1
|
Saritha C, Rajana VK, Choudhary K, Vairagar A, Mishra A, Penumaka SM, Jain S, Dande A, Naresh P, Kumar N, Ramalingam P, Mandal D. Highly selective ergosterol binding and impaired redox balance leads to improved antileishmanial efficacy for amphotericin b synthesized silver nanoparticleswith reduced toxicity- In vitro and in vivo studies. Free Radic Biol Med 2025:S0891-5849(25)00183-2. [PMID: 40185166 DOI: 10.1016/j.freeradbiomed.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
We aim to develop a low-cost silver nanoparticle (AgNP)-based delivery of AmB (AmB-AgNP) which can replace the costly AmBisome and toxic Fungizone formulation for applications against visceral leishmaniasis (VL) caused by the parasite Leishmania donovani (LD). Using different molar ratios of AmB and silver nitrate, we have identified a specific NP of ∼110 nm (zeta potential of -36.7 mV and PDI of 0.15) as the ideal antileishmanial agent with increased efficacy than AmB against LD promastigotes and amastigotes. These NPs were characterized by UV-visible, DLS, Zeta potential, FT-IR, DSC, and FE-SEM studies.The uptake of metallic silver by ICP-MS studies indicate that AmB-AgNP is internalized >3.4 and >2.8 fold more than citrate-reduced AgNPs inside the LD and murine macrophage cells, respectively. AmB-AgNPs are less cytotoxic than AmB and show more necrotic mode of death than AmB. Here, production of high amount of recative oxygen speccies, lipid peroxides, protein carbonylations and decreased expression of antioxidant enzymes are also observed. AmB-AgNP LD causes a dose-dependent ergosterol (ERG) depletion which can be reversed by ERG supplementation. Further, ITC studies established selective and enhanced binding efficacy of AmB-AgNPagainst ERG and not choesterol. The selective and enhanced inhibition of the ERG and trypanothione biosynthesis pathway by AmB-AgNP, compared to AmB, was proven by proteomics studies. The rate-limiting enzyme of ERG biosynthesis, HMG-CoA-reductase, was downregulated >9-fold in the presence of AmB-AgNP treatment. The acute toxicity studies on mice showed that AmB-AgNP has a selectivity index of > 6-fold compared to AmB. However, AgNP is <30% less effective than AmB in antileishmanial efficacy with equivalent doses in vivo. The higher selectivity index of AmB-AgNP provides a better therapeutic window than Fungizone, whereas the lost-cost synthesis, compared to AmBisome, makes the AmB-AgNP a viable cheaper delivery option against VL for future investigations.
Collapse
Affiliation(s)
- Cevella Saritha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Vinod K Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Khushboo Choudhary
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Amarnath Vairagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Ayushmitha Mishra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Sudha Madhavi Penumaka
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Suparas Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Aishwarya Dande
- Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Pothuraju Naresh
- Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Nitesh Kumar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - P Ramalingam
- Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur 844102, India.
| |
Collapse
|
2
|
Umegawa Y, Tsuchikawa H, Shinoda W, Murata M. NMR and molecular simulation studies on the structure elucidation of the amphotericin B ion channel using 13C and 19F labelling. Org Biomol Chem 2025; 23:1233-1252. [PMID: 39556106 DOI: 10.1039/d4ob01468e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Amphotericin B (AmB) has been clinically used for serious fungal infections for over 60 years. The drug is characterized by its specific recognition of ergosterol (Erg) in the fungal cell membrane. AmB and Erg form an ion-channel assembly, which is thought to play a major role in the antibiotic activity of AmB. The precise structure of the ion channel in fungal membranes still remains unelucidated. Recently, the structure of an AmB assembly formed in artificial lipid bilayers was determined using solid-state NMR and molecular dynamics simulations. The structure elucidation was made possible by using 13C- and 19F-labelled AmBs, which were efficiently synthesized using strategies and methods established in previous studies. This review focuses on the structure of the AmB ion channel, which accounts for the antibiotic activity. Additionally, the chemical syntheses of isotope-labelled AmB and Erg used for the structural studies are also reviewed. Solid-state NMR spectra of the labelled AmBs were recorded to measure the distances between labelled sites in the AmB-Erg assembly in lipid bilayers, revealing that the ion channel consisting of seven molecules of AmB spans the bilayer with a single molecule length. Extensive molecular dynamics simulations showed that the conductance of this AmB channel is comparable with those by single-channel recording. The simulations also demonstrated that Erg stabilizes the ion-channel assemblies more efficiently than human cholesterol. The atomic-level structure of the AmB channel in the artificial bilayer will help us to understand the mechanisms of the pharmacological actions and adverse effects of AmB.
Collapse
Affiliation(s)
- Yuichi Umegawa
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Hiroshi Tsuchikawa
- Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Wataru Shinoda
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Japan.
| | - Michio Murata
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan.
