1
|
Hsu CW, Fang YC, Li JF, Cheng CA. Decoding Complex Biological Milieus: SHINER's Approach to Profiling and Functioning of Extracellular Vesicle Subpopulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503638. [PMID: 40255212 DOI: 10.1002/smll.202503638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles (EVs) are celebrated for their pivotal roles in cellular communication and their potential in disease diagnosis and therapeutic applications. However, their inherent heterogeneity acts as a double-edged sword, complicating the isolation of specific EV subpopulations. Conventional EV isolation methods often fall short, relying on biophysical properties, while affinity-based techniques may compromise EV integrity and utility with harsh recovery conditions. To address these limitations, the SHINER (subpopulation homogeneous isolation and nondestructive EV release) workflow is introduced, which redefines how EVs are isolated and recoverd, featuring the innovative SWITCHER (switchable extracellular vesicle releaser) tool. The SHINER workflow facilitates the precise purification and gentle recovery of target EV subpopulations from complex biological mixtures, preserving their structural integrity and biological functionality. Importantly, SHINER demonstrates exceptional adaptability to multiple markers and clinical applications. It not only enhances the ability to trace EV origins for accurate disease diagnosis but also advances fundamental EV research and provides standardized EV materials for therapeutic innovations. By improving the understanding of EVs and enabling the development of personalized diagnostics and treatments, SHINER propels EV-based science into new frontiers of advanced medicine, offering transformative potential for healthcare.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Yao-Ching Fang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Jhih-Fong Li
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| |
Collapse
|
2
|
Carson LM, Watson EE. Peptide Nucleic Acids: From Origami to Editing. Chempluschem 2024; 89:e202400305. [PMID: 38972843 DOI: 10.1002/cplu.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Peptide nucleic acids (PNAs) combine the programmability of native nucleic acids with the robustness and ease of synthesis of a peptide backbone. These designer biomolecules have demonstrated tremendous utility across a broad range of applications, from the formation of bespoke biosupramolecular architectures to biosensing and gene regulation. Herein, we explore some of the key developments in the application of PNA in chemical biology and biotechnology in the last 5 years and present anticipated key areas of future development.
Collapse
Affiliation(s)
- Liam M Carson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Emma E Watson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Xiang Z, Lu J, Ming Y, Guo W, Chen X, Sun W. Engineering of a DNA/γPNA Hybrid Nanoreporter for ctDNA Mutation Detection via γPNA Urinalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310225. [PMID: 38958527 PMCID: PMC11434236 DOI: 10.1002/advs.202310225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Detection of circulating tumor DNA (ctDNA) mutations, which are molecular biomarkers present in bodily fluids of cancer patients, can be applied for tumor diagnosis and prognosis monitoring. However, current profiling of ctDNA mutations relies primarily on polymerase chain reaction (PCR) and DNA sequencing and these techniques require preanalytical processing of blood samples, which are time-consuming, expensive, and tedious procedures that increase the risk of sample contamination. To overcome these limitations, here the engineering of a DNA/γPNA (gamma peptide nucleic acid) hybrid nanoreporter is disclosed for ctDNA biosensing via in situ profiling and recording of tumor-specific DNA mutations. The low tolerance of γPNA to single mismatch in base pairing with DNA allows highly selective recognition and recording of ctDNA mutations in peripheral blood. Owing to their remarkable biostability, the detached γPNA strands triggered by mutant ctDNA will be enriched in kidneys and cleared into urine for urinalysis. It is demonstrated that the nanoreporter has high specificity for ctDNA mutation in peripheral blood, and urinalysis of cleared γPNA can provide valuable information for tumor progression and prognosis evaluation. This work demonstrates the potential of the nanoreporter for urinary monitoring of tumor and patient prognosis through in situ biosensing of ctDNA mutations.
Collapse
Affiliation(s)
- Zhichu Xiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Jianhua Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Ming
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, The State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
5
|
Li R, Madhvacharyula AS, Du Y, Adepu HK, Choi JH. Mechanics of dynamic and deformable DNA nanostructures. Chem Sci 2023; 14:8018-8046. [PMID: 37538812 PMCID: PMC10395309 DOI: 10.1039/d3sc01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
In DNA nanotechnology, DNA molecules are designed, engineered, and assembled into arbitrary-shaped architectures with predesigned functions. Static DNA assemblies often have delicate designs with structural rigidity to overcome thermal fluctuations. Dynamic structures reconfigure in response to external cues, which have been explored to create functional nanodevices for environmental sensing and other applications. However, the precise control of reconfiguration dynamics has been a challenge due partly to flexible single-stranded DNA connections between moving parts. Deformable structures are special dynamic constructs with deformation on double-stranded parts and single-stranded hinges during transformation. These structures often have better control in programmed deformation. However, related deformability and mechanics including transformation mechanisms are not well understood or documented. In this review, we summarize the development of dynamic and deformable DNA nanostructures from a mechanical perspective. We present deformation mechanisms such as single-stranded DNA hinges with lock-and-release pairs, jack edges, helicity modulation, and external loading. Theoretical and computational models are discussed for understanding their associated deformations and mechanics. We elucidate the pros and cons of each model and recommend design processes based on the models. The design guidelines should be useful for those who have limited knowledge in mechanics as well as expert DNA designers.
Collapse
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| |
Collapse
|
6
|
Wei Y, Hu D, Li D, Hu K, Zhang Q, Liu H, He Q, Yao C, Li H, Wang J. Antiviral effects and mechanisms against EV71 of the novel 2-Benzoxyl-Phenylpyridine Derivatives. Eur J Pharm Sci 2023; 186:106445. [PMID: 37044201 DOI: 10.1016/j.ejps.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
A series of 2-Benzoxyl-Phenylpyridine derivatives were evaluated for their potential antiviral activities against EV71. The preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on EV71, they could effectively inhibit virus-induced cytopathic effects (CPEs), reduce progeny viral yields, and present similar or better antiviral activities compared to the positive control drug ribavirin. Among these derivatives, compounds WY7, WY13 and WY14 showed the most potency against EV71. Investigation of the underlying mechanism of action revealed that these compounds target EV71 replication in cells post infection, they could profoundly inhibit viral RNA replication and protein synthesis, and inhibit virus-induced cell apoptosis. Further experiments demonstrated that compound WY7 potently inhibited the activity of the EV71 3C protease (3Cpro), and to some extent, it affected the activity of 3D polymerase (3Dpol), thus blocking viral replication, but not the activity of the 2A proteinase (2Apro). Modeling of the molecular binding of the 3Cpro-WY7 complex revealed that compound WY7 was predicted to insert into the substrate-binding pocket of EV71 3Cpro, blocking substrate recognition and thereby inhibiting EV71 3Cpro activity. These results indicate that these compounds might be feasible therapeutic agents against EV71 infection and that these compounds may provide promising lead scaffolds for the further design and synthesis of potential antiviral agents.
