1
|
Zheng S, Wu M, Wang X, Xu S, Qian R. Nanopipettes for Chemical Analysis in Life Sciences. Chembiochem 2025; 26:e202400879. [PMID: 40014334 DOI: 10.1002/cbic.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 02/28/2025]
Abstract
Nanopipette-based assays have gained widespread applications in electrochemical and analytical technologies, achieving significant advancements over the past decade in DNA sequencing, biosensing, targeted delivery, and bioimaging. The ultrasmall tip size of nanopipettes bridges the gap between the macro- and nano worlds, which can be attributed to the capability of nanopipettes to transport ultrasmall volumes of liquids, ions, and solutes. In this review, we discuss the fabrication, characterization, and modification of nanopipettes to provide an overview of the recent developments of nanopipette-based sensors and strategies. We also introduce the recent studies developed by our group and other groups using nanopipettes for chemical analysis of life science. Finally, we discuss the future development of nanopipette-based strategies and their exciting potential for studying bioscience and biomedical engineering.
Collapse
Affiliation(s)
- Shiyu Zheng
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| | - Mansha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| | - Xiaoyuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| | - Shuyue Xu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| | - Ruocan Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R China
| |
Collapse
|
2
|
Zhao Q, Qian HL, Yan ZY, Ran XQ, Yan XP. Confining Spirocyclic Fluorescein in an Asymmetric Solid-State Nanochannel: A Simple and Versatile Design Concept for Fabricating Integrated Nanofluidic Diodes with Adjustable Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501424. [PMID: 40079076 DOI: 10.1002/smll.202501424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Using small molecules to integrate multifunctional surfaces within a nanopore is an effective way to endow smart responsibilities of nanofluidic diodes. However, the complex synthesis of the small molecules hinders their further application in achieving multifunctional surfaces. Here, a simple and versatile design concept is reported for fabricating bioinspired integrated nanofluidic diodes with adjustable surface chemistry by confining a spirocyclic fluorescein derivative, 6-aminofluorescein (6-AF), within an asymmetric track-etched nanopore. The pH-dependent open-close of lactone ring in 6-AF allows facile fabrication of a pH-gated nanofluidic diode, confirmed with finite element simulations. This pH-gated nanofluidic diode also shows high specificity for sensing 3-nitropropionic acid (3-NPA), indicating its potential applications in food safety. Moreover, three functional nanofluidic diodes are successfully constructed via a regioselective Vilsmeier reaction between 6-AF and N-methylformanilide, the electrophilic addition reaction between 6-AF and propargyl bromide, and a highly controllable reduction process between 6-AF and NaBH4/I2. The combination of asymmetric nanopores with small molecules not only expands traditional fluorescent spirocyclic molecules to the realm of electrochemistry but also offers valuable insights for the achievement of novel fluorescence-electrochemical coupling detection methods. Besides, the introduction of spirocyclic small molecules to asymmetric nanopores serves as an inspiration source to explore new design concepts for nanofluidic devices.
Collapse
Affiliation(s)
- Qi Zhao
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Analysis and Testing Center, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Li X, Zhu C, Wu Y, Kong XY, Wen L. Bioinspired solid-state nanochannels for molecular analysis. NANOSCALE 2025; 17:1225-1237. [PMID: 39623942 DOI: 10.1039/d4nr03711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The acute sensory behaviour in living organisms relies on the highly efficient transport behaviour of ions in biological nanochannels, which has inspired the design and applications of artificial solid-state nanochannels in the field of sensitive analysis. The application of nanochannels for analysis is now widely investigated, and a variety of sensors have been developed. By coupling reliable nanochannel fabrication techniques with a multitude of surface modification strategies, novel sensors with customized sensing capabilities are generated by the integration of recognition elements and nanochannels. The altered physicochemical properties of these solid-state nanochannel sensors will be manifested by steady-state currents when they are affected by the target analyte. In this mini-review, we focus on emerging solid-state nanochannels based on different fabrication processes such as electron-beam etching, anodic oxidation, ion track etching, and self-assembly. Also, modifications of recognition elements are discussed, including nucleic acids, proteins, small molecules, and responsive materials. The key factors of ion transport behaviour during detection are also reviewed, including surface charge, channel size, and wettability. The applications of these bioinspired nanochannels in the exploration of analysis of small molecules (gas molecules, drug molecules and biological molecules) are concisely presented. Furthermore, we discuss the future developments and challenges.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Congcong Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
4
|
Wang Y, Deng D, Lin Q, Li S, Chen Z, Periyasami G, Li H, Zhang S, Liu Y, Sun Y. Gadolinium-Sensitive Artificial Nanochannel Membrane for Information Encryption. ACS NANO 2024; 18:32226-32234. [PMID: 39501759 DOI: 10.1021/acsnano.4c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Inspired from ion channels in the myelinated axon of Xenopus laevis found to be affected by gadolinium on axonal currents, we present a solid nanochannel membrane sensitive to gadolinium (Gd3+), which can be achieved via the use of the macrocyclic triacetic acid derivative in the host-guest chemistry approach. The macrocyclic nanochannel has good responsiveness toward Gd3+, even at the nanomolar concentration level, evidenced by discernible changes in rectification, ionic conductance, and XPS analyses. Notably, the Gd3+-sensitive nanochannel membrane can be switched by the addition of a diethylenetriaminepentaacetic acid (DTPA) derivative. Further studies have indicated that the gated behavior of Gd3+ in the nanochannel can be attributed to the strong binding strength between DO3A and Gd3+, which induces a surface charge reversal within the nanochannel. The mechanism has been confirmed through several experimental techniques, including isothermal titration calorimetry (ITC) experiments, fluorescence titration experiments, and finite element analysis. Based on its Gd3+ responsiveness of the constructed ion channel, we successfully developed an advanced multilevel information encryption application of the artificial solid nanochannel membrane. Furthermore, it is anticipated that a more effective encryption system will be built by utilizing the bionic ion channel system's ease of use and straightforward functionalization.
Collapse
Affiliation(s)
- Yumei Wang
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Diandian Deng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Qian Lin
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Shulan Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Zhao Chen
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- North China University of Science and Technology, Tangshan 063210, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
5
|
Ishizaki-Betchaku Y, Kumakura N, Yamamoto S, Nagano S, Mitsuishi M. Ultrathin Ionic Diodes with Electrostatically Heterogeneous Hybrid Interfaces of Nanoporous SiO 2 Nanofilms and Polymer Layer-by-Layer Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404306. [PMID: 38958070 DOI: 10.1002/smll.202404306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 07/04/2024]
Abstract
Nanofluidic ionic diodes have attracted much attention due to their unique functions as unidirectional ion transportation ability and promising applications from molecular sensing, and energy harvesting to emerging neuromorphic devices. However, it remains a challenge to fabricate diode-like nanofluidic systems with ultrathin film thickness <100 nm. Herein the formation of ultrathin ionic diodes from hybrid nanoassemblies of nanoporous (NP) SiO2 nanofilms and polyelectrolyte layer-by-layer (LbL) multilayers is described. Ultrathin ionic diodes are prepared by integrating polyelectrolyte multilayers onto photo-oxidized NP SiO2 nanofilms obtained from silsesquioxane-containing block copolymer thin films as a template. The obtained ultrathin ionic diodes exhibit ion current rectification (ICR) properties with high ICR factor = ≈20 under low ionic strength and asymmetric pH conditions. It is concluded that this ICR behavior arises from effective ion accumulation and depletion at the interface of NP SiO2 nanofilms and LbL multilayers attributed to high ion selectivity by combining the experimental data and theoretical calculations using finite element methods. These results demonstrate that the hybrid nano assemblies of NP SiO2 nanofilms and polyelectrolyte LbL multilayers have potential applications for (bio)sensing materials and integrated ionic circuits for seamless connection of human-machine interfaces.
