1
|
Song X, Wu D, Su Y, Li Y, Li Q. Review of health effects driven by aerosol acidity: Occurrence and implications for air pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176839. [PMID: 39414033 DOI: 10.1016/j.scitotenv.2024.176839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Acidity, generally expressed as pH, plays a crucial role in atmospheric processes and ecosystem evolution. Atmospheric acidic aerosol, triggering severe air pollution in the industrialization process (e.g., London Great Smoke in 1952), has detrimental effects on human health. Despite global endeavors to mitigate air pollution, the variation of aerosol acidity remains unclear and further restricts the knowledge of the acidity-driven toxicity of fine particles (PM2.5) in the atmosphere. Here, we summarize the toxicological effects and mechanisms of inhalable acidic aerosol and its response to air pollution control. The acidity could adjust toxic components (e.g., metals, quinones, and organic peroxides) bonded in aerosol and synergize with oxidant gaseous pollutants (e.g., O3 and NO2) in epithelial lining fluid to induce oxidative stress and inflammation. The inhaled aerosol from the ambient air with higher acidity might elevate airway responsiveness and cause worse pulmonary dysfunction. Furthermore, historical observation data and model simulation indicate that PM2.5 can retain its acidic property despite considerable reductions in acidifying gaseous pollutants (e.g., SO2 and NOx) from anthropogenic emissions, suggesting its continuing adverse impacts on human health. The study highlights that aerosol acidity could partially offset the health benefits of emission reduction, indicating that acidity-related health effects should be considered for future air pollution control policies.
Collapse
Affiliation(s)
- Xiwen Song
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yi Su
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yang Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Lausch M, Zimina A, Bao J, Pashminehazar R, Etzold BJM, Kramm UI, Grunwaldt JD, Hussong J. New insights into the dissolution mechanisms of iron oxides and combusted iron particles in oxalic acid. J Chem Phys 2024; 161:194308. [PMID: 39560087 DOI: 10.1063/5.0229410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The influence of oxidation state and crystalline structure on the dissolution mechanisms of both pure iron oxides and combusted iron particles in aqueous oxalic acid (0.5 mol/l) at 60 °C was systematically investigated. Dissolution experiments were carried out in a temperature-controlled, continuous-flow capillary reactor, allowing for the removal of reaction products and thereby suppressing the autocatalytic reaction mechanism. The non-reductive dissolution of α-Fe2O3 was observed through in situ x-ray absorption measurements. In contrast, the dissolution of spinel-type oxides such as γ-Fe2O3 and Fe3O4 proceeded reductively, indicated by gradual changes in characteristic spectral features. Given that γ-Fe2O3 and Fe3O4 share a similar crystal structure but differ in the nominal oxidation state, this implies that the phase composition is decisive for the reductive dissolution. For mixed-phase particles consisting of spinel and rhombohedral phases (maghemite and hematite), the preferential dissolution of the spinel phase was observed. Despite the similar bulk composition of spinel and rhombohedral phases in the combusted iron particles (as confirmed by Mössbauer spectroscopy and x-ray diffraction analysis), dissolution predominantly follows a non-reductive pathway, with no preferential dissolution of the γ-phase. This unique dissolution behavior of combusted iron particles arises from their layered microstructure.
Collapse
Affiliation(s)
- M Lausch
- Technische Universität Darmstadt, Institute for Fluid Mechanics and Aerodynamics, 64347 Griesheim, Germany
| | - A Zimina
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, 76131 Karlsruhe, Germany
| | - J Bao
- Technische Universität Darmstadt, Institute for Catalysts and Electrocatalysts, 64287 Darmstadt, Germany
| | - R Pashminehazar
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, 76131 Karlsruhe, Germany
| | - B J M Etzold
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical Chemistry and Macromolecular Science, 64287 Darmstadt, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Power-To-X Technologies, 90762 Fürth, Germany
| | - U I Kramm
- Technische Universität Darmstadt, Institute for Catalysts and Electrocatalysts, 64287 Darmstadt, Germany
| | - J-D Grunwaldt
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, 76131 Karlsruhe, Germany
| | - J Hussong
- Technische Universität Darmstadt, Institute for Fluid Mechanics and Aerodynamics, 64347 Griesheim, Germany
| |
Collapse
|
3
|
Zhang Z, Tao J, Zhang L, Hu B, Liu M, Nie F, Lu H, Chen L, Wu Y, Chen D, Wang B, Che H. Influence of sources and atmospheric processes on metal solubility in PM 2.5 in urban Guangzhou, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175807. [PMID: 39197758 DOI: 10.1016/j.scitotenv.2024.175807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Water-soluble metals exert a significant influence on human and ecosystem health. In this study, a comprehensive investigation was undertaken to elucidate the solubilities of metals in PM2.5 and potential influencing factors during the dry season of 2019-2020 in urban Guangzhou, South China. The observed average solubility was <20 % for Al, Fe, Sn, and Ti; 20-40 % for V, Cr, Sb, Pb, and Ni; 40-60 % for Ba and Cu; and 60-80 % for Zn, As, Se, Cd, and Mn. Metals (Al, Ti, and Fe) originated from crustal sources (e.g., soil dust) have much lower solubilities than those (Mn, Zn, As, Se, Cd, and Ba) from fossil fuel combustion sources (e.g., traffic emission, coal combustion), suggesting the dominant role the metal sources played on solubility. Enhanced solubilities of Cu, As, Se, Cd, Sn, Sb, and Pb were associated with aerosol acidity, while those of V, Cr, Mn, Ni, Zn, and Ba were linked to organic acid complexation. For the three crustal metals, the solubilities of Al and Ti primarily depended on aerosol acidity, whereas the solubility of Fe depended on both aerosol acidity under pH < 2 conditions and organic acid complexation under pH > 2 conditions. These findings underscore the primary influence of inherent properties of the metals on their solubility and reveal the varying impacts of atmospheric physicochemical processes, with changes in their solubilities being <10 % for Cd, Sn, Sb, and Pb, 10-20 % for Cu, Cr, Mn, Ni, and Ba, and 20-30 % for As, Se, and Zn.
Collapse
Affiliation(s)
- Zhisheng Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Jun Tao
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Bangkai Hu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Ming Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Fuli Nie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Haitao Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Laiguo Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Yunfei Wu
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Duohong Chen
- Environmental Key Laboratory of Regional Air Quality Monitoring, Ministry of Ecology and Environment, Guangdong Ecological and Environmental Monitoring Center, Guangzhou, China
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, China
| |
Collapse
|
4
|
Thiagarajan V, Nah T, Xin X. Impacts of atmospheric particulate matter deposition on phytoplankton: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175280. [PMID: 39122032 DOI: 10.1016/j.scitotenv.2024.175280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
In many rapidly urbanizing and industrializing countries, atmospheric pollution causes severe environmental problems and compromises the health of humans and ecosystems. Atmospheric emissions, which encompass gases and particulate matter, can be transported back to the earth's surface through atmospheric deposition. Atmospheric deposition supplies chemical species that can serve as nutrients and/or toxins to aquatic ecosystems, resulting in wide-ranging responses of aquatic organisms. Among the aquatic organisms, phytoplankton is the basis of the aquatic food web and is a key player in global primary production. Atmospheric deposition alters nutrient availability and thus influences phytoplankton species abundance and composition. This review provides a comprehensive overview of the physiological responses of phytoplankton resulting from the atmospheric deposition of trace metals, nitrogen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds in particulate matter into aquatic ecosystems. Knowledge gaps and critical areas for future studies are also discussed.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xiaying Xin
- Beaty Water Research Centre, Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
5
|
Chen Y, Wang Z, Fang Z, Huang C, Xu H, Zhang H, Zhang T, Wang F, Luo L, Shi G, Wang X, Tang M. Dominant Contribution of Non-dust Primary Emissions and Secondary Processes to Dissolved Aerosol Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17355-17363. [PMID: 39301696 DOI: 10.1021/acs.est.4c05816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Solubility largely determines the impacts of aerosol Fe on marine ecosystems and human health. Currently, modeling studies have large uncertainties in aerosol Fe solubility due to inadequate understanding of the sources of dissolved Fe. This work investigated seasonal variations of Fe solubility in coarse and fine aerosols in Qingdao, a coastal city in the Northwest Pacific, and utilized a receptor model for source apportionment of total and dissolved aerosol Fe. Desert dust was found to be the main source of total Fe, contributing 65 and 81% annually to total Fe in coarse and fine particles, respectively; in contrast, dissolved aerosol Fe originated primarily from combustion, industrial, and secondary sources. The annual average contributions to dissolved Fe in coarse and fine particles were 68 and 47% for the secondary source and 32 and 33% for the combustion source, respectively. Aerosol Fe solubility was found to be highest in summer and lowest in spring, showing seasonal patterns similar to those of aerosol acidity. Increase in Fe solubility in atmospheric particles, when compared to desert dust, was mainly caused by secondary processing and combustion emission, and the effect of secondary processes was dictated by aerosol acidity and liquid water content.
