1
|
Gattupalli M, Dashora K, Mishra M, Javed Z, Tripathi GD. Microbial bioprocess performance in nanoparticle-mediated composting. Crit Rev Biotechnol 2023; 43:1193-1210. [PMID: 36510336 DOI: 10.1080/07388551.2022.2106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Microbial composting is one of the most cost-effective techniques for degradation, remediation, nutrition, etc. Currently, there is faster growth and development in nanotechnology in different sectors. This development leads nanoparticles (NPs) to enter into the composts in different ways. First, unintentional entry of NPs into the composts via: waste discharge, buried solid waste, surface runoff, direct disposal into wastes (consumer goods, food, pharmaceuticals, and personal care products). Second, intentional mediation of the NPs in the composting process is a novel approach developed to enhance the degradation rate of wastes and as a nutrient for plants. The presence of NPs in the composts can cause nanotoxicity. Conversely, their presence might also be beneficial, such as soil reclamations, degradation, etc. Alternatively, metal NPs are also helpful for all living organisms, including microorganisms, in various biological processes, such as DNA replication, precursor biosynthesis, respiration, oxidative stress responses, and transcription. NPs show exemplary performance in multiple fields, whereas their role in composting process is worth studying. Consequently, this article aids the understanding of the role of NPs in the composting process and how far their presence can be beneficial. This article reviews the significance of NPs in: the composting process, microbial bioprocess performance during nano composting, basic life cycle assessment (LCA) of NP-mediated composting, and mode of action of the NPs in the soil matrix. This article also sheds insight on the notion of nanozymes and highlights their biocatalytic characterization, which will be helpful in future composting research.
Collapse
Affiliation(s)
- Meghana Gattupalli
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Mansi Mishra
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Zoya Javed
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Gyan Datta Tripathi
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
2
|
Zhang L, Dong H, Zhu Y, Zhang J, Zeng G, Yuan Y, Cheng Y, Li L, Fang W. Evolutions of different microbial populations and the relationships with matrix properties during agricultural waste composting with amendment of iron (hydr)oxide nanoparticles. BIORESOURCE TECHNOLOGY 2019; 289:121697. [PMID: 31255963 DOI: 10.1016/j.biortech.2019.121697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the evolutions of different microbial populations and multivariate relationships between their abundances and environmental variables during composting with amendment of Fe (hydr)oxide nanoparticles. Piles treated with nanohematite and nanomagnetite were denoted as T-nanohematite and T-nanomagnetite, and another one was T-control. It was found that nanohematite more effectively increased bacteria and fungi abundances with 1.24∼1.58 times average value of T-control, while nanomagnetite was more useful to actinomycetes. As the most significant variable, the total effect of temperature in T-control and T-nanomagnetite was increased to 0.87 and 0.92, respectively, because both the direct and indirect effects were positive, while it in T-nanohematite was reduced to 0.18 by the negative indirect effect. Partial redundancy analysis suggested that each microbial abundance shared different relationships with composting parameters. Overall, actinomycetes was more sensitive to changes of composting parameters than bacteria and fungi.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yujie Yuan
- Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, PR China
| | - Yujun Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
3
|
Zhang L, Dong H, Zhang J, Chen Y, Zeng G, Yuan Y, Cao W, Fang W, Hou K, Wang B, Li L. Influence of FeONPs amendment on nitrogen conservation and microbial community succession during composting of agricultural waste: Relative contributions of ammonia-oxidizing bacteria and archaea to nitrogen conservation. BIORESOURCE TECHNOLOGY 2019; 287:121463. [PMID: 31121445 DOI: 10.1016/j.biortech.2019.121463] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Composting amended with iron oxide nanoparticles (FeONPs, α-Fe2O3 and Fe3O4 NPs) were conducted to study the impacts of FeONPs on nitrogen conservation and microbial community. It was found that amendment of FeONPs, especially α-Fe2O3 NPs, reduced total nitrogen (TN) loss, and reserved more NH4+-N and mineral N. Pearson correlation analysis revealed that decrease of ammonia-oxidizing bacteria (AOB) in FeONPs treatments played more important role than ammonia-oxidizing archaea (AOA) in reserving more NH4+-N and mineral N, and reducing TN loss. Bacterial community composition at phylum level did not shift with addition of FeONPs. Firmicutes, Actinobacteria, and Proteobacteria were the three most dominant phyla in all treatments. Overall, this study provides a method to reduce TN loss and improve mineral N reservation during composting, and gives a deep insight into the role of AOB and AOA in nitrogen transformation.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yujie Yuan
- Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Bin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
4
|
Zhang L, Zhu Y, Zhang J, Zeng G, Dong H, Cao W, Fang W, Cheng Y, Wang Y, Ning Q. Impacts of iron oxide nanoparticles on organic matter degradation and microbial enzyme activities during agricultural waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:289-297. [PMID: 31351614 DOI: 10.1016/j.wasman.2019.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
The effects of iron oxide nanoparticles (IONPs, including Fe2O3 NPs and Fe3O4 NPs) on composting were investigated through evaluating their influences on organic matter (OM) degradation, dehydrogenase (DHA) and urease (UA) activities, and quality of the final compost product. Results showed that composting amended with Fe2O3 NPs was more effective to facilitate OM degradation. At the end of composting, the total OM loss in T-C, T-Fe2O3 NPs and T-Fe3O4 NPs was 66.19%, 75.53% and 61.31%, respectively. DHA and UA were also improved on the whole by the amendment of IONPs, especially Fe2O3 NPs. Although relationships between enzyme activities and environmental variables were changed by different treatments, temperature was the most influential to variations of both DHA and UA in all treatments, which independently explained 75.1%, 34.7% and 38.4% of variations in the two enzyme activities in T-C, T-Fe2O3 NPs and T-Fe3O4 NPs, respectively. Compared with DHA, UA was more closely related to the environmental parameters. The germination index in T-C, T-Fe2O3 NPs and T-Fe3O4 NPs was 134.49%, 153.64% and 146.76%, and the average shoot length was 3.16, 3.87 and 3.45 cm, respectively, indicating that amendment of IONPs, especially Fe2O3 NPs, could promote seed germination and seedling growth. Therefore, composting amended with IONPs was a feasible and promising method to improve composting performance, enzyme activities as well as quality of the final compost product.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yujun Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Qin Ning
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
5
|
Benign nano-assemblages of silver induced by β galactosidase with augmented antimicrobial and industrial dye degeneration potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:570-578. [DOI: 10.1016/j.msec.2018.05.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 05/04/2018] [Accepted: 05/26/2018] [Indexed: 11/23/2022]
|
6
|
Part F, Berge N, Baran P, Stringfellow A, Sun W, Bartelt-Hunt S, Mitrano D, Li L, Hennebert P, Quicker P, Bolyard SC, Huber-Humer M. A review of the fate of engineered nanomaterials in municipal solid waste streams. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:427-449. [PMID: 29477652 DOI: 10.1016/j.wasman.2018.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 05/16/2023]
Abstract
Significant knowledge and data gaps associated with the fate of product-embedded engineered nanomaterials (ENMs) in waste management processes exist that limit our current ability to develop appropriate end-of-life management strategies. This review paper was developed as part of the activities of the IWWG ENMs in Waste Task Group. The specific objectives of this review paper are to assess the current knowledge associated with the fate of ENMs in commonly used waste management processes, including key processes and mechanisms associated with ENM fate and transport in each waste management process, and to use that information to identify the data gaps and research needs in this area. Literature associated with the fate of ENMs in wastes was reviewed and summarized. Overall, results from this literature review indicate a need for continued research in this area. No work has been conducted to quantify ENMs present in discarded materials and an understanding of ENM release from consumer products under conditions representative of those found in relevant waste management process is needed. Results also indicate that significant knowledge gaps associated with ENM behaviour exist for each waste management process investigated. There is a need for additional research investigating the fate of different types of ENMs at larger concentration ranges with different surface chemistries. Understanding how changes in treatment process operation may influence ENM fate is also needed. A series of specific research questions associated with the fate of ENMs during the management of ENM-containing wastes have been identified and used to direct future research in this area.