Collapse
Affiliation(s)
- Yuya Ishizaki-Betchaku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan
| | - Narumi Kumakura
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
6
|
Ishraaq R, Das S. All-atom molecular dynamics simulations of polymer and polyelectrolyte brushes. Chem Commun (Camb) 2024; 60:6093-6129. [PMID: 38819435 DOI: 10.1039/d4cc01557f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Densely grafted polymer and polyelectrolyte (PE) brushes, owing to their significant abilities to functionalize surfaces for a plethora of applications in sensing, diagnostics, current rectification, surface wettability modification, drug delivery, and oil recovery, have attracted significant attention over the past several decades. Unfortunately, most of the attention has primarily focused on understanding the properties of the grafted polymer and the PE chains with little attention devoted to studying the behavior of the brush-supported ions (counterions needed to screen the PE chains) and water molecules. Over the past few years, our group has been at the forefront of addressing this gap: we have employed all-atom molecular dynamics (MD) simulations for studying a wide variety of polymer and PE brush systems with specific attention to unraveling the properties and behavior of the brush-supported water molecules and ions. Our findings have revealed some of the most fascinating properties of such brush-supported ions and water molecules, including the most remarkable control of nanofluidic transport afforded by the specific ion and water responses induced by the PE brushes grafted on the inner walls of the nanochannel. This feature article aims to summarize some of our key contributions associated with such atomistic simulations of polymer and PE brushes and brush-supported water molecules and counterions.
Collapse
Affiliation(s)
- Raashiq Ishraaq
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
An P, Yang J, Wang T, Lu S, Wang D, Wang Z, Sun CL, Qin C, Li J. Layer-by-layer assembly of homopolypeptide polyelectrolytes on asymmetric nanochannels for the detection of nickel ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2654-2660. [PMID: 38623688 DOI: 10.1039/d4ay00422a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Nickel stands out as one of the prevalent heavy metal ionic pollutants found in water. It is urgent to devise a simple, efficient, budget-friendly, highly-selective and proficient method for detecting Ni(II). This work reports an approach to design a nanofluidic diode for the ultrasensitive and label-free detection of nickel ions based on layer-by-layer assembly of polyarginine (PA) and polyglutamic acid (γ-PGA) on the inner surface of asymmetric nanochannels. We can tune the adsorption/desorption characteristics of the asymmetric nanochannels for Ni2+ by adjusting the pH changes, i.e., the PA-γ-PGA modified nanochannels adsorb Ni2+ at pH 6 and desorb at pH 3 in aqueous solution. This pivotal adjustment facilitates the reusable and specific detection of nickel ions with a detection limit of 1 × 10-8 M. Moreover, the system demonstrates commendable stability and recyclability, enhancing its practical applicability. This innovative system holds promise for recognizing and detecting nickel ions in diverse environments such as water, blood, and cells. The robust performance and adaptability of our proposed system instill confidence in its potential for future applications.
Collapse
Affiliation(s)
- Pengrong An
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an City, Shaanxi Province, 710072, P. R. China.
| | - Jincan Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an City, Shaanxi Province, 710072, P. R. China.
| | - Tianming Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an City, Shaanxi Province, 710072, P. R. China.
| | - Saiwen Lu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an City, Shaanxi Province, 710072, P. R. China.
| | - Dehao Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an City, Shaanxi Province, 710072, P. R. China.
| | - Zhuoyue Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an City, Shaanxi Province, 710072, P. R. China.
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, No. 222, Tianshui Road (South), Lanzhou City, Gansu Province, 730000, P. R. China.
| | - Chuanguang Qin
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an City, Shaanxi Province, 710072, P. R. China.
| | - Jun Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an City, Shaanxi Province, 710072, P. R. China.
| |
Collapse
|
8
|
Paul A, Aluru NR. Nanoscale electrohydrodynamic ion transport: Influences of channel geometry and polarization-induced surface charges. Phys Rev E 2024; 109:025105. [PMID: 38491612 DOI: 10.1103/physreve.109.025105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
Electrohydrodynamic ion transport has been studied in nanotubes, nanoslits, and nanopores to mimic the advanced functionalities of biological ion channels. However, probing how the intricate interplay between the electrical and mechanical interactions affects ion conduction in asymmetric nanoconduits presents further obstacles. Here, ion transport across a conical nanopore embedded in a polarizable membrane under an electric field and pressure is analyzed by numerically solving a continuum model based on the Poisson, Nernst-Planck, and Navier-Stokes equations. We report an anomalous ionic current depletion, of up to 75%, and an unexpected rise in current rectification when pressure is exerted along the external electric field. Membrane polarization is revealed as the prerequisite to obtain this previously undetected electrohydrodynamic coupling. The electric field induces large surface charges at the pore tip due to its conical shape, creating nonuniform electrical double layers (EDL) with a massive accumulation of electrolyte ions near the orifice. Once applied, the pressure distorts the quasiequilibrium distribution of the EDL ions to influence the nanopore conductivity. Our fundamental approach to inspect the effect of pressure on the channel EDL (and thus ionic conductance) in contrast to its effect on the current arising from the hydrodynamic streaming of ions further explains the pressure-sensitive ion transport in different nanochannels and physical regimes manifested in past experiments, including the hitherto inexplicit mechanism behind the mechanically activated ion transport in carbon nanotubes. This enhances our broad understanding of nanoscale electrohydrodynamic ion transport, yielding a platform to build nanofluidic devices and ionic circuits with more robust and tunable responses to electrical and mechanical stimuli.
Collapse
Affiliation(s)
- Arghyadeep Paul
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - N R Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
9
|
Ishraaq R, Akash TS, Bera A, Das S. Hydrophilic and Apolar Hydration in Densely Grafted Cationic Brushes and Counterions with Large Mobilities. J Phys Chem B 2024; 128:381-392. [PMID: 38148252 DOI: 10.1021/acs.jpcb.3c07520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We employ an all-atom molecular dynamics (MD) simulation framework to unravel water microstructure and ion properties for cationic [poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) brushes with chloride ions as counterions. First, we identify locally separate water domains (or first hydration shells) each around {N(CH3)3}+ and the C═O functional groups of the PMETAC chain and one around the Cl- ion. These first hydration shells around the respective moieties overlap, and the extent of the overlap depends on the nature of the species triggering it. Second, despite the overlap, the water molecules in these domains demonstrate disparate properties dictated by the properties of the atoms and groups around which they are located. For example, the presence of the methyl groups makes the {N(CH3)3}+ group trigger apolar hydration as evidenced by the corresponding orientation of the dipole of the water molecules around the {N(CH3)3}+ moiety. These water molecules around the {N(CH3)3}+ group also have enhanced tetrahedrality compared to the water molecules constituting the hydration layer around the C═O group and the Cl- counterion. Our simulations also identify that there is an intervening water layer between the Cl- ion and {N(CH3)3}+ group: this layer prevents the Cl- ion from coming very close to the {N(CH3)3}+ group. As a consequence, there is a significantly large mobility of the Cl- ions inside the PMETAC brush layer. Furthermore, the C═O group of the polyelectrolyte (PE) chain, due to the partial negative charge on the oxygen atom and the specific structure of the PMETAC brush system, demonstrates strongly hydrophilic behavior and enforces a specific dipole response of water molecules analogous to that experienced by water around anionic species of high charge density. In summary, our findings confirm that PMETAC brushes undergo hydrophilic hydration at one site and apolar hydration at another site and ensure large mobility of the supported Cl- counterions.