Collapse
Affiliation(s)
- Yizhu Chen
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhengyang Fang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chengpeng Huang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Han Xu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tianyu Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Lan Luo
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Al-Abadleh HA, Smith M, Ogilvie A, Sadiq NW. Quantifying the Effect of Basic Minerals on Acid- and Ligand-Promoted Dissolution Kinetics of Iron in Simulated Dark Atmospheric Aging of Dust and Coal Fly Ash Particles. J Phys Chem A 2024; 128:8198-8208. [PMID: 39285699 DOI: 10.1021/acs.jpca.4c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The content and multiphase chemistry of iron (Fe) in multicomponent atmospheric aerosols are important to global climate and oceanic models. To date, reported dissolution rates of Fe span orders of magnitude with no quantifiable dependency on the content of basic minerals that coexist with Fe. Here, we report dissolution rates of Fe in simulated dark atmospheric aging of fully characterized multielement particles under acidic conditions (bulk pH 1 or 3) with and without oxalic acid and pyrocatechol. Our main findings are (a) the total amount of Ca and Mg was higher in coal fly ash than in Arizona test dust, (b) Fe dissolution initial rates increased exponentially with %Ca/Al and %Mg/Al below 50%, (c) a reduction in the Fe dissolution initial rate was observed with %Ca/Al higher than 50%, (d) reactive Ca and Mg minerals increased the calculated initial pH at the liquid/solid interface to values higher by only 1.5-2 units than the measured bulk pH, yet interfacial water remained acidic for Fe dissolution to take place, and (e) reactive Ca and Mg minerals enhanced the deprotonation of organics at the interface, aiding in ligand-promoted dissolution of Fe. The impact of these results is discussed within the context of constraining Fe dissolution kinetic models.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Madison Smith
- Department of Chemistry and Physics, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada
| | - Arden Ogilvie
- Department of Chemistry and Physics, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada
| | - Nausheen W Sadiq
- Department of Chemistry and Physics, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta T3E 6K6, Canada
| |
Collapse
|
7
|
Li Q, Fu Y, Wang L, Cao J, Xia Y, Zhang Z, Wang Z. Distinct photochemistry of adsorbed and coprecipitated dicarboxylates with ferrihydrite: Implications for iron reductive dissolution and carbon stabilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172333. [PMID: 38608896 DOI: 10.1016/j.scitotenv.2024.172333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Although ligand-promoted photodissolution of ferrihydrite (FH) has long been known for low molecular weight organic acids (LMWOAs), such as oxalate (Oxa) and malonate (Mal), photochemistry of coprecipitated FH with Oxa and Mal remains unknown, despite the importance of these mineral-organic associations in carbon retention has been acknowledged recently. In this study, ferrihydrite-LMWOAs associations (FLAs) were synthesized under circumneutral conditions. Photo-dissolution kinetics of FLAs were compared with those of adsorbed LMWOAs on FH surface and dissolved Fe-LMWOAs complexes through monitoring Fe(II) formation and organic carbon decay. For aqueous Fe(III)-LMWOAs complexes, Fe(II) yield was controlled by the initial concentration of LMWOAs and nature of photochemically generated carbon-centered radicals. Inner-sphere mononuclear bidentate (MB) configuration dominated while LMWOAs were adsorbed on the FH surface. MB complex of FH-Oxa was more photoreactive, leading to the rapid depletion of Oxa. Oxa can be readsorbed but in the form of binuclear bidentate and outer-sphere complexation, with much lower photoreactivity. While LMWOAs was coprecipitated with FH, the combination mode of LMWOAs with FH includes surface adsorption with a mononuclear bidentate structure and internal physical inclusion. Higher content of LMWOAs in the FLAs promoted the photo-production of Fe(II) as compared to pure FH, while it was not the case for FLAs containing moderate amounts of LMWOAs. The distinct photochemistry of adsorbed and coprecipitated Fe-LMWOAs complexes is attributed to ligand availability and configuration patterns of LMWOAs on the surface or entrapped in the interior structure. The present findings have significant implications for understanding the photochemical redox cycling of iron across the interface of Fe-organic mineral associates.
Collapse
Affiliation(s)
- Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinhui Cao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yuqi Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Precision Spectroscopy (East China Normal University), Shanghai 200241, China.
| |
Collapse
|
8
|
Kayaba S, Kajino M. Potential Impacts of Energy and Vehicle Transformation Through 2050 on Oxidative Stress-Inducing PM 2.5 Metals Concentration in Japan. GEOHEALTH 2023; 7:e2023GH000789. [PMID: 37842137 PMCID: PMC10574721 DOI: 10.1029/2023gh000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
The impacts of renewable energy shifting, passenger car electrification, and lightweighting through 2050 on the atmospheric concentrations of PM2.5 total mass and oxidative stress-inducing metals (PM2.5-Fe, Cu, and Zn) in Japan were evaluated using a regional meteorology-chemistry model. The surface concentrations of PM2.5 total mass, Fe, Cu, and Zn in the urban area decreased by 8%, 13%, 18%, and 5%, respectively. Battery electric vehicles (BEVs) have been considered to have no advantage in terms of non-exhaust PM emissions by previous studies. This is because the disadvantages (heavier weight increases tire wear, road wear, and resuspention) offset the advantages (regenerative braking system (RBS) reduces brake wear). However, the future lightweighting of drive battery and body frame were estimated to reduce all non-exhaust PM. Passenger car electrification only reduced PM2.5 concentration by 2%. However, Fe and Cu concentrations were more reduced (-8% and -13%, respectively) because they have high brake wear-derived and significantly reflects the benefits of BEV's RBS. The water-soluble fraction concentration of metals (induces oxidative stress in the body) was estimated based on aerosol acidity. The reduction of SOx, NOx, and NH3 emissions from on-road and thermal power plants slightly changed the aerosol acidity (pH ± 0.2). However, it had a negligible effect on water-soluble metal concentrations (maximum +2% for Fe and +0.5% for Cu and Zn). Therefore, the metal emissions reduction was more important than gaseous pollutants in decreasing the water-soluble metals that induces respiratory oxidative stress and passenger car electrification and lightweighting were effective means of achieving this.
Collapse
Affiliation(s)
- Satoko Kayaba
- Graduate School of Science and TechnologyUniversity of TsukubaTsukubaJapan
- Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
| | - Mizuo Kajino
- Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
9
|
Fan Q, Wang L, Fu Y, Wang Z. Impacts of coexisting mineral on crystallinity and stability of Fe(II) oxidation products: Implications for neutralization treatment of acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130060. [PMID: 36182886 DOI: 10.1016/j.jhazmat.2022.130060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The neutralization treatment of acid mine drainage involves the oxidation of Fe(II), but little is known about the effects of co-existing minerals on the oxidation and hydrolysis of Fe(II) to iron oxides. Here we investigated the transformation of fresh and heated Fe(II) oxidation coprecipitates, which were synthesized in the presence and the absence of five co-existing minerals (montmorillonite, kaolin, quartz (SiO2), aluminium oxide (Al2O3) and calcium carbonate (CaCO3)). In the FeSO4 system with montmorillonite or kaolin, the formation of lepidocrocite was inhibited with the increase of clay mineral contents. In the same system, heated coprecipitates of montmorillonite were mainly comprised of amorphous ferrihydrite and its transformation was retarded by the excess montmorillonite. In the FeCl2 system with SiO2, Al2O3 or CaCO3, akaganeite formation was inhibited with the increase in the corresponding mineral contents. In the same system, goethite formation was blocked by either CaCO3 or Al2O3 and the growth of lepidocrocite was inhibited by CaCO3 or SiO2. However, magnetite formation was enhanced by addition of CaCO3. These findings are important for predicting products of abiotic Fe(II) oxidation during the neutralization of acid mine drainage and for better understanding the transformation of amorphous iron oxides in the complicated environmental matrix.
Collapse
Affiliation(s)
- Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; State Key Laboratory of Mineral Processing, Beijing 102628, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
10
|
Shi J, Guan Y, Gao H, Yao X, Wang R, Zhang D. Aerosol Iron Solubility Specification in the Global Marine Atmosphere with Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16453-16461. [PMID: 36316194 DOI: 10.1021/acs.est.2c05266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aerosol iron (Fe) solubility is a key factor for the assessment of atmospheric nutrients input to the ocean but poorly specified in models because the mechanism of determining the solubility is unclear. We develop a deep learning model to project the solubility based on the data that we observed in a coastal city of China. The model has five variables: the size range of particles, relative humidity, and the ratios of sulfate, nitrate and oxalate to total Fe (TFe) contents in aerosol particles. Results show excellent statistical agreements with the solubility in the literature over most worldwide seas and margin areas with the Pearson correlation coefficients (r) as large as 0.73-0.97. The exception is the Atlantic Ocean, where good agreement is obtained with the model trained using local data (r: 0.34-0.66). The model further uncovers that the ratio of oxalate/TFe is the most important variable influencing the solubility. These results indicate the feasibility of treating the solubility as a function of the six factors in deep learning models with careful training and validation. Our model and projected solubility provide innovative options for better quantification of air-to-sea input of aerosol soluble Fe in observational and model studies in the global marine atmosphere.
