O, Anosike A, Kumar K, Abdurrahman M, Bai B, Liu P, O’Brien J, Saleh R, Frossard AA. Properties of Surface-Active Organics in Aerosol Particles Produced from Combustion of Biomass Fuels under Simulated Prescribed-Fire and Wildfire Conditions. ACS ES&T AIR 2025; 2:264-276. [PMID: 39975538 PMCID: PMC11833767 DOI: 10.1021/acsestair.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
The interfacial properties of the organic fraction of biomass burning aerosols (BBA), such as the critical micelle concentration (CMC) and surfactant composition, may vary based on the origin and moisture content of the fuel and the resulting combustion conditions. Surfactant composition, fraction of total particle mass, surface tension minimums, and CMC values of organics extracted from fresh and aged BBA produced using fuel beds from Georgia ecoregions (Piedmont, Coastal Plain, and Blue Ridge) and with fuel moisture contents representative of prescribed fires or drought-induced wildfires were measured using high resolution mass spectrometry, UV-vis spectroscopy, and pendant drop tensiometry. Surface tension minimums of organics extracted from all BBA were low (<45 mN m-1), and surfactants were ∼2% of the total particle mass. The surfactant fraction was tied to combustion conditions, with the highest fractions present in BBA produced from the most efficient (highest temperature) combustion. Aging of BBA using a potential aerosol mass oxidative flow reactor resulted in an increase in the surfactant fractions of total BBA mass. The dependence of the surfactant fraction on combustion conditions may have implications for the microphysics of BBA from wildfires and prescribed fires.
Collapse
Affiliation(s)
- Ariana
M. Deegan
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Chase K. Glenn
- School
of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Omar El Hajj
- School
of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Anita Anosike
- School
of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Kruthika Kumar
- School
of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Muhammad Abdurrahman
- School
of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Bin Bai
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pengfei Liu
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joseph O’Brien
- U.S.
Department of Agriculture Forest Service, Athens, Georgia 30602, United States
| | - Rawad Saleh
- School
of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Amanda A. Frossard
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Laskin A, West CP, Hettiyadura APS. Molecular insights into the composition, sources, and aging of atmospheric brown carbon. Chem Soc Rev 2025; 54:1583-1612. [PMID: 39744988 DOI: 10.1039/d3cs00609c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants. However, a fundamental understanding of the sources, formation, and transformation (aging effects) of BrC remains incomplete. This gap in knowledge necessitates advanced chemical characterization of individual aerosol components and the correlation of their composition with optical properties. Over the past decade, a multi-modal analytical platform composed of high-performance liquid chromatography with a photodiode array UV-vis detector and high-resolution mass spectrometry has been extensively used for the untargeted analysis of BrC components in complex mixtures of atmospheric organic aerosols and their laboratory proxies. This method separates solvent-extractable BrC compounds into distinct fractions, each characterized by specific retention times, UV-vis absorption spectra, and elemental compositions, offering comprehensive molecular insights into BrC components. In this review, we highlight the application of this platform in analyzing both real-world aerosol samples and laboratory-generated proxies. These studies have identified composition-specific sources and transformations of BrC, advancing our understanding of these complex atmospheric mixtures. Atmospheric humic-like substances (HULIS), formed through cloud processing of wildfire smoke and the oligomerization of water-soluble organics, are key contributors to BrC. Additional HULIS originate from fossil fuel combustion, biogenic, and marine emissions. Key BrC chromophores include nitroaromatics, imidazoles, N-heterocycles, polyaromatic hydrocarbons, quinones, and others. Aging processes, including photolysis and multiphase reactions, can significantly alter BrC optical properties by generating new chromophores or degrading existing ones. The fundamental knowledge gained from these investigations is essential for assessing BrC optical properties. Additionally, it provides practical composition metrics necessary to inform and improve future atmospheric models, enabling more accurate predictions of BrC behavior and its impact on climate and air quality.
Collapse
Affiliation(s)
- Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
- Department of Earth, Atmospheric & Planetary Sciences, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
| | | |
Collapse
|
4
|
Liu X, Wu C, Li Z, Li R, Wang F, Lv S, Li R, Zhang F, Wang H, Liang C, Zhang L, Wang G. Atmospheric brown carbon in China haze is dominated by secondary formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173901. [PMID: 38880143 DOI: 10.1016/j.scitotenv.2024.173901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Brown carbon (BrC) is a class of light-absorbing organic aerosols (OA) and has significant influence on atmospheric radiative forcing. However, the current limited understanding of the physicochemical properties of BrC restricts the accurate evaluation of its environmental effects. Here the optical characteristics and chemical composition of BrC during wintertime in the Yangtze River Delta (YRD) region, China were measured by using high-resolution aerosol mass spectrometry (HR-AMS) and UV-vis spectrometry. Our results showed that BrC in PM2.5 during the campaign was dominated by water-soluble organics, which consist of less oxidized oxygenated OA (LO-OOA), more oxidized oxygenated OA (MO-OOA), fossil fuel OA (FFOA) and biomass burning OA (BBOA). MO-OOA and BBOA were the strongest light absorbing BrC at 365 nm (Abs365), followed by LO-OOA and FFOA with a mass absorption coefficient (MAC) being 0.74 ± 0.04, 0.73 ± 0.03, 0.48 ± 0.04 and 0.39 ± 0.06 m2 g-1 during the campaign, respectively. In the low relative humidity (RH < 80 %) haze periods Abs365 of LO-OOA contributed to 44 % of the total light absorption at 365 nm, followed by MO-OOA (31 %), FFOA (21 %) and BBOA (4 %). In contrast, in the high-RH (RH > 80 %) haze periods Abs365 was dominated by MO-OOA, which accounted for 62 % of the total Abs365, followed by LO-OOA (17 %), BBOA (13 %) and FFOA (8 %). Chemical composition analysis further showed that LO-OOA and MO-OOA are produced from gas-phase photooxidation of VOCs and aerosol aqueous reactions, respectively, in which ammonia significantly enhanced the formation and light absorption of BrC in the high RH haze period. On average, >75 % of the total Abs365nm in the YRD region during the haze events was contributed by LO-OOA and MO-OOA, suggesting that atmospheric BrC in China haze periods is predominantly formed by secondary reactions.
Collapse
Affiliation(s)
- Xiaodi Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Can Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zheng Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rongjie Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Fanglin Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Shaojun Lv
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Fan Zhang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Haoyang Wang
- Laboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenlong Liang
- Laboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lei Zhang
- China Academy of Meteorological Sciences, Beijing, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Ding S, Zhao D, Tian P, Huang M. Source apportionment and wet scavenging ability of atmospheric black carbon during haze in Northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124470. [PMID: 38950848 DOI: 10.1016/j.envpol.2024.124470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Seasonal variations in black carbon (BC) pollution characteristics during haze episodes in Benxi city, Liaoning province, were analyzed using year-long measurements of BC, carbon monoxide (CO), and PM2.5. Haze frequencies were recorded to be 0.07, 0.03 and 0.14 in spring, autumn, and winter respectively. Solid fuel contributions increased notably by 7%-8% during haze events compared to clean periods in all seasons. Transitioning from clean to haze periods led to ΔBC/ΔCO increases of 16% in spring and autumn, and 6.8% in winter, while BC/PM2.5 ratios decreased by approximately 33%, 50%, and 24% for spring, autumn, and winter respectively, likely indicating enhanced residential and industrial contributions. These further led to an increase in BC absorption capacities by factors of around 2.2 in spring and autumn, and up to 2.6 in winter during haze periods. Despite liquid fuel sources dominating BC emissions, certain haze episodes (frequency <10%) showed solid fuel contributions of up to 65%, highlighting BC pollution complexity in the region during haze. Backward trajectories analysis revealed local air masses from Liaoning province arrived consistently with the most occurrence of haze events across all seasons, while long-range air masses from Mongolian regions, though with less frequent occurrence during haze periods, significantly elevated BC loadings from solid fuel sources, particularly in spring and autumn due to biomass burning. Despite higher BC wet scavenging rates (WSR) in long-range air masses (0.072 ng m-3 ppbv-1 mm-1) compared to local air masses (0.039 ng m-3 ppbv-1 mm-1), significant BC transport persisted due to limited precipitation along transport pathways, especially during haze periods. These findings provide crucial insights for policymakers, highlighting the need for targeted haze prevention and control strategies focusing on mitigating BC emissions in Northeast China.
Collapse
Affiliation(s)
- Shuo Ding
- Department of Environmental Engineering, College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, 310018, China; College of Carbon Metrology, China Jiliang University, Hangzhou, 310018, China.
| | - Delong Zhao
- Beijing Weather Modification Office, Beijing, 100089, China
| | - Ping Tian
- Beijing Weather Modification Office, Beijing, 100089, China
| | - Mengyu Huang
- Beijing Weather Modification Office, Beijing, 100089, China
| |
Collapse
|
6
|
Cai D, Li C, Lin J, Sun W, Zhang M, Wang T, Abudumutailifu M, Lyu Y, Huang X, Li X, Chen J. Comparative study of atmospheric brown carbon at Shanghai and the East China Sea: Molecular characterization and optical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173782. [PMID: 38848916 DOI: 10.1016/j.scitotenv.2024.173782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The pollution burdens and compositions of atmospheric brown carbon (BrC) that determine their impacts on climate-health-ecosystems have not been well studied, particularly in some mega-economic coastal areas. Herein, atmospheric BrC samples synchronously collected from urban Shanghai (SH) and Huaniao Island (HNI) in the East China Sea during winter were characterized through ultrahigh-performance liquid chromatography-diode array detector-high resolution mass spectrometry (UHPLC-DAD-HRMS). The three polarity-dependent BrC fractions exhibited significant differences in both light absorption and chromophore composition. The average light absorption coefficients of BrC subfractions at 365 nm in SH were 2.6-3.7 times higher than those in HNI. The water-insoluble BrC (WIS-BrC) and humic-likes BrC (HULIS-BrC) dominated the total BrC absorption in SH (45 ± 7 %) and HNI (43 ± 6 %), respectively. Compared with SH, the higher O/Cw, lower molecule conjugation degree, and reduced mass absorption efficiency at 365 nm (MAE365) in HNI imply a potential bleaching mechanism during the transportation oxidation process. Thousands of BrC chromophores were detected at both sites. >20 major chromophores with strong absorption were unambiguously identified in HULIS-BrC and accounted for ∼40 % of the HULIS light absorption at 365 nm at both sites. These chromophores in SH HULIS-BrC featured oxygenated aromatics and nitroaromatics, while alkyl benzenesulfonic acids with emissions from cargo ships were found in HNI HULIS-BrC. Moreover, 22 major chromophores identified in WIS-BrC included alkaloids, polyaromatic hydrocarbons (PAHs), and carbonyl oxygenated PAHs, contributing 39 % and 49 % of the WIS-BrC light absorption at 365 nm in SH and HNI, respectively. Ascertaining the molecular-specific optical properties of BrC chromophores over the mega-economic coastal area is helpful for the predictive understanding of the sources and evolution of BrC, as well as its atmospheric behavior from land to sea.
Collapse
Affiliation(s)
- Dongmei Cai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Chunlin Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200072, China
| | - Jingxin Lin
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Wenwen Sun
- Department of Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Miaomiao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Munila Abudumutailifu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Yan Lyu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaojuan Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Xiang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China..
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China.; Institute of Eco-Chongming (IEC), Shanghai 200062, China..
| |
Collapse
|
7
|
Calderon-Arrieta D, Morales AC, Hettiyadura APS, Estock TM, Li C, Rudich Y, Laskin A. Enhanced Light Absorption and Elevated Viscosity of Atmospheric Brown Carbon through Evaporation of Volatile Components. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7493-7504. [PMID: 38637508 DOI: 10.1021/acs.est.3c10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as "pyrolysis oil (PO1)," underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO1.33, PO2, and PO3. The chemical compositions of these POx samples and their BrC chromophore features were analyzed using a high-performance liquid chromatography instrument coupled with a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a noteworthy twofold enhancement of BrC light absorption observed for the progression of PO1 to PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the absorption Ångstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral dependence. The relative enhancement of BrC absorption at longer wavelengths was more significant, as exemplified by the increased mass absorption coefficient (MAC) measured at 405 nm from 0.1 to 0.5 m2/g. Molecular characterization further supports this darkening trend, manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the PO1 to PO3 mixtures included a reduction in the saturation vapor pressure of their components and an increase in viscosity. These changes were quantified by the mean values shifting from approximately 1.8 × 103 μg/m3 to 2.3 μg/m3 and from ∼103 Pa·s to ∼106 Pa·s, respectively. These results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric aging through nonreactive evaporation. This new understanding will inform the refinement of atmospheric and chemical transport models.
