1
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
2
|
Pretzler M, Rompel A. Mushroom Tyrosinase: Six Isoenzymes Catalyzing Distinct Reactions. Chembiochem 2024; 25:e202400050. [PMID: 38386893 DOI: 10.1002/cbic.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
"Mushroom tyrosinase" from the common button mushroom is the most frequently used source of tyrosinase activity, both for basic and applied research. Here, the complete tyrosinase family from Agaricus bisporus var. bisporus (abPPO1-6) was cloned from mRNA and expressed heterologously using a single protocol. All six isoenzymes accept a wide range of phenolic and catecholic substrates, but display pronounced differences in their specificity and enzymatic reaction rate. AbPPO3 ignores γ-l-glutaminyl-4-hydroxybenzene (GHB), a natural phenol present in mM concentrations in A. bisporus, while AbPPO4 processes 100 μM GHB at 4-times the rate of the catechol l-DOPA. All six AbPPOs are biochemically distinct enzymes fit for different roles in the fungal life cycle, which challenges the traditional concept of isoenzymes as catalyzing the same physiological reaction and varying only in secondary properties. Transferring this approach to other enzymes and organisms will greatly stimulate both the study of the in vivo function(s) of enzymes and the application of these highly efficient catalysts.
Collapse
Affiliation(s)
- Matthias Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| |
Collapse
|
3
|
Subramanian R. Methods used to determine the structure of the oxygenase component of naphthalene 1,2 dioxygenase. Methods Enzymol 2024; 704:27-38. [PMID: 39300651 DOI: 10.1016/bs.mie.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Rieske non-heme iron oxygenases are ubiquitously expressed in prokaryotes. These enzymes catalyze a wide variety of reactions, including cis-dihydroxylation, mono-hydroxylation, sulfoxidation, and demethylation. They contain a Rieske-type [2Fe-2S] cluster and an active site with a mono-nuclear iron bound to a 2-His carboxylate triad. Naphthalene 1,2 dioxygenase, a representative of this family, catalyzes the conversion of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. This transformation requires naphthalene, two electrons, and an oxygen molecule. The first structure of the terminal oxygenase component of a Rieske non-heme iron oxygenase to be determined was naphthalene 1,2 dioxygenase (NDO-O). In this article, we describe in detail the methods used to recombinantly express and purify NDO-O in rich and minimal salts media, the crystallization of NDO-O for structure determination by X-ray crystallography, the challenges faced, and the methods used for the preparation of enzyme ligand complexes. The methods used here resulted in the determination of several NDO-O complexes with aromatic substrates, nitric oxide, oxygen molecule, and products, leading to an initial understanding of the mechanism of enzyme catalysis and the molecular determinants of the regio- and stereo-specificity of this class of enzymes.
Collapse
Affiliation(s)
- Ramaswamy Subramanian
- Department of Biological Sciences, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
4
|
Willetts A. The Role of Dioxygen in Microbial Bio-Oxygenation: Challenging Biochemistry, Illustrated by a Short History of a Long Misunderstood Enzyme. Microorganisms 2024; 12:389. [PMID: 38399793 PMCID: PMC10891995 DOI: 10.3390/microorganisms12020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
A Special Issue of Microorganisms devoted to 'Microbial Biocatalysis and Biodegradation' would be incomplete without some form of acknowledgement of the many important roles that dioxygen-dependent enzymes (principally mono- and dioxygenases) play in relevant aspects of bio-oxygenation. This is reflected by the multiple strategic roles that dioxygen -dependent microbial enzymes play both in generating valuable synthons for chemoenzymatic synthesis and in facilitating reactions that help to drive the global geochemical carbon cycle. A useful insight into this can be gained by reviewing the evolution of the current status of 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) from (+)-camphor-grown Pseudomonas putida ATCC 17453, the key enzyme that promotes the initial ring cleavage of this natural bicyclic terpene. Over the last sixty years, the perceived nature of this monooxygenase has transmogrified significantly. Commencing in the 1960s, extensive initial studies consistently reported that the enzyme was a monomeric true flavoprotein dependent on both FMNH2 and nonheme iron as bound cofactors. However, over the last decade, all those criteria have changed absolutely, and the enzyme is currently acknowledged to be a metal ion-independent homodimeric flavin-dependent two-component mono-oxygenase deploying FMNH2 as a cosubstrate. That transition is a paradigm of the ever evolving nature of scientific knowledge.
Collapse
Affiliation(s)
- Andrew Willetts
- 4 Sv Ivan, 21400 Sutivan, Croatia;
- Curnow Consultancies, Helston TR13 9PQ, UK
| |
Collapse
|
5
|
Hausinger RP. Five decades of metalloenzymology. Enzymes 2023; 54:71-105. [PMID: 37945178 PMCID: PMC11934070 DOI: 10.1016/bs.enz.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Metalloenzymes have been detailed in The Enzymes since its inception over half a century ago. Here, I review selected metal-containing enzyme highlights from early chapters in this series and I describe advances made since those contributions. Three topics are emphasized: nickel-containing enzymes, Fe(II)/2-oxoglutarate-dependent oxygenases, and enzymes containing non-canonical iron-sulfur clusters.