Collapse
Affiliation(s)
- Yanhong Wei
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Da Hu
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Dong Li
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Kanghong Hu
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Qian Zhang
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Huihui Liu
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Qun He
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Chenguang Yao
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Hanluo Li
- Sino-German Biomedical Center, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Zhao XC, Dong HL, Li XL, Yang HY, Chen XF, Dai L, Wu WQ, Tan ZJ, Zhang XH. 5-Methyl-cytosine stabilizes DNA but hinders DNA hybridization revealed by magnetic tweezers and simulations. Nucleic Acids Res 2022; 50:12344-12354. [PMID: 36477372 PMCID: PMC9757033 DOI: 10.1093/nar/gkac1122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
5-Methyl-cytosine (5mC) is one of the most important DNA modifications and plays versatile biological roles. It is well known that 5mC stabilizes DNA duplexes. However, it remains unclear how 5mC affects the kinetics of DNA melting and hybridization. Here, we studied the kinetics of unzipping and rezipping using a 502-bp DNA hairpin by single-molecule magnetic tweezers. Under constant loading rates, 5mC increases the unzipping force but counterintuitively decreases the rezipping force at various salt and temperature conditions. Under constant forces, the non-methylated DNA hops between metastable states during unzipping and rezipping, which implies low energy barriers. Surprisingly, the 5mC DNA can't rezip after fully unzipping unless much lower forces are applied, where it rezips stochastically in a one-step manner, which implies 5mC kinetically hinders DNA hybridization and high energy barriers in DNA hybridization. All-atom molecular dynamics simulations reveal that the 5mC kinetically hinders DNA hybridization due to steric effects rather than electrostatic effects caused by the additional methyl groups of cytosines. Considering the possible high speed of DNA unzipping and zipping during replication and transcription, our findings provide new insights into the biological roles of 5mC.
Collapse
Affiliation(s)
| | | | - Xiao-Lu Li
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hong-Yu Yang
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xue-Feng Chen
- The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Wen-Qiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Zhi-Jie Tan
- Correspondence may also be addressed to Zhi-Jie Tan. Tel: +86 15827627809; Fax: +86 02768752569;
| | - Xing-Hua Zhang
- To whom correspondence should be addressed. Tel: +86 15827632615; Fax: +86 02768753780;
| |
Collapse
|
8
|
Adjusting the Structure of a Peptide Nucleic Acid (PNA) Molecular Beacon and Promoting Its DNA Detection by a Hybrid with Quencher-Modified DNA. Processes (Basel) 2022. [DOI: 10.3390/pr10040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we performed an elaborate adjustment of the structure of peptide nucleic acid (PNA) molecular beacons as probes for detecting nucleic acids. We synthesized the PNA beacons with various numbers of Glu, Lys, and dabcyl (Dab) quenchers in them, and we investigated their fluorescence changes (F1/1/F0) with and without full-match DNA. As the numbers of Glu/Lys or Dab increased, the F1/1/F0 tended to decrease. Among the different beacons, the PNA beacon with one Glu and one Lys (P1Q1) showed the largest F1/1/F0. On the other hand, a relatively large F1/1/F0 was obtained when the number of Glu/Lys and the number of Dab were the same, and the balance between the numbers of Glu/Lys and Dab seemed to affect the F1/1/F0. We also investigated the DNA detection by the prehybrid of P1Q1, which consists of the T790M base sequence, [P1Q1(T790M)], with quencher-modified DNA (Q-DNA). We examined the DNA detection with single-base mismatch by P1Q1(T790M), and we clarified that there was difficulty in detecting the sequence with P1Q1 alone, but that the sequence was successfully detected by the prehybrid of P1Q1 with the Q-DNA.
Collapse
|
9
|
Weng Z, Yu H, Luo W, Zhang L, Zhang Z, Wang T, Liu Q, Guo Y, Yang Y, Li J, Yang L, Dai L, Pu Q, Zhou X, Xie G. Specific and robust hybridization based on double-stranded nucleic acids with single-base resolution. Anal Chim Acta 2022; 1199:339568. [DOI: 10.1016/j.aca.2022.339568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
|
10
|
Tabara K, Watanabe K, Shigeto H, Yamamura S, Kishi T, Kitamatsu M, Ohtsuki T. Fluorophore-PNA-Quencher/Quencher-DNA probe for miRNA detection. Bioorg Med Chem Lett 2021; 51:128359. [PMID: 34534675 DOI: 10.1016/j.bmcl.2021.128359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Micro RNAs (miRNAs) are involved in a variety of biological functions and are attracting attention as diagnostic and prognostic markers for various diseases. Highly sensitive RNA detection methods are required to determine miRNA expression levels and intracellular localization. In this study, we designed new double-stranded peptide nucleic acid (PNA)/DNA probes consisting of a fluorophore-PNA-quencher (fPq) and a quencher-DNA (qD) for miR-221 detection. We optimized the fPq structure, PNA-DNA hybrid length, and hybrid position. The resultant fPq-2/qD-6b probe was a 6-bp hybrid probe with a 10-base fPq and a 6-base qD. The signal-to-background ratios of the probes showed that fPq-2/qD-6b had a higher target sensitivity than fPq (PNA beacon)-type and fP/qD-type probes. The results of the detection limit and target specificity indicate that the fPq/qD probe is promising for RNA detection in both cells and cell extracts as well as for miRNA diagnosis.
Collapse
Affiliation(s)
- Kentaro Tabara
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hajime Shigeto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Shohei Yamamura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Takamasa Kishi
- Department of Applied Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Mizuki Kitamatsu
- Department of Applied Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| |
Collapse
|
11
|
Wong KL, Liu J. Factors and methods to modulate DNA hybridization kinetics. Biotechnol J 2021; 16:e2000338. [PMID: 34411451 DOI: 10.1002/biot.202000338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
DNA oligonucleotides are widely used in a diverse range of research fields from analytical chemistry, molecular biology, nanotechnology to drug delivery. In these applications, DNA hybridization is often the most important enabling reaction. Achieving control over hybridization kinetics and a high yield of hybridized products is needed to ensure high-quality and reproducible results. Since DNA strands are highly negatively charged and can also fold upon itself to form various intramolecular structures, DNA hybridization needs to overcome these barriers. Nucleation and diffusion are two main kinetic limiting steps although their relative importance differs in different conditions. The effects of length and sequence, temperature, pH, salt concentration, cationic polymers, organic solvents, freezing and crowding agents are summarized in the context of overcoming these barriers. This article will help researchers in the biotechnology-related fields to better understand and control DNA hybridization, as well as provide a landscape for future work in simulation and experiment to optimize DNA hybridization systems.