Collapse
Affiliation(s)
- Diego Calderon-Arrieta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Taylor M Estock
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Cui Y, Chen K, Zhang H, Lin YH, Bahreini R. Chemical Composition and Optical Properties of Secondary Organic Aerosol from Photooxidation of Volatile Organic Compound Mixtures. ACS ES&T AIR 2024; 1:247-258. [PMID: 38633205 PMCID: PMC11019549 DOI: 10.1021/acsestair.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 04/19/2024]
Abstract
The chemical and optical properties of secondary organic aerosols (SOA) have been widely studied through environmental chamber experiments, and some of the results have been parametrized in atmospheric models to help understand their radiative effects and climate influence. While most chamber studies investigate the aerosol formed from a single volatile organic compound (VOC), the potential interactions between reactive intermediates derived from VOC mixtures are not well understood. In this study, we investigated the SOA formed from pure and mixtures of anthropogenic (phenol and 1-methylnaphthalene) and/or biogenic (longifolene) VOCs using continuous-flow, high-NOx photooxidation chamber experiments to better mimic ambient conditions. SOA optical properties, including single scattering albedo (SSA), mass absorption coefficient (MAC), and refractive index (RI) at 375 nm, and chemical composition, including the formation of oxygenated organic compounds, organic-nitrogen compounds (including organonitrates and nitro-organics), and the molecular structure of the major chromophores, were explored. Additionally, the imaginary refractive index values of SOA in the multi-VOC system were predicted using a linear-combination assumption and compared with the measured values. When two VOCs were oxidized simultaneously, we found evidence for changes in SOA chemical composition compared to SOA formed from single-VOC systems, and this change led to nonlinear effects on SOA optical properties. The nonlinear effects were found to vary between different systems.
Collapse
Affiliation(s)
- Yumeng Cui
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| | - Kunpeng Chen
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| | - Haofei Zhang
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| | - Roya Bahreini
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
9
|
Rana A, Sarkar S. The role of nitroaromatic compounds (NACs) in constraining BrC absorption in the Indo-Gangetic Plain (IGP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170523. [PMID: 38296066 DOI: 10.1016/j.scitotenv.2024.170523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/09/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
We present here the first measurements of nitroaromatic compounds (NACs) including nitrophenols (NPs), nitrocatechols (NCs) and nitrosalicylic acids (NSAs) from the Indian subcontinent and their role in constraining brown carbon (BrC) absorption. NACs at a rural receptor site in the eastern Indo-Gangetic Plain (IGP) (annual average: 185 ± 94 ng m-3) was dominated by NSAs (135 ± 77 ng m-3), followed by NPs (29 ± 11 ng m-3) and NCs (17 ± 16 ng m-3), with notable enrichments during nighttime and during the biomass burning seasons. An equilibrium absorption partitioning model estimated that >90 % of NSAs and NCs were in the particle-phase, suggesting lower degradation rates via oxidation and photolysis potentially due to year-round high relative humidity. While the contribution of NACs to organic aerosol mass was only 0.42 ± 0.23 %, their contribution to BrC absorption in the 300-450 nm range was higher by an order of magnitude (8 ± 4 %), with NCs and NSAs contributing almost equally in the low-visible (400-450 nm) range as at 365 nm. Despite having mass concentrations lower than NPs by factors of ∼2, contribution of NCs to BrC absorption at λ ≥ 400 nm was comparable to that by NPs, indicating the importance of the absorption efficiency of chromophores. The receptor model positive matrix factorization (PMF) quantified three major NAC sources: fossil fuel combustion (49 ± 15 %; annual average), secondary formation (40 ± 12 %), and biomass burning (11 ± 9 %), with variable contributions on seasonal and day-night bases. In summary, the study uncovered the significant role of NACs in constraining BrC absorption in the IGP, which stresses the importance for molecular-level characterization of BrC chromophores.
Collapse
Affiliation(s)
- Archita Rana
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, India
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
10
|
Lei Y, Lei X, Tian G, Yang J, Huang D, Yang X, Chen C, Zhao J. Optical Variation and Molecular Transformation of Brown Carbon During Oxidation by NO 3• in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38319710 DOI: 10.1021/acs.est.3c08726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The NO3•-driven nighttime aging of brown carbon (BrC) is known to greatly impact its atmospheric radiative forcing. However, the impact of oxidation by NO3• on the optical properties of BrC in atmospheric waters as well as the associated reaction mechanism remain unclear. In this work, we found that the optical variation of BrC proxies under environmentally relevant NO3• exposure depends strongly on their sources, with enhanced light absorptivity for biomass-burning BrC but bleaching for urban aerosols and humic substances. High-resolution mass spectrometry using FT-ICR MS shows that oxidation by NO3• leads to the formation of light-absorbing species (e.g., nitrated organics) for biomass-burning BrC while destroying electron donors (e.g., phenols) within charge transfer complexes in urban aerosols and humic substances, as evidenced by transient absorption spectroscopy and NaBH4 reduction experiments as well. Moreover, we found that the measured rate constants between NO3• with real BrCs (k = (1.8 ± 0.6) × 107 MC-1s-1, expressed as moles of carbon) are much higher than those of individual model organic carbon (OC), suggesting the reaction with OCs may be a previously ill-quantified important sink of NO3• in atmospheric waters. This work provides insights into the kinetics and molecular transformation of BrC during the oxidation by NO3•, facilitating further evaluation of BrC's climatic effects and atmospheric NO3• levels.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Xin Lei
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ge Tian
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Jie Yang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Di Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
11
|
Tang T, Huo T, Tao H, Tian M, Yang H, Wang H. Effects of aerosol water content and acidity on the light absorption of atmospheric humic-like substances in winter. CHEMOSPHERE 2024; 349:140796. [PMID: 38029936 DOI: 10.1016/j.chemosphere.2023.140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Atmospheric humic-like substances (HULIS) could affect regional climate due to their strong light-absorbing capacity. Daily fine particulate matter (PM2.5) samples were collected from December 18, 2016 to January 8, 2017 at an urban site in Chongqing, Southwest China. The mean concentration of HULIS in terms of carbon (HULIS-C) was 6.4 ± 3.4 μg m-3, accounting for 72% of water-soluble organic carbon. The mass absorption efficiency at 365 nm (MAE365) and absorption Ångström index (AAE) of atmospheric HULIS were 2.8 ± 0.30 m2 g-1 C and 4.6 ± 0.37, respectively. Good correlations between the light absorption coefficients of HULIS at 365 nm (Abs365) and the concentrations of K+, elemental carbon, NO3-, and NH4+ were observed, with correlation coefficients higher than 0.83, indicating that biomass burning and secondary formation were potential sources of light-absorbing HULIS, as evidenced by abundant fluorescent components related to less-oxygenated HULIS. Comparing the changes in Abs365 values, concentrations of major water-soluble inorganic ions and carbonaceous compounds in PM2.5, and environmental factors during the clean and pollution periods, we found that extensive biomass burning during the pollution period contributed significantly to the increase of Abs365 values. Moreover, the aerosol pH during the pollution period was close to 4, and NO2 concentration and aerosol water content were about 1.6 and 2.7 times higher than those during the clean period, respectively, which were favorable to form secondary HULIS through aqueous phase reactions in the presence of high NOx, resulting in an evident increase in its light absorption. Knowledge generated from this study is critical for evaluating the regional radiative forcing of brown carbon in southwest China.
Collapse
Affiliation(s)
- Tian Tang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tingting Huo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hongli Tao
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Mi Tian
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Hao Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Huanbo Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
12
|
Jiang Y, Wang X, Li M, Liang Y, Liu Z, Chen J, Guan T, Mu J, Zhu Y, Meng H, Zhou Y, Yao L, Xue L, Wang W. Comprehensive understanding on sources of high levels of fine particulate nitro-aromatic compounds at a coastal rural area in northern China. J Environ Sci (China) 2024; 135:483-494. [PMID: 37778820 DOI: 10.1016/j.jes.2022.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 10/03/2023]
Abstract
Nitro-aromatic compounds (NACs) are among the major components of brown carbon (BrC) in the atmosphere, causing negative impacts on regional climate, air quality, and ecological health. Due to the extensive origins, it is still a challenge to figure out the contributions and originating regions for different sources of atmospheric NACs. Here, field observations on fine particulate NACs were conducted at a coastal rural area in Qingdao, China in the winter of 2018 and 2019. The mean total concentrations of fine particulate nitro-aromatic compounds were 125.0 ± 89.5 and 27.7 ± 21.1 ng/m3 in the winter of 2018 and 2019, respectively. Among the measured eleven NACs, nitrophenols and nitrocatechols were the most abundant species. Variation characteristics and correlation analysis showed that humidity and anthropogenic primary emissions had significant influences on the NAC abundances. In this study, two tracing methods of the improved spatial concentration weighted trajectory (SCWT) model and the receptor model of positive matrix factorization (PMF) were combined to comprehensively understand the origins of NACs in fine particles at coastal Qingdao. Four major sources were identified, including coal combustion, biomass burning, vehicle exhaust, and secondary formation. Surprisingly, coal combustion was responsible for about half of the observed nitro-aromatic compounds, followed by biomass burning (∼30%). The results by SCWT demonstrated that the coal combustion dominated NACs mainly originated from the Shandong peninsula and the areas to the north and southwest, while those dominated by biomass burning primarily came from local Qingdao and the areas to the west.
Collapse
Affiliation(s)
- Yueru Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Min Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiheng Liang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Zurich 8092, Switzerland; Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf 8600, Switzerland
| | - Zhiyi Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jing Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Tianyi Guan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiangshan Mu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - He Meng
- Qingdao Eco-Environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Yang Zhou
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Lan Yao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
13
|
Zhang Q, Ma H, Li J, Jiang H, Chen W, Wan C, Jiang B, Dong G, Zeng X, Chen D, Lu S, You J, Yu Z, Wang X, Zhang G. Nitroaromatic Compounds from Secondary Nitrate Formation and Biomass Burning Are Major Proinflammatory Components in Organic Aerosols in Guangzhou: A Bioassay Combining High-Resolution Mass Spectrometry Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21570-21580. [PMID: 37989488 DOI: 10.1021/acs.est.3c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The limited characterization and detection capacity of unknown compounds hinder our understanding of the molecular composition of toxic compounds in PM2.5. The present study applied Fourier transform ion cyclotron resonance mass spectrometry coupled with negative and positive electrospray ionization sources (ESI-/ESI+ FT-ICR-MS) to probe the molecular characteristics and dynamic formation processes of the effective proinflammatory components in organic aerosols (OAs) of PM2.5 in Guangzhou for one year. We detected abundant proinflammatory molecules in OAs, mainly classified as CHON compounds (compounds composed of C, H, O, and N atoms) in elemental and nitroaromatic compounds (NACs) in structures. From the perspective of the formation process, we discovered that these proinflammatory molecules, especially toxic NACs, were largely driven by secondary nitrate formation and biomass burning (in emission source), as well as SO2 (in atmospheric evolution). In addition, our results indicated that the secondary processes had replaced the primary emission as the main contributing source of the toxic proinflammatory compounds in OAs. This study highlights the importance of community measures to control the production of nitroaromatic compounds derived from secondary nitrate formation and biomass burning in urban areas.
Collapse
Affiliation(s)
- Qianyu Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongxing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wenjing Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Wan
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guanghui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Duohong Chen
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou 510308, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Bai Z, Shao J, Xu W, Zhu K, Zhao L, Wang L, Chen J. An unneglected source to ambient brown carbon and VOCs at harbor area: LNG tractor truck. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165575. [PMID: 37499815 DOI: 10.1016/j.scitotenv.2023.165575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The ambient air quality of harbors area in Asia is commonly more polluted compared to other continents. The airborne pollutant is directly or indirectly related to a significant impact of traffic emissions. This study for the first time assessed the impacts on brown carbon (BrC) and volatile organic compounds (VOCs) from in-port liquid natural gas (LNG) tractor truck at harbor areas, via conducting real-time monitoring of VOCs characteristic and sampling for ambient air at a harbor (named as W harbor) in Shanghai, China, collecting emissions of in-port LNG tractor truck and miniCast in laboratory, as well as statistics of external container diesel trucks in the port for further validation. HPLC/DAD/Q-Tof MS was adopted for sample analysis. Results showed that many CHO compounds were associated with vehicle exhausts. Among of them, aliphatic CHO compounds with low degree of unsaturation were identified as fatty acids and fatty acid methyl esters extensively existing in fuel combustion emissions. And non-aliphatic CHO compounds characterized by low O/C ratios (<0.17) identified for the harbor air came from the emissions of in-port LNG power trucks with low-speed driving and idling. The ambient average non-methane total hydrocarbons (NMHC) concentration (0.59 ppm) at W harbor was much greater than that for other areas in Shanghai. The higher ratios of toluene/benzene (3.30) and m/p-xylene/ethylbenzene (3.11) observed at W harbor implied instead of external container diesel trucks, the dominating contributing of internal LNG tractor trucks to ambient VOCs cannot be neglected. This study concluded that LNG is not as clean as it was expected. The LNG-fueled vehicles can produce strong light-absorption chromophores as well as high concentration of VOCs.