Collapse
Affiliation(s)
- Jinhui Shi
- Key Laboratory of Marine Environmental Science and Ecology, Ocean University of China, Ministry of Education of China, Qingdao266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Yang Guan
- Key Laboratory of Marine Environmental Science and Ecology, Ocean University of China, Ministry of Education of China, Qingdao266100, China
| | - Huiwang Gao
- Key Laboratory of Marine Environmental Science and Ecology, Ocean University of China, Ministry of Education of China, Qingdao266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Xiaohong Yao
- Key Laboratory of Marine Environmental Science and Ecology, Ocean University of China, Ministry of Education of China, Qingdao266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Renzheng Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ocean University of China, Ministry of Education of China, Qingdao266100, China
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto862-8502, Japan
| |
Collapse
|
11
|
Liu M, Wang W, Li J, Wang T, Xu Z, Song Y, Zhang W, Zhou L, Lian C, Yang J, Li Y, Sun Y, Tong S, Guo Y, Ge M. High fraction of soluble trace metals in fine particles under heavy haze in central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156771. [PMID: 35724777 DOI: 10.1016/j.scitotenv.2022.156771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/17/2023]
Abstract
Atmospheric trace metals are a key component of particulate matter and significantly influence the atmospheric process and human health. The dissolved fraction of trace metals represents their bioavailability and exhibits high chemical activity. However, the optimum measurement method for detecting the soluble fraction of trace metals is still undetermined. The impact of variations in pollution on the soluble fraction is largely unrevealed. Therefore, in this work, a one-month field observation was conducted in Central China and different extraction solvents were used to determine the proper measurement method for the soluble fraction of trace metals and investigate the variation pattern under different pollution conditions. The findings show that solvents with acidity near that of aerosol water can better reflect the actual soluble fraction of trace metals in fine particulate matter. The soluble fraction of trace metals tends to increase with pollution level increased, demonstrating unexpectedly high health risks and chemical activity under heavy haze conditions. Our results indicate that remediation and trace metal pollution control are urgently needed.
Collapse
Affiliation(s)
- Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Ambient Air Quality Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tiantian Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Zhenying Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Wenyu Zhang
- Department of Clinical Research, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinxing Yang
- Sanmenxia Environmental Monitoring Station, Sanmenxia 472400, China
| | - Yanyu Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Al-Abadleh HA, Motaghedi F, Mohammed W, Rana MS, Malek KA, Rastogi D, Asa-Awuku AA, Guzman MI. Reactivity of aminophenols in forming nitrogen-containing brown carbon from iron-catalyzed reactions. Commun Chem 2022; 5:112. [PMID: 36697654 PMCID: PMC9814260 DOI: 10.1038/s42004-022-00732-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023] Open
Abstract
Nitrogen-containing organic carbon (NOC) in atmospheric particles is an important class of brown carbon (BrC). Redox active NOC like aminophenols received little attention in their ability to form BrC. Here we show that iron can catalyze dark oxidative oligomerization of o- and p-aminophenols under simulated aerosol and cloud conditions (pH 1-7, and ionic strength 0.01-1 M). Homogeneous aqueous phase reactions were conducted using soluble Fe(III), where particle growth/agglomeration were monitored using dynamic light scattering. Mass yield experiments of insoluble soot-like dark brown to black particles were as high as 40%. Hygroscopicity growth factors (κ) of these insoluble products under sub- and super-saturated conditions ranged from 0.4-0.6, higher than that of levoglucosan, a prominent proxy for biomass burning organic aerosol (BBOA). Soluble products analyzed using chromatography and mass spectrometry revealed the formation of ring coupling products of o- and p-aminophenols and their primary oxidation products. Heterogeneous reactions of aminophenol were also conducted using Arizona Test Dust (AZTD) under simulated aging conditions, and showed clear changes to optical properties, morphology, mixing state, and chemical composition. These results highlight the important role of iron redox chemistry in BrC formation under atmospherically relevant conditions.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - Fatemeh Motaghedi
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Wisam Mohammed
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Md Sohel Rana
- Department of Chemistry, University of Kentucky, Kentucky, 40506, USA
| | - Kotiba A Malek
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Dewansh Rastogi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Akua A Asa-Awuku
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Marcelo I Guzman
- Department of Chemistry, University of Kentucky, Kentucky, 40506, USA.
| |
Collapse
|
13
|
Li R, Zhang H, Wang F, He Y, Huang C, Luo L, Dong S, Jia X, Tang M. Mass fractions, solubility, speciation and isotopic compositions of iron in coal and municipal waste fly ash. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155974. [PMID: 35588802 DOI: 10.1016/j.scitotenv.2022.155974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Deposition of anthropogenic aerosols may contribute significantly to dissolved Fe in the open ocean, affecting marine primary production and biogeochemical cycles; however, fractional solubility of Fe is not well understood for anthropogenic aerosols. This work investigated mass fractions, solubility, speciation and isotopic compositions of Fe in coal and municipal waste fly ash. Compared to desert dust (3.1 ± 1.1%), the average mass fraction of Fe was higher in coal fly ash (6.2 ± 2.7%) and lower in municipal waste fly ash (2.6 ± 0.4%), and the average Fe/Al ratios were rather similar for the three types of particles. Municipal waste fly ash showed highest Fe solubility (1.98 ± 0.43%) in acetate buffer (pH: 4.3), followed by desert dust (0.43 ± 0.30%) and coal fly ash (0.24 ± 0.28%), suggesting that not all the anthropogenic aerosols showed higher Fe solubility than desert dust. For the samples examined in our work, amorphous Fe appeared to be an important controlling factor for Fe solubility, which was not correlated with particle size or BET surface area. Compared to desert dust (-0.05‰ to 0.21‰), coal and municipal waste fly ash showed similar or even higher δ56Fe values for total Fe (range: 0.05‰ to 0.75‰), implying that the presence of coal or municipal waste fly ash may not be able to explain significantly smaller δ56Fe values reported for total Fe in ambient aerosols affected by anthropogenic sources.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Yuting He
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chengpeng Huang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Lan Luo
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Shuwei Dong
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xiaohong Jia
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Maters EC, Mulholland DS, Flament P, de Jong J, Mattielli N, Deboudt K, Dhont G, Bychkov E. Laboratory study of iron isotope fractionation during dissolution of mineral dust and industrial ash in simulated cloud water. CHEMOSPHERE 2022; 299:134472. [PMID: 35367494 DOI: 10.1016/j.chemosphere.2022.134472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric deposition is a key mode of iron (Fe) input to ocean regions where low concentrations of this micronutrient limit marine primary production. Various natural particles (e.g., mineral dust, volcanic ash) and anthropogenic particles (e.g., from industrial processes, biomass burning) can deliver Fe to the ocean, and assessment of their relative importance in supplying Fe to seawater requires knowledge of both their deposition flux and their Fe solubility (a proxy for Fe bioavailability). Iron isotope (54Fe, 56Fe, 57Fe, 58Fe) analysis is a potential tool for tracing natural and anthropogenic Fe inputs to the ocean. However, it remains uncertain how the distinct Fe isotopic signatures (δ56Fe) of these particles may be modified by physicochemical processes (e.g., acidification, photochemistry, condensation-evaporation cycles) that are known to enhance Fe solubility during atmospheric transport. In this experimental study, we measure changes over time in both Fe solubility and δ56Fe of a Tunisian soil dust and an Fe-Mn alloy factory industrial ash exposed under irradiation to a pH 2 solution containing oxalic acid, the most widespread organic complexing agent in cloud- and rainwater. The Fe released per unit surface area of the ash (∼1460 μg Fe m-2) is ∼40 times higher than that released by the dust after 60 min in solution. Isotopic fractionation is also observed, to a greater extent in the dust than the ash, in parallel with dissolution of the solid particles and driven by preferential release of 54Fe into solution. After the initial release of 54Fe, the re-adsorption of A-type Fe-oxalate ternary complexes on the most stable surface sites of the solid particles seems to impair the release of the heavier Fe isotopes, maintaining a relative enrichment in the light Fe isotope in solution over time. These findings provide new insights on Fe mobilisation and isotopic fractionation in mineral dust and industrial ash during atmospheric processing, with potential implications for ultimately improving the tracing of natural versus anthropogenic contributions of soluble Fe to the ocean.