- Forefront Research Center, Osaka University, Japan
| |
Collapse
|
3
|
Tyśkiewicz K, Rüttler F, Tyśkiewicz R, Nowak A, Gruba M, Wziątek A, Dębczak A, Sandomierski M, Vetter W. Antifungal Properties of Bioactive Compounds Isolated from Fucus vesiculosus Supercritical Carbon Dioxide Extract. Molecules 2024; 29:5957. [PMID: 39770045 PMCID: PMC11677683 DOI: 10.3390/molecules29245957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The exploration of natural antifungal substances from algal origins is significant due to the increasing resistance of pathogens to conventional antifungal agents and the growing consumer demand for natural products. This manuscript represents the inaugural investigation into the antifungal attributes of bioactive compounds extracted from Fucus vesiculosus via supercritical carbon dioxide (scCO2) extraction utilizing contemporary countercurrent chromatography (CCC). In aligning with the prospective utilization of this extract within the agricultural sector, this study also serves as the preliminary report demonstrating the capability of Fucus vesiculosus scCO2 extract to enhance the activity of plant resistance enzymes. The fractions obtained through CCC were subjected to evaluation for their efficacy in inhibiting the macrospores of Fusarium culmorum. The CCC methodology facilitated the successful separation of fatty acids (reaching up to 82.0 wt.% in a given fraction) and fucosterol (attaining up to 79.4 wt.% in another fraction). All CCC fractions at the concentration of 1.0% were found to inhibit 100% of Fusarium culmorum growth. Moreover, Fucus vesiculosus scCO2 extract was able to activate plant resistance enzymes (Catalase, Ascorbic Peroxidase, Guaiacol Peroxidase, Phenylalanine Ammonia-Lyase, and Phenylalanine Ammonia-Lyase Activity).
Collapse
Affiliation(s)
- Katarzyna Tyśkiewicz
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraβe 28, D-70599 Stuttgart, Germany; (K.T.); (F.R.)
| | - Felix Rüttler
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraβe 28, D-70599 Stuttgart, Germany; (K.T.); (F.R.)
| | - Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland;
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Marcin Gruba
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.G.); (A.W.); (A.D.); (M.S.)
| | - Anita Wziątek
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.G.); (A.W.); (A.D.); (M.S.)
| | - Agnieszka Dębczak
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.G.); (A.W.); (A.D.); (M.S.)
| | - Michał Sandomierski
- Supercritical Extraction Research Group, Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland; (M.G.); (A.W.); (A.D.); (M.S.)
| | - Walter Vetter
- Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraβe 28, D-70599 Stuttgart, Germany; (K.T.); (F.R.)
| |
Collapse
|
4
|
Efimova SS, Ostroumova OS. Antibiotic Loaded Phytosomes as a Way to Develop Innovative Lipid Formulations of Polyene Macrolides. Pharmaceutics 2024; 16:665. [PMID: 38794328 PMCID: PMC11124810 DOI: 10.3390/pharmaceutics16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The threat of antibiotic resistance of fungal pathogens and the high toxicity of the most effective drugs, polyene macrolides, force us to look for new ways to develop innovative antifungal formulations. OBJECTIVE The aim of this study was to determine how the sterol, phospholipid, and flavonoid composition of liposomal forms of polyene antibiotics, and in particular, amphotericin B (AmB), affects their ability to increase the permeability of lipid bilayers that mimic the membranes of mammalian and fungal cells. METHODS To monitor the membrane permeability induced by various polyene-based lipid formulations, a calcein leakage assay and the electrophysiological technique based on planar lipid bilayers were used. KEY RESULTS The replacement of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol, led to a decrease in the ability of AmB-loaded liposomes to permeabilize lipid bilayers mimicking mammalian cell membranes. The inclusion of plant flavonoid phloretin in AmB-loaded liposomes increased the ability of the formulation to disengage a fluorescent marker from lipid vesicles mimicking the membranes of target fungi. I-V characteristics of the fungal-like lipid bilayers treated with the AmB phytosomes were symmetric, demonstrating the functioning of double-length AmB pores and assuming a decrease in the antibiotic threshold concentration. CONCLUSIONS AND PERSPECTIVES The therapeutic window of polyene lipid formulations might be expanded by varying their sterol composition. Polyene-loaded phytosomes might be considered as the prototypes for innovative lipid antibiotic formulations.