Collapse
Affiliation(s)
- Zhe Bai
- School of Ecology and Environment, Inner Mongolia University, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| | - Jiantao Shao
- China Construction Eighth Engineering Division Corp., Ltd., Shanghai 200112, China
| | - Wei Xu
- Shanghai Jianke Environmental Techonology Co., Ltd, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| | - Ling Zhao
- School of Ecology and Environment, Inner Mongolia University, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| |
Collapse
|
15
|
Liu X, Wang H, Wang F, Lv S, Wu C, Zhao Y, Zhang S, Liu S, Xu X, Lei Y, Wang G. Secondary Formation of Atmospheric Brown Carbon in China Haze: Implication for an Enhancing Role of Ammonia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11163-11172. [PMID: 37406304 PMCID: PMC10399565 DOI: 10.1021/acs.est.3c03948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Optical characteristics and molecular compositions of brown carbon (BrC) were investigated during winter 2019 at a rural site of China with a focus on nitro-aromatic compounds (NACs) and imidazoles (IMs). The abundance of gaseous nitrophenols relative to CO during the campaign maximized at noontime, being similar to O3, while the particulate NACs during the haze periods strongly correlated with toluene and NO2, suggesting that NACs in the region are largely formed from the gas-phase photooxidation. Strong correlations of particulate IMs in the dry haze periods with the mass ratio of EC/PM2.5 and the concentration of levoglucosan were observed, indicating that IMs during the dry events are largely derived from biomass burning emissions. However, an increase in IMs with the increasing aerosol liquid water content and pH was observed in the humid haze events, along with much lower abundances of levoglucosan and K+ relative to PM2.5, suggesting that IMs were mostly formed from aqueous reactions in the humid haze periods. These IMs exponentially increased with an increasing NH3 owing to an aqueous reaction of carbonyls with free ammonia. Our findings for the first time revealed an enhancing effect of ammonia on BrC formation in China, especially in humid haze periods.
Collapse
Affiliation(s)
- Xiaodi Liu
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Haoyang Wang
- Laboratory
of Mass Spectrometry Analysis, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fanglin Wang
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Shaojun Lv
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Can Wu
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
- Institute
of Eco-Chongming, Cuiniao
Road, Chenjia Zhen, Chongming, Shanghai 202150, China
| | - Yu Zhao
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Si Zhang
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Shijie Liu
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Xinbei Xu
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Yali Lei
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
| | - Gehui Wang
- Key
Laboratory of Geographic Information Science of the Ministry of Education,
School of Geographic Sciences, East China
Normal University, Shanghai 200241, China
- Institute
of Eco-Chongming, Cuiniao
Road, Chenjia Zhen, Chongming, Shanghai 202150, China
| |
Collapse
|
16
|
Yu F, Li X, Zhang R, Guo J, Yang W, Tripathee L, Liu L, Wang Y, Kang S, Cao J. Insights into dissolved organics in non-urban areas - Optical properties and sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121641. [PMID: 37100371 DOI: 10.1016/j.envpol.2023.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023]
Abstract
Brown carbon aerosols show obvious light absorption properties in the ultraviolet-visible (UV-Vis) range, which has an important impact on photochemistry and climate. In this study, experimental samples originated from the North slope of the Qinling Mountains (at two remote suburb sites) to study the optical properties of water-soluble brown carbon (WS-BrC) in PM2.5. The WS-BrC of TY (a sampling site on the edge of Tangyu of Mei county) has a stronger light absorption ability than CH (a rural sampling site, near the Cuihua Mountains scenic spot). The direct radiation effect of WS-BrC relative to elemental carbon (EC) is 6.67 ± 1.36% in TY and 24.13 ± 10.84% in CH in the UV range, respectively. In addition, two humic-like and one protein-like fluorophore components in WS-BrC were identified by fluorescence spectrum and parallel factor (EEMs-PARAFAC). Humification index (HIX), biological index (BIX) and fluorescence index (FI) together showed that the WS-BrC in the two sites may originate from fresh aerosol emissions. Potential source analysis of Positive Matrix Factorization (PMF) model show that the combustion process, vehicle, secondary formation and road dust are the main contributors to WS-BrC.
Collapse
Affiliation(s)
- Feng Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiaofei Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Rui Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jingning Guo
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wen Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lang Liu
- School of Public Policy and Administration, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
17
|
Feng W, Shao Z, Wang Q, Xie M. Size-resolved light-absorbing organic carbon and organic molecular markers in Nanjing, east China: Seasonal variations and sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:122006. [PMID: 37302787 DOI: 10.1016/j.envpol.2023.122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Owing to the potential influence of light-absorbing organic carbon (OC), also termed "brown carbon" (BrC), on the planetary radiation budget, many studies have focused on its absorption in single-sized ranges of particulate matter (PM). However, the size distribution and organic tracer-based source apportionment of BrC absorption have not been extensively investigated. In this study, size-resolved PM samples were collected using multi-stage impactors from eastern Nanjing during each season in 2017. The light absorption of methanol-extractable OC at 365 nm (Abs365, Mm-1) was determined using spectrophotometry, and a series of organic molecular markers (OMMs) was measured using a gas chromatography-mass spectrometer. Fine PM with an aerodynamic diameter <2.1 μm (PM2.1) dominated Abs365 (79.8 ± 10.4%) of the total size ranges with maxima and minima in winter and summer, respectively. The distributions of Abs365 shifted to larger PM sizes from winter to spring and summer due to lower primary emissions and increased BrC chromophores in dust. Except for low-volatility (po,*L < 10-10 atm) polycyclic aromatic hydrocarbons (PAHs), the non-polar OMMs, including n-alkanes, PAHs, oxygenated PAHs, and steranes, showed a bimodal distribution pattern. Secondary products of biogenic precursors and biomass burning tracers presented a unimodal distribution peaking at 0.4-0.7 μm, while sugar alcohols and saccharides were enriched in coarse PM. Their seasonal variations in average concentrations reflected intense photochemical reactions in summer, more biomass burning emissions in winter, and stronger microbial activity in spring and summer. Positive matrix factorization was used for the source apportionment of Abs365 in fine and coarse PM samples. Biomass burning contributed an average of 53.9% to the Abs365 of PM2.1 extracts. The Abs365 of coarse PM extracts was associated with various dust-related sources where the aging processes of aerosol organics could occur.
Collapse
Affiliation(s)
- Wei Feng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Zhijuan Shao
- School of Environment Science and Engineering, Suzhou University of Science and Technology ShiHu Campus, 99 Xuefu Road, Suzhou, 215009, China
| | - Qin'geng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mingjie Xie
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China.
| |
Collapse
|
18
|
Wang Y, Feng Z, Yuan Q, Shang D, Fang Y, Guo S, Wu Z, Zhang C, Gao Y, Yao X, Gao H, Hu M. Environmental factors driving the formation of water-soluble organic aerosols: A comparative study under contrasting atmospheric conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161364. [PMID: 36603612 DOI: 10.1016/j.scitotenv.2022.161364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Water-soluble organic carbon (WSOC), as major fractions of atmospheric aerosols, have gained attention due to their light-absorption properties. To illustrate the sources and key environmental factors driving WSOC formation under different atmospheric conditions, a comparative study was conducted by summarizing the results obtained from five field campaigns at inland (urban, suburban or regional) sites and a coastal site during different seasons. Organic carbon concentrations varied from 8.5 μg/m3 at the summer regional site to 17.5 μg/m3 at the winter urban site, with 46 %- 89 % of the mass as WSOC. Based on correlation analysis, primary combustion emissions were more important in winter than in summer, and secondary formation was an important source of WSOC during winter, summer and autumn. Atmospheric oxidants (NO2, O3), aerosol liquid water (ALW) and ambient RH were important factors influencing the WSOC formation, while their roles varied in different atmospheres. We observed a seasonal transition of atmospheric oxidants dominating the WSOC formation from O3 and NO2-driven conditions in summer to NO2-driven conditions in winter. Elevated ALW or ambient RH generally favor the WSOC formation, while the WSOC dependence of ALW varied among different ALW ranges. As the increasing of ALW or ambient RH, a transition of WSOC formation from "RH/ALW-limited regime" under low-ALW conditions, to "RH/ALW and precursor-driven regime" under medium-ALW/RH, and to "precursor-limited (RH/ALW-excess) regime" were observed for the inland atmospheric conditions. Under the high-RH and ALW conditions in coastal areas, ALW or ambient RH was generally not a limiting factor for WSOC formation.
Collapse
Affiliation(s)
- Yujue Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Zeyu Feng
- Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Qi Yuan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuan Fang
- Qingdao Eco-environment Monitoring Center, Shandong, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chao Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaohong Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Paraskevopoulou D, Kaskaoutis DG, Grivas G, Bikkina S, Tsagkaraki M, Vrettou IM, Tavernaraki K, Papoutsidaki K, Stavroulas I, Liakakou E, Bougiatioti A, Oikonomou K, Gerasopoulos E, Mihalopoulos N. Brown carbon absorption and radiative effects under intense residential wood burning conditions in Southeastern Europe: New insights into the abundance and absorptivity of methanol-soluble organic aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160434. [PMID: 36427708 DOI: 10.1016/j.scitotenv.2022.160434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Biomass burning is a major source of Brown Carbon (BrC), strongly contributing to radiative forcing. In urban areas of the climate-sensitive Southeastern European region, where strong emissions from residential wood burning (RWB) are reported, radiative impacts of carbonaceous aerosols remain largely unknown. This study examines the absorption properties of water- and methanol-soluble organic carbon (WSOC, MeS_OC) in a city (Ioannina, Greece) heavily impacted by RWB. Measurements were performed during winter (December 2019 - February 2020) and summer (July - August 2019) periods, characterized by RWB and photochemical processing of organic aerosol (OA), respectively. PM2.5 filter extracts were analyzed spectrophotometrically for water- and methanol-soluble BrC (WS_BrC, MeS_BrC) absorption. WSOC concentrations were quantified using TOC analysis, while those of MeS_OC were determined using a newly developed direct quantification protocol, applied for the first time to an extended series of ambient samples. The direct method led to a mean MeS_OC/OC of 0.68 and a more accurate subsequent estimation of absorption efficiencies. The mean winter WS_BrC and MeS_BrC absorptions at 365 nm were 13.9 Mm-1 and 21.9 Mm-1, respectively, suggesting an important fraction of water-insoluble OA. Mean winter WS_BrC and MeS_BrC absorptions were over 10 times those observed in summer. MeS_OC was more absorptive than WSOC in winter (mean mass absorption efficiencies - MAE365: 1.81 vs 1.15 m2 gC-1) and especially in summer (MAE: 1.12 vs 0.27 m2 gC-1) due to photo-dissociation and volatilization of BrC chromophores. The winter radiative forcing (RF) of WS_BrC and MeS_BrC relative to elemental carbon (EC) was estimated at 8.7 % and 16.7 %, respectively, in the 300-2500 nm band. However, those values increased to 48.5 % and 60.2 % at 300-400 nm, indicating that, under intense RWB, BrC forcing becomes comparable to that of soot. The results highlight the consideration of urban BrC emissions in radiative transfer models, as a considerable climate forcing factor.
Collapse
Affiliation(s)
- D Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece.
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - S Bikkina
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - M Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - I M Vrettou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - K Tavernaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - K Papoutsidaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - I Stavroulas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece; Climate and Atmosphere Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| | - E Liakakou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - A Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - K Oikonomou
- Climate and Atmosphere Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| | - E Gerasopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| |
Collapse
|
20
|
Bai Z, Wen W, Zhang W, Li L, Wang L, Chen J. The light absorbing and molecule characteristic of PM 2.5 brown carbon observed in urban Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120874. [PMID: 36526053 DOI: 10.1016/j.envpol.2022.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Both brown carbon (BrC) and the non-absorbing components coated on black carbon (BC) aerosols can enhance the light absorption of BC aerosols. BrC is a complicated mixture of organic compounds and not well characterized, which hinders exploring the links between BrC and optical properties. We conducted an in-depth field study on optical properties of ambient aerosols at a monitoring site in Shanghai, China via real-time monitoring and offline analysis. Results showed that BrC caused light absorption coefficients were 3.3 ± 3.3 Mm-1, 2.2 ± 5.0 Mm-1, 1.2 ± 1.2 Mm-1 at λ = 370, 470 and 520 nm, respectively, accounting for 11%, 10%, 6% of the total aerosol absorption for the corresponding wavelengths. A larger proportion of long-chain aliphatic organosulfates (OSs, CnH2n+2O4S, (CH2)nO5S, (CH2)nO6S) with double bond equivalent (DBE) values of 0 or 1 accounted for 5-20% of the light absorption (λ = 365 nm) for soluble brown carbon (BrC), which were dominating for the days with less N-containing aromatic compounds appearing. Furthermore, the structure of CnH2n+2O4S, (CH2)nO5S, (CH2)nO6S were explored using target MS/MS of HPLC-Q-ToF-MS: (CH2)nO5S series, the most abundant family of OSs, were constructed by functionalizing a saturated hydrocarbon with one sulfate and one carbonyl group. CnH2n+2O4S series were oxidized with only one sulfate group in the aliphatic chain R. (CH2)nO6S series were proposed as aliphatic OSs with one ester group. We speculated aliphatic OSs were formed via acid catalyzed perhydrolysis of hydroperoxides derived from long-chain alkanes releasing from diesel fueled vehicles, followed by the reaction with sulfate anion radicals. Therefore, relevant technologies should be further explored to reduce the impacts from vehicle emissions.