Collapse
Affiliation(s)
- Florian Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - Nicole Berge
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States.
| | - Paweł Baran
- Unit of Technologies of Fuels, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
| | - Anne Stringfellow
- Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, England, United Kingdom
| | - Wenjie Sun
- Department of Civil and Environmental Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75205, United States
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, 1110 S. 67th St., Omaha, NE 68182-0178, United States
| | - Denise Mitrano
- Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Liang Li
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States
| | - Pierre Hennebert
- National Institute for Industrial and Environmental Risk Assessment (INERIS), BP 33, 13545 Aix-en-Provence Cedex 4, France
| | - Peter Quicker
- Unit of Technologies of Fuels, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
| | - Stephanie C Bolyard
- Environmental Research & Education Foundation, 3301 Benson Drive, Suite 101, Raleigh, NC 27609, United States
| | - Marion Huber-Humer
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| |
Collapse
|
7
|
Zeng G, Zhang L, Dong H, Chen Y, Zhang J, Zhu Y, Yuan Y, Xie Y, Fang W. Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs. BIORESOURCE TECHNOLOGY 2018; 253:112-120. [PMID: 29331826 DOI: 10.1016/j.biortech.2017.12.095] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs) were applied at different concentrations to reduce total nitrogen (TN) losses and the mechanisms of nitrogen bio-transformation were investigated in terms of the nitrogen functional enzymes and genes. Results showed that mineral N in pile 3 which was treated with AgNPs at a concentration of 10 mg/kg compost was the highest (6.58 g/kg dry weight (DW) compost) and the TN loss (47.07%) was the lowest at the end of composting. Correlation analysis indicated that TN loss was significantly correlated with amoA abundance. High throughput sequencing showed that the dominant family of ammonia-oxidizing bacteria (AOB) was Nitrosomonadaceae, and the number of Operational Taxonomic Units (OTUs) reduced after the beginning of composting when compared with day 1. In summary, treatment with AgNPs at a concentration of 10 mg/kg compost was considerable to reduce TN losses and reserve more mineral N during composting.
Collapse
Affiliation(s)
- Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yujie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yankai Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
8
|
Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Krishnan B, Mahalingam S. Ag/TiO2/bentonite nanocomposite for biological applications: Synthesis, characterization, antibacterial and cytotoxic investigations. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 2017; 47:767-810. [DOI: 10.1080/10408444.2017.1328400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- William K. Boyes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brittany Lila M. Thornton
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Souhail R. Al-Abed
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Christian P. Andersen
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Dermont C. Bouchard
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Burgess
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Elaine A. Cohen Hubal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kay T. Ho
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kirk Kitchin
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jay R. Reichman
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kim R. Rogers
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey A. Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul T. Rygiewicz
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Richard G. Zepp
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Zucker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
11
|
Yazici Guvenc S, Alan B, Adar E, Bilgili MS. The impact of nanoparticles on aerobic degradation of municipal solid waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2017; 35:426-436. [PMID: 28367755 DOI: 10.1177/0734242x17695884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg-1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min-1 kg-1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl- ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO2 and Ag nanoparticles at concentrations of 100 mg kg-1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.