Collapse
Affiliation(s)
- Svetlana S. Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
5
|
Efimova SS, Malykhina AI, Ostroumova OS. Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals. MEMBRANES 2023; 13:670. [PMID: 37505036 PMCID: PMC10384262 DOI: 10.3390/membranes13070670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
The macrolide polyene antibiotic amphotericin B (AmB), remains a valuable drug to treat systemic mycoses due to its wide antifungal activity and low probability of developing resistance. The high toxicity of AmB, expressed in nephropathy and hemolysis, could be partially resolved by lowering therapeutic AmB concentration while maintaining efficacy. This work discusses the possibility of using plant polyphenols and alkaloids to enhance the pore-forming and consequently antifungal activity of AmB. We demonstrated that phloretin, phlorizin, naringenin, taxifolin, quercetin, biochanin A, genistein, resveratrol, and quinine led to an increase in the integral AmB-induced transmembrane current in the bilayers composed of palmitoyloleoylphosphocholine and ergosterol, while catechin, colchicine, and dihydrocapsaicin did not practically change the AmB activity. Cardamonin, 4'-hydroxychalcone, licochalcone A, butein, curcumin, and piperine inhibited AmB-induced transmembrane current. Absorbance spectroscopy revealed no changes in AmB membrane concentration with phloretin addition. A possible explanation of the potentiation is related to the phytochemical-produced changes in the elastic membrane properties and the decrease in the energy of formation of the lipid mouth of AmB pores, which is partially confirmed by differential scanning microcalorimetry. The possibility of AmB interaction with cholesterol in the mammalian cell membranes instead of ergosterol in fungal membranes, determines its high toxicity. The replacement of ergosterol with cholesterol in the membrane lipid composition led to a complete loss or a significant decrease in the potentiating effects of tested phytochemicals, indicating low potential toxicity of these compounds and high therapeutic potential of their combinations with the antibiotic. The discovered combinations of AmB with plant molecules that enhance its pore-forming ability in ergosterol-enriched membranes, seem to be promising for further drug development in terms of the toxicity decrease and efficacy improvement.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Anna I Malykhina
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| |
Collapse
|
6
|
Li H, Hu Y, Zhang Y, Ma Z, Bechthold A, Yu X. Identification of RimR2 as a positive pathway-specific regulator of rimocidin biosynthesis in Streptomyces rimosus M527. Microb Cell Fact 2023; 22:32. [PMID: 36810073 PMCID: PMC9942304 DOI: 10.1186/s12934-023-02039-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Streoptomyces rimosus M527 is a producer of the polyene macrolide rimocidin which shows activity against various plant pathogenic fungi. Notably, the regulatory mechanisms underlying rimocidin biosynthesis are yet to be elucidated. RESULTS In this study, using domain structure and amino acid alignment and phylogenetic tree construction, rimR2, which located in the rimocidin biosynthetic gene cluster, was first found and identified as a larger ATP-binding regulators of the LuxR family (LAL) subfamily regulator. The rimR2 deletion and complementation assays were conducted to explore its role. Mutant M527-ΔrimR2 lost its ability to produce rimocidin. Complementation of M527-ΔrimR2 restored rimocidin production. The five recombinant strains, M527-ER, M527-KR, M527-21R, M527-57R, and M527-NR, were constructed by overexpressing rimR2 gene using the promoters permE*, kasOp*, SPL21, SPL57, and its native promoter, respectively, to improve rimocidin production. M527-KR, M527-NR, and M527-ER exhibited 81.8%, 68.1%, and 54.5% more rimocidin production, respectively, than the wild-type (WT) strain, while recombinant strains M527-21R and M527-57R exhibited no obvious differences in rimocidin production compared with the WT strain. RT-PCR assays revealed that the transcriptional levels of the rim genes were consistent with the changes in rimocidin production in the recombinant strains. Using electrophoretic mobility shift assays, we confirmed that RimR2 can bind to the promoter regions of rimA and rimC. CONCLUSION A LAL regulator RimR2 was identified as a positive specific-pathway regulator of rimocidin biosynthesis in M527. RimR2 regulates the rimocidin biosynthesis by influencing the transcriptional levels of rim genes and binding to the promoter regions of rimA and rimC.
Collapse
Affiliation(s)
- Huijie Li
- grid.411485.d0000 0004 1755 1108Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Yefeng Hu
- grid.411485.d0000 0004 1755 1108Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Yongyong Zhang
- grid.411485.d0000 0004 1755 1108Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang, People's Republic of China.
| | - Andreas Bechthold
- grid.5963.9Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Borzyszkowska-Bukowska J, Czub J, Szczeblewski P, Laskowski T. Antibiotic-sterol interactions provide insight into the selectivity of natural aromatic analogues of amphotericin B and their photoisomers. Sci Rep 2023; 13:762. [PMID: 36641464 PMCID: PMC9840637 DOI: 10.1038/s41598-023-28036-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/11/2023] [Indexed: 01/16/2023] Open
Abstract
Aromatic heptaene macrolides (AHMs) belong to the group of polyene macrolide antifungal antibiotics. Members of this group were the first to be used in the treatment of systemic fungal infections. Amphotericin B (AmB), a non-aromatic representative of heptaene macrolides, is of significant clinical importance in the treatment of internal mycoses. It includes the all-trans heptaene chromophore, whereas the native AHMs contain two cis-type (Z) double bonds within the chromophore system. Lately we have proven that it is possible to obtain AHMs' stable derivatives in the form of all-trans (AmB-type) isomers by photochemical isomerization. Our further studies have shown that such alteration leads to the improvement of their selective toxicity in vitro. Computational experiments carried out so far were only an initial contribution in the investigation of the molecular basis of the mechanism of action of AHMs and did not provide explanation to observed differences in biological activity between the native (cis-trans) and isomeric (all-trans) AHMs. Herein, we presented the results of two-dimensional metadynamics studies upon AmB and its aromatic analogues (AHMs), regarding preferable binary antibiotic/sterol complexes orientation, as well as more detailed research on the behaviour of AHMs' alkyl-aromatic side chain in cholesterol- or ergosterol-enriched lipid bilayers.