Collapse
Affiliation(s)
- Elena C Maters
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Daniel S Mulholland
- Laboratório de Águas e Efluentes & Laboratório de Análises Ambientais, Universidade Federal do Tocantins, Rua Badejos, Gurupi, TO, Brazil
| | - Pascal Flament
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France.
| | - Jeroen de Jong
- Laboratoire G-Time (Geochemistry: Tracing with Isotope, Mineral and Element), Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
| | - Nadine Mattielli
- Laboratoire G-Time (Geochemistry: Tracing with Isotope, Mineral and Element), Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
| | - Karine Deboudt
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Guillaume Dhont
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Eugène Bychkov
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| |
Collapse
|
15
|
Li R, Zhang H, Wang F, Ren Y, Jia S, Jiang B, Jia X, Tang Y, Tang M. Abundance and fractional solubility of phosphorus and trace metals in combustion ash and desert dust: Implications for bioavailability and reactivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151495. [PMID: 34752860 DOI: 10.1016/j.scitotenv.2021.151495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Aerosol phosphorus (P) and trace metals derived from natural processes and anthropogenic emissions have considerable impacts on ocean ecosystems, human health, and atmospheric processes. However, the abundance and fractional solubility of P and trace metals in combustion ash and desert dust, which are two of the largest emission sources of aerosols, are still not well understood. In this study, the abundance and fractional solubility of P and trace metals in seven coal fly ash samples, two municipal waste fly ash samples, and three desert dust samples were experimentally examined. It was found that the abundance of aluminum (Al) in combustion ash was comparable or even higher than that in desert dust, and, therefore, care should be taken when using Al as a tracer of desert dust. The abundance and fractional solubility of P were higher in combustion ash, with a soluble P content ~4-6 times higher than that of the desert dust, indicating that combustion ash could be an important source of bioavailable P in the atmosphere. Except for Mn, the abundance and fractional solubility of other heavy metals were higher in the combustion ash compared to the desert dust, indicating the potential importance of combustion ash in ocean ecosystems, human health, and atmospheric processes. In contrast, both the abundance and solubility of Mn were highest in the desert dust, indicating a potentially important source of soluble Mn in the atmosphere. The fractional solubilities of P and trace metals are significantly affected by acidity and ions in the extraction solutions, and it is suggested that a buffer solution can better represent the acidity of the aqueous system in the true atmospheric environment. The results of this study improve our understanding of the sources of bioavailable and reactive P and trace metals in ambient aerosols.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Yan Ren
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Shiguo Jia
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Bin Jiang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Xiaohong Jia
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Augustine LJ, Abbaspour Tamijani A, Bjorklund JL, Al-Abadleh HA, Mason SE. Adsorption of small organic acids and polyphenols on hematite surfaces: Density Functional Theory + thermodynamics analysis. J Colloid Interface Sci 2021; 609:469-481. [PMID: 34887063 DOI: 10.1016/j.jcis.2021.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The interactions of organic molecules with mineral surfaces are influenced by several factors such as adsorbate speciation, surface atomic and electronic structure, and environmental conditions. When coupled with thermodynamic techniques, energetics from atomistic modeling can provide a molecular-level picture of which factors determine reactivity. This is paramount for evaluating the chemical processes which control the fate of these species in the environment. EXPERIMENTS Inner-sphere adsorption of oxalate and pyrocatechol on (001), (110), and (012) α-Fe2O3 surfaces was modeled using Density Functional Theory (DFT). Unique bidentate binding modes were sampled along each facet to study how different adsorbate and surface factors govern site preference. Adsorption energetics were then calculated using a DFT + thermodynamics approach which combines DFT energies with tabulated data and Nernst-based corrective terms to incorporate different experimental parameters. FINDINGS Instead of a universal trend, each facet displays a unique factor that dominates site preference based on either strain (001), functional groups (110), or topography (012). Adsorption energies predict favorable inner-sphere adsorption for both molecules but opposite energetic trends with varying pH. Additionally, vibrational analysis was conducted for each system and compared to experimental IR data. The work presented here provides an effective, computational methodology to study numerous adsorption processes occurring at the surface-aqueous interface.
Collapse
Affiliation(s)
- Logan J Augustine
- University of Iowa, Department of Chemistry, Iowa City, IA 52242, USA.
| | | | | | - Hind A Al-Abadleh
- Wilfrid Laurier University, Department of Chemistry and Biochemistry, Waterloo, Ontario N2L 3C5, Canada.
| | - Sara E Mason
- University of Iowa, Department of Chemistry, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Wang Y, Ling J, Gu C, Zhou S, Jin X. Dissolution of Fe from Fe-bearing minerals during the brown-carbonization processes in atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148133. [PMID: 34119791 DOI: 10.1016/j.scitotenv.2021.148133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Previous studies found Fe dissolution in atmosphere correlates to biomass burning, while the underlying mechanisms need to be further investigated. In this study, we reported a laboratory investigation about Fe dissolution behavior of two model Fe-bearing clay minerals of montmorillonite (SWy-2) and illite (IMt-2), and one standard mineral dust of Arizona test dust (AZTD) in atmospheric condition (pH = 2), after the minerals engaging into the brown-carbonization reaction with guaiacol, which is a commonly detected volatile phenol substance in biomass burning. The results show that the pre-brown-carbonization reaction promoted Fe dissolution from all the three minerals, attributing to the reduction of Fe(III) by gaseous guaiacol. The Fe dissolution from SWy-2, IMt-2 and AZTD were also compared under both light and dark conditions to simulate the daytime and nighttime atmospheric processes. As a result, model solar irradiation further promoted Fe dissolution from IMt-2 and AZTD, since both minerals contain moderate photo-reducible Fe(III) oxide or/and Fe(III) oxyhydroxide. The promotive effect of solar irradiation on Fe dissolution from AZTD would be gradually diminished because the photo-reactive Fe(III) is also guaiacol-reducible. Whereas, it was on the contrary for SWy-2 which does not contain the Fe(III) (oxyhydr-)oxide phase. And more dependently, the photo-induced hydroxyl radical (OH) on SWy-2 would re-oxidize the formed Fe(II), unless sufficient amount of guaiacol or brown-carbonization products on SWy-2 consumed the OH and complexed with surface coordinated Fe(III) forming photo-reducible Fe(III). The results of this study suggested the brown carbonization process on minerals would greatly mediate the Fe dissolution behavior from the Fe-bearing mineral dusts in atmosphere. Similar processes might need to be taken into consideration to accurately evaluate the input of Fe from atmosphere to open oceans.
Collapse
Affiliation(s)
- Yi Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, China
| | - Jingyi Ling
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shaoda Zhou
- Nanjing Kaver Scientific Instruments, Co., Ltd., Nanjing, Jiangsu 210042, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
18
|
Hettiarachchi E, Ivanov S, Kieft T, Goldstein HL, Moskowitz BM, Reynolds RL, Rubasinghege G. Atmospheric Processing of Iron-Bearing Mineral Dust Aerosol and Its Effect on Growth of a Marine Diatom, Cyclotella meneghiniana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:871-881. [PMID: 33382945 DOI: 10.1021/acs.est.0c06995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron (Fe) is a growth-limiting micronutrient for phytoplankton in major areas of oceans and deposited wind-blown desert dust is a primary Fe source to these regions. Simulated atmospheric processing of four mineral dust proxies and two natural dust samples followed by subsequent growth studies of the marine planktic diatom Cyclotella meneghiniana in artificial sea-water (ASW) demonstrated higher growth response to ilmenite (FeTiO3) and hematite (α-Fe2O3) mixed with TiO2 than hematite alone. The processed dust treatment enhanced diatom growth owing to dissolved Fe (DFe) content. The fresh dust-treated cultures demonstrated growth enhancements without adding such dissolved Fe. These significant growth enhancements and dissolved Fe measurements indicated that diatoms acquire Fe from solid particles. When diatoms were physically separated from mineral dust particles, the growth responses become smaller. The post-mineralogy analysis of mineral dust proxies added to ASW showed a diatom-induced increased formation of goethite, where the amount of goethite formed correlated with observed enhanced growth. The current work suggests that ocean primary productivity may not only depend on dissolved Fe but also on suspended solid Fe particles and their mineralogy. Further, the diatom C. meneghiniana benefits more from mineral dust particles in direct contact with cells than from physically impeded particles, suggesting the possibility for alternate Fe-acquisition mechanism/s.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Sergei Ivanov
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Harland L Goldstein
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
| | - Bruce M Moskowitz
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Richard L Reynolds
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
19
|
Pattammattel A, Leppert VJ, Aronstein P, Robinson M, Mousavi A, Sioutas C, Forman HJ, O’Day PA. Iron Speciation in Particulate Matter (PM 2.5) from Urban Los Angeles Using Spectro-microscopy Methods. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 245:117988. [PMID: 33223923 PMCID: PMC7673293 DOI: 10.1016/j.atmosenv.2020.117988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The speciation, oxidation states, and relative abundance of iron (Fe) phases in PM2.5 samples from two locations in urban Los Angeles were investigated using a combination of bulk and spatially resolved, element-specific spectroscopy and microscopy methods. Synchrotron X-ray absorption spectroscopy (XAS) of bulk samples in situ (i.e., without extraction or digestion) was used to quantify the relative fractions of major Fe phases, which were corroborated by spatially resolved spectro-microscopy measurements. Ferrihydrite (amorphous Fe(III)-hydroxide) comprised the largest Fe fraction (34-52%), with hematite (α-Fe2O3; 13-23%) and magnetite (Fe3O4; 10-24%) identified as major crystalline oxide components. An Fe-bearing phyllosilicate fraction (16-23%) was fit best with a reference spectrum of a natural illite/smectite mineral, and metallic Fe(0) was a relatively small (2-6%) but easily identified component. Sizes, morphologies, oxidation state, and trace element compositions of Fe-bearing PM from electron microscopy, electron energy loss spectroscopy (EELS), and scanning transmission X-ray microscopy (STXM) revealed variable and heterogeneous mixtures of Fe species and phases, often associated with carbonaceous material with evidence of surface oxidation. Ferrihydrite (or related Fe(III) hydroxide phases) was ubiquitous in PM samples. It forms as an oxidation or surface alteration product of crystalline Fe phases, and also occurs as coatings or nanoparticles dispersed with other phases as a result of environmental dissolution and re-precipitation reactions. The prevalence of ferrihydrite (and adsorbed Fe(III) has likely been underestimated in studies of ambient PM because it is non-crystalline, non-magnetic, more soluble than crystalline phases, and found in complex mixtures. Review of potential sources of different particle types suggests that the majority of Fe-bearing PM from these urban sites originates from anthropogenic activities, primarily abrasion products from vehicle braking systems and engine emissions from combustion and/or wear. These variable mixtures have a high probability for electron transfer reactions between Fe, redox-active metals such as copper, and reactive carbon species such as quinones. Our findings suggest the need to assess biological responses of specific Fe-bearing phases both individually and in combination to unravel mechanisms of adverse health effects of particulate Fe.