Collapse
Affiliation(s)
- Kingsley L Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
13
|
Sugimoto N, Endoh T, Takahashi S, Tateishi-Karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B, That Is the Question”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
14
|
Lyu M, Kong L, Yang Z, Wu Y, McGhee CE, Lu Y. PNA-Assisted DNAzymes to Cleave Double-Stranded DNA for Genetic Engineering with High Sequence Fidelity. J Am Chem Soc 2021; 143:9724-9728. [PMID: 34156847 DOI: 10.1021/jacs.1c03129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNAzymes have been widely used in many sensing and imaging applications but have rarely been used for genetic engineering since their discovery in 1994, because their substrate scope is mostly limited to single-stranded DNA or RNA, whereas genetic information is stored mostly in double-stranded DNA (dsDNA). To overcome this major limitation, we herein report peptide nucleic acid (PNA)-assisted double-stranded DNA nicking by DNAzymes (PANDA) as the first example to expand DNAzyme activity toward dsDNA. We show that PANDA is programmable in efficiently nicking or causing double strand breaks on target dsDNA, which mimics protein nucleases and can act as restriction enzymes in molecular cloning. In addition to being much smaller than protein enzymes, PANDA has a higher sequence fidelity compared with CRISPR/Cas under the condition we tested, demonstrating its potential as a novel alternative tool for genetic engineering and other biochemical applications.
Collapse
|
15
|
Poly(A)+ Sensing of Hybridization-Sensitive Fluorescent Oligonucleotide Probe Characterized by Fluorescence Correlation Methods. Int J Mol Sci 2021; 22:ijms22126433. [PMID: 34208525 PMCID: PMC8234900 DOI: 10.3390/ijms22126433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Ribonucleic acid (RNA) plays an important role in many cellular processes. Thus, visualizing and quantifying the molecular dynamics of RNA directly in living cells is essential to uncovering their role in RNA metabolism. Among the wide variety of fluorescent probes available for RNA visualization, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes are useful because of their low fluorescence background. In this study, we apply fluorescence correlation methods to ECHO probes targeting the poly(A) tail of mRNA. In this way, we demonstrate not only the visualization but also the quantification of the interaction between the probe and the target, as well as of the change in the fluorescence brightness and the diffusion coefficient caused by the binding. In particular, the uptake of ECHO probes to detect mRNA is demonstrated in HeLa cells. These results are expected to provide new insights that help us better understand the metabolism of intracellular mRNA.
Collapse
|
16
|
Moretta R, Terracciano M, Borbone N, Oliviero G, Schiattarella C, Piccialli G, Falanga AP, Marzano M, Dardano P, De Stefano L, Rea I. PNA-Based Graphene Oxide/Porous Silicon Hybrid Biosensor: Towards a Label-Free Optical Assay for Brugada Syndrome. NANOMATERIALS 2020; 10:nano10112233. [PMID: 33182823 PMCID: PMC7697640 DOI: 10.3390/nano10112233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
Peptide nucleic acid (PNA) is a synthetic DNA mimic that outperforms the properties of traditional oligonucleotides (ONs). On account of its outstanding features, such as remarkable binding affinity towards complementary DNA or RNA as well as high thermal and chemical stability, PNA has been proposed as a valuable alternative to the ON probe in gene-sensor design. In this study, a hybrid transducer made-up of graphene oxide (GO) nano-sheets covalently grafted onto a porous silicon (PSi) matrix has been investigated for the early detection of a genetic cardiac disorder, the Brugada syndrome (BS). A functionalization strategy towards the realization of a potential PNA-based device is described. A PNA, able to detect the SCN5A gene associated with the BS, has been properly synthesized and used as a bioprobe for the realization of a proof-of-concept label-free optical PNA-biosensor. PSi reflectance and GO photoluminescence signals were simultaneously exploited for the monitoring of the device functionalization and response.
Collapse
Affiliation(s)
- Rosalba Moretta
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80131 Naples, Italy; (R.M.); (P.D.); (I.R.)
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (N.B.); (G.P.)
- Correspondence: (M.T.); (L.D.S.); Tel.: +39-081-678521 (M.T.); +39-081-6132594 (L.D.S.)
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (N.B.); (G.P.)
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (G.O.); (A.P.F.)
| | - Chiara Schiattarella
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy;
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (N.B.); (G.P.)
| | - Andrea Patrizia Falanga
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (G.O.); (A.P.F.)
| | - Maria Marzano
- Institute of Crystallography, National Research Council, 70126 Bari, Italy;
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80131 Naples, Italy; (R.M.); (P.D.); (I.R.)
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80131 Naples, Italy; (R.M.); (P.D.); (I.R.)
- Correspondence: (M.T.); (L.D.S.); Tel.: +39-081-678521 (M.T.); +39-081-6132594 (L.D.S.)
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80131 Naples, Italy; (R.M.); (P.D.); (I.R.)
| |
Collapse
|
17
|
Label free ultrasensitive detection of NS1 based on electrochemical aptasensor using polyethyleneimine aggregated AuNPs. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Ahmadi M, Ahour F. An electrochemical biosensor based on a graphene oxide modified pencil graphite electrode for direct detection and discrimination of double-stranded DNA sequences. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4541-4550. [PMID: 32869790 DOI: 10.1039/d0ay01128b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to directly recognize double-stranded DNA (ds-DNA) is a major challenge in disease diagnosis and gene therapy because DNA is naturally double-stranded. Herein, a novel electrochemical biosensor for the sequence-specific recognition of ds-DNA using a peptide nucleic acid (PNA) probe and graphene oxide (GO) modified pencil graphite electrode is reported and applied for the direct detection of the desired sequence in plasmid samples. For this purpose, GO was assembled onto the pencil graphite electrode surface (GO/PGE) by a simple casting method and applied for PNA probe immobilization (PNA-GO/PGE). Upon addition of ds-DNA, the interaction of the PNA probe with ds-DNA induces probe detachment from the electrode surface which results in a guanine oxidation signal decrease. Under optimized conditions, the guanine oxidation signal decreased linearly with the ds-DNA concentration increasing in the range from 30 pM to 10 nM, with a detection limit of 1.3 pM. Moreover, the proposed biosensor was applied for the sensitive and selective detection of double-stranded target DNA in plasmid samples. This proposed method could be used as a platform for direct detection of various sequences in double-stranded genomic DNA.
Collapse
Affiliation(s)
- Mehran Ahmadi
- Nanotechnology Research Center, Faculty of Science, Urmia University, Urmia, Iran.
| | | |
Collapse
|
19
|
Goyal G, Ammanath G, Palaniappan A, Liedberg B. Stoichiometric Tuning of PNA Probes to Au 0.8Ag 0.2 Alloy Nanoparticles for Visual Detection of Nucleic Acids in Plasma. ACS Sens 2020; 5:2476-2485. [PMID: 32700531 DOI: 10.1021/acssensors.0c00667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Standard detection methods for nucleic acids, an important class of diagnostic biomarkers, are often laborious and cumbersome. In need for development of facile methodologies, localized surface plasmon resonance (LSPR) assays have been widely explored for both spectroscopic and visual detection of nucleic acids. Our sensing approach is based on monitoring changes in the LSPR band due to interaction between peptide nucleic acid (PNA) and plasmonic nanoparticles (NPs) in the presence/absence of target nucleic acid. We have investigated the importance of tuning the stoichiometry of PNA to NPs to enable "naked-eye" detection of nucleic acids at clinically relevant concentration ranges. Assaying in plasma is achieved by incorporation of silver in gold NPs (AuNPs) via an alloying process. The synthesized gold/silver alloy NPs reduce nonspecific adsorption of proteinaceous interferents in plasma. Furthermore, the gold/silver alloy NPs absorb in the most sensitive cyan to green transition zone (∼500 nm) yielding highly competitive visual limits of detection (LODs). The visual LOD (calculated objectively using the ΔE algorithm) for a model microRNA (mir21) using a productive combination of stoichiometric tuning of the PNA to NP ratio and compositional tuning of the NPs in buffer and plasma extract equals 200 pM (∼250 times lower than existing reports) and 3 nM, respectively. We envision that the proposed LSPR assay based on Au0.8Ag0.2NPs offers an avenue for rapid and sensitive on-site detection of nucleic acids in complex matrixes in combination with efficient target extraction kits.