Collapse
Affiliation(s)
- Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233, Gdańsk, Poland.
| | - Jacek Czub
- Department of Physical Chemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233, Gdańsk, Poland
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233, Gdańsk, Poland
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
8
|
Borzyszkowska-Bukowska J, Górska J, Szczeblewski P, Laskowski T, Gabriel I, Jurasz J, Kozłowska-Tylingo K, Szweda P, Milewski S. Quest for the Molecular Basis of Improved Selective Toxicity of All-Trans Isomers of Aromatic Heptaene Macrolide Antifungal Antibiotics. Int J Mol Sci 2021; 22:ijms221810108. [PMID: 34576271 PMCID: PMC8468583 DOI: 10.3390/ijms221810108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Three aromatic heptaene macrolide antifungal antibiotics, Candicidin D, Partricin A (Gedamycin) and Partricin B (Vacidin) were subjected to controlled cis-trans→ all trans photochemical isomerization. The obtained all-trans isomers demonstrated substantially improved in vitro selective toxicity in the Candida albicans cells: human erythrocytes model. This effect was mainly due to the diminished hemotoxicity. The molecular modeling studies on interactions between original antibiotics and their photoisomers with ergosterol and cholesterol revealed some difference in free energy profiles of formation of binary antibiotic/sterol complexes in respective membrane environments. Moreover, different geometries of heptaene: sterol complexes and variations in polyene macrolide molecule alignment in cholesterol-and ergosterol-containing membranes were found. None of these effects are of the crucial importance for the observed improvement of selective toxicity of aromatic heptaene antifungals but each seems to provide a partial contribution.
Collapse
|
9
|
Banshoya K, Fujita C, Hokimoto Y, Ohnishi M, Inoue A, Tanaka T, Kaneo Y. Amphotericin B nanohydrogel ocular formulation using alkyl glyceryl hyaluronic acid: Formulation, characterization, and in vitro evaluation. Int J Pharm 2021; 610:121061. [PMID: 34481008 DOI: 10.1016/j.ijpharm.2021.121061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
The present study focused on the development of an amphotericin B (AmB) nanoformulation for ophthalmic applications. Accordingly, AmB nanohydrogels (AHA/AmB) using alkyl glyceryl hyaluronic acid (Hyalorepair®, AHA), a hydrophobized hyaluronic acid, were prepared by employing the dialysis method, followed by assessments of physical properties, drug efficacy, and toxicity. In the AHA/AmB formulation, AmB existed in a self-aggregated and amorphous state in the hydrophobic environment of the AHA moiety. AHA/AmB was shown in vitro to interact with mucin, which is known to be expressed in the corneal epithelium and was expected to improve its corneal retention. Compared with the conventional AmB formulation, amphotericin B sodium deoxycholate, AHA/AmB had the same in vitro antifungal activity but significantly lower in vitro toxicity. These findings indicate that nanohydrogels prepared with AHA possess high fungal selectivity and serve as a promising system for ophthalmic AmB delivery.
Collapse
Affiliation(s)
- Kengo Banshoya
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho 1, Fukuyama, Hiroshima 729-0292, Japan.
| | - Chiaki Fujita
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho 1, Fukuyama, Hiroshima 729-0292, Japan.
| | - Yuka Hokimoto
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho 1, Fukuyama, Hiroshima 729-0292, Japan.
| | - Masatoshi Ohnishi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho 1, Fukuyama, Hiroshima 729-0292, Japan.
| | - Atsuko Inoue
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho 1, Fukuyama, Hiroshima 729-0292, Japan.
| | - Tetsuro Tanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho 1, Fukuyama, Hiroshima 729-0292, Japan.
| | - Yoshiharu Kaneo
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho 1, Fukuyama, Hiroshima 729-0292, Japan.
| |
Collapse
|
10
|
Zielińska J, Wieczór M, Chodnicki P, Grela E, Luchowski R, Nierzwicki Ł, Bączek T, Gruszecki WI, Czub J. Self-assembly, stability and conductance of amphotericin B channels: bridging the gap between structure and function. NANOSCALE 2021; 13:3686-3697. [PMID: 33543744 DOI: 10.1039/d0nr07707k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amphotericin B (AmB), one of the most powerful but also toxic drugs used to treat systemic mycoses, is believed to selectively permeabilize fungal cell membranes to ions in a sterol-dependent manner. Unfortunately, the structure of the biologically active AmB channels has long eluded researchers, obstructing the design of safer alternatives. Here, we investigate the structural and thermodynamic aspects of channel formation, stability, and selective ion conduction. We combine fluorescence lifetime imaging and molecular simulations to trace the process of channel assembly until the formation of stable, roughly octameric double-length channels (DLCs). This stoichiometry is confirmed by matching the predicted channel conductances with the past results of patch-clamp measurements. We then use free energy calculations to explain the effect of sterols on DLC stability and discuss the observed cation selectivity in structural terms, addressing several long-standing controversies in the context of their physiological relevance. Simulations of ion permeation indicate that only solvated ions pass through DLCs, revealing surprising solvation patterns in the channel lumen. We conclude our investigation by inspecting the role of the tail hydroxyl in the assembly of functional channels, pointing at possible origins of the cholesterol-ergosterol selectivity.