Collapse
Affiliation(s)
- Ajith Pattammattel
- Sierra Nevada Research Institute and School of Natural Sciences, University of California, Merced, 95343, USA
| | | | - Paul Aronstein
- Environmental Systems Program, University of California, Merced, 95343, USA
| | - Matthew Robinson
- School of Engineering, University of California, Merced, 95343, USA
| | - Amirhosein Mousavi
- Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | - Peggy A. O’Day
- Sierra Nevada Research Institute and School of Natural Sciences, University of California, Merced, 95343, USA
- Environmental Systems Program, University of California, Merced, 95343, USA
| |
Collapse
|
20
|
Du Z, Xiao C, Mayewski PA, Handley MJ, Li C, Ding M, Liu J, Yang J, Liu K. The iron records and its sources during 1990-2017 from the Lambert Glacial Basin shallow ice core, East Antarctica. CHEMOSPHERE 2020; 251:126399. [PMID: 32163783 DOI: 10.1016/j.chemosphere.2020.126399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
In this study, a shallow ice core (12.5 m, called LGB) was drilled at the Lambert Glacial Basin, East Antarctica. The major ion and metal elements were measured at 5-6 cm resolution in this shallow core, which covered the period 1990-2017. Therefore, an annual-resolution record of iron (Fe) concentrations and fluxes were reconstructed in this shallow ice core. Although the Fe data is comparable to previous results, our results emphasized that much more dissolved Fe (DFe) from the Cerro Hudson volcanic event (August 1991) was transported to the East Antarctic ice sheet, in comparison with the Pinatubo volcanic event (June 1991). The aeolian dust may be the primary DFe source during 1990-2017. In particular, the DFe variations may be affected by the biomass burning emissions in two periods (1990-1998 and 2014-2017). While total dissolved Fe (TDFe) variations were controlled by the climatic conditions since 2000 because of the temperature (δ18O) decreasing at East Antarctica. These Fe data will be useful to assess the modern bioavailable Fe release for the Antarctica ice sheet.
Collapse
Affiliation(s)
- Zhiheng Du
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Cunde Xiao
- The State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China.
| | - Paul A Mayewski
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Mike J Handley
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Chuanjin Li
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Minghu Ding
- Institute of Climate System, Chinese Academy of Meteorological Science, Beijing, 100081, China
| | - Jingfeng Liu
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, 730000, China
| | - Jiao Yang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ke Liu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Jiang SY, Gali NK, Ruan HD, Ning Z. Photo-oxidation of particle phase iron species dominates the generation of reactive oxygen species in secondary aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137994. [PMID: 32224395 DOI: 10.1016/j.scitotenv.2020.137994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
This study presents an experimental investigation on the photochemical transformation of iron species in aerosol including dissolution of insoluble iron species into soluble fraction, and soluble ferric oxidation to ferrous form. This process has significantly contributed to the aerosol oxidative potential in generation of reactive oxygen species (ROS). We conducted both laboratory experiment of UV irradiation and real world solar irradiation on large variation of aerosol samples for the characterization of iron speciation in insoluble and soluble fractions to investigate their transformation under photooxidation process. The results showed that the real world solar irradiation significantly increased the soluble Fe(II) fraction, and this is corroborated by laboratory simulation of UV irradiation showing increasing soluble Fe(II) fraction with elongating aging time. The results further exhibited that the dissolution of iron component into soluble fraction was a dominant process, followed by the conversion of soluble ferric to ferrous ions. Further, the study confirmed that the oxidative potential of particulate matter (PM) is attributed dominantly to the abundance of transition metals, i.e. Fe, and the incremental ROS generation after photochemical process is attributed largely to the transformation of solid phase iron species to soluble Fe(II). The results suggest that transition metals, for example by iron in this study, play an important role in secondary aerosol process.
Collapse
Affiliation(s)
- Sabrina Yanan Jiang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong; Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, China
| | - Nirmal Kumar Gali
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong
| | - Huada Daniel Ruan
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, China
| | - Zhi Ning
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong.
| |
Collapse
|
22
|
Zhou Y, Zhang Y, Griffith SM, Wu G, Li L, Zhao Y, Li M, Zhou Z, Yu JZ. Field Evidence of Fe-Mediated Photochemical Degradation of Oxalate and Subsequent Sulfate Formation Observed by Single Particle Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6562-6574. [PMID: 32339453 DOI: 10.1021/acs.est.0c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we deployed a single particle aerosol mass spectrometer (SPAMS) at a suburban coastal site in Hong Kong from February 04 to April 17, 2013 to study individual oxalate particles and a monitor for aerosols and gases in ambient air (MARGA) to track the bulk oxalate concentrations in particle matter smaller than 2.5 μm in diameter (PM2.5). A shallow dip in the bulk oxalate concentration was consistently observed before 10:00 am in the morning throughout the observation campaign, corresponding to a 20% decrease in the oxalate concentration on average during the decay process. Such a decrease in PM oxalate was found to be coincident with a decrease in Fe-containing oxalate particles, providing persuasive evidence of Fe-mediated photochemical degradation of oxalate. Oxalate mixed with Fe and Fe_NaK particles, from industry sources, were identified as the dominant factors for oxalate decay in the early morning. We further found an increase of sulfate intensity by a factor of 1.6 on these individual Fe-containing particles during the oxalate decomposition process, suggesting a facilitation of sulfur oxidation. This is the first report on the oxalate-Fe decomposition process with individual particle level information and provides unique evidence to advance our current understanding of oxalate and Fe cycling. The present work also indicates the importance of anthropogenic sourced iron in oxalate-Fe photochemical processing. In addition, V-containing oxalate particles, from ship emissions, also showed evidence of morning photodegradation and need further attention since current models rarely consider photochemical processing of oxalate_V particles.
Collapse
Affiliation(s)
- Yang Zhou
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- Institute of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yanjing Zhang
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Stephen M Griffith
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| | - Guanru Wu
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Lei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Yunhui Zhao
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Mei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Zhen Zhou
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Jian Zhen Yu
- Institute of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
23
|
Mineral Dust and Iron Solubility: Effects of Composition, Particle Size, and Surface Area. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is significant iron deposition in the oceans, approximately 14–16 Tg annually from mineral dust aerosols, but only a small percentage (approx. 3%) of it is soluble and, thus, bioavailable. In this work, we examine the effect of mineralogy, particle size, and surface area on iron solubility in pure mineral phases to simulate atmospheric processing of mineral dust aerosols during transport. Pure iron-bearing minerals common to Saharan dust were partitioned into four size fractions (10–2.5, 2.5–1, 1–0.5, and 0.5–0.25 µm) and extracted into moderately acidic (pH 4.3) and acidic (pH 1.7) leaching media to simulate mineral processing during atmospheric transport. Results show that, in general, pure iron-bearing clay materials present an iron solubility (% dissolved Fe/total Fe in the mineral) an order of magnitude higher than pure iron oxide minerals. The relative solubility of iron in clay particles does not depend on particle size for the ranges examined (0.25–10 μm), while iron in hematite and magnetite shows a trend of increasing solubility with decreasing particle size in the acidic leaching medium. Our results indicate that while mineralogy and aerosol pH have an effect on the solubilization of iron from simulated mineral dust particles, surface processes of the aerosol might also have a role in iron solubilization during transport. The surface area of clay minerals does not change significantly as a function of particle size (10–0.25 µm), while the surface area of iron oxides is strongly size dependent. Overall, these results show how mineralogy and particle size can influence iron solubility in atmospheric dust.