Collapse
Affiliation(s)
- Senem Yazici Guvenc
- Department of Environmental Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Burcu Alan
- Department of Environmental Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Elanur Adar
- Department of Environmental Engineering, Yıldız Technical University, Istanbul, Turkey
| | - Mehmet Sinan Bilgili
- Department of Environmental Engineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
Zhang L, Zeng G, Dong H, Chen Y, Zhang J, Yan M, Zhu Y, Yuan Y, Xie Y, Huang Z. The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen. BIORESOURCE TECHNOLOGY 2017; 230:132-139. [PMID: 28189966 DOI: 10.1016/j.biortech.2017.01.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
This study evaluated the influence of silver nanoparticles (AgNPs) on evolutions of organic matter and nitrogen during co-composting of sewage sludge and agricultural waste. Two co-composting piles were conducted, one was treated without AgNPs (pile 1) and the other with AgNPs (pile 2). Results showed that the AgNPs affected the quality of final composts. Less organic matter (OM) losses were determined in pile 2 (57.96%) than pile 1 (61.66%). 27.22% and 30.1% of the initial total organic matter (TOC) was decomposed in pile 1 and pile 2, respectively. The final water soluble carbon (WSC) concentration in pile 2 was 23559.27mg/kg DW compost which was significantly lower than pile 1 (25642.75mg/kg DW compost). Changes of different forms of nitrogen in the two piles showed that AgNPs could reduce the losses of TN but increase the losses of mineral N.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yujie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yankai Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
13
|
Gitipour A, Al-Abed SR, Thiel SW, Scheckel KG, Tolaymat T. Nanosilver as a disinfectant in dental unit waterlines: Assessment of the physicochemical transformations of the AgNPs. CHEMOSPHERE 2017; 173:245-252. [PMID: 28110014 PMCID: PMC6143180 DOI: 10.1016/j.chemosphere.2017.01.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 05/29/2023]
Abstract
Dental unit water lines (DUWL) are susceptible to biofilm development and bacterial growth leading to water contamination, causing health and ecological effects. This study monitors the interactions between a commonly used nanosilver disinfectant (ASAP-AGX-32, an antimicrobial cleaner for dental units, 0.0032% Ag) and biofilm development in DUWL. To simulate the disinfection scenario, an in-house DUWL model was assembled and biofilm accumulation was allowed. Subsequent to biofilm development, the disinfection process was performed according to the manufacturer's instructions. The pristine nanosilver particles in the cleaner measured between 3 and 5 nm in diameter and were surrounded by a stabilizing polymer. However, the polymeric stabilizing agent diminished over the disinfection process, initiating partial AgNPs aggregation. Furthermore, surface speciation of the pristine AgNPs were identified as primarily AgO, and after the disinfection process, transformations to AgCl were observed. The physicochemical characteristics of AgNPs are known to govern their fate, transport and environmental implications. Hence, knowledge of the AgNPs characteristics after the disinfection process (usage scenario) is of significance. This study demonstrates the adsorption of AgNPs onto biofilm surfaces and, therefore, will assist in illustration of the toxicity mechanisms of AgNPs to bacteria and biofilms. This work can be an initial step in better understanding how AgNPs transform depending on the conditions they are exposed to during their lifetime. Until this date, most research has been focused on assessing the impacts of pristine (lab synthesized) nanomaterials on various systems. However, it is our belief that nanoparticles may undergo transformations during usage, which must be taken into consideration. Furthermore, this experiment is unique as it was conducted with a commonly used, commercially available nanosilver suspension leading to more realistic and applicable findings.
Collapse
Affiliation(s)
- Alireza Gitipour
- Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Souhail R Al-Abed
- US EPA, Office of Research and Development, National Risk Management Laboratory, Cincinnati, OH, USA.
| | - Stephen W Thiel
- Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Kirk G Scheckel
- US EPA, Office of Research and Development, National Risk Management Laboratory, Cincinnati, OH, USA
| | - Thabet Tolaymat
- US EPA, Office of Research and Development, National Risk Management Laboratory, Cincinnati, OH, USA
| |
Collapse
|
14
|
González-Gálvez D, Janer G, Vilar G, Vílchez A, Vázquez-Campos S. The Life Cycle of Engineered Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:41-69. [PMID: 28168665 DOI: 10.1007/978-3-319-47754-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first years in the twenty-first century have meant the inclusion of nanotechnology in most industrial sectors, from very specific sensors to construction materials. The increasing use of nanomaterials in consumer products has raised concerns about their potential risks for workers, consumers and the environment. In a comprehensive risk assessment or life cycle assessment, a life cycle schema is the starting point necessary to build up the exposure scenarios and study the processes and mechanisms driving to safety concerns. This book chapter describes the processes that usually occur at all the stages of the life cycle of the nano-enabled product, from the nanomaterial synthesis to the end-of-life of the products. Furthermore, release studies reported in literature related to these processes are briefly discussed.