Collapse
Affiliation(s)
- Robert P Hausinger
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
6
|
Wang Y, Dong L, Su H, Liu Y. Dioxygen Activation and N δ,N ε-Dihydroxylation Mechanism Involved in the Formation of N-Nitrosourea Pharmacophore in Streptozotocin Catalyzed by Nonheme Diiron Enzyme SznF. Inorg Chem 2022; 61:15721-15734. [PMID: 36148800 DOI: 10.1021/acs.inorgchem.2c02814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SznF is a nonheme diiron-dependent enzyme that catalyzes the critical N-nitrosation involved in the formation of the N-nitrosourea moiety in the pancreatic cancer drug streptozotocin. The N-nitrosation contains two successive N-hydroxylation and N-nitrosation steps, which are carried out by two separate active sites, namely, the central domain and cupin domain. Recently, the crystal structure of SznF was obtained, and the central domain was proved to contain a diiron cofactor to catalyze the N-hydroxylation. In this work, to gain insights into the O2 activation and the successive N-hydroxylation mechanism, on the basis of the high-resolution crystal structure, the enzyme-substrate complex models were constructed, and a series of combined QM/MM calculations were performed. Based on our calculations, the activation of O2 starts from the diiron(II,III)-superoxo (S) to generate the diiron(IV)-oxo species (Q) via a diiron(III,III)-peroxo (P)-like transition state or unstable intermediate (P'), and species P' can be described as a hybridization of diiron(IV)-oxo species and diiron(III,III)-peroxo (P) owing to the long distances of Fe1-Fe2 (4.22 Å) and O1-O2 (1.89 Å), which is different from those of other nonheme diiron enzymes. In the following hydroxylation of Nδ and Nε, the Nδ-hydroxylation was confirmed to occur first, agreeing with the experimental observations. Because the diiron(IV)-oxo species (Q) is responsible for hydroxylation, the reaction follows the H-abstraction/OH rebound mechanism, and the first abstraction occurs on the Nδ-H rather than Nε-H, which may be attributed to the different orientation of Fe(IV)-oxo relative to N-H as well as the bond dissociation enthalpies of two N-H bonds. The hydroxylation of N-methyl-L-arginine does not employ the diiron(III,III)-hydroperoxo (P″) to trigger the electrophilic attack of the guanidine to directly form the N-O bond, as previously suggested. In addition, our calculations also revealed that the direct attack of the Fe(IV)═O unit to the Nδ of the substrate corresponds to a higher barrier than that in the H-abstraction/OH rebound mechanism. These results may provide useful information for understanding the formation of the di-hydroxylation intermediate involved in the biosynthesis of N-nitrosation.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
7
|
Schmidl D, Jonasson NSW, Menke A, Schneider S, Daumann L. Spectroscopic and in vitro investigations of Fe2+/α-Ketoglutarate-dependent enzymes involved in nucleic acid repair and modification. Chembiochem 2022; 23:e202100605. [PMID: 35040547 PMCID: PMC9401043 DOI: 10.1002/cbic.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Indexed: 11/08/2022]
Abstract
The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Enzymes of special interest are the human homologs AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being revealed. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and NMR spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor and inhibitor addition. Several methods are now available to assess activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point of view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.
Collapse
Affiliation(s)
- David Schmidl
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Niko S W Jonasson
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Annika Menke
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Sabine Schneider
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Lena Daumann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|
8
|
The Isoenzymic Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453-An Episodic History and Still Mysterious after 60 Years. Microorganisms 2021; 9:microorganisms9122593. [PMID: 34946195 PMCID: PMC8706424 DOI: 10.3390/microorganisms9122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Researching the involvement of molecular oxygen in the degradation of the naturally occurring bicyclic terpene camphor has generated a six-decade history of fascinating monooxygenase biochemistry. While an extensive bibliography exists reporting the many varied studies on camphor 5-monooxygenase, the initiating enzyme of the relevant catabolic pathway in Pseudomonas putida ATCC 17453, the equivalent recorded history of the isoenzymic diketocamphane monooxygenases, the enzymes that facilitate the initial ring cleavage of the bicyclic terpene, is both less extensive and more enigmatic. First referred to as ‘ketolactonase—an enzyme for cyclic lactonization’—the enzyme now classified as 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) holds a special place in the history of oxygen-dependent biochemistry, being the first biocatalyst confirmed to undertake a biooxygenation reaction equivalent to the peracid-catalysed Baeyer–Villiger chemical oxidation first reported in the late 19th century. However, following that auspicious beginning, the biochemistry of EC 1.14.14.108, and its isoenzymic partner 3,6-diketocamphane 1,6-monooxygenase (EC 1.14.14.155) was dogged for many years by the mistaken belief that the enzymes were true flavoproteins that function with a tightly-bound flavin cofactor in the active site. This misconception led to a number of erroneous interpretations of relevant experimental data. It is only in the last decade, initially as the result of pure serendipity, that these enzymes have been confirmed to be members of a relatively recently discovered class of oxygen-dependent enzymes, the flavin-dependent two-component monooxygenases. This has promoted a renaissance of interest in the enzymes, resulting in programmes of research that have significantly expanded current knowledge of both their mode of action and regulation in camphor-grown P. putida ATCC 17453. However, some features of the biochemistry of the isoenzymic diketocamphane monooxygenases remain currently unexplained. It is the episodic history of these enzymes and some of what remains unresolved that are the principal subjects of this review.