Collapse
Affiliation(s)
- Raashiq Ishraaq
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Tanmay Sarkar Akash
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Arka Bera
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Khatibi M, Ashrafizadeh SN. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field. Anal Chem 2023. [PMID: 38019778 DOI: 10.1021/acs.analchem.3c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This research delves into investigating ion transport behavior within nanochannels, enhanced through modification with a negatively charged polyelectrolyte layer (PEL), aimed at achieving superior control. The study examines two types of electric fields─direct current and alternating current with square, sinusoidal, triangular, and sawtooth waveforms─to understand their impact on ion transport. Furthermore, the study compares symmetric (cylindrical) and asymmetric (conical) nanochannel geometries to assess the influence of overlapping electrical double layers (EDLs) in generating specific electrokinetic behaviors such as ionic current rectification (ICR) and ion selectivity. The research employs the finite element method to solve the coupled Poisson-Nernst-Planck and Navier-Stokes equations under unsteady-state conditions. By considering factors such as electrolyte concentration, soft layer charge density, and electric field type, the study evaluates ion transport performance in charged nanochannels, investigating effects on concentration polarization, electroosmotic flow (EOF), ion current, rectification, and ion selectivity. Notably, the study accounts for ion partitioning between the PEL and electrolyte to simulate real conditions. Findings reveal that conical nanochannels, due to improved EDL overlap, significantly enhance ion transport and related characteristics compared to cylindrical ones. For instance, under ηε = ηD = 0.8, ημ = 2, C0 = 20 mM, and NPEL/NA = 80 mol m-3 conditions, the average EOF for conical and cylindrical geometries is 0.1 and 0.008 m/s, respectively. Additionally, the study explores ion selectivity and rectification based on the electric field type, unveiling the potential of nanochannels as ion gates or diodes. In cylindrical nanochannels, the ICR remains at unity, with lower ion selectivity across waveforms compared to conical channels. Furthermore, rectification and ion selectivity trends are identified as Rf,square > Rf,DC > Rf,triangular > Rf,sinusoidal > Rf,sawtooth and Ssawtooth > Ssinusoidal > Striangular > SDC > Ssquare for conical nanochannels. Our study of ion transport control in nanochannels, guided by tailored electric fields and unique geometries, offers versatile applications in the field of Analytical Chemistry. This includes enhanced sample separation, controlled drug delivery, optimized pharmaceutical analysis, and the development of advanced biosensing technologies for precise chemical analysis and detection. These applications highlight the diverse analytical contributions of our methodology, providing innovative solutions to challenges in chemical analysis and biosensing.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
11
|
Khatibi M, Dartoomi H, Ashrafizadeh SN. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13717-13734. [PMID: 37702658 DOI: 10.1021/acs.langmuir.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Access to and use of energy resources are now crucial components of modern human existence thanks to the exponential growth of technology. Traditional energy sources provide significant challenges, such as pollution, scarcity, and excessive prices. As a result, there is more need than ever before to replace depleting resources with brand-new, reliable, and environmentally friendly ones. With the aid of reverse electrodialysis, the salinity gradient between rivers and seawater as a clean supply with easy and infinite availability is a viable choice for energy generation. The development of nanofluidic-based reverse electrodialysis (NRED) as a novel high-efficiency technology is attributable to the progress of nanoscience. However, understanding the predominant mechanisms of this process at the nanoscale is necessary to develop and disseminate this technology. One viable option to gain insight into these systems while saving expenses is to employ simulation tools. In this study, we looked at how a layer-by-layer (LBL) soft layer influences ion transport and energy production in charged nanochannels. We solved the steady-state Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations for three different types of nanochannels with a trumpet geometry, where the narrow part is covered with a built-up LbL soft layer and the rest is a hard wall with a surface charge density of σ = -10, 0, or +10 mC/m2. The findings show that in type (I) nanochannels, at NPEL/NA = 100 mol/m3 and pH = 7, the maximum power output rises 675-fold as the concentration ratio rises from 10 to 1000. The results of this study can aid in a better understanding of energy harvesting processes using nanofluidic-based reverse electrodialysis in order to identify optimal conditions for the design of an intelligent route with great controllability and minimal pollution.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Hossein Dartoomi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
12
|
Azzaroni O, Piccinini E, Fenoy G, Marmisollé W, Ariga K. Field-effect transistors engineered via solution-based layer-by-layer nanoarchitectonics. NANOTECHNOLOGY 2023; 34:472001. [PMID: 37567153 DOI: 10.1088/1361-6528/acef26] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.
Collapse
Affiliation(s)
- Omar Azzaroni
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Gonzalo Fenoy
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0825, Japan
| |
Collapse
|
13
|
Pan W, You R, Zhang S, Chang Y, Zhou F, Li Q, Chen X, Duan X, Han Z. Tunable nanochannel resistive pulse sensing device using a novel multi-module self-assembly. Anal Chim Acta 2023; 1251:341035. [PMID: 36925301 DOI: 10.1016/j.aca.2023.341035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Nanochannel-based resistive pulse sensing (nano-RPS) system is widely used for the high-sensitive measurement and characterization of nanoscale biological particles and biomolecules due to its high surface to volume ratio. However, the geometric dimensions and surface properties of nanochannel are usually fixed, which limit the detections within particular ranges or types of nanoparticles. In order to improve the flexibility of nano-RPS system, it is of great significance to develop nanochannels with tunable dimensions and surface properties. In this work, we proposed a novel multi-module self-assembly (MS) strategy which allows to shrink the geometric dimensions and tune surface properties of the nanochannels simultaneously. The MS-tuned nano-RPS device exhibits an enhanced signal-to-noise ratio (SNR) for nanoparticle detections after shrunk the geometric dimensions by MS strategy. Meanwhile, by tuning the surface charge, an enhanced resolution for viral particles detection was achieved with the MS-tuned nano-RPS devices by analyzing the variation of pulse width due the tuned surface charge. The proposed MS strategy is versatile for various types of surface materials and can be potentially applied for nanoscale surface reconfiguration in various nanofluidic devices.
Collapse
Affiliation(s)
- Wenwei Pan
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Rui You
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Feng Zhou
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Rahman MM. Membranes for Osmotic Power Generation by Reverse Electrodialysis. MEMBRANES 2023; 13:164. [PMID: 36837667 PMCID: PMC9963266 DOI: 10.3390/membranes13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the utilization of the selective ion transport through porous membranes for osmotic power generation (blue energy) has received a lot of attention. The principal of power generation using the porous membranes is same as that of conventional reverse electrodialysis (RED), but nonporous ion exchange membranes are conventionally used for RED. The ion transport mechanisms through the porous and nonporous membranes are considerably different. Unlike the conventional nonporous membranes, the ion transport through the porous membranes is largely dictated by the principles of nanofluidics. This owes to the fact that the osmotic power generation via selective ion transport through porous membranes is often referred to as nanofluidic reverse electrodialysis (NRED) or nanopore-based power generation (NPG). While RED using nonporous membranes has already been implemented on a pilot-plant scale, the progress of NRED/NPG has so far been limited in the development of small-scale, novel, porous membrane materials. The aim of this review is to provide an overview of the membrane design concepts of nanofluidic porous membranes for NPG/NRED. A brief description of material design concepts of conventional nonporous membranes for RED is provided as well.