Collapse
Affiliation(s)
- David González-Gálvez
- LEITAT Technological Center, C/ de la Innovació 2, 08225, Terrassa (Barcelona), Spain
| | - Gemma Janer
- LEITAT Technological Center, C/ de la Innovació 2, 08225, Terrassa (Barcelona), Spain
| | - Gemma Vilar
- LEITAT Technological Center, C/ de la Innovació 2, 08225, Terrassa (Barcelona), Spain
| | - Alejandro Vílchez
- LEITAT Technological Center, C/ de la Innovació 2, 08225, Terrassa (Barcelona), Spain
| | | |
Collapse
|
15
|
Samarajeewa AD, Velicogna JR, Princz JI, Subasinghe RM, Scroggins RP, Beaudette LA. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:504-513. [PMID: 27717530 DOI: 10.1016/j.envpol.2016.09.094] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 05/23/2023]
Abstract
Silver nano-particles (AgNPs) are widely used in a range of consumer products as a result of their antimicrobial properties. Given the broad spectrum of uses, AgNPs have the potential for being released to the environment. As a result, environmental risks associated with AgNPs need to be assessed to aid in the development of regulatory guidelines. Research was performed to assess the effects of AgNPs on soil microbial activity and diversity in a sandy loam soil with an emphasis on using a battery of microbial tests involving multiple endpoints. The test soil was spiked with PVP coated (0.3%) AgNPs at the following concentrations of 49, 124, 287, 723 and 1815 mg Ag kg-1 dry soil. Test controls included an un-amended soil; soil amended with PVP equivalent to the highest PVP concentration of the coated AgNP; and soil amended with humic acid, as 1.8% humic acid was used as a suspension agent for the AgNPs. The impact on soil microbial community was assessed using an array of tests including heterotrophic plate counting, microbial respiration, organic matter decomposition, soil enzyme activity, biological nitrification, community level physiological profiling (CLPP), Ion Torrent™ DNA sequencing and denaturing gradient gel electrophoresis (DGGE). An impact on microbial growth, activity and community diversity was evident from 49 to 1815 mg kg-1 with the median inhibitory concentrations (IC50) as low as 20-31 mg kg-1 depending on the test. AgNP showed a notable impact on microbial functional and genomic diversity. Emergence of a silver tolerant bacterium was observed at AgNP concentrations of 49-287 mg kg-1 after 14-28 days of incubation, but not detectable at 723 and 1815 mg kg-1. The bacterium was identified as Rhodanobacter sp. The study highlighted the effectiveness of using multiple microbial endpoints for inclusion to the environmental risk assessment of nanomaterials.
Collapse
Affiliation(s)
- A D Samarajeewa
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335, River Road, Ottawa, K1V 1C7, Ontario, Canada.