Collapse
|
24
|
Li R, Jia X, Wang F, Ren Y, Wang X, Zhang H, Li G, Wang X, Tang M. Heterogeneous reaction of NO 2 with hematite, goethite and magnetite: Implications for nitrate formation and iron solubility enhancement. CHEMOSPHERE 2020; 242:125273. [PMID: 31896195 DOI: 10.1016/j.chemosphere.2019.125273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric processing may significantly increase solubility of iron in mineral dust, but the effects of heterogeneous reactions on iron solubility have been poorly understood. In this work, we investigated heterogeneous reaction of NO2 (15 ± 1 and 2.5 ± 0.1 ppmv, equal to ∼3.7 × 1014 and ∼6.2 × 1013 molecule cm-3) with hematite, magnetite and goethite at different relative humidities (RH, 0-90%), and changes in particulate nitrate and soluble iron due to heterogeneous reaction with NO2 were quantified as a function of time (up to 24 h). After reaction with 2.5 ± 0.1 ppmv NO2 for 24 h (or less time), hematite and magnetite were fully saturated, while goethite was only partly deactivated. Nitrate yield was largest for goethite, and the mass ratio of formed nitrate to unreacted mineral only reached ∼1% or less after 24 h reaction. All the three minerals showed low reactivities towards NO2, and the average reactive uptake coefficients of NO2 in the first 3 h were found to be < 5 × 10-8. In addition, the increase in iron solubility was found to be small and in some cases even insignificant for the three minerals after heterogeneous reaction with NO2 for 24 h. Overall, the impacts of heterogeneous reaction of NO2 with hematite, magnetite and goethite on nitrate aerosol formation and iron solubility could be very limited.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Jia
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Yan Ren
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Xiao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
25
|
Tapparo A, Di Marco V, Badocco D, D'Aronco S, Soldà L, Pastore P, Mahon BM, Kalberer M, Giorio C. Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley. CHEMOSPHERE 2020; 241:125025. [PMID: 31604190 DOI: 10.1016/j.chemosphere.2019.125025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 05/26/2023]
Abstract
Metals in atmospheric aerosols play potentially an important role in human health and ocean primary productivity. However, the lack of knowledge about solubility and speciation of metal ions in the particles or after solubilisation in aqueous media (sea or surface waters, cloud or rain droplets, biological fluids) limits our understanding of the underlying physico-chemical processes. In this work, a wide range of metals, their soluble fractions, and inorganic/organic compounds contained in urban particulate matter (PM) from Padua (Italy) were determined. Metal solubility tests have been performed by dissolving the PM in water and in solutions simulating rain droplet composition. The water-soluble fractions of the metal ions and of the organic compounds having ligand properties have been subjected to a multivariate statistical procedure, in order to elucidate associations among the aqueous concentrations of these PM components in simulated rain droplets. In parallel, a multi-dimensional speciation calculation has been performed to identify the stoichiometry and the amount of metal-ligand complexes theoretically expected in aqueous solutions. Both approaches showed that the solubility and the aqueous speciation of metal ions were differently affected by the presence of inorganic and organic ligands in the PM. The solubility of Al, Cr, and Fe was strongly correlated to the concentrations of oxalic acid, as their oxalate complexes represented the expected dominant species in aqueous solutions. Oxalates of Al represented ∼98% of soluble Al, while oxalates of Cu represented 34-75% of the soluble Cu, and oxalates of Fe represented 76% of soluble Fe. The oxidation state of Fe can strongly impact the speciation picture. If Fe is present as Fe(II) rather than Fe(III), the amount of Cr and Cu complexed with diacids can increase from 75% to 94%, and from 32% to 53%, respectively. For other metals, the solubility depended on the formation of soluble aquo-complexes, hence with a scarce effect of the organic ligands. An iron-oxalate complex was also directly detected in aerosol sample extracts.
Collapse
Affiliation(s)
- Andrea Tapparo
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Sara D'Aronco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Lidia Soldà
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Brendan M Mahon
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| | - Chiara Giorio
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
| |
Collapse
|
26
|
Perron MMG, Strzelec M, Gault-Ringold M, Proemse BC, Boyd PW, Bowie AR. Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta 2019; 208:120377. [PMID: 31816697 DOI: 10.1016/j.talanta.2019.120377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Atmospheric deposition of aerosols to the ocean provides an important pathway for the supply of vital micronutrients, including trace metals. These trace metals are essential for phytoplankton growth, and therefore their delivery to marine ecosystems can strongly influence the ocean carbon cycle. The solubility of trace metals in aerosols is a key parameter to better constrain their potential impact on phytoplankton growth. To date, a wide range of experimental approaches and nomenclature have been used to define aerosol trace metal solubility, making data comparison between studies difficult. Here we investigate and discuss several laboratory leaching protocols to determine the solubility of key trace metals in aerosol samples, namely iron, cobalt, manganese, copper, lead, vanadium, titanium and aluminium. Commonly used techniques and tools are also considered such as enrichment factor calculations and air mass back-trajectory projections and recommendations are given for aerosol field sampling, laboratory processing (including leaching and digestion) and analytical measurements. Finally, a simple 3-step leaching protocol combining commonly used protocols is proposed to operationally define trace metal solubility in aerosols. The need for standard guidelines and protocols to study the biogeochemical impact of atmospheric trace metal deposition to the ocean has been increasingly emphasised by both the atmospheric and oceanographic communities. This lack of standardisation currently limits our understanding and ability to predict ocean and climate interactions under changing environmental conditions.
Collapse
Affiliation(s)
- Morgane M G Perron
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia.
| | - Michal Strzelec
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia
| | - Melanie Gault-Ringold
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Battery Point, Tasmania, Australia
| | - Bernadette C Proemse
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia; Antarctic Climate and Ecosystems CRC, University of Tasmania, Battery Point, Tasmania, Australia
| | - Andrew R Bowie
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia; Antarctic Climate and Ecosystems CRC, University of Tasmania, Battery Point, Tasmania, Australia
| |
Collapse
|
27
|
Alpert PA, Corral Arroyo P, Dou J, Krieger UK, Steimer SS, Förster JD, Ditas F, Pöhlker C, Rossignol S, Passananti M, Perrier S, George C, Shiraiwa M, Berkemeier T, Watts B, Ammann M. Visualizing reaction and diffusion in xanthan gum aerosol particles exposed to ozone. Phys Chem Chem Phys 2019; 21:20613-20627. [PMID: 31528972 DOI: 10.1039/c9cp03731d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atmospheric aerosol particles with a high viscosity may become inhomogeneously mixed during chemical processing. Models have predicted gradients in condensed phase reactant concentration throughout particles as the result of diffusion and chemical reaction limitations, termed chemical gradients. However, these have never been directly observed for atmospherically relevant particle diameters. We investigated the reaction between ozone and aerosol particles composed of xanthan gum and FeCl2 and observed the in situ chemical reaction that oxidized Fe2+ to Fe3+ using X-ray spectromicroscopy. Iron oxidation state of particles as small as 0.2 μm in diameter were imaged over time with a spatial resolution of tens of nanometers. We found that the loss off Fe2+ accelerated with increasing ozone concentration and relative humidity, RH. Concentric 2-D column integrated profiles of the Fe2+ fraction, α, out of the total iron were derived and demonstrated that particle surfaces became oxidized while particle cores remained unreacted at RH = 0-20%. At higher RH, chemical gradients evolved over time, extended deeper from the particle surface, and Fe2+ became more homogeneously distributed. We used the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB) to simulate ozone reaction constrained with our observations and inferred key parameters as a function of RH including Henry's Law constant for ozone, HO3, and diffusion coefficients for ozone and iron, DO3 and DFe, respectively. We found that HO3 is higher in our xanthan gum/FeCl2 particles than for water and increases when RH decreased from about 80% to dry conditions. This coincided with a decrease in both DO3 and DFe. In order to reproduce observed chemical gradients, our model predicted that ozone could not be present further than a few nanometers from a particle surface indicating near surface reactions were driving changes in iron oxidation state. However, the observed chemical gradients in α observed over hundreds of nanometers must have been the result of iron transport from the particle interior to the surface where ozone oxidation occurred. In the context of our results, we examine the applicability of the reacto-diffusive framework and discuss diffusion limitations for other reactive gas-aerosol systems of atmospheric importance.