Collapse
Affiliation(s)
- Md Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
15
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels. Anal Chem 2023; 95:1522-1531. [PMID: 36537870 DOI: 10.1021/acs.analchem.2c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tools utilized by humans continue to shrink and speed up. Lab-on-a-chip (LOC) is one of the most recent techniques for decreasing the size of chemical systems. Today, LOCs have made substantial strides in developing nanomaterial fabrication techniques. Controlling and regulating the fluid and ion mobility in these systems is crucial. Layer-by-layer (LBL) soft layers are one of the most effective strategies for controlling fluid flow in channels. In light of the present constraints for developing these systems and the high expense of experimental investigations, it is vital to employ modeling to minimize costs and comprehend their underlying ideas and operations. In this study, we examined the influence of the LBL soft layer's presence in the charged nanochannels on the ion transport parameters. To examine the effect of the coating length of the LBL soft layer, we first examined three lengths of coating: one with a length greater than half (type (I)), one with a length equal to half (type (II)), and one with a length less than half (type (III)) of the nanochannel length. Then, by solving Poisson-Nernst-Planck and Navier-Stokes equations, we determined the influences of pH, soft layer charge density (NPEL/NA), bulk concentration (C0), and hard surface charge density (σ) on the ionic current rectification (Rf) and selectivity (S) of the nanochannel. The maximum rectification of 30.65 was achieved using a nanochannel of type (III) and σ = +10 mC/m2. The current results demonstrate a promising hybrid architecture consisting of an LBL soft layer and a smart charged nanochannel for enhanced rectification.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| |
Collapse
|
16
|
Pial TH, Das S. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel. J Phys Chem B 2022; 126:10543-10553. [PMID: 36454705 DOI: 10.1021/acs.jpcb.2c05524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Controlling ion distribution inside a charged nanochannel is central to using such channels in diverse applications. Here, we show the possibility of using a charged polyelectrolyte (PE) brush-grafted nanochannel for triggering diverse nanoscopic ion distribution and nanofluidic electroosmotic transport by controlling the valence and size of the counterions (that screen the charges of the PE brushes) and the strength of an externally applied axial electric field. We atomistically simulate separate cases of fully charged polyacrylic acid (PAA) brush functionalized nanochannels with Na+, Cs+, Ca2+, Ba2+, and Y3+ counterions screening the PE charges. Four key findings emerge from our simulations. First, we find that the counterions with a greater valence and a smaller size prefer to remain localized inside the brush layer. Second, for the case where there is an added chloride salt with the same cation (as the screening counterions), there are more coions (Cl- ions) in the brush-free bulk than counterions (for counterions Na+, Ca2+, Ba2+, Y3+): this is a manifestation of the overscreening (OS) of the PE brush layer. Contrastingly, the number of Cs+ ions remain higher than the Cl- ions inside the brush-free bulk, ensuring that there is no OS effect for this case. Third, large applied electric field enables a few Na+, Cs+, and Ba2+ counterions to leave the brush layer and to go to the bulk: this makes the OS of the PE brush layer disappear for the cases of PE brushes being screened by the Na+ and Ba2+ ions. On the other hand, no such electric-field-mediated disappearance of OS is observed for the cases of Ca2+ and Y3+ screening counterions; we attribute this to the firm attachment of these counterions to the negatively charged monomers. Free energy associated with a counterion binding to a PE chain corroborates this diversity in the counterion-specific response to the applied electric field. Finally, we demonstrate that such diverse ion distributions, along with specific electric-field-strength-dependent ion properties, lead to (1) electroosmotic (EOS) transport in nanochannels grafted with PAA brushes screened with Cs+ ions to be always counterion dominated, (2) EOS transport in nanochannels grafted with PAA brushes screened with Ca2+ and Y3+ ions to be always coion-dominated, and (3) EOS transport in nanochannels grafted with PAA brushes screened with Na+ and Ba2+ ions to be coion dominated for smaller electric fields and counterion dominated for larger electric fields.
Collapse
Affiliation(s)
- Turash Haque Pial
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
17
|
Pial TH, Das S. Machine learning enabled quantification of the hydrogen bonds inside the polyelectrolyte brush layer probed using all-atom molecular dynamics simulations. SOFT MATTER 2022; 18:8945-8951. [PMID: 36421980 DOI: 10.1039/d2sm00997h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The configuration of densely grafted charged polyelectrolyte (PE) brushes is strongly dictated by the properties and behavior of the counterions that screen the PE brush charges and the solvent molecules (typically water) that solvate the brush molecules and these screening counterions. Only recently, efforts have been made to study the PE brushes atomistically, thereby shedding light on the properties of brush-supported ions and water molecules. However, even for such efforts, there are limitations associated with using a generic definition to estimate certain properties of water and ions inside the brush layer. For example, water-water hydrogen bonds (HBs) will behave differently for locations outside and inside the brush layer, given the fact that the densely closely grafted PE brush molecules create a soft nanoconfinement where the water connectivity becomes highly disrupted: therefore, using the same definition to quantify the HBs inside and outside the brush layer will be unwise. In this paper, we address this limitation by employing an unsupervised machine learning (ML) approach to predict the water-water hydrogen bonding inside a cationic PE brush layer modeled using all-atom molecular dynamics (MD) simulations. The ML method, which relies on a clustering approach and uses the equilibrium coordinates of the water molecules (obtained from the all-atom MD simulations) as the input, is capable of identifying the structural modification of water-water HBs (revealed through appropriate clustering of the data) inside the PE brush layer induced soft nanoconfinement. Such capabilities would not have been possible by using a generic definition of the HBs. Our calculations lead to four key findings: (1) the clusters formed inside and outside the brush layer are structurally similar; (2) the margin of the cluster is shorter inside the PE brush layer confirming the possible disruption of the HBs inside the PE brush layer; (3) the average "hydrogen-acceptor-oxygen-donor-oxygen" angle that defines the HB is reduced for the HBs formed inside the brush layer; (4) the use of the generic definition (definition usable for characterizing the HBs in brush-free bulk) leads to an overprediction of the number of HBs formed inside the PE brush layer.
Collapse
Affiliation(s)
- Turash Haque Pial
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
18
|
Deepak Kumar, Bhanuman Barman. Impact of Ion Partitioning Effect on the Electroosmotic Flow of Non-Newtonian Fluid and Ion Selectivity through Soft Nanochannel. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22600191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Seifollahi Z, Ashrafizadeh SN. Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Xin W, Jiang L, Wen L. Engineering Bio‐inspired Self‐assembled Nanochannels for Smart Ion Transport. Angew Chem Int Ed Engl 2022; 61:e202207369. [DOI: 10.1002/anie.202207369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weiwen Xin
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- School of Future Technology University of Chinese Academy of Sciences 100049 Beijing P. R. China
| |
Collapse
|
21
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
22
|
Lu W, Cao Y, Qing G. Recent advance in solid state nanopores modification and characterization. Chem Asian J 2022; 17:e202200675. [PMID: 35974427 DOI: 10.1002/asia.202200675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Indexed: 11/08/2022]
Abstract
Nanopore, due to its advantages of modifiable, controllability and sensitivity, has made a splash in recent years in the fields of biomolecular sequencing, small molecule detection, salt differential power generation, and biomimetic ion channels, etc. In these applications, the role of chemical or biological modification is indispensable. Compared with small molecules, the modification of polymers is more difficult and the methods are more diverse. Choosing appropriate modification method directly determines the success or not of the research, therefore, it is necessary to summarize the polymer modification methods toward nanopores. In addition, it is also important to provide clear and convincing evidence that the nanopore modification is successful, the corresponding characterization methods are also indispensable. Therefore, this review will summarize the methods of polymer modification of nanopores and efficient characterization methods. And we hope that this review will provide some reference value for like-minded researchers.
Collapse
Affiliation(s)
- Wenqi Lu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 116023, Dalian, CHINA
| | - Yuchen Cao
- Chinese Academy of Sciences Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 116023, Dalian, CHINA
| | - Guangyan Qing
- Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 457 Zhongshan Road, 116023, Dalian, CHINA
| |
Collapse
|
23
|
Seifollahi Z, Ashrafizadeh SN. Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels. Colloids Surf B Biointerfaces 2022; 216:112545. [PMID: 35561637 DOI: 10.1016/j.colsurfb.2022.112545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Electrokinetic phenomena, especially electroosmosis in ion-selective environments, play a key role in many systems, from ion-selective nanopores to cellular processes. In this paper, the impact of ionic size on the electroosmotic flow through an ion-selective soft slit nanochannel is analytically studied. Meanwhile, the modified Poisson-Boltzmann and the modified Navier-Stokes equations were used for modeling the electrostatics and the electrohydrodynamics of the problem, respectively, and the derived equations were solved by linearizing method. The results reveal the importance of considering the effect of ionic size in the calculation, as the steric effects, especially at high charge densities of polyelectrolytes (PELs), dramatically alter both the ions arrangement and the electric potential; and amplify the electroosmotic flow. Considering Debye-Huckel parameters of 4 and 10 for the electrolyte layer and the PEL, respectively, we demonstrate that the dimensionless electroosmotic velocity in a soft nanochannel having a dimensionless soft layer thickness of 0.2, from 3.2 by ignoring the steric effect, can reach the value of 6 by considering the steric effect of ν=0.3.