Collapse
Affiliation(s)
- Garima Goyal
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Gopal Ammanath
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Alagappan Palaniappan
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Bo Liedberg
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
20
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
21
|
Nguyen VT, Pandith A, Seo YJ. Propargylamine-selective dual fluorescence turn-on method for post-synthetic labeling of DNA. Chem Commun (Camb) 2020; 56:3199-3202. [PMID: 32068200 DOI: 10.1039/d0cc00255k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed a propargylamine-selective dual fluorescence turn-on system, using ylidenemalononitrile enamines, for post-synthetic DNA labeling, allowing the direct monitoring of DNA using dual emission in living cells.
Collapse
Affiliation(s)
- Van Thang Nguyen
- Department of Bioactive Material Sciences, Jeonbuk National University, South Korea
| | - Anup Pandith
- Department of Chemistry, Jeonbuk National University, South Korea.
| | - Young Jun Seo
- Department of Bioactive Material Sciences, Jeonbuk National University, South Korea and Department of Chemistry, Jeonbuk National University, South Korea.
| |
Collapse
|
22
|
A label-free "SEF-FRET" fluorescent sensing platform for ultrasensitive DNA detection based on AgNPs SAMs. Talanta 2019; 205:120072. [PMID: 31450467 DOI: 10.1016/j.talanta.2019.06.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
In this paper, deoxyribonucleic acid (DNA) with different lengths were used to control the distance between carbon dots (CDs) and silver nanoparticles (AgNPs) in self-assembled multilayers (SAMs). Surface-enhanced fluorescence and fluorescence resonance energy transfer (SEF-FRET) could be achieved based on changing DNA strands. The fluorescence intensity of CDs SAMs with 6-base DNA strands could be enhanced up to ca. 5.6 times by AgNPs. As-fabricated CDs SAMs with excellent luminescent properties, superior stability have been employed for the development of a label-free fluorescence sensing platform for DNA detection. Since DNA would hybridize with the complemented one which was attached on the surface of SAMs, resulting in a close distance between CDs and AgNPs, FRET could thus occur between AgNPs and CDs, resulting in quenching the fluorescence of CDs SAMs. This sensitive sensing platform could show excellent analytical performance for detecting DNA with a linear response ranging from 93.07 pM to 5.433 nM and a detection limit of 16.36 pM, which could be further employed to probe human blood samples. This could prove a promising method for the detection of DNA.
Collapse
|
23
|
Shank N, George Rosenker KM, Englund EA, Dix AV, Rastede EE, Appella DH. Synthesis and Application of LKγT Peptide Nucleic Acids. Methods Mol Biol 2019; 1973:131-145. [PMID: 31016699 DOI: 10.1007/978-1-4939-9216-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Displaying ligands in a succinct and predictable manner is essential for elucidating multivalent molecular-level binding events. Organizing ligands with high precision and accuracy provides a distinct advantage over other ligand-display systems, such as polymers, because the number and position of the ligand(s) can be accurately and fully characterized. Here we describe the synthesis of peptide nucleic acids (PNAs), which are oligonucleotide mimics with a pseudopeptide backbone that can hybridize to oligonucleotides through Watson-Crick base pair to form highly predictable and organized scaffold for organizing a ligand. The ligand(s) are covalently attached to the PNA through a squarate coupling reaction that occurs between a free amine on the ligand and a free amine appended to the pseudopeptide backbone of the PNA. In this chapter we describe the synthesis of a LKγT monomer, which ultimately yields the free amine off the backbone of the PNA, incorporation of the monomer in a PNA oligomer, and the sequential squarate coupling to conjugate the ligand.
Collapse
Affiliation(s)
- Nathaniel Shank
- Department of Chemistry and Biochemistry, Georgia Southern University, Savannah, GA, USA
| | - Kara M George Rosenker
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Andrew V Dix
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth E Rastede
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel H Appella
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Nguyen TJD, Manuguerra I, Kumar V, Gothelf KV. Toehold-Mediated Strand Displacement in a Triplex Forming Nucleic Acid Clamp for Reversible Regulation of Polymerase Activity and Protein Expression. Chemistry 2019; 25:12303-12307. [PMID: 31373735 DOI: 10.1002/chem.201903496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/31/2022]
Abstract
Triplex forming oligonucleotides are used as a tool for gene regulation and in DNA nanotechnology. By incorporating artificial nucleic acids, target affinity and biological stability superior to that of natural DNA may be obtained. This work demonstrates how a chimeric clamp consisting of acyclic (L)-threoninol nucleic acid (aTNA) and DNA can bind DNA and RNA by the formation of a highly stable triplex structure. The (L)-aTNA clamp is released from the target again by the addition of a releasing strand in a strand displacement type of reaction. It is shown that the clamp efficiently inhibits Bsu and T7 RNA polymerase activity and that polymerase activity is reactivated by displacing the clamp. The clamp was successfully applied to the regulation of luciferase expression by reversible binding to the mRNA. When targeting a sequence in the double stranded plasmid, 40 % downregulation of protein expression is achieved.
Collapse
Affiliation(s)
- Thuy J D Nguyen
- Center for Multifunctional Biomolecular Drug Design (CEMBID) at the, Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Ilenia Manuguerra
- Center for Multifunctional Biomolecular Drug Design (CEMBID) at the, Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Vipin Kumar
- Center for Multifunctional Biomolecular Drug Design (CEMBID) at the, Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Kurt V Gothelf
- Center for Multifunctional Biomolecular Drug Design (CEMBID) at the, Interdisciplinary Nanoscience Center (iNANO) and the Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
25
|
RNA imaging by chemical probes. Adv Drug Deliv Rev 2019; 147:44-58. [PMID: 31398387 DOI: 10.1016/j.addr.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Abstract
Sequence-specific detection of intracellular RNA is one of the most important approaches to understand life phenomena. However, it is difficult to detect RNA in living cells because of its variety and scarcity. In the last three decades, several chemical probes have been developed for RNA detection in living cells. These probes are composed of DNA or artificial nucleic acid and hybridize with the target RNA in a sequence-specific manner. This hybridization triggers a change of fluorescence or a chemical reaction. In this review, we classify the probes according to the associated fluorogenic mechanism, that is, interaction between fluorophore and quencher, environmental change of fluorophore, and template reaction with/without ligation. In addition, we introduce examples of RNA imaging in living cells.