Collapse
Affiliation(s)
- Peter A Alpert
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| | - Pablo Corral Arroyo
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland. and Institute for Physical Chemistry, ETH Zürich, 8092 Zürich, Switzerland
| | - Jing Dou
- Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Ulrich K Krieger
- Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Sarah S Steimer
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Jan-David Förster
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Florian Ditas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Christopher Pöhlker
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Stéphanie Rossignol
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France and Aix Marseille Université, CNRS, LCE UMR 7376, 13331 Marseille, France
| | - Monica Passananti
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France and Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00710, Helsinki, Finland and Dipartimento di Chimica, Università di Torino, Via Giuria 5, 10125 Torino, Italy
| | - Sebastien Perrier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Christian George
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Benjamin Watts
- Laboratory for Synchrotron Radiation-Condensed Matter, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
28
|
Ito A, Myriokefalitakis S, Kanakidou M, Mahowald NM, Scanza RA, Hamilton DS, Baker AR, Jickells T, Sarin M, Bikkina S, Gao Y, Shelley RU, Buck CS, Landing WM, Bowie AR, Perron MMG, Guieu C, Meskhidze N, Johnson MS, Feng Y, Kok JF, Nenes A, Duce RA. Pyrogenic iron: The missing link to high iron solubility in aerosols. SCIENCE ADVANCES 2019; 5:eaau7671. [PMID: 31049393 PMCID: PMC6494496 DOI: 10.1126/sciadv.aau7671] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/15/2019] [Indexed: 05/24/2023]
Abstract
Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity.
Collapse
Affiliation(s)
- Akinori Ito
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa 236-0001, Japan
| | - Stelios Myriokefalitakis
- Institute for Marine and Atmospheric Research (IMAU), Utrecht University, 3584 CC Utrecht, Netherlands
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens (NOA), GR-15236 Palea Penteli, Greece
| | - Maria Kanakidou
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, 70013 Heraklion, Greece
| | - Natalie M. Mahowald
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Rachel A. Scanza
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Douglas S. Hamilton
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Alex R. Baker
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Timothy Jickells
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | | | | | - Yuan Gao
- Rutgers University, Newark, NJ 07102, USA
| | | | - Clifton S. Buck
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA 31411, USA
| | | | - Andrew R. Bowie
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Morgane M. G. Perron
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Cécile Guieu
- Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-mer, France
| | | | | | - Yan Feng
- Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jasper F. Kok
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Athanasios Nenes
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens (NOA), GR-15236 Palea Penteli, Greece
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, GR-26504 Patras, Greece
| | - Robert A. Duce
- Departments of Oceanography and Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
He H, Cao J, Duan N. Defects and their behaviors in mineral dissolution under water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2208-2217. [PMID: 30326453 DOI: 10.1016/j.scitotenv.2018.10.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Mineral dissolution is a spontaneous process that takes indispensible role in the determination of water quality in a specific water body. Deep insights into defects as a result of characterization technique development have greatly improved our understanding of their significances and behaviors in the dissolution within the mineral-water interface. Based on the progresses from previous decades, this review attempts to re-elaborate the molecular-scale process of dissolution. Material flow within the mineral/water interface is updated, with emphasis on the function of defect sites. A brief introduction of defect properties is presented, including the microscopic appearances and typical physicochemical characteristics. Feasible strategies that have been adopted to increase the defect abundance are inferred, which maybe enlightening for hydrometallurgy. The merits and drawbacks of the techniques that could be employed for the qualitative and quantitative determination of defect presence are introduced, although relatively satisfactory performances are noted. With the aid of these techniques, it is concluded that screw dislocation is the main defect type responsible for surface topography evolution as a result of dissolution. Finally, this review identifies the current knowledge gaps and future research needs for comprehensively identifying the significance of defects in mineral dissolution.
Collapse
Affiliation(s)
- Hongping He
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianglin Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Technology Center for Heavy Metal Cleaner Production Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
30
|
Zhang G, Lin Q, Peng L, Yang Y, Jiang F, Liu F, Song W, Chen D, Cai Z, Bi X, Miller M, Tang M, Huang W, Wang X, Peng P, Sheng G. Oxalate Formation Enhanced by Fe-Containing Particles and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1269-1277. [PMID: 30354091 DOI: 10.1021/acs.est.8b05280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We used a single particle mass spectrometry to online detect chemical compositions of individual particles over four seasons in Guangzhou. Number fractions (Nfs) of all the measured particles that contained oxalate were 1.9%, 5.2%, 25.1%, and 15.5%, whereas the Nfs of Fe-containing particles that were internally mixed with oxalate were 8.7%, 23.1%, 45.2%, and 31.2% from spring to winter, respectively. The results provided the first direct field measurements for the enhanced formation of oxalate associated with Fe-containing particles. Other oxidized organic compounds including formate, acetate, methylglyoxal, glyoxylate, purivate, malonate, and succinate were also detected in the Fe-containing particles. It is likely that reactive oxidant species (ROS) via Fenton reactions enhanced the formation of these organic compounds and their oxidation product oxalate. Gas-particle partitioning of oxalic acid followed by coordination with Fe might also partly contribute to the enhanced oxalate. Aerosol water content likely played an important role in the enhanced oxalate formation when the relative humidity is >60%. Interactions with Fe drove the diurnal variation of oxalate in the Fe-containing particles. The study could provide a reference for model simulation to improve understanding on the formation and fate of oxalate, and the evolution and climate impacts of particulate Fe.
Collapse
Affiliation(s)
- Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Qinhao Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Long Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Yuxiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Feng Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Fengxian Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Duohong Chen
- State Environmental Protection Key Laboratory of Regional Air Quality Monitoring , Guangdong Environmental Monitoring Center , Guangzhou 510308 , PR China
| | - Zhang Cai
- John and Willie Leone Family Department of Energy and Mineral Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Mark Miller
- Department of Environmental Sciences , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Weilin Huang
- Department of Environmental Sciences , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| |
Collapse
|
31
|
Abstract
Mg-xGd alloys show potential to be used for degradable implants. As rare earth containing alloys, they are also of special interest for wrought products. All applications from medical to engineering uses require a low and controlled degradation or corrosion rate without pitting. Impurities from fabrication or machining, like Fe inclusions, encourage pitting, which inhibits uniform material degradation. This work investigates a suitable etching method to remove surface contamination and to understand the influence of etching on surface morphology. Acetic acid (HAc) etching as chemical surface treatment has been used to remove contamination from the surface. Extruded Mg-xGd (x = 2, 5 and 10) discs were etched with 250 g/L HAc solution in a volume of 5 mL or 10 mL for different times. The microstructure in the near surface region was characterized. Surface characterization was done by SEM, EDS, interferometry, and ToF-SIMS (time-of-flight secondary ion mass spectrometry) analysis. Different etching kinetics were observed due to microstructure and the volume of etching solution. Gd rich particles and higher etching temperatures due to smaller etchant volumes promote the formation of pits. Removal of 2–9 µm of material from the surface was sufficient to remove surface Fe contamination and to result in a plain surface morphology.
Collapse
|
32
|
Ito A, Lin G, Penner JE. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides. Sci Rep 2018; 8:7347. [PMID: 29743649 PMCID: PMC5943515 DOI: 10.1038/s41598-018-25756-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/27/2018] [Indexed: 11/26/2022] Open
Abstract
Iron (Fe) oxides in aerosols are known to absorb sun light and heat the atmosphere. However, the radiative forcing (RF) of light-absorbing aerosols of pyrogenetic Fe oxides is ignored in climate models. For the first time, we use a global chemical transport model and a radiative transfer model to estimate the RF by light-absorbing aerosols of pyrogenetic Fe oxides. The model results suggest that strongly absorbing Fe oxides (magnetite) contribute a RF that is about 10% of the RF due to black carbon (BC) over East Asia. The seasonal average of the RF due to dark Fe-rich mineral particles over East Asia (0.4–1.0 W m−2) is comparable to that over major biomass burning regions. This additional warming effect is amplified over polluted regions where the iron and steel industries have been recently developed. These findings may have important implications for the projection of the climate change, due to the rapid growth in energy consumption of the heavy industry in newly developing countries.