Collapse
|
9
|
Sharma A, Flora SJS. Positive and Negative Regulation of Ferroptosis and Its Role in Maintaining Metabolic and Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9074206. [PMID: 34007410 PMCID: PMC8102094 DOI: 10.1155/2021/9074206] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently recognized regulated form of cell death characterized by accumulation of lipid-based reactive oxygen species (ROS), particularly lipid hydroperoxides and loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4). This iron-dependent form of cell death is morphologically, biochemically, and also genetically discrete from other regulated cell death processes, which include autophagy, apoptosis, necrosis, and necroptosis. Ferroptosis is defined by three hallmarks, defined as the loss of lipid peroxide repair capacity by GPX4, the bioavailability of redox-active iron, and oxidation of polyunsaturated fatty acid- (PUFA-) containing phospholipids. Experimentally, it can be induced by many compounds (e.g., erastin, Ras-selective lethal small-molecule 3, and buthionine sulfoximine) and also can be pharmacologically inhibited by iron chelators (e.g., deferoxamine and deferoxamine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin and liproxstatin). The sensitivity of a cell towards ferroptotic cell death is tightly associated with the metabolism of amino acid, iron, and polyunsaturated fatty acid metabolism, and also with the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis sensitivity is also governed by many regulatory proteins, which also link ferroptosis to the function of key tumour suppressor pathways. In this review, we highlight the discovery of ferroptosis, the mechanism of ferroptosis regulation, and its association with other cellular metabolic processes.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Swaran Jeet Singh Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| |
Collapse
|
10
|
Mohapatra B, Phale PS. Microbial Degradation of Naphthalene and Substituted Naphthalenes: Metabolic Diversity and Genomic Insight for Bioremediation. Front Bioeng Biotechnol 2021; 9:602445. [PMID: 33791281 PMCID: PMC8006333 DOI: 10.3389/fbioe.2021.602445] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Low molecular weight polycyclic aromatic hydrocarbons (PAHs) like naphthalene and substituted naphthalenes (methylnaphthalene, naphthoic acids, 1-naphthyl N-methylcarbamate, etc.) are used in various industries and exhibit genotoxic, mutagenic, and/or carcinogenic effects on living organisms. These synthetic organic compounds (SOCs) or xenobiotics are considered as priority pollutants that pose a critical environmental and public health concern worldwide. The extent of anthropogenic activities like emissions from coal gasification, petroleum refining, motor vehicle exhaust, and agricultural applications determine the concentration, fate, and transport of these ubiquitous and recalcitrant compounds. Besides physicochemical methods for cleanup/removal, a green and eco-friendly technology like bioremediation, using microbes with the ability to degrade SOCs completely or convert to non-toxic by-products, has been a safe, cost-effective, and promising alternative. Various bacterial species from soil flora belonging to Proteobacteria (Pseudomonas, Pseudoxanthomonas, Comamonas, Burkholderia, and Novosphingobium), Firmicutes (Bacillus and Paenibacillus), and Actinobacteria (Rhodococcus and Arthrobacter) displayed the ability to degrade various SOCs. Metabolic studies, genomic and metagenomics analyses have aided our understanding of the catabolic complexity and diversity present in these simple life forms which can be further applied for efficient biodegradation. The prolonged persistence of PAHs has led to the evolution of new degradative phenotypes through horizontal gene transfer using genetic elements like plasmids, transposons, phages, genomic islands, and integrative conjugative elements. Systems biology and genetic engineering of either specific isolates or mock community (consortia) might achieve complete, rapid, and efficient bioremediation of these PAHs through synergistic actions. In this review, we highlight various metabolic routes and diversity, genetic makeup and diversity, and cellular responses/adaptations by naphthalene and substituted naphthalene-degrading bacteria. This will provide insights into the ecological aspects of field application and strain optimization for efficient bioremediation.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
11
|
Together we stand, apart we fall: how cell-to-cell contact/interplay provides resistance to ferroptosis. Cell Death Dis 2020; 11:789. [PMID: 32968052 PMCID: PMC7511929 DOI: 10.1038/s41419-020-02994-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Contextualisation of the new type of cell death called “ferroptosis” opened a completely new avenue for the development of anti-cancer therapies. Cumulative fundamental research dating back to the mid-20th century, crowned by the extraordinary work of the group led by Dr. Stockwell from Columbia University in 2012, finally got its candidature to be applied in the clinical settings. Although the potential for clinical importance is undoubtedly growing every day, as showed by the increasing number of papers dealing with ferroptosis and its applications, long experience of cancer research and treatment taught us that caution is still necessary. The plasticity of the tumour cells, particularly acute, along with its involvement in the resistance mechanisms, that have been seen, to greater or lesser extent, for almost all currently used therapies, represents the biggest fascinations in biomedical research field and also the biggest challenge to achieving cures in cancer patients. Accordingly, the main features of fundamental research have to be vigilance and anticipation. In this review, we tried to summarize the literature data, accumulated in the past couple of years, which point out the pitfalls in which “ferroptosis inducers” can fall if used prematurely in the clinical settings, but at the same time can provide a great advantage in the exhausting battle with cancer resistance. This is the first comprehensive review focusing on the effects of the cell-to-cell contact/interplay in the development of resistance to ferroptosis, while the contribution of cell-born factors has been summarized previously so here we just listed them.
Collapse
|
12
|
Traditional Decoction and PUAE Aqueous Extracts of Pomegranate Peels as Potential Low-Cost Anti-Tyrosinase Ingredients. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082795] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of the study is to evaluate the anti-tyrosinase activity of different aqueous extracts obtained from pomegranate juice processing by-products. External pomegranate peels of two certified cultivars (Akko and Wonderful), were extracted using only water as the extraction solvent. A traditional decoction and a pulsed ultrasound-assisted extraction (PUAE), both 10 min long, were performed and compared. All the aqueous extracts proved to be rich in bioactive compounds. In particular, the total phenolic content (TPC) ranged from 148 to 237 mg gallic acid equivalent (GAE)/g of dried peels (DW), the radical-scavenging ability (RSA) ranged from 307 to 472 mg ascorbic acid equivalent (AAE)/g DW, the free ellagic acid content (EA) ranged from 49 to 94 µg/mL, and the ellagitannins (ETs) ranged from 242 to 340 µg/mL. For both cultivars, PUAE extracts had higher ET content and a lower EC50, while the decoctions had slightly higher TPC, RSA, and free EA amounts. Principal component analysis (PCA) highlighted the direct correlation between the ET content and the tyrosinase enzyme inhibition (lower values of EC50). These findings suggest the potential use of both these natural extracts as low-cost lightening and/or anti-browning ingredients exploitable in several formulations (e.g., cosmetics) or extemporarily usable.
Collapse
|
13
|
Carrillo-Campos J. Estructura y función de las oxigenasas tipo Rieske/mononuclear. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Las oxigenasas Rieske/mononuclear son un grupo de metaloenzimas que catalizan la oxidación de una variedad de compuestos, destaca su participación en la degradación de compuestos xenobióticos contaminantes; estas enzimas también participan en la biosíntesis de algunos compuestos de interés comercial. Poseen una amplia especificidad por el sustrato, convirtiéndolas en un grupo de enzimas con un alto potencial de aplicación en procesos biotecnológicos que hasta el momento no ha sido explotado. La presente revisión aborda aspectos generales acerca de la función y estructura de este importante grupo de enzimas.