Collapse
|
26
|
Shigeto H, Ohtsuki T, Iizuka A, Akiyama Y, Yamamura S. Imaging analysis of EGFR mutated cancer cells using peptide nucleic acid (PNA)-DNA probes. Analyst 2019; 144:4613-4621. [PMID: 31241068 DOI: 10.1039/c9an00725c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer cells harbor various gene mutations in the mRNA sequence of the Epidermal Growth Factor Receptor (EGFR), especially the mutations of exon19del E746-A750, T790M, and L858R. This results in cancer progression and resistance to anticancer drugs (tyrosine kinase inhibitor; TKI). Therefore, the imaging analysis of EGFR mutations is required for the treatment planning for non-small cell lung cancers. This study focused on the imaging analysis of a single nucleotide substitute in EGFR mutated cancer cells. We developed three novel peptide nucleic acid (PNA)-DNA probes for recognizing and detecting the following three gene mutations in EGFR gene mutations. The PNA-DNA probes consist of fluorescein isothiocyanate (FITC) conjugated PNA as a detection probe and Dabcyl conjugated DNA as a quencher probe. The PNA-DNA probes were used to validate the feasibility for detecting three EGFR mutated sequences: exon19del E746-A750, T790M, and L858R. The three probes emitted fluorescent dose-dependent signals against three target DNA and RNA. Using the three PNA-DNA probes, we succeeded in distinguishing three kinds of lung-cancer cell lines (H1975, PC-9, and A549) which have different EGFR mutations by the fluorescence in situ hybridization (FISH) method.
Collapse
Affiliation(s)
- Hajime Shigeto
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Akira Iizuka
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka 411-8777, Japan
| | - Shohei Yamamura
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| |
Collapse
|
27
|
A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun 2018; 9:5012. [PMID: 30479331 PMCID: PMC6258682 DOI: 10.1038/s41467-018-07324-5] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022] Open
Abstract
Although polymerase chain reaction (PCR) is the most widely used method for DNA amplification, the requirement of thermocycling limits its non-laboratory applications. Isothermal DNA amplification techniques are hence valuable for on-site diagnostic applications in place of traditional PCR. Here we describe a true isothermal approach for amplifying and detecting double-stranded DNA based on a CRISPR–Cas9-triggered nicking endonuclease-mediated Strand Displacement Amplification method (namely CRISDA). CRISDA takes advantage of the high sensitivity/specificity and unique conformational rearrangements of CRISPR effectors in recognizing the target DNA. In combination with a peptide nucleic acid (PNA) invasion-mediated endpoint measurement, the method exhibits attomolar sensitivity and single-nucleotide specificity in detection of various DNA targets under a complex sample background. Additionally, by integrating the technique with a Cas9-mediated target enrichment approach, CRISDA exhibits sub-attomolar sensitivity. In summary, CRISDA is a powerful isothermal tool for ultrasensitive and specific detection of nucleic acids in point-of-care diagnostics and field analyses. Isothermal DNA amplification techniques are useful for diagnostic applications in place of traditional PCR. Here the authors describe CRISDA, which combines CRISPR–Cas9 with strand displacement amplification and exhibits attomolar sensitivity and single-nucleotide specificity in DNA detection.
Collapse
|
28
|
Tateishi-Karimata H, Sugimoto N. Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids. Biophys Rev 2018; 10:931-940. [PMID: 29687271 DOI: 10.1007/s12551-018-0422-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/08/2018] [Indexed: 12/23/2022] Open
Abstract
Nucleic acids have emerged as powerful biological and nanotechnological tools. In biological and nanotechnological experiments, methods of extracting and purifying nucleic acids from various types of cells and their storage are critical for obtaining reproducible experimental results. In nanotechnological experiments, methods for regulating the conformational polymorphism of nucleic acids and increasing sequence selectivity for base pairing of nucleic acids are important for developing nucleic acid-based nanomaterials. However, dearth of media that foster favourable behaviour of nucleic acids has been a bottleneck for promoting the biology and nanotechnology using the nucleic acids. Ionic liquids (ILs) are solvents that may be potentially used for controlling the properties of the nucleic acids. Here, we review researches regarding the behaviour of nucleic acids in ILs. The efficiency of extraction and purification of nucleic acids from biological samples is increased by IL addition. Moreover, nucleic acids in ILs show long-term stability, which maintains their structures and enhances nuclease resistance. Nucleic acids in ILs can be used directly in polymerase chain reaction and gene expression analysis with high efficiency. Moreover, the stabilities of the nucleic acids for duplex, triplex, and quadruplex (G-quadruplex and i-motif) structures change drastically with IL cation-nucleic acid interactions. Highly sensitive DNA sensors have been developed based on the unique changes in the stability of nucleic acids in ILs. The behaviours of nucleic acids in ILs detailed here should be useful in the design of nucleic acids to use as biological and nanotechnological tools.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan. .,Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
29
|
Zeidman Kalman T, Khalandovsky R, Tenenbaum Gonikman E, Bercovici M. Monitoring Dissociation Kinetics during Electrophoretic Focusing to Enable High-Specificity Nucleic Acid Detection. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tal Zeidman Kalman
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Rebecca Khalandovsky
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Elena Tenenbaum Gonikman
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
30
|
Sposito AJ, Kurdekar A, Zhao J, Hewlett I. Application of nanotechnology in biosensors for enhancing pathogen detection. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [PMID: 29528198 DOI: 10.1002/wnan.1512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rapid detection and identification of pathogenic microorganisms is fundamental to minimizing the spread of infectious disease, and informing clinicians on patient treatment strategies. This need has led to the development of enhanced biosensors that utilize state of the art nanomaterials and nanotechnology, and represent the next generation of diagnostics. A primer on nanoscale biorecognition elements such as, nucleic acids, antibodies, and their synthetic analogs (molecular imprinted polymers), will be presented first. Next the application of various nanotechnologies for biosensor transduction will be discussed, along with the inherent nanoscale phenomenon that leads to their improved performance and capabilities in biosensor systems. A future outlook on characterization and quality assurance, nanotoxicity, and nanomaterial integration into lab-on-a-chip systems will provide the closing thoughts. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Alex J Sposito
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Aditya Kurdekar
- Laboratories for Nanoscience and Nanotechnology Research, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
31
|
Zeidman Kalman T, Khalandovsky R, Tenenbaum Gonikman E, Bercovici M. Monitoring Dissociation Kinetics during Electrophoretic Focusing to Enable High-Specificity Nucleic Acid Detection. Angew Chem Int Ed Engl 2018; 57:3343-3348. [DOI: 10.1002/anie.201711673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/31/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Tal Zeidman Kalman
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Rebecca Khalandovsky
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Elena Tenenbaum Gonikman
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
32
|
Endoh T, Annoni C, Hnedzko D, Rozners E, Sugimoto N. Triplex-forming PNA modified with unnatural nucleobases: the role of protonation entropy in RNA binding. Phys Chem Chem Phys 2018; 18:32002-32006. [PMID: 27869270 DOI: 10.1039/c6cp05013a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peptide nucleic acid (PNA) modified with unnatural nucleobases enables the formation of a highly stable triplex with a double-stranded RNA at physiological pH. In this communication, we evaluated kinetics and thermodynamics of PNA/RNA triplex formation as a function of both pH and temperature. Protonation entropy was found to be the major factor responsible for the destabilization of the triplex and for the progressive decrease in the association rate at more basic pHs.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Chiara Annoni
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Dziyana Hnedzko
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
33
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Dempsey ME, Marble HD, Shen TL, Fawzi NL, Darling EM. Synthesis and Characterization of a Magnetically Active 19F Molecular Beacon. Bioconjug Chem 2018; 29:335-342. [PMID: 29272914 DOI: 10.1021/acs.bioconjchem.7b00671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene expression is used extensively to describe cellular characteristics and behaviors; however, most methods of assessing gene expression are unsuitable for living samples, requiring destructive processes such as fixation or lysis. Recently, molecular beacons have become a viable tool for live-cell imaging of mRNA molecules in situ. Historically, beacon-mediated imaging has been limited to fluorescence-based approaches. We propose the design and synthesis of a novel molecular beacon for magnetic resonance detection of any desired target nucleotide sequence. The biologically compatible synthesis incorporates commonly used bioconjugation reactions in aqueous conditions and is accessible for laboratories without extensive synthesis capabilities. The resulting beacon uses fluorine (19F) as a reporter, which is broadened, or turned "off", via paramagnetic relaxation enhancement from a stabilized nitroxide radical spin label when the beacon is not bound to its nucleic acid target. Therefore, the 19F NMR signal of the beacon is quenched in its hairpin conformation when the spin label and the 19F substituent are held in proximity, but the signal is recovered upon beacon hybridization to its specific complementary nucleotide sequence by physical separation of the radical from the 19F reporter. This study establishes a path for magnetic resonance-based assessment of specific mRNA expression, providing new possibilities for applying molecular beacon technology in living systems.