Collapse
Affiliation(s)
- Joanna Zielińska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland. and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Paweł Chodnicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Ewa Grela
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Łukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Wiesław I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
11
|
Dong PT, Zong C, Dagher Z, Hui J, Li J, Zhan Y, Zhang M, Mansour MK, Cheng JX. Polarization-sensitive stimulated Raman scattering imaging resolves amphotericin B orientation in Candida membrane. SCIENCE ADVANCES 2021; 7:eabd5230. [PMID: 33523971 PMCID: PMC7787481 DOI: 10.1126/sciadv.abd5230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
Ergosterol-targeting amphotericin B (AmB) is the first line of defense for life-threatening fungal infections. Two models have been proposed to illustrate AmB assembly in the cell membrane; one is the classical ion channel model in which AmB vertically forms transmembrane tunnel and the other is a recently proposed sterol sponge model where AmB is laterally adsorbed onto the membrane surface. To address this controversy, we use polarization-sensitive stimulated Raman scattering from fingerprint C═C stretching vibration to visualize AmB, ergosterol, and lipid in single fungal cells. Intracellular lipid droplet accumulation in response to AmB treatment is found. AmB is located in membrane and intracellular droplets. In the 16 strains studied, AmB residing inside cell membrane was highly ordered, and its orientation is primarily parallel to phospholipid acyl chains, supporting the ion channel model. Label-free imaging of AmB and chemical contents offers an analytical platform for developing low-toxicity, resistance-refractory antifungal agents.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Cheng Zong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Zeina Dagher
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jie Hui
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Junjie Li
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
12
|
The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry. NANOMATERIALS 2020; 10:nano10122439. [PMID: 33291326 PMCID: PMC7762259 DOI: 10.3390/nano10122439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
We have characterized and compared the structures of ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes before and after interaction with the amphiphilic antifungal drug amphotericin B (AmB) using neutron reflection. AmB inserts into both pure POPC and sterol-containing membranes in the lipid chain region and does not significantly perturb the structure of pure POPC membranes. By selective per-deuteration of the lipids/sterols, we show that AmB extracts ergosterol but not cholesterol from the bilayers and inserts to a much higher degree in the cholesterol-containing membranes. Ergosterol extraction by AmB is accompanied by membrane thinning. Our results provide new insights into the mechanism and antifungal effect of AmB in these simple models of fungal and mammalian membranes and help understand the molecular origin of its selectivity and toxic side effects.
Collapse
|
13
|
Tevyashova AN, Bychkova EN, Solovieva SE, Zatonsky GV, Grammatikova NE, Isakova EB, Mirchink EP, Treshchalin ID, Pereverzeva ER, Bykov EE, Efimova SS, Ostroumova OS, Shchekotikhin AE. Discovery of Amphamide, a Drug Candidate for the Second Generation of Polyene Antibiotics. ACS Infect Dis 2020; 6:2029-2044. [PMID: 32598131 DOI: 10.1021/acsinfecdis.0c00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphotericin B (AmB, 1) is the drug of choice for treating the most serious systemic fungal or protozoan infections. Nevertheless, its application is limited by low solubility in aqueous media and serious side effects such as infusion-related reactions, hemolytic toxicity, and nephrotoxicity. Owing to these limitations, it is essential to search for the polyene derivatives with better chemotherapeutic properties. With the objective of obtaining AmB derivatives with lower self-aggregation and improved solubility, we synthesized a series of amides of AmB bearing an additional basic group in the introduced residue. The screening of antifungal activity in vitro revealed that N-(2-aminoethyl)amide of AmB (amphamide, 6) had superior antifungal activity compared to that of the paternal AmB. Preclinical studies in mice confirmed that compound 6 had a much lower acute toxicity and higher antifungal efficacy in the model of mice candidosis sepsis compared with that of AmB (1). Thus, the discovered amphamide is a promising drug candidate for the second generation of polyene antibiotics and is also prospective for in-depth preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Anna N. Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russia
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - George V. Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - Elena B. Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Elena P. Mirchink
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Ivan D. Treshchalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - Evgeny E. Bykov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg, 194064, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg, 194064, Russia
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russia
| |
Collapse
|
14
|
Feder-Kubis J, Wnętrzak A, Chachaj-Brekiesz A. Terpene-Based Ionic Liquids from Natural Renewable Sources As Selective Agents in Antifungal Therapy. ACS Biomater Sci Eng 2020; 6:3832-3842. [PMID: 33463357 DOI: 10.1021/acsbiomaterials.0c00447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we present a new approach toward the design of ionic liquids with biological activity. Structural analysis of bioactive compounds was performed to design-in a technological and economic manner-salts with potential antifungal properties. The length of the alkyl chain as well as the task-specific component in the cation, the type of amine core, and the type of anion were considered as having an essential impact on achieving desired biological activity. Herein, we present the synthesis and characterization of ionic liquids based on monoterpene derivatives-namely, (1R,2S,5R)-(-)-menthol or bicyclic (1R)-endo-(+)-fenchol-from renewable sources. These new salts were synthesized with high yields (>96%) in mild conditions via a two-step procedure. Physicochemical properties (i.e., melting point, thermal stability, crystal shape, specific rotation, surfactant content, solubility, and surface activity) were analyzed in detail. The obtained results suggested the influence of the steric hindrance of the discussed salts on the reactivity, solubility, thermal stability, and surface properties of the studied compounds. Their potential selectivity in antifungal therapy was studied using Langmuir monolayer mimicking fungal (ergosterol) and mammalian (cholesterol) membranes. The model study confirmed the selective destabilizing activity of terpene-based ionic liquids on the fungus membrane.