Collapse
Affiliation(s)
- Akinori Ito
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa, 236-0001, Japan.
| | - Guangxing Lin
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joyce E Penner
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Hou C, Shao L, Hu W, Zhang D, Zhao C, Xing J, Huang X, Hu M. Characteristics and aging of traffic-derived particles in a highway tunnel at a coastal city in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1385-1393. [PMID: 29734615 DOI: 10.1016/j.scitotenv.2017.11.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/08/2023]
Abstract
Road traffic is one of the major sources of particulate matters in the atmosphere. Tunnels provide a semi-closed place to measure traffic-derived particles before the particles were photo-chemically modified in the open air. In this study, aerosol particles were collected in a tunnel, and an urban site for comparison at a coastal city in south China. The particles were analyzed by using a transmission electron microscope coupled with an energy-dispersive X-ray spectrometry. There were four groups of particles according to sources: tailpipe-emitted particles, wear debris, road dust, and secondary particles. Tailpipe-emitted particles included soot, organic, and a part of sulfate and metal particles. Wear debris were characterized by their distinct metal components. Road dust was composed of mineral particles and fly ash. Secondary particles were some sulfate particles and mixture particles. Sulfate particles were further divided into two subtypes: with and without organic coating. Sulfate particles with organic coating accounted for 56.2% of total sulfate particles in the tunnel, while the percentage was 36.9% at the urban site, indicating that sulfate particles were more easily coated by organics in the tunnel than the urban site. However, the aging degree of sulfate particles in the tunnel was weaker than that at the urban site, which was attributed to the absence of photochemical reactions in the tunnel environment. Some mixture particles had a core-shell structure (C-S particles). The composition and morphologies of the cores of the C-S particles were similar to those of mineral, metal, and mixture particles. The shells of the C-S particles were mainly composed of organics. The C-S particles were more aged than the sulfate particles with coating in the tunnel environment, suggesting that mineral and metal components could efficiently enhance particle aging in the absence of photochemical reactions.
Collapse
Affiliation(s)
- Cong Hou
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; Hebei University of Economics and Business, Shijiazhuang 050061, Hebei, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Wei Hu
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| | - Chengmei Zhao
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Jiaoping Xing
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaofeng Huang
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Situm A, Rahman MA, Allen N, Kabengi N, Al-Abadleh HA. ATR-FTIR and Flow Microcalorimetry Studies on the Initial Binding Kinetics of Arsenicals at the Organic–Hematite Interface. J Phys Chem A 2017; 121:5569-5579. [DOI: 10.1021/acs.jpca.7b03426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arthur Situm
- Department
of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Mohammad A. Rahman
- Department
of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | | | | | - Hind A. Al-Abadleh
- Department
of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
35
|
Li W, Xu L, Liu X, Zhang J, Lin Y, Yao X, Gao H, Zhang D, Chen J, Wang W, Harrison RM, Zhang X, Shao L, Fu P, Nenes A, Shi Z. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems. SCIENCE ADVANCES 2017; 3:e1601749. [PMID: 28275731 PMCID: PMC5332152 DOI: 10.1126/sciadv.1601749] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/31/2017] [Indexed: 05/22/2023]
Abstract
It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputable evidence to confirm this hypothesis. Single-particle chemical analysis for hundreds of individual atmospheric particles collected over the East China Sea shows that Fe-rich particles from coal combustion and steel industries were coated with thick layers of sulfate after 1 to 2 days of atmospheric residence. The Fe in aged particles was present as a "hotspot" of (insoluble) iron oxides and throughout the acidic sulfate coating in the form of (soluble) Fe sulfate, which increases with degree of aging (thickness of coating). This provides the "smoking gun" for acid iron dissolution, because iron sulfate was not detected in the freshly emitted particles and there is no other source or mechanism of iron sulfate formation in the atmosphere.
Collapse
Affiliation(s)
- Weijun Li
- Environment Research Institute, Shandong University, Jinan, Shandong 250100, China
| | - Liang Xu
- Environment Research Institute, Shandong University, Jinan, Shandong 250100, China
| | - Xiaohuan Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jianchao Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yangting Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Jianmin Chen
- Environment Research Institute, Shandong University, Jinan, Shandong 250100, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Jinan, Shandong 250100, China
| | - Roy M. Harrison
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, U.K
- Department of Environmental Sciences, Center of Excellence in Environmental Studies, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Xiaoye Zhang
- Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100086, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Athanasios Nenes
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras GR-26504, Greece
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palea-Pendeli GR-15236, Greece
| | - Zongbo Shi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, U.K
- Corresponding author.
| |
Collapse
|
36
|
Wang Z, Fu H, Zhang L, Song W, Chen J. Ligand-Promoted Photoreductive Dissolution of Goethite by Atmospheric Low-Molecular Dicarboxylates. J Phys Chem A 2017; 121:1647-1656. [DOI: 10.1021/acs.jpca.6b09160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenzhen Wang
- Shanghai
Key Laboratory Atmospheric Particle Pollution and Prevention, Department
of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hongbo Fu
- Shanghai
Key Laboratory Atmospheric Particle Pollution and Prevention, Department
of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Liwu Zhang
- Shanghai
Key Laboratory Atmospheric Particle Pollution and Prevention, Department
of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Weihua Song
- Shanghai
Key Laboratory Atmospheric Particle Pollution and Prevention, Department
of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai
Key Laboratory Atmospheric Particle Pollution and Prevention, Department
of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
Gankanda A, Coddens EM, Zhang Y, Cwiertny DM, Grassian VH. Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1484-1491. [PMID: 27796391 DOI: 10.1039/c6em00430j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent atmospheric field and modeling studies have highlighted a lack of understanding of the processes responsible for high levels of sulfate aerosol in the atmosphere, ultimately arising from a dearth of experimental data on such processes. Here we investigated the effect of temperature and simulated solar radiation on the catalytic oxidation of S(iv) to S(vi) (i.e., sulfite to sulfate) in aqueous suspensions of several metal-containing, atmospherically relevant particles including coal fly ash (FA), Arizona test dust (ATD) and an iron oxide (γ-Fe2O3). The effect of temperature and light on S(iv) oxidation was found to be very different for these three samples. For example, in the presence of FA and γ-Fe2O3 the temporal evolution of dissolved Fe(ii) (formed via reductive particle dissolution) correlated with S(iv) oxidation. Accordingly, we propose that S(iv) oxidation in most of these systems initially occurs primarily at the particle surface (i.e., a heterogeneous reaction pathway), although a solution-phase (i.e., homogeneous) catalytic pathway also contributes over later timescales due to the formation and accumulation of dissolved Fe(iii) (generated via oxidation of dissolved Fe(ii) by O2). It is likely that the homogeneous reaction pathway is operative at initial times in the presence of γ-Fe2O3 at 25 °C. In contrast, S(iv) oxidation in the presence of ATD appears to proceed entirely via a heterogeneous reaction, which notably does not lead to any iron dissolution. In fact, the greater overall rate of S(iv) loss in the presence of ATD compared to FA and γ-Fe2O3 suggests that other factors, including greater adsorption of sulfite, transition metal ion (TMI) catalysis by other metal ions (e.g., Ti), or different species of iron in ATD, play a role. Overall these studies suggest that the rate, extent and products of atmospheric S(iv) oxidation can be highly variable and dependent upon the nature of aerosol sources and ambient conditions (e.g., temperature and irradiance). Ultimately, such complexity precludes simple, broadly generalized schemes for this reaction when modeling atmospheric processes involving diverse components of different mineral dust aerosol as well as other metal-containing aerosol.
Collapse
Affiliation(s)
- Aruni Gankanda
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ellen M Coddens
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Yaping Zhang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - David M Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA. and Departments of Nanoengineering and Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
38
|
Tang M, Larish WA, Fang Y, Gankanda A, Grassian VH. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity. J Phys Chem A 2016; 120:5609-16. [PMID: 27322707 DOI: 10.1021/acs.jpca.6b05395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.
Collapse
Affiliation(s)
- Mingjin Tang
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Whitney A Larish
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Yuan Fang
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States.,Departments of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Aruni Gankanda
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Vicki H Grassian
- Departments of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,Departments of Nanoengineering and Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
39
|
Jeong D, Kim K, Min DW, Choi W. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12816-12822. [PMID: 26444653 DOI: 10.1021/acs.est.5b04211] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.
Collapse
Affiliation(s)
- Daun Jeong
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH) , Pohang 790-784, Korea
| | - Kitae Kim
- Korea Polar Research Institute , Incheon 406-840, Korea
| | - Dae Wi Min
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH) , Pohang 790-784, Korea
| | - Wonyong Choi
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH) , Pohang 790-784, Korea
| |
Collapse
|
40
|
Cartledge BT, Marcotte AR, Herckes P, Anbar AD, Majestic BJ. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7179-7187. [PMID: 26000788 DOI: 10.1021/acs.est.5b02452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.
Collapse
Affiliation(s)
- Benton T Cartledge
- †Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208-9020, United States
| | - Aurelie R Marcotte
- ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Pierre Herckes
- ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Ariel D Anbar
- ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
- §School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404, United States
| | - Brian J Majestic
- †Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208-9020, United States
| |
Collapse
|
41
|
Al-Abadleh HA. Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Adv 2015. [DOI: 10.1039/c5ra03132j] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The current state of knowledge and future research directions of the bulk and surface chemistry of iron relevant to atmospheric surfaces are reviewed.
Collapse
Affiliation(s)
- Hind A. Al-Abadleh
- Department of Chemistry and Biochemistry
- Wilfrid Laurier University
- Waterloo
- Canada
| |
Collapse
|