Collapse
Affiliation(s)
- Megan E Dempsey
- Center for Biomedical Engineering, ‡Department of Molecular Pharmacology, Physiology, and Biotechnology, §Department of Chemistry, ∥School of Engineering, and ⊥Department of Orthopaedics, Brown University , Providence, Rhode Island 02912, United States
| | - Hetal D Marble
- Center for Biomedical Engineering, ‡Department of Molecular Pharmacology, Physiology, and Biotechnology, §Department of Chemistry, ∥School of Engineering, and ⊥Department of Orthopaedics, Brown University , Providence, Rhode Island 02912, United States
| | - Tun-Li Shen
- Center for Biomedical Engineering, ‡Department of Molecular Pharmacology, Physiology, and Biotechnology, §Department of Chemistry, ∥School of Engineering, and ⊥Department of Orthopaedics, Brown University , Providence, Rhode Island 02912, United States
| | - Nicolas L Fawzi
- Center for Biomedical Engineering, ‡Department of Molecular Pharmacology, Physiology, and Biotechnology, §Department of Chemistry, ∥School of Engineering, and ⊥Department of Orthopaedics, Brown University , Providence, Rhode Island 02912, United States
| | - Eric M Darling
- Center for Biomedical Engineering, ‡Department of Molecular Pharmacology, Physiology, and Biotechnology, §Department of Chemistry, ∥School of Engineering, and ⊥Department of Orthopaedics, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
35
|
Nim-Anussornkul D, Vilaivan T. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid bearing a base discriminating fluorescence nucleobase 8-(pyrene-1-yl)-ethynyladenine. Bioorg Med Chem 2017; 25:6388-6397. [PMID: 29111370 DOI: 10.1016/j.bmc.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/29/2022]
Abstract
A combination of fluorophore and nucleobase through a π-conjugated rigid linker integrates the base pairing and the fluorescence change into a single event. Such base discriminating fluorophore can change its fluorescence as a direct response to the base pairing event and therefore have advantages over tethered labels or base surrogates lacking the hydrogen-bonding ability. 8-(Pyrene-1-yl)ethynyl-adenine (APyE) has been extensively used as fluorescence labels in DNA and LNA, but it showed little discrimination between different nucleobases. Herein we investigated the synthesis, base pairing ability and optical properties of APyE in pyrrolidinyl peptide nucleic acid - a DNA mimic that shows much stronger affinity and specificity towards DNA than natural oligonucleotides. The APyE in PNA pairs specifically with thymine in the DNA strand, and resulted in 1.5-5.2-fold enhanced and blue-shifted fluorescence emission. Fluorescence quenching was observed in the presence of mismatched base or abasic site directly opposite to the APyE. The behavior of APyE in acpcPNA is distinctively different from DNA whereby a fluorescence was increased selectively upon duplex formation with complementary DNA and therefore emphasizing the unique advantages of using PNA as alternative oligonucleotide probes. Applications as color-shifting probe for detection of trinucleotide repeats in DNA were demonstrated, and the performance of the probe was further improved by combination with reduced graphene oxide as an external nanoquencher.
Collapse
Affiliation(s)
- Duangrat Nim-Anussornkul
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
36
|
Fu W, Feng L, Panaitov G, Kireev D, Mayer D, Offenhäusser A, Krause HJ. Biosensing near the neutrality point of graphene. SCIENCE ADVANCES 2017; 3:e1701247. [PMID: 29075669 PMCID: PMC5656418 DOI: 10.1126/sciadv.1701247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/26/2017] [Indexed: 05/05/2023]
Abstract
Over the past decade, the richness of electronic properties of graphene has attracted enormous interest for electrically detecting chemical and biological species using this two-dimensional material. However, the creation of practical graphene electronic sensors greatly depends on our ability to understand and maintain a low level of electronic noise, the fundamental reason limiting the sensor resolution. Conventionally, to reach the largest sensing response, graphene transistors are operated at the point of maximum transconductance, where 1/f noise is found to be unfavorably high and poses a major limitation in any attempt to further improve the device sensitivity. We show that operating a graphene transistor in an ambipolar mode near its neutrality point can markedly reduce the 1/f noise in graphene. Remarkably, our data reveal that this reduction in the electronic noise is achieved with uncompromised sensing response of the graphene chips and thus significantly improving the signal-to-noise ratio-compared to that of a conventionally operated graphene transistor for conductance measurement. As a proof-of-concept demonstration of the usage of the aforementioned new sensing scheme to a broader range of biochemical sensing applications, we selected an HIV-related DNA hybridization as the test bed and achieved detections at picomolar concentrations.
Collapse
Affiliation(s)
- Wangyang Fu
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, 2333CC Leiden, Netherlands
- Corresponding author.
| | - Lingyan Feng
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Gregory Panaitov
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dmitry Kireev
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dirk Mayer
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Hans-Joachim Krause
- Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
37
|
Rolling Circle Transcription for the Self-Assembly of Multimeric RNAi Structures and Its Applications in Nanomedicine. Methods Mol Biol 2017. [PMID: 28730432 DOI: 10.1007/978-1-4939-7138-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The enzymatic process of rolling circle transcription (RCT) enables self-assembly of multimeric RNAi structures from a circular DNA template. The self-assembled RNAi structures can be manipulated easily by simple base pairing rules with short DNA fragments for constructing multifunctional nanoparticles in the field of nanomedicine. Here we describe the method to generate multifunctional RNAi nanoparticles applicable in nanomedicine.