Collapse
Affiliation(s)
- Zhe Bai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; School of Ecology and Environment, Inner Mongolia University, China
| | - Wen Wen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Ling Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Institute of Eco-Chongming (IEC), Shanghai, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Institute of Eco-Chongming (IEC), Shanghai, China
| |
Collapse
|
21
|
Zhang T, Shen Z, Huang S, Lei Y, Zeng Y, Sun J, Zhang Q, Ho SSH, Xu H, Cao J. Optical properties, molecular characterizations, and oxidative potentials of different polarity levels of water-soluble organic matters in winter PM 2.5 in six China's megacities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158600. [PMID: 36089047 DOI: 10.1016/j.scitotenv.2022.158600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Humic-like substances (HULIS) accounted for a great fraction of water-soluble organic matter (WSOM) in PM2.5, which efficiently absorb ultraviolet (UV) radiation and pose climate and health impacts. In this study, the molecular structure, optical properties, and oxidative potential (OP) of acid- and neutral-HULIS (denoted as HULIS-a, and HULIS-n, respectively), and high-polarity WSOM (HP-WSOM) were investigated in winter PM2.5 collected at six China's megacities. For both carbon levels and optical absorption coefficients (babs_365), HULIS-a/HULIS-n/HP-WSOM showed significant spatial differences. For each city, the carbon levels and babs_365 follow a similar order of HULIS-n > HULIS-a > HP-WSOM. Besides, the babs_365 of HULIS-n and HULIS-a showed the same order of Harbin > Beijing ≈ Wuhan > Xi'an > Guangzhou > Chengdu, while HP-WSOM exhibited an order of Wuhan > Chengdu > Xi'an > Harbin > Beijing > Guangzhou. Both HULIS-a and HULIS-n were abundant in aromatic and aliphatic compounds, whereas HP-WSOM was dominated by a carboxylic acid group. The OP (in unit of nmol H2O2 μg-1C) followed the order of HP-WSOM > HULIS-a > HULIS-n in all the cities. The OPs of HULIS-a, HULIS-n, and HP-WSOM in Harbin and Beijing were much higher than those of other cities, attributing to the high contribution from biomass burning. Highly positive correlations between reactive oxygen species (ROS) of HULIS-a and MAE365 were obtained in Chengdu, Wuhan, and Harbin, but ROS of HULIS-n had stronger correlation with MAE365 in Harbin, Chengdu, and Xi'an.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Shasha Huang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yali Lei
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaling Zeng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
22
|
Islam MR, Li T, Mahata K, Khanal N, Werden B, Giordano MR, Praveen Puppala S, Dhital NB, Gurung A, Saikawa E, Panday AK, Yokelson RJ, DeCarlo PF, Stone EA. Wintertime Air Quality across the Kathmandu Valley, Nepal: Concentration, Composition, and Sources of Fine and Coarse Particulate Matter. ACS EARTH & SPACE CHEMISTRY 2022; 6:2955-2971. [PMID: 36561192 PMCID: PMC9761783 DOI: 10.1021/acsearthspacechem.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The Kathmandu Valley in Nepal experiences poor air quality, especially in the dry winter season. In this study, we investigated the concentration, chemical composition, and sources of fine and coarse particulate matter (PM2.5, PM10, and PM10-2.5) at three sites within or near the Kathmandu Valley during the winter of 2018 as part of the second Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE 2). Daily PM2.5 concentrations were very high throughout the study period, ranging 72-149 μg m-3 at the urban Ratnapark site in Kathmandu, 88-161 μg m-3 at the suburban Lalitpur site, and 40-74 μg m-3 at rural Dhulikhel on the eastern rim of the Kathmandu Valley. Meanwhile, PM10 ranged 194-309, 174-377, and 64-131 μg m-3, respectively. At the Ratnapark site, crustal materials from resuspended soil contributed an average of 11% of PM2.5 and 34% of PM10. PM2.5 was largely comprised of organic carbon (OC, 28-30% by mass) and elemental carbon (EC, 10-14% by mass). As determined by chemical mass balance source apportionment modeling, major PM2.5 OC sources were garbage burning (15-21%), biomass burning (10-17%), and fossil fuel (14-26%). Secondary organic aerosol (SOA) contributions from aromatic volatile organic compounds (13-23% OC) were larger than those from isoprene (0.3-0.5%), monoterpenes (0.9-1.4%), and sesquiterpenes (3.6-4.4%). Nitro-monoaromatic compounds-of interest due to their light-absorbing properties and toxicity-indicate the presence of biomass burning-derived SOA. Knowledge of primary and secondary PM sources can facilitate air quality management in this region.
Collapse
Affiliation(s)
- Md. Robiul Islam
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Tianyi Li
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | | | - Benjamin Werden
- Department
of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Giordano
- Univ
Paris Est Creteil and Université de Paris, CNRS, LISA, Créteil 94000, France
| | - Siva Praveen Puppala
- International
Centre for Integrated Mountain Development (ICIMOD), Khumaltar, Lalitpur 44700, Nepal
| | - Narayan Babu Dhital
- Patan
Multiple
Campus, Department of Environmental Science, Tribhuvan University, Lalitpur 44700, Nepal
| | - Anobha Gurung
- Clean
Cooking Alliance, Washington, District of Columbia 20006, United States
| | - Eri Saikawa
- Department
of Environmental Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Arnico K. Panday
- Institute
for Integrated Development Studies (IIDS), Kathmandu 44600, Nepal
| | - Robert J. Yokelson
- Department
of Chemistry, University of Montana, Missoula, Montana 59812, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elizabeth. A. Stone
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
23
|
Ivančič M, Gregorič A, Lavrič G, Alföldy B, Ježek I, Hasheminassab S, Pakbin P, Ahangar F, Sowlat M, Boddeker S, Rigler M. Two-year-long high-time-resolution apportionment of primary and secondary carbonaceous aerosols in the Los Angeles Basin using an advanced total carbon-black carbon (TC-BC(λ)) method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157606. [PMID: 35896132 DOI: 10.1016/j.scitotenv.2022.157606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In recent years, carbonaceous aerosols (CA) have been recognized as a significant contributor to the concentration of particles smaller than 2.5 μm (i.e., PM2.5), with a negative impact on public health and Earth's radiative balance. In this study, we present a method for CA apportionment based on high-time-resolution measurements of total carbon (TC), black carbon (BC), and spectral dependence of absorption coefficient using a recently developed Carbonaceous Aerosol Speciation System (CASS). Two-year-long CA measurements at two different locations within California's Los Angeles Basin are presented. CA was apportioned based on its optical absorption properties, organic or elemental carbon composition, and primary or secondary origin. We found that the secondary organic aerosols (SOA), on average, represent >50 % of CA in the study area, presumably resulting from the oxidation of anthropogenic and biogenic volatile organic components. Remarkable peaks of SOA in summer afternoons were observed, with a fractional contribution of up to 90 %. On the other hand, the peak of primary emitted CA, consisting of BC and primary organic aerosol (POA), contributed >80 % to the CA during morning rush hours on winter working days. The light absorption of BC dominated over the brown carbon (BrC), which contributed to 20 % and 10 % of optical absorption at the lower wavelength of 370 nm during winter nights and summer afternoons, respectively. The highest contribution of BrC, up to 50 %, was observed during the wildfire periods. Although the uncertainty levels can be high for some CA components (such as split between primary emitted and secondary formed BrC during winter nights), further research focused on the optical properties of CA at different locations may help to better constrain the parameters used in CA apportionment studies. We believe that the CASS system combined with the apportionment method presented in this study can offer simplified and cost-effective insights into the composition of carbonaceous aerosols.
Collapse
Affiliation(s)
- Matic Ivančič
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia.
| | - Asta Gregorič
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia; Centre for Atmospheric Research, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Gašper Lavrič
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia
| | - Bálint Alföldy
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia
| | - Irena Ježek
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia
| | - Sina Hasheminassab
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Payam Pakbin
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Faraz Ahangar
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Mohammad Sowlat
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Steven Boddeker
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Martin Rigler
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Jordan CE, Anderson BE, Barrick JD, Blum D, Brunke K, Chai J, Chen G, Crosbie EC, Dibb JE, Dillner AM, Gargulinski E, Hudgins CH, Joyce E, Kaspari J, Martin RF, Moore RH, O’Brien R, Robinson CE, Schuster GL, Shingler TJ, Shook MA, Soja AJ, Thornhill KL, Weakley AT, Wiggins EB, Winstead EL, Ziemba LD. Beyond the Ångström Exponent: Probing Additional Information in Spectral Curvature and Variability of In Situ Aerosol Hyperspectral (0.3-0.7 μm) Optical Properties. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD037201. [PMID: 36590057 PMCID: PMC9787633 DOI: 10.1029/2022jd037201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Ångström exponents (α) allow reconstruction of aerosol optical spectra over a broad range of wavelengths from measurements at two or more wavelengths. Hyperspectral measurements of atmospheric aerosols provide opportunities to probe measured spectra for information inaccessible from only a few wavelengths. Four sets of hyperspectral in situ aerosol optical coefficients (aerosol-phase total extinction, σ ext, and absorption, σ abs; liquid-phase soluble absorption from methanol, σ MeOH-abs, and water, σ DI-abs, extracts) were measured from biomass burning aerosols (BBAs). Hyperspectral single scattering albedo (ω), calculated from σ ext and σ abs, provide spectral resolution over a wide spectral range rare for this optical parameter. Observed spectral shifts between σ abs and σ MeOH-abs/σ DI-abs argue in favor of measuring σ abs rather than reconstructing it from liquid extracts. Logarithmically transformed spectra exhibited curvature better fit by second-order polynomials than linear α. Mapping second order fit coefficients (a 1, a 2) revealed samples from a given fire tended to cluster together, that is, aerosol spectra from a given fire were similar to each other and somewhat distinct from others. Separation in (a 1, a 2) space for spectra with the same α suggest additional information in second-order parameterization absent from the linear fit. Spectral features found in the fit residuals indicate more information in the measured spectra than captured by the fits. Above-detection σ MeOH-abs at 0.7 μm suggests assuming all absorption at long visible wavelengths is BC to partition absorption between BC and brown carbon (BrC) overestimates BC and underestimates BrC across the spectral range. Hyperspectral measurements may eventually discriminate BBA among fires in different ecosystems under variable conditions.