Collapse
Affiliation(s)
- Zahra Seifollahi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
24
|
Xin W, Jiang L, Wen L. Engineering Bioinspired Self‐assembled Nanochannels for Smart Ion Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weiwen Xin
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science 29 Zhongguancun East Road, Haidian District, Beijing, China 100190 Beijing CHINA
| | - Lei Jiang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Liping Wen
- Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired materials and interfacial science 29 Zhongguancun East Road, Haidian District 100190 Beijing CHINA
| |
Collapse
|
25
|
Xiong C, Li J, Li L, Chen L, Zhang R, Mi X, Liu Y. Label-free electrical monitoring of nucleic acid amplification with integrated hydrogel ionic diodes. Mater Today Bio 2022; 15:100281. [PMID: 35607416 PMCID: PMC9123263 DOI: 10.1016/j.mtbio.2022.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
We demonstrate here for the first time the utility of a monolithically integrated hydrogel ionic diode for label-free quantitative DNA detection and real-time monitoring of nucleic acid amplification. The hydrogel ionic diode presented herein, unlike nanomaterial-based field-effect biosensors, features high cost-effectiveness and convenient fabrication. This is realized by patterning a micrometer-sized heterojunction consisting of adjacent segments of polycationic and polyanionic hydrogels on a microfluidic chip through simple photocuring steps. The integrated diode rectifies ionic currents being sensitive to the charge of DNA adsorbed onto the polycationic chains through electrostatic associations. Based on the mechanism, we show that the ionic biosensor can electrically quantify DNA in a dynamic range relevant to typical nucleic acid amplification assays. Utilizing the device, we demonstrate the evaluation of a PCR assay amplifying a 500-bp DNA fragment of E. coli, an infection-causing pathogen, and real-time in situ monitoring of an isothermal assay amplifying E. coli whole genome. We anticipate that the device could potentially pave the way for miniaturized optics-free platforms for quantifying nucleic acid amplification at point-of-care.
Collapse
Affiliation(s)
- Chenwei Xiong
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jie Li
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Luyao Li
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Long Chen
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhang
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xianqiang Mi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Corresponding author. Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yifan Liu
- Division of Chemistry and Physical Biology, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Corresponding author.
| |
Collapse
|
26
|
Abrao-Nemeir I, Zaki O, Meyer N, Lepoitevin M, Torrent J, Janot JM, Balme S. Combining ionic diode, resistive pulse and membrane for detection and separation of anti-CD44 antibody. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
An P, Yang J, Sun CL, Qin C, Li J. A Bio-inspired Smart Nanochannel based on Gelatin Modification. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Kan X, Wu C, Wen L, Jiang L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. SMALL METHODS 2022; 6:e2101255. [PMID: 35218163 DOI: 10.1002/smtd.202101255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biological nanochannels which can regulate ionic transport across cell membranes intelligently play a significant role in physiological functions. Inspired by these nanochannels, numerous artificial nanochannels have been developed during recent years. The exploration of smart solid-state nanochannels can lay a solid foundation, not only for fundamental studies of biological systems but also practical applications in various fields. The basic fabrication principles, functional materials, and diverse applications based on artificial nanochannels are summarized in this review. In addition, theoretical insights into transport mechanisms and structure-function relationships are discussed. Meanwhile, it is believed that improvements will be made via computer-guided strategy in designing more efficient devices with upgrading accuracy. Finally, some remaining challenges and perspectives for developments in both novel conceptions and technology of this inspiring research field are stated.
Collapse
Affiliation(s)
- Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
29
|
Liu Q, Ding S, Shi G, Zhu A. Rational design of a self-assembled surfactant film in nanopipettes: combined fluorescence and electrochemical sensing. Chem Commun (Camb) 2022; 58:2140-2143. [PMID: 35040861 DOI: 10.1039/d1cc06667f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a generalizable method based on the formation of a self-assembled surfactant film was reported to build a nanopipette system. Using this nanopipette, it was found that arginine metabolism shows an age-related difference in Alzheimer's disease.
Collapse
Affiliation(s)
- Qi Liu
- School of Chemistry and Molecular Engineering, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, People's Republic of China.
| | - Shushu Ding
- School of Chemistry and Molecular Engineering, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, People's Republic of China.
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, People's Republic of China.
| | - Anwei Zhu
- School of Chemistry and Molecular Engineering, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, People's Republic of China.
| |
Collapse
|
30
|
Si Z, Xu H, Lin M, Jiang Y, Du Q, Ma H, Liang H, Gao P, Xia F. Polydopamine-Induced Modification on the Highly Charged Surface of Asymmetric Nanofluidics: A Strategy for Adjustable Ion Current Rectification Properties. Anal Chem 2022; 94:2493-2501. [PMID: 35086333 DOI: 10.1021/acs.analchem.1c04323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface charge effects in nanoconfines is one of the fundamentals in the ion current rectification (ICR) of nanofluidics, which provides entropic driving force by asymmetric surface charges and causes ion enrichment/depletion by the electrostatic interaction of fixed surface charges. However, the surface charge effect causes a significant electrostatic repulsion in nanoconfines, restricting additional like charge or elaborate chemistry on the highly charged confined surface, which limits ICR manipulation. Here, we use polydopamine (PDA), a nearly universal adhesive, that adheres to the highly positive-charged poly(ethyleneimine) (PEI) gel network in a nanochannel array. PDA enhances the ICR effect from a low rectification ratio of 9.5 to 92.6 by increasing the surface charge and hydrophobicity of the PEI gel network and, meanwhile, shrinking its gap spacing. Theoretical and experimental results demonstrate the determinants of the fixed surface charge in the enrichment/depletion region on ICR properties, which is adjustable by PDA-induced change in a nanoconfined environment. Chemically active PDA brings Au nanoparticles by chloroauric reduction for further hydrophobization and the modification of negative-charged DNA complexes in nanochannels, whereby ICR effects can be manipulated in versatile means. The results describe an adjustable and versatile strategy for adjusting the ICR behaviors of nanofluidics by manipulating local surface charge effects using PDA.
Collapse
Affiliation(s)
- Zhixiao Si
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hongquan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - You Jiang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Haotian Ma
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Pengcheng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
31
|
Chung CY, Hsu JP. Nanosensing of Acetylcholine Molecules: Influence of the Association Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:289-298. [PMID: 34962808 DOI: 10.1021/acs.langmuir.1c02493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A bullet-shaped nanopore surface modified by two polyelectrolyte (PE) layers, an inner polyethyleneimine (PEI) layer and an outer p-sulfonatocalix[4]-arene (SCX4) layer, is applied to sense trace levels of acetylcholine (Ach) molecules. We show that the higher the order of the association reaction of Ach with SCX4, the smaller the difference between the ionic current when Ach is present and that when it is absent, and so is the difference in the space charge density. In addition, the larger the binding constant K of that reaction, the lower the detection limit but narrower the detection range. Choosing pH 7 is most appropriate because if the pH is low, the concentration polarization of H+ is significant, and as it gets high, both PE layers become uncharged. At pH 7 and K = 2 × 107 L/mol, the detection limit of the nanopore ranges from 1 to 10 nM, which is orders of magnitude lower than that of the other approaches.