Collapse
Affiliation(s)
- Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
15
|
Liu H, Rivnay B, Avery K, Myung JH, Kozak D, Landrau N, Nivorozhkin A, Ashraf M, Yoon S. Optimization of the manufacturing process of a complex amphotericin B liposomal formulation using quality by design approach. Int J Pharm 2020; 585:119473. [PMID: 32473373 DOI: 10.1016/j.ijpharm.2020.119473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
In this work, the manufacturing process of a complex liposomal amphotericin B (AmB) product was optimized using quality by design (QbD) approach. A comprehensive QbD-based process understanding and design space (DS) to the critical process parameters (CPPs) is essential to the drug development and consistent quality control. The process was based on the acid-aided formation of drug-lipid complexes in a methanol-chloroform mixture (step I) followed by spray drying (step II), hydration and liposome formation by microfluidization (step III), and lyophilization (step IV). Firstly, the risk assessment was conducted to identify the critical process parameters among the four key steps. Nine CPPs and five CQAs (API Monomer identity (absorbance main peak at 321 nm), API Aggregation identity (absorbance peak ratio, OD 415 nm/321 nm), particle size, in-vitro toxicity, and the cake quality) were determined based on their severity and occurrences with their contribution to the quality target product profile (QTPP). Based on the risk assessment results, the final screening design of experiments (DoE) was developed using fractional factorial design. Secondly, the empirical equation was developed for each CQA based on experimental data. The impact of CPPs on the CQAs was analyzed using the coefficient plot and contour plot. In addition to the effect of individual formulation parameters and process parameters, the effects of the four key separate steps were also evaluated and compared. In general, the curing temperature during microfluidization has been identified as the most significant CPP. Finally, design space exploration was carried out to demonstrate how the critical process parameters can be varied to consistently produce a drug product with desired characteristics. The design space size increased at the higher value of the curing temperature, the API to phospholipid ratio (API:PL), and the lower value of the DSPG to phospholipid ratio (PG:PL) and aspirator rate.
Collapse
Affiliation(s)
- Huolong Liu
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Benjamin Rivnay
- Landrau Scientific Innovations, LLC, 22 Laurel Street, Leominster, MA 01453, USA
| | - Ken Avery
- Landrau Scientific Innovations, LLC, 22 Laurel Street, Leominster, MA 01453, USA
| | - Ja Hye Myung
- U.S. Food and Drug Administration, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Darby Kozak
- U.S. Food and Drug Administration, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Nelson Landrau
- Landrau Scientific Innovations, LLC, 22 Laurel Street, Leominster, MA 01453, USA
| | - Alex Nivorozhkin
- Neo-Advent Technologies, LLC, 410 Great Rd., Suite 4-2-2, Littleton, MA 01460, USA
| | - Muhammad Ashraf
- U.S. Food and Drug Administration, Office of Testing and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
16
|
Song Z, Ma Z, Bechthold A, Yu X. Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus M527. Appl Microbiol Biotechnol 2020; 104:4445-4455. [PMID: 32221690 DOI: 10.1007/s00253-020-10565-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 01/25/2023]
Abstract
The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, is highly effective against a broad range of fungal plant pathogens, but at low yields. Elicitation is an effective method of stimulating the yield of bioactive secondary metabolites. In this study, the biomass and filtrate of a culture broth of Escherichia coli JM109, Bacillus subtilis WB600, Saccharomyces cerevisiae, and Fusarium oxysporum f. sp. cucumerinum were employed as elicitors to promote rimocidin production in S. rimosus M527. Adding culture broth and biomass of S. cerevisiae (A3) and F. oxysporum f. sp. cucumerinum (B4) resulted in an increase of rimocidin production by 51.2% and 68.3% respectively compared with the production under normal conditions in 5-l fermentor. In addition, quantitative RT-PCR analysis revealed that the transcriptions of ten genes (rimA to rimK) located in the gene cluster involved in rimocidin biosynthesis in A3 or B4 elicitation experimental group were all higher than those of a control group. Using a β-glucuronidase (GUS) reporter system, GUS enzyme activity assay, and Western blot analysis, we discovered that elicitation of A3 or B4 increased protein synthesis in S. rimosus M527. These results demonstrate that the addition of elicitors is a useful approach to improve rimocidin production.Key Points • An effective strategy for enhancing rimocidin production in S. rimosus M527 is demonstrated. • Overproduction of rimocidin is a result of higher expressed structural genes followed by an increase in protein synthesis.