Collapse
Affiliation(s)
- Carolyn E. Jordan
- National Institute of AerospaceHamptonVAUSA
- NASA Langley Research CenterHamptonVAUSA
| | | | - John D. Barrick
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | | | | | | - Gao Chen
- NASA Langley Research CenterHamptonVAUSA
| | - Ewan C. Crosbie
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | | | | - Emily Gargulinski
- National Institute of AerospaceHamptonVAUSA
- NASA Langley Research CenterHamptonVAUSA
| | - Charles H. Hudgins
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | | | | | | | | | | - Claire E. Robinson
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
- William & MaryWilliamsburgVAUSA
| | | | | | | | - Amber J. Soja
- National Institute of AerospaceHamptonVAUSA
- NASA Langley Research CenterHamptonVAUSA
| | - Kenneth L. Thornhill
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | | | | - Edward L. Winstead
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications Inc.HamptonVAUSA
| | | |
Collapse
|
25
|
Aregahegn KZ, Felber T, Tilgner A, Hoffmann EH, Schaefer T, Herrmann H. Kinetics and Mechanisms of Aqueous-Phase Reactions of Triplet-State Imidazole-2-carboxaldehyde and 3,4-Dimethoxybenzaldehyde with α,β-Unsaturated Carbonyl Compounds. J Phys Chem A 2022; 126:8727-8740. [DOI: 10.1021/acs.jpca.2c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kifle Z. Aregahegn
- Department of Chemistry, Debre Berhan University, P.O. Box 445, 1000 Debre Berhan, Ethiopia
| | - Tamara Felber
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Erik H. Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
26
|
Zhang R, Li S, Fu X, Pei C, Wang J, Wu Z, Xiao S, Huang X, Zeng J, Song W, Zhang Y, Bi X, Wang X. Emissions and light absorption of PM 2.5-bound nitrated aromatic compounds from on-road vehicle fleets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120070. [PMID: 36058316 DOI: 10.1016/j.envpol.2022.120070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Vehicle emissions are an important source of nitrated aromatic compounds (NACs) in particulate size smaller 2.5 μm (PM2.5), which adversely affect human health and biodiversity, especially in urban areas. In this study, filter-based PM2.5 samples were collected during October 14-19, 2019, in a busy urban tunnel (approximately 35,000 vehicles per day) in south China to identify PM2.5-bound NACs. Among them, 2,8-dinitrodibenzothiophene, 3-nitrodibenzofuran and 2-nitrodibenzothiophene were the most abundant nitrated polycyclic aromatic hydrocarbons (NPAHs), while 2-methyl-4-nitrophenol, 2,4-dinitrophenol, 3-methyl-4-nitrophenol and 4-nitrophenol were the most abundant nitrophenols (NPs). The observed mean fleet emission factors (EFs) of NPAHs and NPs were 2.2 ± 2.1 and 7.7 ± 4.1 μg km-1, and were 2.9 ± 2.7 and 10.2 ± 5.4 μg km-1 if excluding electric and liquefied petroleum gas vehicles, respectively. Regression analysis revealed that diesel vehicles (DVs) had NPAH-EFs (55.3 ± 5.3 μg km-1) approximately 180 times higher than gasoline vehicles (GVs) (0.3 ± 0.2 μg km-1), and NP-EFs (120.6 ± 25.8 μg km-1) approximately 30 times higher than GVs (4.1 ± 0.2 μg km-1), and thus 89% NPAH emissions and 56% NP emissions from the onroad fleets were contributed by DVs although DVs only accounted for 3.3% in the fleets. Methanol solution-based light absorption measurements demonstrated that the mean incremental light absorption for methanol-soluble brown carbon at 365 nm was 6.8 ± 2.2 Mm-1, of which the 44 detected NACs only contributed about 1%. The mean EF of the 7 toxic NACs was approximately 3% that of the 16 priority PAHs; However, their benzo(a)pyrene toxic equivalence quotients (TEQBaP) could reach over 25% that of the PAHs. Moreover, 6-nitrochrysene mainly from DVs contributed 93% of the total TEQBaP of the NACs. This study demonstrated that enhancing DV emission control in urban areas could benefit the reduction of exposure to air toxins such as 6-nitrochrysene.
Collapse
Affiliation(s)
- Runqi Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuewei Fu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglei Pei
- University of Chinese Academy of Sciences, Beijing, 100049, China; Guangzhou Environmental Monitoring Center, Guangzhou, 510030, China
| | - Jun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfeng Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoxuan Xiao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqing Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Zhang L, Hu B, Liu X, Luo Z, Xing R, Li Y, Xiong R, Li G, Cheng H, Lu Q, Shen G, Tao S. Variabilities in Primary N-Containing Aromatic Compound Emissions from Residential Solid Fuel Combustion and Implications for Source Tracers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13622-13633. [PMID: 36129490 DOI: 10.1021/acs.est.2c03000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitroaromatic compounds (NACs) not only are strongly absorbing chromophores but also adversely affect human health. NACs can be emitted from incomplete combustions and can derive secondarily through photochemical reactions. Here, emission experiments were conducted for 31 fuel-stove combinations to elucidate variations in, and influencing factors of, NAC emission factors (EF∑NACs) and to explore potential tracers for different combustion sources. EF∑NACs varied by 2 orders of magnitude among different combinations. Differences in fuel type contributed more than the stove difference to the observed variation. EF∑NACs for biomass pellets was approximately 66% lower than that for raw biomass, although the bulk organic and brown carbon EFs were 95% lower. 2-Nitro-1-naphthol was the most abundant individual compound, followed by 4-nitrocatechol, while acid compounds (salicylic acid and benzoic acid) were low in abundance (<1%). Substantially different profiles were observed between coal and biomass burning emissions. Biomass burning had more single-ring-based phenolic compounds with more 4-nitrocatechol, while in coal combustion, more two-ring products were produced. This study demonstrated much lower ratios of 2-nitro-1-naphthol/4-nitrocatechol for biomass in both traditional (2.0 ± 3.5) and improved stoves (3.0 ± 2.1) than for coals (15 ± 6). Coal and biomass burning differed in not only EF∑NACs but also compound profile, consequently leading to distinct health and climate impacts; moreover, the ratio of 2-nitro-1-naphthol/4-nitrocatechol may be used in source apportionment of NACs.
Collapse
Affiliation(s)
- Lu Zhang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bin Hu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Xinlei Liu
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Agricultural Renewable Resource Utilization Technology, Northeast Agricultural University, Harbin 150006, China
| | - Zhihan Luo
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ran Xing
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaojie Li
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Rui Xiong
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Gang Li
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hefa Cheng
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qiang Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Guofeng Shen
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Li X, Zhang C, Zhuo W, Zhuo Y, Yang J, Song M, Mu Y. Significant emission reductions of carbonaceous aerosols from residential coal burning by a novel stove. J Environ Sci (China) 2022; 120:135-143. [PMID: 35623767 DOI: 10.1016/j.jes.2021.08.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 08/18/2021] [Indexed: 06/15/2023]
Abstract
Carbonaceous aerosols (CA) are crucial components in the atmospheric PM2.5 and derived from diverse sources. One of the major sources for CA is from the incomplete combustion of bituminous coal that has been prevailingly used by household stoves in rural areas for heating during winter. To efficiently eliminate the CA emission, a new household stove (NHS) was developed based on a novel combustion technology and CA emissions from the NHS and a traditional household stove (THS) were comparably investigated under the actual stove operation conditions in a farmer's house. Compared with the THS, the emission factors of organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) from the NHS were reduced by 96%±1%, 98%±1%, and 91%±1% under the flaming process and 95%±1%, 96%±2%, and 83%±4% under the smoldering process, respectively. Additionally, the mass absorption efficiency of WSOC from the NHS reduced by 3 folds and the radiative forcing by WSOC relative to EC shrank remarkably by a factor of 3-8. Based on the reduction of emissions and light absorption of WSOC, the promotion of the NHS offers a possible solution to achieve the clean combustion of residential solid fuel.
Collapse
Affiliation(s)
- Xuran Li
- Research Center for Eco-Environmenta1l Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Center for Eco-Environmenta1l Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weimin Zhuo
- Xuzhou Zhongkai Mechanical& Electrical Equipment Manufacturing Co., Ltd., Xuzhou 221300, China
| | - Yuxuan Zhuo
- Xuzhou Zhongkai Mechanical& Electrical Equipment Manufacturing Co., Ltd., Xuzhou 221300, China
| | - Jincheng Yang
- Xuzhou Zhongkai Mechanical& Electrical Equipment Manufacturing Co., Ltd., Xuzhou 221300, China
| | - Min Song
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yujing Mu
- Research Center for Eco-Environmenta1l Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
29
|
Jiang X, Liu D, Li Q, Tian P, Wu Y, Li S, Hu K, Ding S, Bi K, Li R, Huang M, Ding D, Chen Q, Kong S, Li W, Pang Y, He D. Connecting the Light Absorption of Atmospheric Organic Aerosols with Oxidation State and Polarity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12873-12885. [PMID: 36083258 DOI: 10.1021/acs.est.2c02202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The light-absorbing organic aerosol (OA) constitutes an important fraction of absorbing components, counteracting major cooling effect of aerosols to climate. The mechanisms in linking the complex and changeable chemistry of OA with its absorbing properties remain to be elucidated. Here, by using solvent extraction, ambient OA from an urban environment was fractionated according to polarity, which was further nebulized and online characterized with compositions and absorbing properties. Water extracted high-polar compounds with a significantly higher oxygen to carbon ratio (O/C) than methanol extracts. A transition O/C of about 0.6 was found, below and above which the enhancement and reduction of OA absorptivity were observed with increasing O/C, occurring on the less polar and high polar compounds, respectively. In particular, the co-increase of nitrogen and oxygen elements suggests the important role of nitrogen-containing functional groups in enhancing the absorptivity of the less polar compounds (e.g., forming nitrogen-containing aromatics), while further oxidation (O/C > 0.6) on high-polar compounds likely led to fragmentation and bleaching chromophores. The results here may reconcile the previous observations about darkening or whitening chromophores of brown carbon, and the parametrization of O/C has the potential to link the changing chemistry of OA with its polarity and absorbing properties.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dantong Liu
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qian Li
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ping Tian
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Yangzhou Wu
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Siyuan Li
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kang Hu
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shuo Ding
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kai Bi
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Ruijie Li
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Mengyu Huang
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Deping Ding
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Xi'an 710021, China
| | - Shaofei Kong
- Department of Atmospheric Science, School of Environmental Science, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Weijun Li
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yu Pang
- Organic Geochemistry Unit, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ding He
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| |
Collapse
|
30
|
Zhan Y, Li J, Tsona NT, Chen B, Yan C, George C, Du L. Seasonal variation of water-soluble brown carbon in Qingdao, China: Impacts from marine and terrestrial emissions. ENVIRONMENTAL RESEARCH 2022; 212:113144. [PMID: 35341756 DOI: 10.1016/j.envres.2022.113144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Brown carbon (BrC) has been attracting more and more attention owing to its significant effects on climate. However, the limited knowledge on its chemical composition and sources limits the precision of aerosol radiative forcing estimated by climate models. In this study, the chemical components of PM2.5 and optical properties of water-soluble BrC (WS-BrC) were investigated from atmospheric particles collected in summer and winter in Qingdao, China. On the whole, though there were slight diurnal variations, seasonal differences were more obvious. Due to the influence of emission sources and meteorological conditions, the heavier pollution of carbonaceous aerosols occurred in winter. By comparison, the absorption Ångström exponent (AAE) and mass absorption efficiency of WS-BrC at 365 nm (MAE365) showed that WS-BrC in winter had stronger wavelength dependence and light absorption capacity, which might be associated with biomass burning source contributions. This was further confirmed by a strong correlation between the light absorption coefficient at 365 nm (Abs365) and non-sea salt K+, an indicator for biomass burning emissions. Four fluorescent components (C1∼C4) with high unsaturation in water-soluble organic carbon (WSOC) were identified by excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis method, which showed that WSOC in Qingdao was mainly related to humic-like chromophores. It is worth noting that C1 was similar to the water-soluble chromophore of simulated marine aerosols, which proved that marine emissions do have a certain impact on atmospheric particulate matter in coastal areas. In addition, the results of source analysis showed that WS-BrC originated from different terrestrial sources in different seasons. The current results may help to improve the knowledge of optical properties of WS-BrC in coastal cities, optimize the global climate model and formulate air management policies.
Collapse
Affiliation(s)
- Yanan Zhan
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Bing Chen
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Christian George
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
31
|
Gu C, Cui S, Ge X, Wang Z, Chen M, Qian Z, Liu Z, Wang X, Zhang Y. Chemical composition, sources and optical properties of nitrated aromatic compounds in fine particulate matter during winter foggy days in Nanjing, China. ENVIRONMENTAL RESEARCH 2022; 212:113255. [PMID: 35430278 DOI: 10.1016/j.envres.2022.113255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Functionalized aromatic compounds are one of the most important light-absorbing organic chromophores - so-called brown carbon (BrC) - in fine particulate matter (PM2.5). In this study, we conducted a wintertime field campaign to measure eight nitrated aromatic compounds (NACs) in PM2.5 with offline analysis techniques, including liquid chromatograph mass spectrometer (LC-MS) and aerodyne high-resolution aerosol mass spectrometer (AMS) measurements, during foggy and nonfoggy days in suburban Nanjing in the Yangtze River Delta region, China. On average, 4-nitrophenol could be one of the most important light absorbing materials in the observed BrC, which accounted for over 40% of the mass concentration of identified chromophores. The mass concentration of 2-methyl-4-nitrophenol and 2,6-dimethyl-4-nitrophenol were evidently increased during foggy days, contribution of which to total NACs were increased by 10% and 5%, respectively. Positive matrix factorization analysis of combining LC-MS and AMS dataset was performed to identify the primary and secondary sources of NACs. Primary sources, e.g., traffic and solid-fuel combustion, accounted for 71% of the sum of 4-nitrophenol, 2,6-dimethyl-4-nitrophenol and 3-nitrosalicylic acid, suggesting important contribution of primary emissions to these NACs. The contribution of secondary sources, associated with two oxygenated organic aerosols, could contribute 66% to 4-nitrophenol, reflecting the link of such nitrated aromatic compounds to secondary organic aerosol source. Together with optical measurements, 4-nitrophenol presented a high contribution (>50%) to the identified BrC absorbance in the light range 250 and 550 nm was observed. This could highlight an important role of such NACs in ambient BrC light absorption, despite its mass contribution to total organic carbon was negligible. Our work could improve the understanding of the links between optical properties and chemical composition of BrC, and the difference between BrC chromophores from nonfoggy days and foggy days under the typical polluted atmospheric conditions.