Collapse
|
14
|
Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chem Rev 2019; 119:6509-6560. [DOI: 10.1021/acs.chemrev.9b00073] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Seihwan Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
15
|
Lücht A, Jones PG, Werz DB. Reactions of 3,3′-Linked Bispyrroles with Carbon Electrophiles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alexander Lücht
- Institut für Organische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Institut für Organische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
16
|
Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med 2019; 133:130-143. [PMID: 30268886 PMCID: PMC6368883 DOI: 10.1016/j.freeradbiomed.2018.09.043] [Citation(s) in RCA: 739] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The term ferroptosis was coined in 2012 to describe an iron-dependent regulated form of cell death caused by the accumulation of lipid-based reactive oxygen species; this type of cell death was found to have molecular characteristics distinct from other forms of regulated cell death. Features of ferroptosis have been observed periodically over the last several decades, but these molecular features were not recognized as evidence of a distinct form of cell death until recently. Here, we describe the history of observations consistent with the current definition of ferroptosis, as well as the advances that contributed to the emergence of the concept of ferroptosis. We also discuss recent implications and applications of manipulations of the ferroptotic death pathway.
Collapse
Affiliation(s)
- Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
19
|
Kal S, Draksharapu A, Que L. Sc 3+ (or HClO 4) Activation of a Nonheme Fe III-OOH Intermediate for the Rapid Hydroxylation of Cyclohexane and Benzene. J Am Chem Soc 2018; 140:5798-5804. [PMID: 29618199 DOI: 10.1021/jacs.8b01435] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[Fe(β-BPMCN)(CH3CN)2]2+ (1, BPMCN = N,N' -bis(pyridyl-2-methyl)- N,N' -dimethyl- trans-1,2-diaminocyclo-hexane) is a relatively poor catalyst for cyclohexane oxidation by H2O2 and cannot perform benzene hydroxylation. However, addition of Sc3+ activates the 1/H2O2 reaction mixture to be able to hydroxylate cyclohexane and benzene within seconds at -40 °C. A metastable S = 1/2 FeIII-(η1-OOH) intermediate 2 is trapped at -40 °C, which undergoes rapid decay upon addition of Sc3+ at rates independent of [substrate] but linearly dependent on [Sc3+]. HClO4 elicits comparable reactivity as Sc3+ at the same concentration. We thus postulate that these additives both facilitate O-O bond heterolysis of 2 to form a common highly electrophilic FeV═O oxidant that is comparably reactive to the fastest nonheme high-valent iron-oxo oxidants found to date.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
20
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Toledo L, Aguirre C. Enzymatic browning in avocado (Persea americana) revisited: History, advances, and future perspectives. Crit Rev Food Sci Nutr 2018; 57:3860-3872. [PMID: 27172067 DOI: 10.1080/10408398.2016.1175416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Considering nearly 80 years of research regarding one of the enzymes responsible for catalyzing the formation of pigments in higher animals, plants, fungi and bacteria, this review will focus on collecting and categorizing the existing information about polyphenol oxidase (PPO) in fruits, with particular emphasis on the information in relation to avocado, which is one of the hardiest species in terms of inactivation, has documented dual activity (EC 1.14.18.1/EC 1.10.3.1), and represents one of the oldest challenges for food science research and fruit processors. It is expected that this review will contribute to the further development of the field by highlighting the questions that have arisen during the characterization of PPO, the progress that has been made and the questions that remain today, in addition to new methodologies that are being applied to study this system. Holistic methodologies offer unexplored potential for advancing our understanding of the complex phenomena that govern PPO activity in fruits, because these methodologies will enable the characterization of this family of enzymes in all of its complexity. Subsequently, it will be possible to develop better techniques for controlling enzymatic browning in this valuable fruit.
Collapse
Affiliation(s)
- Lea Toledo
- a School of Food Engineering , Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Carolina Aguirre
- b Research Center for Biodiversity and Sustainable Environments (CIBAS) , Universidad Católica de la Santísima Concepción , Concepción , Chile
| |
Collapse
|
22
|
Kera K, Fine DD, Wherritt DJ, Nagashima Y, Shimada N, Ara T, Ogata Y, Sumner LW, Suzuki H. Pathway-specific metabolome analysis with 18O 2-labeled Medicago truncatula via a mass spectrometry-based approach. Metabolomics 2018; 14:71. [PMID: 29780292 PMCID: PMC5948250 DOI: 10.1007/s11306-018-1364-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Oxygen from carbon dioxide, water or molecular oxygen, depending on the responsible enzyme, can lead to a large variety of metabolites through chemical modification. OBJECTIVES Pathway-specific labeling using isotopic molecular oxygen (18O2) makes it possible to determine the origin of oxygen atoms in metabolites and the presence of biosynthetic enzymes (e.g., oxygenases). In this study, we established the basis of 18O2-metabolome analysis. METHODS 18O2 labeled whole Medicago truncatula seedlings were prepared using 18O2-air and an economical sealed-glass bottle system. Metabolites were analyzed using high-accuracy and high-resolution mass spectrometry. Identification of the metabolite was confirmed by NMR following UHPLC-solid-phase extraction (SPE). RESULTS A total of 511 peaks labeled by 18O2 from shoot and 343 peaks from root were annotated by untargeted metabolome analysis. Additionally, we identified a new flavonoid, apigenin 4'-O-[2'-O-coumaroyl-glucuronopyranosyl-(1-2)-O-glucuronopyranoside], that was labeled by 18O2. To the best of our knowledge, this is the first report of apigenin 4'-glucuronide in M. truncatula. Using MSn analysis, we estimated that 18O atoms were specifically incorporated in apigenin, the coumaroyl group, and glucuronic acid. For apigenin, an 18O atom was incorporated in the 4'-hydroxy group. Thus, non-specific incorporation of an 18O atom by recycling during one month of labeling is unlikely compared with the more specific oxygenase-catalyzing reaction. CONCLUSION Our finding indicated that 18O2 labeling was effective not only for the mining of unknown metabolites which were biosynthesized by oxygenase-related pathway but also for the identification of metabolites whose oxygen atoms were derived from oxygenase activity.