| | - J R Velicogna
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335, River Road, Ottawa, K1V 1C7, Ontario, Canada
| | - J I Princz
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335, River Road, Ottawa, K1V 1C7, Ontario, Canada
| | - R M Subasinghe
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335, River Road, Ottawa, K1V 1C7, Ontario, Canada
| | - R P Scroggins
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335, River Road, Ottawa, K1V 1C7, Ontario, Canada
| | - L A Beaudette
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335, River Road, Ottawa, K1V 1C7, Ontario, Canada
| |
Collapse
|
16
|
Zhang C, Hu Z, Li P, Gajaraj S. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:852-873. [PMID: 27542630 DOI: 10.1016/j.scitotenv.2016.07.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Silver nanoparticles (nanosilver or AgNPs) enter municipal wastewater from various sources, raising concerns about their potential adverse effects on wastewater treatment processes. We argue that the biological effects of silver nanoparticles at environmentally realistic concentrations (μgL-1 or lower) on the performance of a full-scale municipal water resource recovery facility (WRRF) are minimal. Reactor configuration is a critical factor that reduces or even mutes the toxicity of silver nanoparticles towards wastewater microbes in a full-scale WRRF. Municipal sewage collection networks transform silver nanoparticles into silver(I)-complexes/precipitates with low ecotoxicity, and preliminary/primary treatment processes in front of biological treatment utilities partially remove silver nanoparticles to sludge. Microbial functional redundancy and microbial adaptability to silver nanoparticles also greatly alleviate the adverse effects of silver nanoparticles on the performance of a full-scale WRRF. Silver nanoparticles in a lab-scale bioreactor without a sewage collection system and/or a preliminary/primary treatment process, in contrast to being in a full scale system, may deteriorate the reactor performance at relatively high concentrations (e.g., mgL-1 levels or higher). However, in many cases, silver nanoparticles have minimal impacts on lab-scale bioreactors, such as sequencing batch bioreactors (SBRs), especially when at relatively low concentrations (e.g., less than 1mgL-1). The susceptibility of wastewater microbes to silver nanoparticles is species-specific. In general, silver nanoparticles have higher toxicity towards nitrifying bacteria than heterotrophic bacteria.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Ping Li
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shashikanth Gajaraj
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Stamou I, Antizar-Ladislao B. The impact of silver and titanium dioxide nanoparticles on the in-vessel composting of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 56:71-78. [PMID: 27422048 DOI: 10.1016/j.wasman.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
The study evaluated the impact of commercial silver doped titanium dioxide nanoparticles (Ag-TiO2NPs) and silver nanoparticles (AgNPs) on the in-vessel composting of municipal solid waste (MSW), using fluorescence excitation-emission matrix (EEM) spectroscopy as a tool to evaluate the microbial degradation of MSW and subsequent soil application of compost. The fate of NPs present in mature compost used as a top-layer soil conditioner was investigated using a column approach at laboratory scale. The results suggested that the presence of either Ag-TiO2NPs or AgNPs did not inhibit the microbial degradation process within the range of metal concentrations used (5/225, 10/450, 20/900, 50/2250mg Ag/Ti per kg of organic matter for Ag-TiO2NP and 5, 10, 20, 50mg Ag per kg of organic matter for AgNPs). Higher concentrations of Ag-TiO2NP and AgNPs resulted in a higher inorganic carbon removal, and lower formation of humins. Formation of humins was higher for non-contaminated MSW and compost. EEM peaks shifted towards the humic substances (HS) region during in-vessel composting, indicating that microbial degradation occurred and that NPs did not have any effect on humification and therefore on compost stability. The leaching results suggested that only a low percentage of the total NPs (in weight) in compost, up to ca. 5% for Ag and up to ca. 15% for Ti, leached out from the columns, which was assumed the amount that potentially could leach to the environment. These results suggested that NPs will mainly accumulate in soils' top layers following application of compost contaminated with NP.
Collapse
Affiliation(s)
- Ioannis Stamou
- Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, The King's Building, Mayfield Road, Edinburgh EH9 3JL, United Kingdom; Department of Development of West Attica, Region of Attica, 78 Iroon Polytechneiou, 19200 Elefsis, Greece.
| | - Blanca Antizar-Ladislao
- Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, The King's Building, Mayfield Road, Edinburgh EH9 3JL, United Kingdom; Isle Utilities Ltd, King's Cross, London N1 9AB, United Kingdom.
| |
Collapse
|
18
|
Gitipour A, Thiel SW, Scheckel KG, Tolaymat T. Anaerobic toxicity of cationic silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:363-368. [PMID: 27016684 DOI: 10.1016/j.scitotenv.2016.02.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag(+) under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5mgL(-1), the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100mgL(-1) as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag(+). Both citrate and PVP-AgNPs did not exhibit toxicity at the 100mgL(-1) as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles.