Collapse
|
38
|
Adly N, Feng L, Krause KJ, Mayer D, Yakushenko A, Offenhäusser A, Wolfrum B. Flexible Microgap Electrodes by Direct Inkjet Printing for Biosensing Application. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201600016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nouran Adly
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Lingyan Feng
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
- Materials Genome Institute; Shanghai University; 200444 Shanghai China
| | - Kay J. Krause
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Dirk Mayer
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Alexey Yakushenko
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA - Fundamentals of Future Information Technology; Forschungszentrum Jülich; 52425 Jülich Germany
- Neuroelectronics; Munich School of Bioengineering; Department of Electrical and Computer Engineering; Technical University of Munich (TUM) & BCCN Munich; Boltzmannstrasse 11 85748 Garching Germany
| |
Collapse
|
39
|
Cox AJ, Bengtson HN, Rohde KH, Kolpashchikov DM. DNA nanotechnology for nucleic acid analysis: multifunctional molecular DNA machine for RNA detection. Chem Commun (Camb) 2016; 52:14318-14321. [PMID: 27886299 PMCID: PMC5645153 DOI: 10.1039/c6cc06889h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Nobel prize in chemistry in 2016 was awarded for 'the design and synthesis of molecular machines'. Here we designed and assembled a molecular machine for the detection of specific RNA molecules. An association of several DNA strands, named multifunctional DNA machine for RNA analysis (MDMR1), was designed to (i) unwind RNA with the help of RNA-binding arms, (ii) selectively recognize a targeted RNA fragment, (iii) attract a signal-producing substrate and (iv) amplify the fluorescent signal by catalysis. MDMR1 enabled detection of 16S rRNA at concentrations ∼24 times lower than that by a traditional deoxyribozyme probe.
Collapse
Affiliation(s)
- A J Cox
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - H N Bengtson
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - K H Rohde
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - D M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| |
Collapse
|
40
|
Pyrrolidinyl peptide nucleic acid terminally labeled with fluorophore and end-stacking quencher as a probe for highly specific DNA sequence discrimination. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.10.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Cu2+-complexes as quenchers of photocatalytic activity of visible light-absorbing photosensitizers: An application in detection of nucleic acids. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Novel bead-based platform for direct detection of unlabelled nucleic acids through Single Nucleobase Labelling. Talanta 2016; 161:489-496. [PMID: 27769437 DOI: 10.1016/j.talanta.2016.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/19/2016] [Accepted: 08/28/2016] [Indexed: 01/02/2023]
Abstract
Over the last decade, circulating microRNAs have received attention as diagnostic and prognostic biomarkers. In particular, microRNA122 has been demonstrated to be an early and more sensitive indicator of drug-induced liver injury than the widely used biomarkers such as alanine aminotransferase and aspartate aminotransferase. Recently, microRNA122 has been used in vitro to assess the cellular toxicity of new drugs and as a biomarker for the development of a rapid test for drug overdose/liver damage. In this proof-of-concept study, we report a PCR-free and label-free detection method that has a limit of detection (3 standard deviations) of 15 fmoles of microRNA122, by integrating a dynamic chemical approach for "Single Nucleobase Labelling" with a bead-based platform (Luminex®) thereby, in principle, demonstrating the exciting prospect of rapid and accurate profiling of any microRNAs related to diseases and toxicology.
Collapse
|
43
|
Yang LH, Ahn DJ, Koo E. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:625-30. [PMID: 27612755 DOI: 10.1016/j.msec.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors.
Collapse
Affiliation(s)
- Lan-Hee Yang
- Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju-si, Gyeongsangnam-do 660-031, Republic of Korea; Department of Biomicrosystem Technology, Korea University, Seoul 136-701, Republic of Korea
| | - Dong June Ahn
- Department of Biomicrosystem Technology, Korea University, Seoul 136-701, Republic of Korea; Department of Chemical & Biological Engineering, KU-KIST Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Eunhae Koo
- Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju-si, Gyeongsangnam-do 660-031, Republic of Korea.
| |
Collapse
|
44
|
Asanuma H, Niwa R, Akahane M, Murayama K, Kashida H, Kamiya Y. Strand-invading linear probe combined with unmodified PNA. Bioorg Med Chem 2016; 24:4129-4137. [PMID: 27394693 DOI: 10.1016/j.bmc.2016.06.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022]
Abstract
Efficient strand invasion by a linear probe to fluorescently label double-stranded DNA has been implemented by employing a probe and unmodified PNA. As a fluorophore, we utilized ethynylperylene. Multiple ethynylperylene residues were incorporated into the DNA probe via a d-threoninol scaffold. The ethynylperylene did not significantly disrupt hybridization with complementary DNA. The linear probe self-quenched in the absence of target DNA and did not hybridize with PNA. A gel-shift assay revealed that linear probe and PNA combination invaded the central region of double-stranded DNA upon heat-shock treatment to form a double duplex. To further suppress the background emission and increase the stability of the probe/DNA duplex, a probe containing anthraquinones as well as ethynylperylene was synthesized. This probe and PNA invader pair detected an internal sequence in a double-stranded DNA with high sensitivity when heat shock treatment was used. The probe and PNA pair was able to invade at the terminus of a long double-stranded DNA at 40°C at 100mM NaCl concentration.
Collapse
Affiliation(s)
- Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Rie Niwa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mariko Akahane
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukiko Kamiya
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
45
|
Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells. Biosens Bioelectron 2016; 88:15-24. [PMID: 27321444 DOI: 10.1016/j.bios.2016.05.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023]
Abstract
One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm2), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm2). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation.
Collapse
|
46
|
Fu W, Feng L, Mayer D, Panaitov G, Kireev D, Offenhäusser A, Krause HJ. Electrolyte-Gated Graphene Ambipolar Frequency Multipliers for Biochemical Sensing. NANO LETTERS 2016; 16:2295-300. [PMID: 26928906 DOI: 10.1021/acs.nanolett.5b04729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this Letter, the ambipolar properties of an electrolyte-gated graphene field-effect transistor (GFET) have been explored to fabricate frequency-doubling biochemical sensor devices. By biasing the ambipolar GFETs in a common-source configuration, an input sinusoidal voltage at frequency f applied to the electrolyte gate can be rectified to a sinusoidal wave at frequency 2f at the drain electrode. The extraordinary high carrier mobility of graphene and the strong electrolyte gate coupling provide the graphene ambipolar frequency doubler an unprecedented unity gain, as well as a detection limit of ∼4 pM for 11-mer single strand DNA molecules in 1 mM PBS buffer solution. Combined with an improved drift characteristics and an enhanced low-frequency 1/f noise performance by sampling at doubled frequency, this good detection limit suggests the graphene ambipolar frequency doubler a highly promising biochemical sensing platform.