Collapse
Affiliation(s)
- Kota Kera
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Dennis D Fine
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA
- Department of Biochemistry, Bond Life Science Center, University of Missouri, 1201 Rollins, Columbia, MO, 65211, USA
| | - Daniel J Wherritt
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | - Norimoto Shimada
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- TOKIWA Phytochemical Co., Ltd., Sakura, Chiba, 285-0801, Japan
| | - Takeshi Ara
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 611-0011, Japan
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Lloyd W Sumner
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA
- Department of Biochemistry, Bond Life Science Center, University of Missouri, 1201 Rollins, Columbia, MO, 65211, USA
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan.
| |
Collapse
|
23
|
|
24
|
Vučetić M, Cormerais Y, Parks SK, Pouysségur J. The Central Role of Amino Acids in Cancer Redox Homeostasis: Vulnerability Points of the Cancer Redox Code. Front Oncol 2017; 7:319. [PMID: 29312889 PMCID: PMC5742588 DOI: 10.3389/fonc.2017.00319] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022] Open
Abstract
A fine balance in reactive oxygen species (ROS) production and removal is of utmost importance for homeostasis of all cells and especially in highly proliferating cells that encounter increased ROS production due to enhanced metabolism. Consequently, increased production of these highly reactive molecules requires coupling with increased antioxidant defense production within cells. This coupling is observed in cancer cells that allocate significant energy reserves to maintain their intracellular redox balance. Glutathione (GSH), as a first line of defense, represents the most important, non-enzymatic antioxidant component together with the NADPH/NADP+ couple, which ensures the maintenance of the pool of reduced GSH. In this review, the central role of amino acids (AAs) in the maintenance of redox homeostasis in cancer, through GSH synthesis (cysteine, glutamate, and glycine), and nicotinamide adenine dinucleotide (phosphate) production (serine, and glutamine/glutamate) are illustrated. Special emphasis is placed on the importance of AA transporters known to be upregulated in cancers (such as system xc-light chain and alanine-serine-cysteine transporter 2) in the maintenance of AA homeostasis, and thus indirectly, the redox homeostasis of cancer cells. The role of the ROS varies (often described as a "two-edged sword") during the processes of carcinogenesis, metastasis, and cancer treatment. Therefore, the context-dependent role of specific AAs in the initiation, progression, and dissemination of cancer, as well as in the redox-dependent sensitivity/resistance of the neoplastic cells to chemotherapy are highlighted.
Collapse
Affiliation(s)
- Milica Vučetić
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Yann Cormerais
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Scott K Parks
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Jacques Pouysségur
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco.,Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, Université Côte d'Azur, Nice, France
| |
Collapse
|
25
|
Banerjee R, Komor AJ, Lipscomb JD. Use of Isotopes and Isotope Effects for Investigations of Diiron Oxygenase Mechanisms. Methods Enzymol 2017; 596:239-290. [PMID: 28911774 DOI: 10.1016/bs.mie.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Isotope effects of four broad and overlapping categories have been applied to the study of the mechanisms of chemical reaction and regulation of nonheme diiron cluster-containing oxygenases. The categories are: (a) mass properties that allow substrate-to-product conversions to be tracked, (b) atomic properties that allow specialized spectroscopies, (c) mass properties that impact primarily vibrational spectroscopies, and (d) bond dissociation energy shifts that permit dynamic isotope effect studies of many types. The application of these categories of isotope effects is illustrated using the soluble methane monooxygenase system and CmlI, which catalyzes the multistep arylamine to arylnitro conversion in the biosynthetic pathway for chloramphenicol.
Collapse
Affiliation(s)
| | - Anna J Komor
- University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
26
|
Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals. Prog Lipid Res 2017; 67:38-57. [PMID: 28606467 DOI: 10.1016/j.plipres.2017.06.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
The basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family comprises many transcription factors, found throughout all three kingdoms of life; bHLH/PAS members "sense" innumerable intracellular and extracellular "signals" - including endogenous compounds, foreign chemicals, gas molecules, redox potential, photons (light), gravity, heat, and osmotic pressure. These signals then initiate downstream signaling pathways involved in responding to that signal. The term "PAS", abbreviation for "per-Arnt-sim" was first coined in 1991. Although the mouse Arnt gene was not identified until 1991, evidence of its co-transcriptional binding partner, aryl hydrocarbon receptor (AHR), was first reported in 1974 as a "sensor" of foreign chemicals, up-regulating cytochrome P450 family 1 (CYP1) and other enzyme activities that usually metabolize the signaling chemical. Within a few years, AHR was proposed also to participate in inflammation. The mouse [Ah] locus was shown (1973-1989) to be relevant to chemical carcinogenesis, mutagenesis, toxicity and teratogenesis, the mouse Ahr gene was cloned in 1992, and the first Ahr(-/-) knockout mouse line was reported in 1995. After thousands of studies from the early 1970s to present day, we now realize that AHR participates in dozens of signaling pathways involved in critical-life processes, affecting virtually every organ and cell-type in the animal, including many invertebrates.