Collapse
Affiliation(s)
- Chenjuan Gu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shijie Cui
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Zhiying Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Meijuan Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zihe Qian
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zhiyi Liu
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Xinfeng Wang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Yunjiang Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
32
|
Kang H, Shang X, Abdumutallip M, Chen Y, Li L, Wang X, Li C, Ouyang H, Tang X, Wang L, Rudich Y, Chen J. Accurate observation of black and brown carbon in atmospheric fine particles via a versatile aerosol concentration enrichment system (VACES). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155817. [PMID: 35561930 DOI: 10.1016/j.scitotenv.2022.155817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Carbonaceous aerosols (CAs) are major components of fine particulate matter (PM2.5) that dramatically influence the energy budget of Earth. However, accurate assessment of the climatic impacts of CAs is still challenging due to the large uncertainties remaining in the measurement of their optical properties. In this respect, a modified versatile aerosol concentration enrichment system integrated into optical instruments (VACES-OPTS) was set up to increase particle concentration and amplify signal-noise ratio during optical measurement. Based on the novel technique, this study was able to lower the detection limit of CAs by an order of magnitude under high temporal resolution (2 h) and small sampling flow (6 L min-1). Besides, stable and reliable optical data were obtained for absorption apportionment and source identification of black carbon (BC) and brown carbon (BrC). In the field application of the new system, high absorption coefficient of CAs in Shanghai, China was witnessed. Further analysis of the contribution of black carbon BC and BrC to light absorption revealed that BrC could account for over 15% of the total absorption at 370 nm. According to the potential source contribution function model (PSCF) classification, CAs with strong light absorption in urban Shanghai originated not only from highly polluted inland China but also from active marine ship emissions.
Collapse
Affiliation(s)
- Huihui Kang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xiaona Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Munira Abdumutallip
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yunqian Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ling Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaofei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Huiling Ouyang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xu Tang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jianmin Chen
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
33
|
Zhang C, Gao S, Yan F, Kang S, He C, Li C. An overestimation of light absorption of brown carbon in ambient particles caused by using filters with large pore size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155286. [PMID: 35429555 DOI: 10.1016/j.scitotenv.2022.155286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
As an important component of carbonaceous particles, organic carbon (OC) plays a significant role in radiative forcing in the atmosphere. Recently, the warming effect of light-absorbing OC has been emphasized. Water-soluble organic carbon (WSOC) is commonly used as a surrogate to investigate the light absorption of OC. Thus far, filters with 0.45 μm (PS1) and 0.20 μm pore sizes (PS2) are both used to investigate the light absorption of WSOC, which may cause large divergent results. In this study, we found that the light absorption ability of WSOC treated with PS1 was higher than that of PS2 due to the extinction of suspended particles (e.g., black carbon) with particle size between 0.20 μm and 0.45 μm, although the concentrations of WSOC treated with PS1 and PS2 were very close. This phenomenon was more remarkable at visible wavelengths, resulting in an overestimation of the warming effect of WSOC by 9%-22% for aerosol samples treated by PS1, with the highest values occurring in samples heavily influenced by fossil fuel burning emissions. An overestimation of WSOC light absorption treated by PS1 occurred in the investigated ambient aerosol samples from three sites, so it may be a general phenomenon that also exists in other regions of the world. Therefore, to achieve the actual solar radiative forcing of OC in the atmosphere, it is recommended to use PS2 in the future, and reported data of WSOC treated by PS1 should be re-evaluated.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaopeng Gao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangping Yan
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cenlin He
- Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
| | - Chaoliu Li
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Ma L, Li Z, Li B, Fu D, Sun X, Sun S, Lu L, Jiang J, Meng F, Qi H, Zhang R. Light-absorption and fluorescence fingerprinting characteristics of water and methanol soluble organic compounds in PM 2.5 in cold regions of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155081. [PMID: 35405231 DOI: 10.1016/j.scitotenv.2022.155081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
High-performance liquid chromatography-size exclusion chromatography and excitation-emission matrix (EEM) fluorescence spectroscopy were used to analyze the seasonal variations and potential sources of molecular weight (MW) separated light-absorbing chromophores and fluorophores of water-soluble organic compounds (WSOC) and methanol-soluble organic compounds (MSOC) in PM2.5 in cold areas of northern China. The results showed that the light-absorbing organics in MSOC had larger weight-average MW (Mw) (3.19 kDa) and number-average MW (Mn) (1.13 kDa) compared with WSOC (Mw: 1.41 kDa, Mn: 0.692 kDa). The light-absorption of organics showed a trend of winter>spring>autumn>summer and increased on air pollution days. Three fluorescent components including humic-like, protein-like, and terrestrial humic-like components in WSOC were extracted by parallel factor analysis (PARAFAC). Fluorophores in WSOC were dominated by humic-like and terrestrial humic-like components (67.7%). Three fluorescent components extracted from MSOC were low oxidation humic-like, polycyclic aromatic hydrocarbon (PAH)-like, and protein-like components respectively. It is worth noting that compared with WSOC, MSOC may have a higher human health risk due to the presence of PAH-like components. The combination of PARAFAC and self-organizing map had the potential to identify potential sources of fluorophores. It provided a new perspective for comprehensively exploring the characteristics of fluorophores in aerosols. This study provided a reference for further understanding the chemical composition and optical properties of organic aerosols in the cold regions of northern China.
Collapse
Affiliation(s)
- Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuo Li
- Department of Global Health, School of Public Health, Peking University, Beijing 100191, China
| | - Bo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donglei Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiazhong Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaojing Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinpan Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Rui Zhang
- Heilongjiang Metrology Institute of Measurement & Verification, Harbin 150036, China
| |
Collapse
|
35
|
Zhang Q, Li Z, Wei P, Wang Q, Tian J, Wang P, Shen Z, Li J, Xu H, Zhao Y, Dang X, Cao J. Insights into the day-night sources and optical properties of coastal organic aerosols in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154663. [PMID: 35318062 DOI: 10.1016/j.scitotenv.2022.154663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Organic aerosols (OAs) in particulate matter with an aerodynamic diameter of smaller than 2.5 μm (PM2.5) can affect the atmospheric radiation balance through varying molecular structure and light absorption of the aerosols. In this study, daytime and nighttime PM2.5 mass, and contents of OA including nitrated aromatic compounds (NACs), polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and hopanes were measured from April 11th to May 15th, 2017, at the coastal Sanya, China. The average concentration of 18 total quantified PAHs (∑PAHs) was 2.08 ± 1.13 ng·m-3, which was 2.8 and 12 times higher than that of ∑NACs and hopanes, while was 7.5 times lower that of n-alkanes. Combustion-derived PAHs contributed 74% to the ∑PAHs. This finding, in addition to a high benzo[a]pyrene/(benzo[a]pyrene+benzo[e]pyrene) ratio, indicates that the PAHs mainly derived from fresh fuel combustion during the sampling periods. Furthermore, dramatic day-night differences were observed in the loadings of total NACs, PAHs, and n-alkanes, which had a high coefficient of divergence values of 0.67, 0.47, and 0.32, respectively. Moreover, hopanes exhibited similar variation as well. The proportion of dimethyl-nitrophenol (DM-NP), dinitrophenol (DNP), and nitrosalicylic acid (NSA) in PM2.5 were higher in the daytime than at nighttime, suggesting the co-influence of primary emissions and secondary formation related to biomass combustion. The positive matrix factorization (PMF) model revealed that motor vehicle and biomass burning emissions were the two main pollution sources in the daytime, contributing 51.7% and 24.6%, respectively, of the total quantified OAs. The proportion of industrial coal combustion emissions was higher at nighttime (20.6%) than in daytime (10%). Both the PAHs and NACs displayed light absorbing capacities among OAs compounds over Sanya City, and thus their influence on solar radiation must be considered in the future control policies.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ziyi Li
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Wei
- School of Geography and Environment, Shandong Normal University, Jinan 250358, PR China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Jie Tian
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ping Wang
- Hainan Tropical Ocean University, Sanya 572022, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youzhi Zhao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiaoqing Dang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
36
|
Frka S, Šala M, Brodnik H, Štefane B, Kroflič A, Grgić I. Seasonal variability of nitroaromatic compounds in ambient aerosols: Mass size distribution, possible sources and contribution to water-soluble brown carbon light absorption. CHEMOSPHERE 2022; 299:134381. [PMID: 35318013 DOI: 10.1016/j.chemosphere.2022.134381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nitroaromatic compounds (NACs) as important constituents of atmospheric humic-like substances (HULIS) and brown carbon (BrC) affect the Earth's climate and pose a serious environmental hazard. We investigated seasonal size-segregated NACs in aerosol samples from the urban background environment in Ljubljana, Slovenia. Total concentrations of twenty NACs in PM15.6 were on average from 0.51 ng m-3 (summer) to 109 ng m-3 (winter), and contributed the most to submicron aerosols (more than 74%). Besides 4-nitrocatechol (4NC) as the prevailing species, methylnitrocatechols (MNCs) and nitrophenols (NPs), we reported on some very rarely mentioned, but also on five novel NACs (i.e., 3H4NBA: 3-hydroxy-4-nitrobenzoic acid, 3MeO4NP: 3-methoxy-4-nitrophenol, 4Et5NC: 4-ethyl-5-nitrocatechol, 3Et5NC: 3-ethyl-5-nitrocatechol and 3MeO5NC: 3-methoxy-5-nitrocatechol). Concentrations of 3MeO5NC, 4Et5NC and 3Et5NC were enhanced during cold seasons, contributing up to 11% to total NAC in winter. In cold season, NAC size distributions were characterized with the peaks in the broader size range of 0.305-1.01 μm (accumulation mode), with 4NC and alkyl-nitrocatechols (∑(M/Et)NC) as the most abundant, followed by 4-nitrosyringol, nitrophenols and nitroguaiacols. In spring, a pronounced peak of ∑(M/Et)NC was observed in the accumulation mode (0.305-0.56 μm) as well as in the coarse one. A strong correlation of all NACs with ∑(M/Et)NC and levoglucosan indicates that primary emissions of wood burning were the most important source of NACs, but their secondary formation (e.g., aqueous-phase at higher ambient RH) in cold season could also be a significant one. In warmer season, NACs may be mostly derived from traffic-related aromatic VOCs. The contribution of NACs to the light absorption of the aqueous extracts was up to 10-times higher (contribution to Abs365 up to 31%) than their mass contributions to WSOC (up to 3%) of corresponding size-segregated aerosols, confirming that most of the identified NACs are strong BrC chromophores.
Collapse
Affiliation(s)
- Sanja Frka
- Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000, Zagreb, Croatia; Department of Analytical Chemistry, National Institute of Chemistry, 1000, Ljubljana, Slovenia.
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, 1000, Ljubljana, Slovenia
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000, Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000, Ljubljana, Slovenia
| | - Ana Kroflič
- Department of Analytical Chemistry, National Institute of Chemistry, 1000, Ljubljana, Slovenia
| | - Irena Grgić
- Department of Analytical Chemistry, National Institute of Chemistry, 1000, Ljubljana, Slovenia.
| |
Collapse
|
37
|
Characterizing Atmospheric Brown Carbon and Its Emission Sources during Wintertime in Shanghai, China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Atmospheric brown carbon (BrC) is a kind of organic aerosol that efficiently absorbs ultraviolet-visible light and has an impact on climate forcing. We conducted an in-depth field study on ambient aerosols at a monitoring point in Shanghai, China, aiming to investigate the potential emission sources, molecular structures, and the contributions to light absorptions of ambient BrC chromophores. The results indicated that nine molecules were identified as nitroaromatic compounds, five of which (4-nitrophenol, 4-nitrocatechol, 2-nitro-1-naphthol, 3-methyl-4-nitrocatechol, and 2-methyl-4-nitrophenol) usually came from biomass burning or were produced from the photo-oxidation of anthropogenic volatile organic compounds (e.g., toluene, benzene) under high-NOx conditions. 4-nitrophenol was the strongest BrC chromophore and accounted for 13% of the total aerosol light absorption at λ = 365 nm. The estimated light absorption of black carbon was approximately three times the value of methanol-soluble BrC at λ = 365 nm. The ratios of K+/OC and K+/EC, and the correlations with WSOC, OC, HULIS-C and K+, and MAE values of methanol extracts also indicated that the primary emissions from biomass burning contributed more aerosol light absorption compared to the secondary formation during the wintertime in Shanghai. Therefore, biomass burning control is still the most urgent strategy for reducing BrC in Shanghai.