Collapse
Affiliation(s)
- Wangyang Fu
- Peter-Grünberg-Institute (PGI-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Lingyan Feng
- Peter-Grünberg-Institute (PGI-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dirk Mayer
- Peter-Grünberg-Institute (PGI-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Gregory Panaitov
- Peter-Grünberg-Institute (PGI-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dmitry Kireev
- Peter-Grünberg-Institute (PGI-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Andreas Offenhäusser
- Peter-Grünberg-Institute (PGI-8), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Hans-Joachim Krause
- Peter-Grünberg-Institute (PGI-8), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
47
|
Gui Z, Wang Q, Li J, Zhu M, Yu L, Xun T, Yan F, Ju H. Direct detection of circulating free DNA extracted from serum samples of breast cancer using locked nucleic acid molecular beacon. Talanta 2016; 154:520-5. [PMID: 27154709 DOI: 10.1016/j.talanta.2016.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 12/24/2022]
Abstract
As an emerging noninvasive blood biomarker, circulating free DNA (cfDNA) can be utilized to assess diagnosis, progression and evaluate prognosis of cancer. However, cfDNAs are not "naked", they can be part of complexes, or are bound to the surface of the cells via proteins, which make the detection more challenging. Here, a simple method for the detection of Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) DNA exacted from serum of breast cancer (BC) has been developed using a novel locked nucleic acid molecular beacon (LNA-MB). In order to enhance the stability and detection efficiency of the probe in biofluids, we design a shared-stem molecular beacon containing a 27-mer loop and a 4-mer stem with DNA/LNA alternating bases. The fluorescence is released in the presence of target. The detection procedure is simple and can be completed within 1h. This method shows a sensitive response to UHRF1 DNA with a dynamic range of 3 orders of magnitude. The limit of detection is 11nM (S/N=3) with excellent selectivity. It can discriminate UHRF1 DNA from three-base mismatched DNA with a high specificity. More importantly, this method can distinguish the expression of serum UHRF1 DNA among 5 breast cancer patients and 5 healthy controls. The mentioned superiority may suggest that this assay can be served as a promising noninvasive detection tool for early BC diagnosis and monitoring.
Collapse
Affiliation(s)
- Zhen Gui
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing 210009, PR China
| | - Quanbo Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jinchang Li
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing 210009, PR China
| | - Mingchen Zhu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing 210009, PR China
| | - Lili Yu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing 210009, PR China
| | - Tang Xun
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing 210009, PR China
| | - Feng Yan
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing 210009, PR China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
48
|
Huang L, Aryal GH, Tam-Chang SW, Publicover NG, Hunter KW. Self-assembled biosensor with universal reporter and dual-quenchers for detection of unlabelled nucleic acids. Analyst 2016; 141:1376-82. [PMID: 26757447 DOI: 10.1039/c5an02094h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel biosensor with universal reporter and dual quenchers was developed for rapid, sensitive, selective, and inexpensive detection of unlabelled nucleic acids. The biosensor is based on a single-strand DNA stem-loop motif with an extended universal reporter-binding region, a G-base rich stem region, and a universal address-binding region. The self-assembly of these stem-loop probes with fluorescence labeled universal reporter and a universal address region conjugated to gold nanoparticles forms the basis of a biosensor for DNA or microRNA targets in solution. The introduction of dual quenchers (G-base quenching and gold surface plasmon resonance-induced quenching) significantly reduces the fluorescence background to as low as 12% of its original fluorescence intensity and hence enhances the detection limit to 0.01 picomoles without signal ampilication.
Collapse
Affiliation(s)
- Liming Huang
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | - Gyan H Aryal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | - Suk-Wah Tam-Chang
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | - Nelson G Publicover
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | - Kenneth W Hunter
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
49
|
Rombouts K, Braeckmans K, Remaut K. Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies. Bioconjug Chem 2015; 27:280-97. [PMID: 26670733 DOI: 10.1021/acs.bioconjchem.5b00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Live-cell imaging has provided the life sciences with insights into the cell biology and dynamics. Fluorescent labeling of target molecules proves to be indispensable in this regard. In this Review, we focus on the current fluorescent labeling strategies for nucleic acids, and in particular mRNA (mRNA) and plasmid DNA (pDNA), which are of interest to a broad range of scientific fields. By giving a background of the available techniques and an evaluation of the pros and cons, we try to supply scientists with all the information needed to come to an informed choice of nucleic acid labeling strategy aimed at their particular needs.
Collapse
Affiliation(s)
- K Rombouts
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Braeckmans
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Remaut
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| |
Collapse
|
50
|
Flory JD, Johnson T, Simmons CR, Lin S, Ghirlanda G, Fromme P. Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage. ARTIFICIAL DNA, PNA & XNA 2015; 5:1-8. [PMID: 25760314 DOI: 10.4161/1949095x.2014.992181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PNA is hybrid molecule ideally suited for bridging the functional landscape of polypeptides with the structural diversity that can be engineered with DNA nanostructures. However, PNA can be more challenging to work with in aqueous solvents due to its hydrophobic nature. A solution phase method using strain promoted, copper free click chemistry was developed to conjugate the fluorescent dye Cy5 to 2 bifunctional PNA strands as a first step toward building cyclic PNA-polypeptides that can be arranged within 3D DNA nanoscaffolds. A 3D DNA nanocage was designed with binding sites for the 2 fluorescently labeled PNA strands in close proximity to mimic protein active sites. Denaturing polyacrylamide gel electrophoresis (PAGE) is introduced as an efficient method for purifying charged, dye-labeled PNA conjugates from large excesses of unreacted dye and unreacted, neutral PNA. Elution from the gel in water was monitored by fluorescence and found to be more efficient for the more soluble PNA strand. Native PAGE shows that both PNA strands hybridize to their intended binding sites within the DNA nanocage. Förster resonance energy transfer (FRET) with a Cy3 labeled DNA nanocage was used to determine the dissociation temperature of one PNA-Cy5 conjugate to be near 50°C. Steady-state and time resolved fluorescence was used to investigate the dye orientation and interactions within the various complexes. Bifunctional, thermostable PNA molecules are intriguing candidates for controlling the assembly and orientation of peptides within small DNA nanocages for mimicking protein catalytic sites.
Collapse
Key Words
- DBCO, dibenzocyclooctyl
- DNA nanotechnology
- DTNB, 5, 5′-dithiobis-(2-nitrobenzoic acid)
- EtBr, ethidium bromide
- IEX-FPLC, ion-exchange fast protein liquid chromatography
- MALDI-MS, matrix assisted laser desorption ionization mass spectrometry
- PAGE, polyacrylamide gel electrophoresis
- PNA, peptide nucleic acid
- RP-HPLC, reverse-phase high pressure liquid chromatography
- TCEP, tris(2-carboxyethyl)phosphine
- biomimicry
- copper-free click chemistry
- fluorescence
- self-assembly
- γ-PNA
Collapse
Affiliation(s)
- Justin D Flory
- a Department of Chemistry and Biochemistry; Arizona State University ; Tempe , Arizona USA
| | | | | | | | | | | |
Collapse
|