Collapse
Affiliation(s)
- Alireza Gitipour
- Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Stephen W Thiel
- Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Kirk G Scheckel
- USEPA, Office of Research and Development, Cincinnati, OH, United States
| | - Thabet Tolaymat
- USEPA, Office of Research and Development, Cincinnati, OH, United States.
| |
Collapse
|
19
|
Judy JD, Kirby JK, Creamer C, McLaughlin MJ, Fiebiger C, Wright C, Cavagnaro TR, Bertsch PM. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:256-263. [PMID: 26196315 DOI: 10.1016/j.envpol.2015.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 05/23/2023]
Abstract
We investigated effects of Ag2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag(+) on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+) exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+). Overall, Ag2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag(+). However, significant effects were observed at 1 mg kg(-1) Ag2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag2S ENMs.
Collapse
Affiliation(s)
- Jonathan D Judy
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia.
| | - Jason K Kirby
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Courtney Creamer
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Sustaining Agriculture Soil and Landscapes Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Mike J McLaughlin
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Cathy Fiebiger
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Claire Wright
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Timothy R Cavagnaro
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, 5064, South Australia, Australia
| | - Paul M Bertsch
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, 41 Boggo Road, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia; Center for the Environmental Implications for Nanotechnology, Duke University, Durham, 27708, NC, USA; Department of Plant and Soil Sciences, University of Kentucky, Lexington, 40546, KY, United States
| |
Collapse
|
20
|
Ren W, Ren G, Teng Y, Li Z, Li L. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:286-94. [PMID: 26010474 DOI: 10.1016/j.jhazmat.2015.05.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 05/22/2023]
Abstract
The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene.
Collapse
Affiliation(s)
- Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gaidi Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lina Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
21
|
Hicks AL, Gilbertson LM, Yamani JS, Theis TL, Zimmerman JB. Life Cycle Payback Estimates of Nanosilver Enabled Textiles under Different Silver Loading, Release, And Laundering Scenarios Informed by Literature Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7529-7542. [PMID: 26034879 DOI: 10.1021/acs.est.5b01176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silver was utilized throughout history to prevent the growth of bacteria in food and wounds. Recently, nanoscale silver has been applied to consumer textiles (nAg-textiles) to eliminate the prevalence of odor-causing bacteria. In turn, it is proposed that consumers will launder these items less frequently thus, reducing the life cycle impacts. While previous studies report that laundering processes are associated with the greatest environmental impacts of these textiles, there is no data available to support the proposed shift in consumer laundering behavior. Here, the results from a comprehensive literature review of nAg-textile life cycle studies are used to inform a cradle-to-grave life cycle impact assessment. Rather than assuming shifts in consumer behavior, the impact assessment is conducted in such a way that considers all laundering scenarios to elucidate the potential for reduced laundering to enable realization of a net life cycle benefit. In addition to identifying the most impactful stages of the life cycle across nine-midpoint categories, a payback period and uncertainty analysis quantifies the reduction in lifetime launderings required to recover the impacts associated with nanoenabling the textile. Reduction of nAg-textile life cycle impacts is not straightforward and depends on the impact category considered.