Collapse
|
38
|
Bao M, Zhang YL, Cao F, Lin YC, Hong Y, Fan M, Zhang Y, Yang X, Xie F. Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM 2.5 at Nanjing, China. ENVIRONMENTAL RESEARCH 2022; 206:112554. [PMID: 34951988 DOI: 10.1016/j.envres.2021.112554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/21/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Humic-like substances (HULIS), as important components of brown carbon (BrC), play an important role in climate change. In this study, one-year PM2.5 samples from 2017 to 2018 were collected at Nanjing, China and the water soluble HULIS and other chemical species were analyzed to investigate the seasonal variations, optical properties and possible sources. The HULIS concentrations exhibited highest in winter and lowest in summer. The annual averaged HULIS concentration was 2.61 ± 1.79 μg m-3, accounting for 45 ± 13% of water-soluble organic carbon (WSOC). The HULIS light absorption coefficient at 365 nm (Abs365, HULIS) averagely accounted for 71 ± 19% of that of WSOC, suggesting that HULIS are the main light-absorbing components in WSOC. The annual averaged Ångström absorption exponent and mass absorption efficiency of HULIS at 365 nm were 5.22 ± 0.77 and 1.71 ± 0.70 m2 g-1. Good correlations between HULIS with levoglucosan and K+ suggested biomass burning (BB) influence on HULIS. High concentrations of HULIS and secondary species (e.g., NO3-, SO42-, NH4+, C2O42-) were found in present of high relative humidity, indicating strong aqueous phase secondary HULIS formation. Secondary HULIS produced from anthropogenic and biogenic precursors were quantified based on the positive matrix factorization (PMF) model and the results showed that both fossil (55%) and biogenic (45%) emission sources made great contributions to HULIS. Fossil fuel combustion significantly contributed to HULIS formation throughout the whole year, which were enriched with more secondary HULIS (30%) than primary HULIS (25%). Strongest BB contribution (39%) was found in winter and biogenic SOA contribution (32%) was found in summer. A multiple linear regression (MLR) method was further applied to obtain specific source contributions to Abs365, HULIS and the results showed that strong light-absorbing chromophores were produced from anthropogenic precursors. Our results highlight the anthropogenic SOA and fossil fuels combustion contributions to HULIS in addition to the biggest contributor, BB, in urban area in China.
Collapse
Affiliation(s)
- Mengying Bao
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Fang Cao
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Chi Lin
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yihang Hong
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Meiyi Fan
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yuxian Zhang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaoying Yang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Feng Xie
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
39
|
Yang Z, Tsona NT, George C, Du L. Nitrogen-Containing Compounds Enhance Light Absorption of Aromatic-Derived Brown Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4005-4016. [PMID: 35192318 DOI: 10.1021/acs.est.1c08794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The formation of secondary brown carbon (BrC) is chemically complex, leading to an unclear relationship between its molecular composition and optical properties. Here, we present an in-depth investigation of molecular-specific optical properties and aging of secondary BrC produced from the photooxidation of ethylbenzene at varied NOx levels for the first time. Due to the pronounced formation of unsaturated products, the mass absorption coefficient (MAC) of ethylbenzene secondary organic aerosols (ESOA) at 365 nm was higher than that of biogenic SOA by a factor of 10. A high NOx level ([ethylbenzene]0/[NOx]0 < 10 ppbC ppb-1) was found to significantly increase the average MAC300-700nm of ESOA by 0.29 m2 g-1. The data from two complementary high-resolution mass spectrometers and quantum chemical calculations suggested that nitrogen-containing compounds were largely responsible for the enhanced light absorption of high-NOx ESOA, and multifunctional nitroaromatic compounds (such as C8H9NO3 and C8H9NO4) were identified as important BrC chromophores. High-NOx ESOA underwent photobleaching upon direct exposure to ultraviolet light. Photolysis did not lead to the significant decomposition of C8H9NO3 and C8H9NO4, indicating that nitroaromatic compounds may serve as relatively stable nitrogen reservoirs and would effectively absorb solar radiation during the daytime.
Collapse
Affiliation(s)
- Zhaomin Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Christian George
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
40
|
Li X, Yu F, Cao J, Fu P, Hua X, Chen Q, Li J, Guan D, Tripathee L, Chen Q, Wang Y. Chromophoric dissolved organic carbon cycle and its molecular compositions and optical properties in precipitation in the Guanzhong basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152775. [PMID: 34990674 DOI: 10.1016/j.scitotenv.2021.152775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The investigation of water-soluble organic carbon (WSOC), which is important in the biogeochemical cycle of precipitation, can provide a comprehensive view of chromophores within the atmospheric boundary layer. In this work, the optical properties and molecular characteristics of WSOC in precipitation over the Guanzhong Basin (GB) of North China were investigated using ultraviolet-visible (UV-vis) absorption and excitation-emission matrix (EEM) fluorescence spectra, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with electrospray ionization (ESI). Furthermore, sources and wet deposition of WSOC were estimated using in-situ measurements and modeling. The light-absorption by WSOC at 250-300 nm (UV region) and 400-550 nm (visible region) was 64.17% and 15.36% relative to the estimated total light-absorption, respectively. Parallel factor (PARAFAC) analysis revealed three types of fluorophores in WSOC at Xi'an (XN), including two humic-like substances (HULIS) and one protein-like substance (PRLIS), with HULIS accounting for 79% of total fluorescence intensity. FT-ICR MS analysis revealed that CHO and CHON were the most abundant components of WSOC at XN, each containing a variety of lignins, protein/amino sugars, and lipids. Moreover, the positive matrix factorization (PMF) model identified the contributions from three main sources (secondary precursors and aerosols, and coal combustion) of WSOC in precipitation at XN. The annual wet deposition flux of WSOC in precipitation at XN was estimated as about 0.63 g C m-2 yr-1, lower than that at other polluted cities. These findings add to our understanding of chromophoric dissolved organic carbon budgets, which is critical for accurately assessing the global carbon cycle.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Lab of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Feng Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Lab of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qian Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jinwen Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dongjie Guan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
41
|
Yang Z, Du L, Li Y, Ge X. Secondary organic aerosol formation from monocyclic aromatic hydrocarbons: insights from laboratory studies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:351-379. [PMID: 35171163 DOI: 10.1039/d1em00409c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monocyclic aromatic hydrocarbons (MAHs) are key anthropogenic pollutants and often dominate the volatile organic compound emissions and secondary organic aerosol (SOA) formation especially in the urban atmosphere. To evaluate the environmental impacts of SOA formed from the oxidation of MAHs (aromatic SOA), it is of great importance to elucidate their chemical composition, formation mechanism, and physicochemical properties under various atmospheric conditions. Here we seek to compile a common framework for the current studies on aromatic SOA formation and summarize the knowledge on what has been primarily learned from laboratory studies. This review begins with a brief summary of MAHs' emission characteristics, followed by an overview of atmospheric degradation mechanisms for MAHs as well as gas- and particle-phase reactions involving aromatic SOA formation. SOA formation processes highlighted in this review are complex and depend highly on environmental conditions, posing a substantial challenge for theoretical description of aromatic SOA formation. Therefore, the following issues are further discussed in detail: the response of gas-phase chemistry and aromatic SOA mass yield as well as composition to NOx levels, particle-phase reactions and molecular characterization of aromatic SOA in the presence of acidic sulfate, and physicochemical processes of SOA formation involving gas- or particle-phase water. Building on this current understanding, available experimental studies on the effects of environmental conditions were explored. A brief description of the atmospheric importance of aromatic SOA including their optical properties and health influences is also presented. Finally, we highlight the current challenges in laboratory studies and outline directions for future aromatic SOA research.
Collapse
Affiliation(s)
- Zhaomin Yang
- Environment Research Institute, Shandong University, 266000, Qingdao, China.
| | - Lin Du
- Environment Research Institute, Shandong University, 266000, Qingdao, China.
| | - Yongjie Li
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 210044, Nanjing, China
| |
Collapse
|
42
|
Ren Y, Wei J, Wang G, Wu Z, Ji Y, Li H. Evolution of aerosol chemistry in Beijing under strong influence of anthropogenic pollutants: Composition, sources, and secondary formation of fine particulate nitrated aromatic compounds. ENVIRONMENTAL RESEARCH 2022; 204:111982. [PMID: 34478729 DOI: 10.1016/j.envres.2021.111982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Nitrated aromatic compounds (NACs) constitute a key segment of brown carbon (BrC), thereby contributing to the light-absorbing characteristics of aerosols in the atmosphere. However, until recently, there is a scarcity of research on their generation in the urban environment. The current study is based upon an extensive field study of NACs from fine particle samples obtained at an urban location in Beijing in the spring and summer of 2017, which was characterized by both high anthropogenic volatile organic compounds (VOCs) and high-NOx dominated conditions. The mean total concentration of the nine NACs was 8.58 ng m-3 in spring and 8.54 ng m-3 in summer. In the spring, the most abundant NACs were 4-nitrophenol (33.7%) and 4-nitrocatechol (19.3%), while in the summer, the most abundant NACs were 4-nitroguaiacol (34.9%) and 2, 4-dinitrophenol (23%). Atmospheric NACs were primarily produced from coal combustion (52%) and biomass burning (32%) in spring, and originated from the secondary formation (37%) and traffic (35%) in summer. NO2 could promote the formation of NACs with a significant effect on their compositions, especially for nitrophenols and nitrocatechols. It can also affect the formation of nitrated aerosols and their existing form. Inorganic nitrates were increased to conversion in the daytime when NO2 concentrations were higher than 30 ppb, but the corresponding oxidation products shifted to primarily organic ones at night. The transition was VOC-sensitive regimes for NAC formation, and nitration of toluene was a more important pathway during the campaign in Beijing.
Collapse
Affiliation(s)
- Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jie Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of Ministry of Education of China, School of Geographic Sciences, East China Normal University, Shanghai, 200142, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
43
|
Zhao R, Zhang Q, Xu X, Wang W, Zhao W, Zhang W, Zhang Y. Light absorption properties and molecular compositions of water-soluble and methanol-soluble organic carbon emitted from wood pyrolysis and combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151136. [PMID: 34695472 DOI: 10.1016/j.scitotenv.2021.151136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Organic carbon (OC) emitted from biomass burning (BB) plays an important role in the global radiation budget. In this work, primary OC emitted from wood pyrolysis and combustion under nitrogen (N2) and air conditions in a tube furnace was investigated. The absorption spectra, chemical functional groups, and molecular compositions of OC were analyzed using UV-Vis-NIR spectrophotometer, Fourier transform infrared spectroscopy (FTIR), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. The light absorption properties showed that the mass absorption efficiency at 365 nm (MAE365) of methanol-soluble OC (MSOC) is 3.1-3.8 times higher than that of water-soluble OC (WSOC). Moreover, the MAE365 values derived from the N2 pyrolysis atmosphere are higher than that from the air atmosphere for both MSOC and WSOC. These results indicated that OC extracted by methanol has higher light absorption, especially for the OC emitted from the N2 pyrolysis atmosphere. Although the FTIR spectra showed identical functional groups for the OC from the air and N2 conditions, molecular compositions from the FT-ICR MS analysis presented significant differences. The molecular weight (MW), double bonds equivalent (DBE), DBE/C, and modified aromaticity index (AImod) of extracted OC showed higher values in MSOC than those in WSOC, and higher values under the N2 atmosphere than those under the air atmosphere. In addition, MAE365 showed positive correlations with MW (r = 0.94), DBE (r = 0.88), DBE/C (r = 0.96), and AImod (r = 0.97), whereas negative correlations with H/C (r = -0.97), O/C (r = -0.90), N/C (r = -0.88), and S/C (r = -0.93). These results indicated that molecules with larger MW and a high level of unsaturation and aromaticity present higher light absorption, while molecules with high elemental ratios of H/C, O/C, N/C, and S/C are adverse to light absorption.
Collapse
Affiliation(s)
- Ranran Zhao
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xuezhe Xu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Wenjia Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
44
|
Feng Z, Zheng F, Liu Y, Fan X, Yan C, Zhang Y, Daellenbach KR, Bianchi F, Petäjä T, Kulmala M, Bao X. Evolution of organic carbon during COVID-19 lockdown period: Possible contribution of nocturnal chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152191. [PMID: 34875334 PMCID: PMC8651497 DOI: 10.1016/j.scitotenv.2021.152191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 05/03/2023]
Abstract
Carbonaceous aerosol is one of the main components of atmospheric particulate matter, which is of great significance due to its role in climate change, earth's radiation balance, visibility, and human health. In this work, carbonaceous aerosols were measured in Shijiazhuang and Beijing using the OC/EC analyzer from December 1, 2019 to March 15, 2020, which covered the Coronavirus Disease 2019 (COVID-19) pandemic. The observed results show that the gas-phase pollutants, such as NO, NO2, and aerosol-phase pollutants (Primary Organic Compounds, POC) from anthropogenic emissions, were significantly reduced during the lockdown period due to limited human activities in North China Plain (NCP). However, the atmospheric oxidation capacity (Ox/CO) shows a significantly increase during the lockdown period. Meanwhile, additional sources of nighttime Secondary Organic Carbon (SOC), Secondary Organic Aerosol (SOA), and babs, BrC(370 nm) are observed and ascribed to the nocturnal chemistry related to NO3 radical. The Potential Source Contribution Function (PSCF) analysis indicates that the southeast areas of the NCP region contributed more to the SOC during the lockdown period than the normal period. Our results highlight the importance of regional nocturnal chemistry in SOA formation.