Collapse
|
27
|
|
28
|
A personal perspective on the discovery of dioxygen adducts of copper and iron by Nobumasa Kitajima. J Biol Inorg Chem 2017; 22:237-251. [DOI: 10.1007/s00775-016-1432-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/15/2016] [Indexed: 11/26/2022]
|
29
|
Wang Y, Li J, Liu A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J Biol Inorg Chem 2017; 22:395-405. [PMID: 28084551 DOI: 10.1007/s00775-017-1436-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022]
Abstract
Molecular oxygen is utilized in numerous metabolic pathways fundamental for life. Mononuclear nonheme iron-dependent oxygenase enzymes are well known for their involvement in some of these pathways, activating O2 so that oxygen atoms can be incorporated into their primary substrates. These reactions often initiate pathways that allow organisms to use stable organic molecules as sources of carbon and energy for growth. From the myriad of reactions in which these enzymes are involved, this perspective recounts the general mechanisms of aromatic dihydroxylation and oxidative ring cleavage, both of which are ubiquitous chemical reactions found in life-sustaining processes. The organic substrate provides all four electrons required for oxygen activation and insertion in the reactions mediated by extradiol and intradiol ring-cleaving catechol dioxygenases. In contrast, two of the electrons are provided by NADH in the cis-dihydroxylation mechanism of Rieske dioxygenases. The catalytic nonheme Fe center, with the aid of active site residues, facilitates these electron transfers to O2 as key elements of the activation processes. This review discusses some general questions for the catalytic strategies of oxygen activation and insertion into aromatic compounds employed by mononuclear nonheme iron-dependent dioxygenases. These include: (1) how oxygen is activated, (2) whether there are common intermediates before oxygen transfer to the aromatic substrate, and (3) are these key intermediates unique to mononuclear nonheme iron dioxygenases?
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
30
|
|
31
|
High-valent copper in biomimetic and biological oxidations. J Biol Inorg Chem 2016; 22:289-305. [PMID: 27909921 DOI: 10.1007/s00775-016-1420-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
A long-standing debate in the Cu-O2 field has revolved around the relevance of the Cu(III) oxidation state in biological redox processes. The proposal of Cu(III) in biology is generally challenged as no spectroscopic or structural evidence exists currently for its presence. The reaction of synthetic Cu(I) complexes with O2 at low temperature in aprotic solvents provides the opportunity to investigate and define the chemical landscape of Cu-O2 species at a small-molecule level of detail; eight different types are characterized structurally, three of which contain at least one Cu(III) center. Simple imidazole or histamine ligands are competent in these oxygenation reactions to form Cu(III) complexes. The combination of synthetic structural and reactivity data suggests (1) that Cu(I) should be considered as either a one or two electron reductant reacting with O2, (2) that Cu(III) reduction potentials of these formed complexes are modest and well within the limits of a protein matrix and (3) that primary amine and imidazole ligands are surprisingly good at stabilizing Cu(III) centers. These Cu(III) complexes are efficient oxidants for hydroxylating phenolate substrates with reaction hallmarks similar to that performed in biological systems. The remarkable ligation similarity of the synthetic and biological systems makes it difficult to continue to exclude Cu(III) from biological discussions.
Collapse
|
32
|
Raven EL. A short history of heme dioxygenases: rise, fall and rise again. J Biol Inorg Chem 2016; 22:175-183. [PMID: 27909919 PMCID: PMC5350241 DOI: 10.1007/s00775-016-1412-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023]
Abstract
It is well established that there are two different classes of enzymes—tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO)—that catalyse the O2-dependent oxidation of l-tryptophan to N-formylkynurenine. But it was not always so. This perspective presents a short history of the early TDO and IDO literature, the people that were involved in creating it, and the legacy that this left for the future.
Collapse
Affiliation(s)
- Emma L Raven
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
33
|
Peck SC, van der Donk WA. Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes. J Biol Inorg Chem 2016; 22:381-394. [PMID: 27783267 DOI: 10.1007/s00775-016-1399-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the current mechanistic understanding of a group of mononuclear non-heme iron-dependent enzymes that catalyze four-electron oxidation of their organic substrates without the use of any cofactors or cosubstrates. One set of enzymes acts on α-ketoacid-containing substrates, coupling decarboxylation to oxygen activation. This group includes 4-hydroxyphenylpyruvate dioxygenase, 4-hydroxymandelate synthase, and CloR involved in clorobiocin biosynthesis. A second set of enzymes acts on substrates containing a thiol group that coordinates to the iron. This group is comprised of isopenicillin N synthase, thiol dioxygenases, and enzymes involved in the biosynthesis of ergothioneine and ovothiol. The final group of enzymes includes HEPD and MPnS that both carry out the oxidative cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate but generate different products. Commonalities amongst many of these enzymes are discussed and include the initial substrate oxidation by a ferric-superoxo-intermediate and a second oxidation by a ferryl species.
Collapse
Affiliation(s)
- Spencer C Peck
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
34
|
Gordeziani M, Varazi T, Pruidze M. Structural–functional organization of cytochrome P450 containing monooxygenase and some aspects of modeling. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aasci.2016.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Eliasen AM, Christy M, Claussen KR, Besandre R, Thedford RP, Siegel D. Dearomatization Reactions Using Phthaloyl Peroxide. Org Lett 2015; 17:4420-3. [DOI: 10.1021/acs.orglett.5b02008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anders M. Eliasen
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC0756, La Jolla, California 92093, United States
- Department
of Chemistry, University of Texas at Austin, Norman Hackerman Building, Austin, Texas 78701, United States
| | - Mitchell Christy
- Department
of Chemistry, University of Texas at Austin, Norman Hackerman Building, Austin, Texas 78701, United States
| | - Karin R. Claussen
- Department
of Chemistry, University of Texas at Austin, Norman Hackerman Building, Austin, Texas 78701, United States
| | - Ronald Besandre
- Department