Collapse
Affiliation(s)
- Chia-Yang Chung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
32
|
Wang J, Zhou Y, Jiang L. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS NANO 2021; 15:18974-19013. [PMID: 34846138 DOI: 10.1021/acsnano.1c08582] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
33
|
Liu TJ, Ma T, Lin CY, Balme S, Hsu JP. Origin of Ultrahigh Rectification in Polyelectrolyte Bilayers Modified Conical Nanopores. J Phys Chem Lett 2021; 12:11858-11864. [PMID: 34874161 DOI: 10.1021/acs.jpclett.1c03513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The switching of "ON" and "OFF" states of an ionic diode is investigated by considering a conical nanopore partially functionalized two polyelectrolyte (PE) layers via layer-by-layer deposition. Through observing the inversion of its rectification behavior, we demonstrate the function of the PE bilayers in ionic transport regulation. The ionic diode exhibits an ultrahigh ion rectification at a low level of pH. In an aqueous NaCl solution at pH 2, for example, the ratio of the current at "ON" state and that at "OFF" state can be about 800 and 200 for 1 and 100 mM, respectively. This remarkable gating behavior can be explained by the anion-pump-induced ion accumulation in the neutral region as well as the depletion zone at the interface. Our results further demonstrate the possibility of achieving an ultrahigh rectification in an ionic diode having a unipolar-like configuration.
Collapse
Affiliation(s)
- Tien-Juin Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tianji Ma
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier, France
| | - Chih-Yuan Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier, France
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
34
|
Meyer N, Abrao-Nemeir I, Janot JM, Torrent J, Lepoitevin M, Balme S. Solid-state and polymer nanopores for protein sensing: A review. Adv Colloid Interface Sci 2021; 298:102561. [PMID: 34768135 DOI: 10.1016/j.cis.2021.102561] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Abstract
In two decades, the solid state and polymer nanopores became attractive method for the protein sensing with high specificity and sensitivity. They also allow the characterization of conformational changes, unfolding, assembly and aggregation as well the following of enzymatic reaction. This review aims to provide an overview of the protein sensing regarding the technique of detection: the resistive pulse and ionic diodes. For each strategy, we report the most significant achievement regarding the detection of peptides and protein as well as the conformational change, protein-protein assembly and aggregation process. We discuss the limitations and the recent strategies to improve the nanopore resolution and accuracy. A focus is done about concomitant problematic such as protein adsorption and nanopore lifetime.
Collapse
|
35
|
Akhtarian S, Miri S, Doostmohammadi A, Brar SK, Rezai P. Nanopore sensors for viral particle quantification: current progress and future prospects. Bioengineered 2021; 12:9189-9215. [PMID: 34709987 PMCID: PMC8810133 DOI: 10.1080/21655979.2021.1995991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Rapid, inexpensive, and laboratory-free diagnostic of viral pathogens is highly critical in controlling viral pandemics. In recent years, nanopore-based sensors have been employed to detect, identify, and classify virus particles. By tracing ionic current containing target molecules across nano-scale pores, nanopore sensors can recognize the target molecules at the single-molecule level. In the case of viruses, they enable discrimination of individual viruses and obtaining important information on the physical and chemical properties of viral particles. Despite classical benchtop virus detection methods, such as amplification techniques (e.g., PCR) or immunological assays (e.g., ELISA), that are mainly laboratory-based, expensive and time-consuming, nanopore-based sensing methods can enable low-cost and real-time point-of-care (PoC) and point-of-need (PoN) monitoring of target viruses. This review discusses the limitations of classical virus detection methods in PoN virus monitoring and then provides a comprehensive overview of nanopore sensing technology and its emerging applications in quantifying virus particles and classifying virus sub-types. Afterward, it discusses the recent progress in the field of nanopore sensing, including integrating nanopore sensors with microfabrication technology, microfluidics and artificial intelligence, which have been demonstrated to be promising in developing the next generation of low-cost and portable biosensors for the sensitive recognition of viruses and emerging pathogens.
Collapse
Affiliation(s)
- Shiva Akhtarian
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Saba Miri
- Department of Civil Engineering, York University, Toronto, ON, Canada
| | - Ali Doostmohammadi
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
36
|
Sachar HS, Pial TH, Sivasankar VS, Das S. Simultaneous Energy Generation and Flow Enhancement ( Electroslippage Effect) in Polyelectrolyte Brush Functionalized Nanochannels. ACS NANO 2021; 15:17337-17347. [PMID: 34605243 DOI: 10.1021/acsnano.1c05056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Energy generation through nanofluidics is a topic of great nanotechnological relevance. Here, we conduct all-atom molecular dynamics (MD) simulations of the transport of water and ions in a pressure-driven flow in nanochannels grafted with charged polyelectrolyte (PE) brushes and discover the possibility of simultaneous electrokinetic energy generation and flow enhancement (henceforth denoted as the electroslippage effect). Such PE-brush-functionalized nanochannels have been recently shown to demonstrate an overscreening (OS) effect (characterized by the presence of a greater number of screening counterions within the PE brush layer than needed to screen the PE brush charges), a consequent presence of excess co-ions within the PE brush-free bulk, and a co-ion-driven electroosmotic (EOS) transport in the presence of small to moderate applied axial electric fields. In this study, however, we find that the streaming current, which represents the current generated by the flow-driven downstream advection of the charge imbalance present within the electric double layer (EDL) that screens the PE brush charges, is governed by the migration of the counterions. This stems from the fact that the highest contribution to the overall streaming current arises from the region near the PE brush-water interface (where there is an excess of counterions), while the brush-free bulk yields a hitherto unreported, but small, co-ion-dictated streaming current. This downstream advection of the charge imbalance (and the resultant counterion-driven streaming current) eventually leads to the development of an electric field (streaming electric field) in the direction that is opposite the direction of the counterion-driven streaming current. The streaming current and the streaming electric field interact to generate the electrokinetic energy. Equally important, this streaming electric field induces an EOS transport, which becomes co-ion-driven, due to the presence of excess co-ions in the brush-free bulk. For the case of nanochannels grafted with negatively charged PE brushes, the streaming electric field will be in a direction that is opposite that of the pressure-driven transport, and hence the co-ion (or anion) driven EOS flow will be in the same direction as the pressure-driven transport. On the other hand, for the case of nanochannels grafted with positively charged PE brushes, the streaming electric field will be in the same direction as the pressure-driven flow, and hence the co-ion (or cation) driven EOS flow, will again be in the same direction as the pressure-driven flow. Therefore, whenever there occurs a presence of the OS and the resulting co-ion-driven EOS transport in PE brush grafted nanochannels, regardless of the sign of the charges of the PE brushes, this EOS transport will always aid the pressure-driven transport and will cause the most fascinating increase in the net volume flow rate across the nanochannel cross section, which is the electroslippage effect.
Collapse
Affiliation(s)
| | | | | | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
37
|
|
38
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
39
|
Galvan Y, Bauernfeind J, Wolf P, Zarraga R, Haumann M, Vogel N. Materials with Hierarchical Porosity Enhance the Stability of Infused Ionic Liquid Films. ACS OMEGA 2021; 6:20956-20965. [PMID: 34423203 PMCID: PMC8374917 DOI: 10.1021/acsomega.1c02405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Defined surface functionalities can control the properties of a material. The layer-by-layer method is an experimentally simple yet very versatile method to coat a surface with nanoscale precision. The method is widely used to either control the chemical properties of the surface via the introduction of functional moieties bound to the polymer or create nanoscale surface topographies if one polymeric species is replaced by a colloidal dispersion. Such roughness can enhance the stability of a liquid film on top of the surface by capillary adhesion. Here, we investigate whether a similar effect allows an increased retention of liquid films within a porous surface and thus potentially increases the stability of ionic liquid films infused within a porous matrix in the supported ionic liquid-phase catalysis. The complex geometry of the porous material, long diffusion pathways, and small sizes of necks connecting individual pores all contribute to difficulties to reliably coat the required porous materials. We optimize the coating process to ensure uniform surface functionalization via two steps. Diffusion limitations are overcome by force-wetting the pores, which transports the functional species convectively into the materials. Electrostatic repulsion, which can limit pore accessibility, is mitigated by the addition of electrolytes to screen charges. We introduce nanoscale topography in microscale porous SiC monoliths to enhance the retention of an ionic liquid film. We use γ-Al2O3 to coat monoliths and test the retention of 1-butyl-2,3-dimethylimidazolium chloride under exposure to a continuous gas stream, a setup commonly used in the water-gas shift reaction. Our study showcases that a hierarchical topography can improve the stability of impregnated ionic liquid films, with a potential advantage of improved supported ionic liquid-phase catalysis.