Collapse
Affiliation(s)
- Zemin Feng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Xiaolong Fan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaspar R Daellenbach
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Xiaolei Bao
- Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China; Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China.
| |
Collapse
|
45
|
Gao Y, Wang Q, Li L, Dai W, Yu J, Ding L, Li J, Xin B, Ran W, Han Y, Cao J. Optical properties of mountain primary and secondary brown carbon aerosols in summertime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150570. [PMID: 34582869 DOI: 10.1016/j.scitotenv.2021.150570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Brown carbon (BrC) can affect atmospheric radiation due to its strong absorption ability from the near ultraviolet to the visible range, thereby influencing global climate. However, given the complexity of BrC's chemical composition, its optical properties are still poorly understood, especially in mountainous areas. In this study, the black carbon (BC) tracer method is used to explore the light-absorbing properties of primary and secondary BrC at Mount Hua, China during the 2018 summer period. The primary BrC absorption contributes to 10-15% of the total BrC absorption at a wavelength of 370 nm. From the positive matrix factorization analysis, traffic emissions are found to be a major source of primary BrC absorption (44%), followed by industry and biomass-burning emissions (29%). The secondary BrC accounts for 87% of the total BrC absorption at a wavelength of 370 nm, indicating that BrC is dominated by secondary formation. The observation of a higher secondary BrC absorption diurnal pattern at Mount Hua can be affected by secondary BrC in the residual layer after sunrise and the formation of light-absorbing chromophores by photochemical oxidation in the afternoon. The estimated average mass absorption efficiencies of primary and secondary BrC (MAE_pri and MAE_sec, respectively) are 0.4 m2/g and 2.1 m2/g at wavelengths of 370 nm, respectively, indicating a stronger light-absorbing ability for secondary BrC than for primary BrC. There is no significant difference in MAE_pri within a daily variation, but the daytime MAE_sec value is higher than that during the night. Our study shows that secondary BrC is important to light absorption in mountainous areas.
Collapse
Affiliation(s)
- Yuan Gao
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, China.
| | - Li Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wenting Dai
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jinjiang Yu
- Huashan Meteorological Station, Weinan 714000, China
| | - Limin Ding
- Huashan Meteorological Station, Weinan 714000, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Bo Xin
- Weinan Meteorological Administration, Weinan 714000, China
| | - Weikang Ran
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yongming Han
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| |
Collapse
|
46
|
Wang Q, Wang L, Gong C, Li M, Xin J, Tang G, Sun Y, Gao J, Wang Y, Wu S, Kang Y, Yang Y, Li T, Liu J, Wang Y. Vertical evolution of black and brown carbon during pollution events over North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150950. [PMID: 34656595 DOI: 10.1016/j.scitotenv.2021.150950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The vertical distribution of carbonaceous aerosol impacts climate change, air quality and human health, but there is a lack of in-situ vertical observations of black (BC) and brown carbon (BrC). Thus, the characteristic of vertical profiles of BC concentration, particle number concentration (PNC), O3 concentration and optical absorption of BC and BrC were observed in a suburban site over North China Plain, where heavy pollution of PM2.5 and O3 always occurred in winter and summer, respectively. In winter, during a heavy pollution episode, the BC and PNC was near uniformly distributed within mixing layer (ML) (15.2 ± 6.7 μg m-3 and 678 ± 227 p cm-3, respectively) and decreased with altitude above the ML. The BC heating rate reached about 0.13 K h-1 during the heaviest pollution day. In summer, the BC concentration (2.9 ± 1.3 μg m-3) in ML during the middle O3 pollution events was higher than that (1.7 ± 0.6 μg m-3) during the light O3 pollution. The light absorption coefficients of BC at 880 nm and BrC at 375 nm measured in the early morning were lower than that in the daytime, and the contribution of BrC to total light absorption of carbonaceous aerosols was in the range of 27-47%. In addition, BC was effectively transported to high altitude than BrC in the daytime. The light absorption of secondary BrC in the daytime was higher 10-20% than that in the early morning. Simultaneously, the contribution of secondary BrC to the total BrC light absorption at 375 nm was range from 32% to 68% within 1000 m.
Collapse
Affiliation(s)
- Qinglu Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Chongshui Gong
- Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
| | - Mingge Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
| | - Jinyuan Xin
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yang Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jinhui Gao
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yinghong Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shuang Wu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Kang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Yang
- Weather Modification Office of Hebei Province, Shijiazhuang 050021, China
| | - Tingting Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jingda Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
47
|
Rastogi N, Satish R, Singh A, Kumar V, Thamban N, Lalchandani V, Shukla A, Vats P, Tripathi SN, Ganguly D, Slowik J, Prevot ASH. Diurnal variability in the spectral characteristics and sources of water-soluble brown carbon aerosols over Delhi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148589. [PMID: 34214816 DOI: 10.1016/j.scitotenv.2021.148589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
It is well established that light-absorbing organic aerosols (commonly known as brown carbon, BrC) impact climate. However, uncertainties remain as their contributions to absorption at different wavelengths are often ignored in climate models. Further, BrC exhibits differences in absorption at different wavelengths due to the variable composition including varying sources and meteorological conditions. However, diurnal variability in the spectral characteristics of water-soluble BrC (hereafter BrC) is not yet reported. This study presents unique measurement hitherto lacking in the literature. Online measurements of BrC were performed using an assembled system including a particle-into-liquid sampler, portable UV-Visible spectrophotometer with liquid waveguid capillary cell, and total carbon analyzer (PILS-LWCC-TOC). This system measured the absorption of ambient aerosol extracts at the wavelengths ranging from 300 to 600 nm with 2 min integration time and water-soluble organic carbon (WSOC) with 4 min integration time over a polluted megacity, New Delhi. Black carbon, carbon monoxide (CO), nitrogen oxides (NOx), and the chemical composition of non-refractory submicron aerosols were also measured in parallel. Diurnal variability in absorption coefficient (0.05 to 65 Mm-1), mass absorption efficiency (0.01 to 3.4 m-2 gC-1) at 365 nm, and absorption angstrom exponent (AAE) of BrC for different wavelength range (AAE300-400: 4.2-5.8; AAE400-600: 5.5-8.0; and AAE300-600: 5.3-7.3) is discussed. BrC chromophores absorbing at any wavelength showed minimum absorption during afternoon hours, suggesting the effects of boundary layer expansion and their photo-sensitive/volatile nature. On certain days, a considerable presence of BrC absorbing at 490 nm was observed during nighttime that disappears during the daytime. It appeared to be associated with secondary BrC. Observations also infer that BrC species emitted from the biomass and coal burning are more absorbing among all sources. A fraction of BrC is likely associated with trash burning, as inferred from the spectral characteristics of Factor-3 from the PMF analysis of BrC spectra. Such studies are essential in understanding the BrC characteristics and their further utilization in climate models.
Collapse
Affiliation(s)
- Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India.
| | - Rangu Satish
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - Atinderpal Singh
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - Varun Kumar
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Navaneeth Thamban
- Department of Civil Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vipul Lalchandani
- Department of Civil Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashutosh Shukla
- Department of Civil Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pawan Vats
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - S N Tripathi
- Department of Civil Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dilip Ganguly
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jay Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Andre S H Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| |
Collapse
|
48
|
Wang Q, Wang L, Tao M, Chen N, Lei Y, Sun Y, Xin J, Li T, Zhou J, Liu J, Ji D, Wang Y. Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148226. [PMID: 34412400 PMCID: PMC8176899 DOI: 10.1016/j.scitotenv.2021.148226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 05/05/2023]
Abstract
Absorbing carbonaceous aerosols, i.e. black and brown carbon (BC and BrC), affected heavily on climate change, regional air quality and human health. The nationwide lockdown measures in 2020 were performed to against the COVID-19 outbreak, which could provide an important opportunity to understand their variations on light absorption, concentrations, sources and formation mechanism of carbonaceous aerosols. The BC concentration in Wuhan megacity (WH) was 1.9 μg m-3 during lockdown, which was 24% lower than those in the medium-sized cities and 26% higher than those in small city; in addition, 39% and 16-23% reductions occurred compared with the same periods in 2019 in WH and other cities, respectively. Fossil fuels from vehicles and industries were the major contributors to BC; and compared with other periods, minimum contribution (64-86%) mainly from fossil fuel to BC occurred during the lockdown in all cities. Secondary BrC (BrCsec) played a major role in the BrC light absorption, accounting for 65-77% in WH during different periods. BrCsec was promoted under high humidity, and decreased through the photobleaching of chromophores under higher Ox. Generally, the lockdown measures reduced the BC concentrations significantly; however, the variation of BrCsec was slight.
Collapse
Affiliation(s)
- Qinglu Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minghui Tao
- Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Nan Chen
- The Ecology and Environment Monitoring Center of Hubei Province, Wuhan 430070, China
| | - Yali Lei
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Atmospheric Sciences of Huainan, Institute of Atmospheric Physics, Chinese Academy of Sciences, Huainan 232000, China
| | - Jinyuan Xin
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jingxiang Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingda Liu
- College of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Yuan W, Huang RJ, Yang L, Ni H, Wang T, Cao W, Duan J, Guo J, Huang H, Hoffmann T. Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147902. [PMID: 34052478 DOI: 10.1016/j.scitotenv.2021.147902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Humic-like substances (HULIS) are ubiquitous in the atmospheric environment, which affects both human health and climate. We present here the mass concentration and optical characteristics of HULIS isolated from aerosol samples collected in Xi'an, China. Both mass concentration and absorption coefficient (Abs365) of HULIS show clear seasonal differences, with the highest average in winter (3.91 μgC m-3 and 4.78 M m-1, respectively) and the lowest in summer (0.65 μgC m-3 and 0.55 M m-1, respectively). The sources of HULIS_C and light absorption of HULIS were analyzed by positive matrix factorization (PMF) and four major sources were resolved, including secondary formation, biomass burning, coal burning, and vehicle emission. Our results show that secondary formation (i.e., gas-to-particle conversion from e.g., photochemical oxidation) was the major contributor to both HULIS_C (50%) and light absorption (55%) of HULIS in summer, biomass burning and coal burning were major sources of HULIS_C (~70%) and light absorption (~80%) of HULIS in winter. It is worth noting that biomass burning and coal burning had higher contribution to HULIS light absorption (47% in spring, 37% in summer, 73% in fall, and 77% in winter) than their corresponding contribution to HULIS_C concentration (41% in spring, 37% in summer, 54% in fall, and 69% in winter). However, vehicle emission had lower contribution to HULIS light absorption (26% in spring, 8% in summer, 18% in fall, and 11% in winter) than to HULIS_C concentration (24% in spring, 13% in summer, 28% in fall, and 18% in winter). These results suggest that HULIS from biomass burning and coal burning have higher light absorption ability than from vehicle emission.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China; College of Environment and public health, Xiamen Huaxia University, Xiamen 361024, China.
| | - Lu Yang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Haiyan Ni
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ting Wang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Cao
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jing Duan
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jie Guo
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Huabin Huang
- College of Environment and public health, Xiamen Huaxia University, Xiamen 361024, China
| | - Thorsten Hoffmann
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
50
|
Chen Q, Hua X, Dyussenova A. Evolution of the chromophore aerosols and its driving factors in summertime Xi'an, Northwest China. CHEMOSPHERE 2021; 281:130838. [PMID: 33991904 DOI: 10.1016/j.chemosphere.2021.130838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric chromophores have photo-sensitiveness that can participate in photochemical reactions, so they may have the potential to make an important contribution in organic aerosols aging. This study attempts to explain the effects of oxidation reaction and photochemical reaction on atmospheric chromophores. For this study, the summer period (higher sunshine intensity) was selected to observe the mechanisms by the online excitation emission matrix (EEM) fluorescence. The results showed that a lot of secondary organic aerosols were produced in the afternoon, but a large portion of them is non-chromophore. We observed that the secondary chromophores of highly-oxygenated humic-like substances (HULIS) were produced, which suggests a degradation product of less-oxygenated HULIS. The photochemical reaction and oxidation reaction were the important reactions that occur in the afternoon, which drives the oxidation state evolution of the atmospheric chromophores. Atmospheric oxidation processes are the mainly driving reaction for the transformation of atmospheric chromophore. The aged aerosol has a lower fluorescence index and a high degree of humification. It is speculated that the aerosol from night to morning is in the accumulation process dominated by local sources, and then it is mainly in the process of being gradually aged at noon and afternoon. This study will guide to better understand the atmospheric chemical processes of chromophore aerosols and provide guidance for the EEM approach to trace the aerosol aging in the atmosphere.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ainur Dyussenova
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|