of Chemistry, University of Texas at Austin, Norman Hackerman Building, Austin, Texas 78701, United States
| | - Randal P. Thedford
- Department
of Chemistry, University of Texas at Austin, Norman Hackerman Building, Austin, Texas 78701, United States
| | - Dionicio Siegel
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC0756, La Jolla, California 92093, United States
- Department
of Chemistry, University of Texas at Austin, Norman Hackerman Building, Austin, Texas 78701, United States
| |
Collapse
|
36
|
Lazarus M, Huang ZL, Urade Y. Osamu Hayaishi-from the discovery of oxygenases in soil microorganisms to unraveling the enigma of sleep in mammals. Temperature (Austin) 2015; 2:303-7. [PMID: 27227031 PMCID: PMC4843939 DOI: 10.1080/23328940.2015.1072658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 01/26/2023] Open
Affiliation(s)
- Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS); University of Tsukuba ; Tsukuba, Ibaraki, Japan
| | - Zhi-Li Huang
- Department of Pharmacology; State Key Laboratory of Medical Neurobiology; and Institute of Brain Sciences; Shanghai Medical College of Fudan University ; Shanghai, China
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine (WPI-IIIS); University of Tsukuba ; Tsukuba, Ibaraki, Japan
| |
Collapse
|
37
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1219] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
38
|
Affiliation(s)
- Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|
39
|
Divanovic S, Dalli J, Jorge-Nebert LF, Flick LM, Gálvez-Peralta M, Boespflug ND, Stankiewicz TE, Fitzgerald JM, Somarathna M, Karp CL, Serhan CN, Nebert DW. Contributions of the three CYP1 monooxygenases to pro-inflammatory and inflammation-resolution lipid mediator pathways. THE JOURNAL OF IMMUNOLOGY 2013; 191:3347-57. [PMID: 23956430 DOI: 10.4049/jimmunol.1300699] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All three cytochrome P450 1 (CYP1) monooxygenases are believed to participate in lipid mediator biosynthesis and/or their local inactivation; however, distinct metabolic steps are unknown. We used multiple-reaction monitoring and liquid chromatography-UV coupled with tandem mass spectrometry-based lipid-mediator metabololipidomics to identify and quantify three lipid-mediator metabolomes in basal peritoneal and zymosan-stimulated inflammatory exudates, comparing Cyp1a1/1a2/1b1(⁻/⁻) C57BL/6J-background triple-knockout mice with C57BL/6J wild-type mice. Significant differences between untreated triple-knockout and wild-type mice were not found for peritoneal cell number or type or for basal CYP1 activities involving 11 identified metabolic steps. Following zymosan-initiated inflammation, 18 lipid mediators were identified, including members of the eicosanoids and specialized proresolving mediators (i.e., resolvins and protectins). Compared with wild-type mice, Cyp1 triple-knockout mice exhibited increased neutrophil recruitment in zymosan-treated peritoneal exudates. Zymosan stimulation was associated with eight statistically significantly altered metabolic steps: increased arachidonic acid-derived leukotriene B₄ (LTB₄) and decreased 5S-hydroxyeicosatetraenoic acid; decreased docosahexaenoic acid-derived neuroprotectin D1/protectin D1, 17S-hydroxydocosahexaenoic acid, and 14S-hydroxydocosahexaenoic acid; and decreased eicosapentaenoic acid-derived 18R-hydroxyeicosapentaenoic acid (HEPE), 15S-HEPE, and 12S-HEPE. In neutrophils analyzed ex vivo, elevated LTB₄ levels were shown to parallel increased neutrophil numbers, and 20-hydroxy-LTB₄ formation was found to be deficient in Cyp1 triple-knockout mice. Together, these results demonstrate novel contributions of CYP1 enzymes to the local metabolite profile of lipid mediators that regulate neutrophilic inflammation.
Collapse
Affiliation(s)
- Senad Divanovic
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Lucia F Jorge-Nebert
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056
| | - Leah M Flick
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Marina Gálvez-Peralta
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056
| | - Nicholas D Boespflug
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Traci E Stankiewicz
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Jonathan M Fitzgerald
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Maheshika Somarathna
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056
| | - Christopher L Karp
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Daniel W Nebert
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056
| |
Collapse
|
40
|
Abstract
The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges.
Collapse
Affiliation(s)
- Young-Mi Go
- From the Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | |
Collapse
|
41
|
Hawkes JE, Cassidy PB, Manga P, Boissy RE, Goldgar D, Cannon-Albright L, Florell SR, Leachman SA. Report of a novel OCA2 gene mutation and an investigation of OCA2 variants on melanoma risk in a familial melanoma pedigree. J Dermatol Sci 2013; 69:30-7. [PMID: 23103111 PMCID: PMC4775076 DOI: 10.1016/j.jdermsci.2012.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 08/26/2012] [Accepted: 09/27/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Oculocutaneous albinism type 2 (OCA2) is caused by mutations of the OCA2 gene. Individuals affected by OCA2 as well as other types of albinism are at a significantly increased risk for sun-induced skin-cancers, including malignant melanoma (MM). OBJECTIVE To identify the molecular etiology of oculocutaneous albinism in a previously uncharacterized melanoma pedigree and to investigate the relationship between two OCA2 variants and melanoma predisposition in this pedigree. METHODS DNA and RNA were isolated from the peripheral blood of seven patients in a familial melanoma pedigree. Electron microscopy was performed on the individual with clinical oculocutaneous albinism. OCA2, TYRP1, MC1R, CDKN2A/p16, CDKN2A/p19ARF, and CDK4 genes were sequenced in affected individuals. The relationship between OCA2 variants and melanoma was assessed using a pedigree likelihood-based method. RESULTS The proband was determined to be an OCA2 compound heterozygous mutation carrier with a previously reported conservative missense mutation (V443I) and a novel non-conservative missense mutation (L734R). The pedigree contained individuals diagnosed with both cutaneous and iris melanoma. Based on co-segregation analysis, the odds of these OCA2 variants being high penetrance loci for melanoma was: 1.3-to-1 if we include the iris melanoma as affected and 6.5-to-1 if we only consider cutaneous melanoma as affected. CONCLUSION The discovery of this novel OCA2 variant adds to the body of evidence on the detrimental effects of OCA2 gene mutations on pigmentation, supports existing GWAS data on the relevance of the OCA2 gene in melanoma predisposition, and may ultimately assist in the development of targeted molecular therapies in the treatment of OCA and melanoma.