Collapse
Affiliation(s)
- Yaraset Galvan
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Departamento
de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, 36050 Guanajuato, Mexico
| | - Johannes Bauernfeind
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Patrick Wolf
- Lehrstuhl
für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Ramon Zarraga
- Departamento
de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, 36050 Guanajuato, Mexico
| | - Marco Haumann
- Lehrstuhl
für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| |
Collapse
|
40
|
Moreira J, Vale AC, Alves NM. Spin-coated freestanding films for biomedical applications. J Mater Chem B 2021; 9:3778-3799. [PMID: 33876170 DOI: 10.1039/d1tb00233c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spin-coating is a widely employed technique for the fabrication of thin-film coatings over large areas with smooth and homogeneous surfaces. In recent years, research has extended the scope of spin-coating by developing methods involving the interface of the substrate and the deposited solution to obtain self-supported films, also called freestanding films. Thereby, such structures have been developed for a wide range of areas. Biomedical applications of spin-coated freestanding films include wound dressings, drug delivery, and biosensing. This review will discuss the fundamental physical and chemical processes governing the conventional spin-coating as well as the techniques to obtain freestanding films. Furthermore, developments within this field with a primary focus on tissue engineering applications will be reviewed.
Collapse
Affiliation(s)
- Joana Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A Catarina Vale
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
41
|
Ulrich N, Spende A, Burr L, Sobel N, Schubert I, Hess C, Trautmann C, Toimil-Molares ME. Conical Nanotubes Synthesized by Atomic Layer Deposition of Al 2O 3, TiO 2, and SiO 2 in Etched Ion-Track Nanochannels. NANOMATERIALS 2021; 11:nano11081874. [PMID: 34443705 PMCID: PMC8399865 DOI: 10.3390/nano11081874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Etched ion-track polycarbonate membranes with conical nanochannels of aspect ratios of ~3000 are coated with Al2O3, TiO2, and SiO2 thin films of thicknesses between 10 and 20 nm by atomic layer deposition (ALD). By combining ion-track technology and ALD, the fabrication of two kinds of functional structures with customized surfaces is presented: (i) arrays of free-standing conical nanotubes with controlled geometry and wall thickness, interesting for, e.g., drug delivery and surface wettability regulation, and (ii) single nanochannel membranes with inorganic surfaces and adjustable isoelectric points for nanofluidic applications.
Collapse
Affiliation(s)
- Nils Ulrich
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.S.); (L.B.); (I.S.); (C.T.)
- Material-und Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Correspondence: (N.U.); (M.E.T.-M.); Tel.: +49-6159-71-1807 (M.E.T.-M.)
| | - Anne Spende
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.S.); (L.B.); (I.S.); (C.T.)
- Material-und Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Loïc Burr
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.S.); (L.B.); (I.S.); (C.T.)
- Material-und Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nicolas Sobel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (N.S.); (C.H.)
| | - Ina Schubert
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.S.); (L.B.); (I.S.); (C.T.)
| | - Christian Hess
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (N.S.); (C.H.)
| | - Christina Trautmann
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.S.); (L.B.); (I.S.); (C.T.)
- Material-und Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Maria Eugenia Toimil-Molares
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.S.); (L.B.); (I.S.); (C.T.)
- Correspondence: (N.U.); (M.E.T.-M.); Tel.: +49-6159-71-1807 (M.E.T.-M.)
| |
Collapse
|
42
|
Cayón VM, Laucirica G, Toum Terrones Y, Cortez ML, Pérez-Mitta G, Shen J, Hess C, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Borate-driven ionic rectifiers based on sugar-bearing single nanochannels. NANOSCALE 2021; 13:11232-11241. [PMID: 34152340 DOI: 10.1039/d0nr07733j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recently, much scientific effort has been centered on the control of the ionic transport properties of solid state nanochannels and the rational design and integration of chemical systems to induce changes in the ionic transport by means of interactions with selected target molecules. Here, we report the fabrication of a novel nanofluidic device based on solid-state nanochannels, which combines silane chemistry with both track-etched and atomic layer deposition (ALD) technologies. Nanodevice construction involves the coating of bullet-shaped single-pore nanochannels with silica (SiO2) by ALD and subsequent surface modification by reaction between silanol groups exposed on pore walls and N-(3-triethoxysilylpropyl)-gluconamide, in order to create a gluconamide-decorated nanochannel surface. The formation of a boroester derivative resulting from the selective reaction of borate with the appended saccharides leads to important changes in the surface charge density and, concomitantly, in the iontronic properties of the nanochannel. Furthermore, we propose a binding model to rationalize the specific interaction saccharide-borate in the surface. Besides, this unique nanodevice exhibits a highly selective and reversible response towards borate/fructose exposure. On the basis of the surface charge variation resulting from borate binding, the nanochannel can reversibly switch between "ON" and "OFF" states in the presence of borate and fructose, respectively. In addition, this work describes the first report of the functionalization of PET/SiO2 nanochannels by the ALD technique. We believe that this work provides a promising framework for the development of new nanochannel-based platforms suitable for multiple applications, such as water quality monitoring or directed molecular transport and separation.
Collapse
Affiliation(s)
- Vanina M Cayón
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sachar HS, Chava BS, Pial TH, Das S. All-Atom Molecular Dynamics Simulations of the Temperature Response of Densely Grafted Polyelectrolyte Brushes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bhargav Sai Chava
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Turash Haque Pial
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
44
|
Cheng M, Zhu F, Zhang S, Zhang X, Dhinakaran MK, Li H. A Funnel-Shaped Chloride Nanochannel Inspired By ClC Protein. NANO LETTERS 2021; 21:4086-4091. [PMID: 33885312 DOI: 10.1021/acs.nanolett.1c01055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chloride transport participates in a great variety of physiological activities, such as regulating electrical excitability and maintaining acid-base equilibrium. However, the high flux is the prerequisite to ensure the realization of the above functions. Actually, the high flux of ion transport is significant, not only for living things but also for practical applications. Herein, inspired by chloride channel (ClC) protein, a novel NH2-pillar[5]arene functionalized funnel-shaped nanochannel was designed and constructed. The introduction of functional molecules changed surface charge property and endowed the nanochannel with Cl- selectivity, which facilitated Cl- transport. Moreover, by adjusting the asymmetric degree of the nanochannel, the Cl- transport flux can be improved greatly. The successful construction of an artificial ion channel with high flux will be much useful for practical applications like microfluidic devices, sensors, and ion separation.