Collapse
Affiliation(s)
- Zhangqing Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| |
Collapse
|
17
|
Yamamoto T, Umegawa Y, Tsuchikawa H, Hanashima S, Matsumori N, Funahashi K, Seo S, Shinoda W, Murata M. The Amphotericin B-Ergosterol Complex Spans a Lipid Bilayer as a Single-Length Assembly. Biochemistry 2019; 58:5188-5196. [PMID: 31793296 DOI: 10.1021/acs.biochem.9b00835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphotericin B (AmB) is a polyene macrolide antibiotic clinically used as an antifungal drug. Its preferential complexation with ergosterol (Erg), the major sterol of fungal membranes, leads to the formation of a barrel-stave-like ion channel across a lipid bilayer. To gain a better understanding of the mechanism of action, the mode of lipid bilayer spanning provides essential information. However, because of the lack of methodologies to observe it directly, it has not been revealed for the Erg-containing channel assembly for many years. In this study, we disclosed that the AmB-Erg complex spans a lipid bilayer with a single-molecule length, using solid-state nuclear magnetic resonance (NMR) experiments. Paramagnetic relaxation enhancement by Mn2+ residing near the surface of lipid bilayers induced the depth-dependent decay of 13C NMR signals for individual carbon atoms of AmB. We found that both terminal segments, the 41-COOH group and C38-C40 methyl groups, come close to the lipid bilayer surfaces, suggesting that the AmB-Erg complex spans a palmitoyloleoylphosphatidylcholine (POPC) bilayer with a single-molecule length. Molecular dynamics simulation experiments further confirmed the stabilization of the AmB-Erg complex as a single-length spanning complex. These results provide experimental evidence of the single-length complex incorporated in the membrane by making thinner a POPC-Erg bilayer that mimics fungal membranes.
Collapse
Affiliation(s)
- Tomoya Yamamoto
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Department of Chemistry, Graduate School of Science , Kyushu University , Fukuoka 819-0395 , Japan
| | - Kosuke Funahashi
- Department of Materials Chemistry , Nagoya University , Nagoya 464-8603 , Japan
| | - Sangjae Seo
- Department of Materials Chemistry , Nagoya University , Nagoya 464-8603 , Japan
| | - Wataru Shinoda
- Department of Materials Chemistry , Nagoya University , Nagoya 464-8603 , Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
18
|
Tyśkiewicz K, Tyśkiewicz R, Konkol M, Rój E, Jaroszuk-Ściseł J, Skalicka-Woźniak K. Antifungal Properties of Fucus vesiculosus L. Supercritical Fluid Extract Against Fusarium culmorum and Fusarium oxysporum. Molecules 2019; 24:E3518. [PMID: 31569357 PMCID: PMC6804000 DOI: 10.3390/molecules24193518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, potential antifungal properties of a brown alga Fucus vesiculosus were evaluated. The algal extract was obtained with the use of supercritical fluid extraction (scCO2) at a temperature of 50 °C under a pressure of 300 bar. The aqueous solution of the extract at the concentration of 0.05%, 0.2%, 0.5% and 1.0% was studied against pathogenic fungi on a liquid RB medium. This study is the first report on antifungal properties of the brown algae F. vesiculosus scCO2 extract against Fusarium culmorum and Fusarium oxysporum phytopathogens. The concentrations of the studied extract (0.5% and 1.0%) were demonstrated to have an ability to inhibit 100% growth of macroconidia within 144 h, as well as an ability to cause their total degradation. As a result of the study, the antifungal effect of fucosterol against F. culmorum was also indicated. The total macroconidia growth was inhibited by 1.0% fucosterol. Moreover, at lower concentrations (0.05-0.2%) of fucosterol, macroconidia were characterized by shorter length and structural degradation was observed. The mycelial growth of Fusarium oxysporum (Fo38) by 1% scCO2 F. vesiculosus extract was analyzed at the level of 48% after 168 h of incubation, whereas 100% extract was found to be effective in F. culmorum (CBS122) and F. oxysporum (Fo38) growth inhibition by 72% and 75%, respectively after 168 h of incubation.