Collapse
Affiliation(s)
- Andrea L Hicks
- †University of Illinois at Chicago, Institute for Environmental Science and Policy, 2121 West Taylor (MC 673), Chicago, Illinois 60612, United States
| | - Leanne M Gilbertson
- ‡Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Jamila S Yamani
- ‡Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Thomas L Theis
- †University of Illinois at Chicago, Institute for Environmental Science and Policy, 2121 West Taylor (MC 673), Chicago, Illinois 60612, United States
| | - Julie B Zimmerman
- ‡Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- §School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Zhang Y, Hu M, Li P, Wang X, Meng Q. Trichloroethylene removal and bacterial variations in the up-flow anaerobic sludge blanket reactor in response to temperature shifts. Appl Microbiol Biotechnol 2015; 99:6091-102. [DOI: 10.1007/s00253-015-6480-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/07/2015] [Accepted: 02/12/2015] [Indexed: 12/26/2022]
|
23
|
Khurana C, Vala AK, Andhariya N, Pandey OP, Chudasama B. Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver nanoparticles against biorecycling microbes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2191-2198. [PMID: 25000128 DOI: 10.1039/c4em00248b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Silver nanoparticles have a huge share in nanotechnology based products used in clinical and hygiene products. Silver nanoparticles leaching from these medical and domestic products will eventually enter terrestrial ecosystems and will interact with the microbes present in the land and water. These interactions could be a threat to biorecycling microbes present in the Earth's crust. The antimicrobial action towards biorecycling microbes by leached silver nanoparticles from medical waste could be many times greater compared to that of silver nanoparticles leached from other domestic products, since medical products may contain traditional antibiotics along with silver nanoparticles. In the present article, we have evaluated the antimicrobial activities of as-synthesized silver nanoparticles, antibiotics - tetracycline and kanamycin, and antibiotic-adsorbed silver nanoparticles. The antimicrobial action of silver nanoparticles with adsorbed antibiotics is 33-100% more profound against the biorecycling microbes B. subtilis and Pseudomonas compared to the antibacterial action of silver nanoparticles of the same concentration. This study indicates that there is an immediate and urgent need for well-defined protocols for environmental exposure to silver nanoparticles, as the use of silver nanoparticles in nanotechnology based products is poorly restricted.
Collapse
Affiliation(s)
- Chandni Khurana
- School of Physics & Materials Science, Thapar University, Patiala, 147 004, India.
| | | | | | | | | |
Collapse
|
24
|
Sinclair T, Zieba M, Irusta S, Sebastián V, Arruebo M. High-speed water sterilization using silver-containing cellulose membranes. NANOTECHNOLOGY 2014; 25:305101. [PMID: 25006109 DOI: 10.1088/0957-4484/25/30/305101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The removal of bacteria and other pathogenic micro-organisms from drinking water is usually carried out by boiling; however, when this is not a feasible option, a combination of treatment based on filtration and disinfection is recommended. In this work, we produced cellulose filters grafted with silver nanoparticles (AgNPs) and silver nanowires (AgNWs) by covalent attachment of separately prepared Ag nanostructures on thiol- and amine-modified commercially available cellulosic filters. Results obtained from scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDS) all revealed that such modified cellulose membranes contained large amounts of homogeneously dispersed AgNPs, whereas X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the aforementioned nanostructures were immobilized on the membrane with a strong and stable covalent bond between the thiol or amine groups and the surface of the Ag nanofillers. This durable and robust covalent attachment facilitated outstanding suppression of the uncontrolled release of the nanostructures from the membranes, even under strong ultrasonication. Those membranes also demonstrated high permeance and antimicrobial activity in excess of 99.9% growth inhibition against Escherichia coli, which was used as a model of gram-negative coliform bacteria. Bacteria percolated throughout the tortuous silver-loaded filters, thus increasing the chances of contact between the Ag nanostructures (wires or nanoparticles) and the passing bacteria. Thus, we anticipate that these filters, with their high antibacterial activity and robustness, can be produced in a cost-effective manner and that they would be capable of producing affordable, clean, and safe drinking water in a short period of time without producing an uncontrolled silver release into the percolated water.
Collapse
Affiliation(s)
- Terica Sinclair
- Department of Chemical Engineering, Aragon Nanoscience Institute (INA), University of Zaragoza. Centro de Investigación Biomédica de Aragón (CIBA), Avda. San Juan Bosco, 13. 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
25
|
Dimkpa CO. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 2014; 54:889-904. [DOI: 10.1002/jobm.201400298] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/12/2014] [Indexed: 11/08/2022]
|