Collapse
Affiliation(s)
- Jason E. Hawkes
- Huntsman Cancer Institute and Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Pamela B. Cassidy
- Huntsman Cancer Institute and Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
- Department of Medicinal Chemistry L.S. Skagg's Pharmacy, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | - Raymond E. Boissy
- Department of Dermatology, University of Cincinnati, Cincinnati, OH, USA
| | - David Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Lisa Cannon-Albright
- Department of Biomedical Informatics, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Scott R. Florell
- Huntsman Cancer Institute and Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Sancy A. Leachman
- Huntsman Cancer Institute and Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Form follows function: structural and catalytic variation in the class a flavoprotein monooxygenases. Int J Mol Sci 2012; 13:15601-39. [PMID: 23443084 PMCID: PMC3546652 DOI: 10.3390/ijms131215601] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/02/2022] Open
Abstract
Flavoprotein monooxygenases (FPMOs) exhibit an array of mechanistic solutions to a common chemical objective; the monooxygenation of a target substrate. Each FPMO efficiently couples reduction of a flavin cofactor by NAD(P)H to oxygenation of the target substrate via a (hydro)peroxyflavin intermediate. This purpose of this review is to describe in detail the Class A flavoprotein hydroxylases (FPMO) in the context of the other FPMO classes (B–F). Both one and two component FPMOs are found in nature. Two-component enzymes require, in addition to the monooxygenase, the involvement of a reductase that first catalyzes the reduction of the flavin by NAD(P)H. The Class A and B FPMOs are single-component and manage to orchestrate the same net reaction within a single peptide. The Class A enzymes have, by some considerable margin, the most complete research record. These enzymes use choreographed movements of the flavin ring that facilitate access of the organic substrates to the active site, provide a means for interaction of NADPH with the flavin, offer a mechanism to sequester the dioxygen reduction chemistry from solvent and a means to release the product. The majority of the discrete catalytic events of the catalytic cycle can be observed directly in exquisite detail using spectrophotometric kinetic methods and many of the key mechanistic conclusions are further supported by structural data. This review attempts to compile each of the key observations made for both paradigm and newly discovered examples of Class A FPMOs into a complete catalytic description of one enzymatic turnover.
Collapse
|
43
|
Siitonen V, Blauenburg B, Kallio P, Mäntsälä P, Metsä-Ketelä M. Discovery of a Two-Component Monooxygenase SnoaW/SnoaL2 Involved in Nogalamycin Biosynthesis. ACTA ACUST UNITED AC 2012; 19:638-46. [DOI: 10.1016/j.chembiol.2012.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/16/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022]
|
44
|
Stratford MRL, Riley PA, Ramsden CA. Rapid Halogen Substitution and Dibenzodioxin Formation during Tyrosinase-Catalyzed Oxidation of 4-Halocatechols. Chem Res Toxicol 2011; 24:350-6. [DOI: 10.1021/tx100315n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. L. Stratford
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Patrick A. Riley
- Totteridge Institute for Advanced Studies, The Grange, Grange Avenue, London N20 8AB, U.K
| | - Christopher A. Ramsden
- Lennard-Jones Laboratories, School of Physical and Geographical Sciences, Keele University, Staffordshire ST5 5BG, U.K
| |
Collapse
|
45
|
Omura T. Recollection of the early years of the research on cytochrome P450. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:617-40. [PMID: 22156409 PMCID: PMC3311014 DOI: 10.2183/pjab.87.617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/28/2011] [Indexed: 05/31/2023]
Abstract
Since the publication of the first paper on "cytochrome P450" in 1962, the biochemical research on this novel hemoprotein expanded rapidly in the 1960s and the 1970s as its principal roles in various important metabolic processes including steroid hormone biosynthesis in the steroidogenic organs and drug metabolism in the liver were elucidated. Establishment of the purification procedures of microsomal and mitochondrial P450s in the middle of the 1970s together with the introduction of molecular biological techniques accelerated the remarkable expansion of the research on P450 in the following years. This review paper summarizes the important developments in the research on P450 in the early years, for about two decades from the beginning, together with my personal recollections.
Collapse
|
46
|
Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J. Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:825-831. [PMID: 20205204 DOI: 10.1002/smll.200902186] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dense arrays of self-assembled nanostructures are highly important for the fabrication of high-performance sensors of large surface area. The organized incorporation of novel biocompatible organic nanostructures into extremely sensitive amperometric biosensors is demonstrated. Peptide nanoforest biosensors for phenol detection were 17-fold more sensitive than uncoated electrode and more sensitive than those modified with carbon nanotubes or combined coating. The high sensitivity reported, together with the biocompatibility and the ability to chemically and biologically modify these elements, may provide a novel platform for biosensors design and fabrication for environmental monitoring, homeland security, and other applications.
Collapse
Affiliation(s)
- Lihi Adler-Abramovich
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | | | | | | |
Collapse
|
47
|
di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 2009; 30:297-343. [PMID: 19427329 DOI: 10.1016/j.mam.2009.04.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Bettie Sue Siler Masters
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| |
Collapse
|
49
|
Venkataramani ES, Ahlert RC, Corbo P, Irvine RL. Biological treatment of landfill leachates. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/10643388409381723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Kupán A, Kaizer J, Speier G, Giorgi M, Réglier M, Pollreisz F. Molecular structure and catechol oxidase activity of a new copper(I) complex with sterically crowded monodentate N-donor ligand. J Inorg Biochem 2008; 103:389-95. [PMID: 19135259 DOI: 10.1016/j.jinorgbio.2008.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
The attempted alkylation of 1,3-bis(2'-pyridylimino)isoindoline (indH) by the use of n-BuLi and subsequent alkyl halides led to quaternization of the pyridine nitrogens and the zwitterionic monodentate N-ligand (Me(2)ind)I was formed. By the use of the ligand the copper(I) complex [Cu(I)(Me(2)ind)I(2)] was prepared and its structure determined. It was found to be good catalyst for the oxidation of 3,5-di-tert-butylcatechol (DTBCH(2)) to 3,5-di-tert-butyl-1,2-benzoquinone (DTBQ) and H(2)O(2) by dioxygen. Detailed kinetic studies revealed first-order dependence on the catalyst and dioxygen concentration and saturation type behavior with respect to the substrate.
Collapse
Affiliation(s)
- Adám Kupán
- Department of Chemistry, University of Pannonia, H-8200 Veszprém, Hungary
| | | | | | | | | | | |
Collapse
|