Collapse
Affiliation(s)
- Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xingrou Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
45
|
Zhang S, Xia F, Demoustier-Champagne S, Jonas AM. Layer-by-layer assembly in nanochannels: assembly mechanism and applications. NANOSCALE 2021; 13:7471-7497. [PMID: 33870383 DOI: 10.1039/d1nr01113h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layer-by-layer (LbL) assembly is a versatile technology to construct multifunctional nanomaterials using various supporting substrates, enabled by the large selection freedom of building materials and diversity of possible driving forces. The fine regulation over the film thickness and structure provides an elegant way to tune the physical/chemical properties by mild assembly conditions (e.g. pH, ion strength). In this review, we focus on LbL in nanochannels, which exhibit a different growth mechanism compared to "open", convex substrates. The assembly mechanism in nanochannels is discussed in detail, followed by the summary of applications of LbL assemblies liberated from nanochannel templates which can be used as nanoreactors, drug carriers and transporting channels across cell membranes. For fluidic applications, robust membrane substrates are required to keep in place nanotube arrays for membrane-based separation, purification, biosensing and energy harvesting, which are also discussed. The good compatibility of LbL with crossover technologies from other fields allows researchers to further extend this technology to a broader range of research fields, which is expected to result in an increased number of applications of LbL technology in the future.
Collapse
Affiliation(s)
- Shouwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, China
| | - Sophie Demoustier-Champagne
- Institute of Condensed Matter and Nanosciences - Bio and Soft Matter (IMCN/BSMA), Université catholique de Louvain, Croix du Sud 1/L7.04.02, B1348 Louvain-la-Neuve, Belgium.
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences - Bio and Soft Matter (IMCN/BSMA), Université catholique de Louvain, Croix du Sud 1/L7.04.02, B1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
46
|
Pial TH, Sachar HS, Das S. Quantification of Mono- and Multivalent Counterion-Mediated Bridging in Polyelectrolyte Brushes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Turash Haque Pial
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
47
|
Pial TH, Sachar HS, Desai PR, Das S. Overscreening, Co-Ion-Dominated Electroosmosis, and Electric Field Strength Mediated Flow Reversal in Polyelectrolyte Brush Functionalized Nanochannels. ACS NANO 2021; 15:6507-6516. [PMID: 33797221 DOI: 10.1021/acsnano.0c09248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the direction and strength of nanofluidic electrohydrodyanmic transport in the presence of an externally applied electric field is extremely important in a number of nanotechnological applications. Here, we employ all-atom molecular dynamics simulations to discover the possibility of changing the direction of electroosmotic (EOS) liquid flows by merely changing the electric field strength in a nanochannel functionalized with polyelectrolyte (PE) brushes. In exploring this, we have uncovered three facets of nanoconfined PE brush behavior and resulting EOS transport. First, we identify the onset of an overscreening effect: such overscreening refers to the presence of more counterions (Na+) within the brush layer than needed to neutralize the negative brush charges. Accordingly, as a consequence of the overscreening, in the bulk liquid outside the brush layer, there is a greater number of co-ions (Cl-) than counterions in the presence of an added salt (NaCl). Second, this specific ion distribution ensures that the overall EOS flow is along the direction of motion of the co-ions. Such co-ion-dictated EOS transport directly contradicts the notion that EOS flow is always dictated by the motion of the counterions. Finally, for large-enough electric fields, the brush height reduces significantly, causing some of the excess overscreening-inducing counterions to squeeze out of the PE brush layer into the brush-free bulk. As a result, the overscreening effect disappears and the number of co-ions and counterions outside the PE brush layer become similar. Despite that there is an EOS transport, this EOS transport, unlike the standard EOS transport that occurs due to the imbalance of the co-ions and counterions, occurs since a larger residence time of the water molecules in the first solvation shell of the counterions (Na+) ensures a water transport in the direction of motion of the counterions. The net effect is the reversal of the direction of the EOS transport by merely changing the strength of the electric field.
Collapse
Affiliation(s)
- Turash Haque Pial
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Parth Rakesh Desai
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
48
|
Russell WS, Siwy Z. Enhanced electro-osmosis in propylene carbonate salt solutions. J Chem Phys 2021; 154:134707. [PMID: 33832242 DOI: 10.1063/5.0044402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Properties of solid-liquid interfaces and surface charge characteristics mediate ionic and molecular transport through porous systems, affecting many processes such as separations. Herein, we report experiments designed to probe the electrochemical properties of solid-liquid interfaces using a model system of a single polyethylene terephthalate (PET) pore in contact with aqueous and propylene carbonate solutions of LiClO4. First, the existence and polarity of surface charges were inferred from current-voltage curves recorded when a pore was placed in contact with a LiClO4 concentration gradient. Second, the electro-osmotic transport of uncharged polystyrene particles through the PET pore provided information on the polarity and the magnitude of the pore walls' zeta potential. Our experiments show that the PET pores become effectively positively charged when in contact with LiClO4 solutions in propylene carbonate, even though in aqueous LiClO4, the same pores are negatively charged. Additionally, the electro-osmotic velocity of the particles revealed a significantly higher magnitude of the positive zeta potential of the pores in propylene carbonate compared to the magnitude of the negative zeta potential in water. The presented methods of probing the properties of solid-liquid interfaces are expected to be applicable to a wide variety of solid and liquid systems.
Collapse
Affiliation(s)
| | - Zuzanna Siwy
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
49
|
Sato K, Sato F, Kumano M, Kamijo T, Sato T, Zhou Y, Korchev Y, Fukuma T, Fujimura T, Takahashi Y. Electrochemical Quantitative Evaluation of the Surface Charge of a Poly(1‐Vinylimidazole) Multilayer Film and Application to Nanopore pH Sensor. ELECTROANAL 2021. [DOI: 10.1002/elan.202100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Katsuhiko Sato
- Faculty of Pharmaceutical Science Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima, Aoba Sendai Miyagi 981-8558 Japan
- Department of Creative Engineering National Institute of Technology Tsuruoka College 104 Sawada, Inooka Tsuruoka Yamagata 997-8511 Japan
| | - Fumiya Sato
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masayuki Kumano
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Toshio Kamijo
- Department of Creative Engineering National Institute of Technology Tsuruoka College 104 Sawada, Inooka Tsuruoka Yamagata 997-8511 Japan
| | - Takaya Sato
- Department of Creative Engineering National Institute of Technology Tsuruoka College 104 Sawada, Inooka Tsuruoka Yamagata 997-8511 Japan
| | - Yuanshu Zhou
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Yuri Korchev
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
- Imperial College London Department of Medicine W12 0NN London United Kingdom
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsutomu Fujimura
- Faculty of Pharmaceutical Science Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima, Aoba Sendai Miyagi 981-8558 Japan
| | - Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) Saitama 332-0012 Japan
| |
Collapse
|
50
|
Wang J, Liu L, Yan G, Li Y, Gao Y, Tian Y, Jiang L. Ionic Transport and Robust Switching Properties of the Confined Self-Assembled Block Copolymer/Homopolymer in Asymmetric Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14507-14517. [PMID: 33733727 DOI: 10.1021/acsami.1c01682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The self-assembly of block copolymers in a confined space has been proven to be a facile and robust strategy for fabricating assembled structures with various potential applications. Herein, we employed a new pH-responsive polymer self-assembly method to regulate ion transport inside artificial nanochannels. The track-etched asymmetric nanochannels were functionalized with PS22k-b-P4VP17k/hPS4k blend polymers, and the ionic conductance and rectification properties of the proposed system were investigated. The pH-actuated changes in the surface charge and wettability resulted in the selective pH-gated ionic transport behavior. The designed system showed a good switching property to the pH stimulus and could recover during the repetitive experiments. The gating ability of the polymer-nanochannel system increased with increasing the weight of the homopolymer, and the proposed platform demonstrated robust stability and reusability. Numerical and the dissipative particle dynamics simulations were implemented to emulate the pH-dependent self-assembling behavior of diblock copolymers in a confined space, which were consistent with the experimental observations. As an example of the self-assembly of polymers in nanoconfinements, this work provides a facile and robust strategy for the regulation of ion transport in synthetic nanochannels. Meanwhile, this work can be further extended to design artificial smart nanogates for various applications such as mass delivery and energy harvesting.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Lang Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Guilong Yan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yanchun Li
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Yang Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, People's Republic of China
| | - Ye Tian
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, People's Republic of China
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|