Collapse
Affiliation(s)
- Katarzyna Tyśkiewicz
- Supercritical Extraction Department, ŁUKASIEWICZ Research Network-New Chemical Syntheses Institute, Tysiąclecia Państwa Polskiego Ave. 13a, 24-110 Puławy, Poland.
| | - Renata Tyśkiewicz
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Marcin Konkol
- Supercritical Extraction Department, ŁUKASIEWICZ Research Network-New Chemical Syntheses Institute, Tysiąclecia Państwa Polskiego Ave. 13a, 24-110 Puławy, Poland.
| | - Edward Rój
- Supercritical Extraction Department, ŁUKASIEWICZ Research Network-New Chemical Syntheses Institute, Tysiąclecia Państwa Polskiego Ave. 13a, 24-110 Puławy, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland.
| |
Collapse
|
19
|
Vanuytsel S, Carniello J, Wallace MI. Artificial Signal Transduction across Membranes. Chembiochem 2019; 20:2569-2580. [DOI: 10.1002/cbic.201900254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Steven Vanuytsel
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| | - Joanne Carniello
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| | - Mark Ian Wallace
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| |
Collapse
|
20
|
Sundar S, Agrawal N, Singh B. Exploiting knowledge on pharmacodynamics-pharmacokinetics for accelerated anti-leishmanial drug discovery/development. Expert Opin Drug Metab Toxicol 2019; 15:595-612. [PMID: 31174439 DOI: 10.1080/17425255.2019.1629417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Being on the top list of neglected tropical diseases, leishmaniasis has been marked for elimination by 2020. In the light of small armamentarium of drugs and their associated drawbacks, the understanding of pharmacodynamics and/or pharmacokinetics becomes a priority to achieve and sustain disease elimination. Areas covered: The authors have looked into pharmacological aspects of existing and emerging drugs for treatment of leishmaniasis. An in-depth understanding of pharmacodynamics and pharmacokinetics (PKPD) provides a rationale for drug designing and optimizing the treatment strategies. It forms a key to prevent drug resistance and avoid drug-associated adverse effects. The authors have compiled the researches on the PKPD of different anti-leishmanial formulations that have the potential for improved and/or effective disease intervention. Expert opinion: Understanding the pharmacological aspects of drugs forms the basis for the clinical application of novel drugs. Tailoring drug dosage and individualized treatment can avoid the adverse events and bridge gap between the in vitro models and their clinical application. An integrated approach, with pragmatic use of technological advances can improve phenotypic screening and physiochemical properties of novel drugs. Concomitantly, this can serve to improve clinical efficacies, reduce the incidence of relapse and accelerate the drug discovery/development process for leishmaniasis elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- a Department of Medicine , Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
| | - Neha Agrawal
- b Hepatology , Temple University , Philadelphia , PA , USA
| | - Bhawana Singh
- a Department of Medicine , Institute of Medical Sciences, Banaras Hindu University , Varanasi , India.,c Department of Pathology , Wexner Medical Center, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
21
|
Santos RS, Loureiro KC, Rezende PS, Andrade LN, de Melo Barbosa R, Santini A, Santos AC, Ferreira da Silva C, Souto EB, de Sousa DP, Amaral RG, Severino P. Innovative nanocompounds for cutaneous administration of classical antifungal drugs: a systematic review. J DERMATOL TREAT 2019; 30:617-626. [PMID: 29856232 DOI: 10.1080/09546634.2018.1479726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nanomedicine manipulates materials at atomic, molecular, and supramolecular scale, with at least one dimension within the nanometer range, for biomedical applications. The resulting nanoparticles have been consistently shown beneficial effects for antifungal drugs delivery, overcoming the problems of low bioavailability and high toxicity of these drugs. Due to their unique features, namely the small mean particle size, nanoparticles contribute to the enhanced drug absorption and uptake by the target cells, potentiating the therapeutic drug effect. The topical route is desirable due to the adverse effects arising from oral administration. This review provides a comprehensive analysis of the use of nano compounds for the current treatment of topical fungal infections. A special emphasis is given to the employment of lipid nanoparticles, due to their recognized efficacy, versatility, and biocompatibility, attracting the major attention as novel topical nanocompounds used for the administration of antifungal drugs.
Collapse
Affiliation(s)
- Rafael Silva Santos
- a Universidade Tiradentes - UNIT , Aracaju , Brazil.,b Instituto de Tecnologia e Pesquisa Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas , Aracaju , Brazil
| | - Kahynna Cavalcante Loureiro
- a Universidade Tiradentes - UNIT , Aracaju , Brazil.,b Instituto de Tecnologia e Pesquisa Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas , Aracaju , Brazil
| | - Polyana Santos Rezende
- a Universidade Tiradentes - UNIT , Aracaju , Brazil.,b Instituto de Tecnologia e Pesquisa Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas , Aracaju , Brazil
| | - Luciana Nalone Andrade
- a Universidade Tiradentes - UNIT , Aracaju , Brazil.,b Instituto de Tecnologia e Pesquisa Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas , Aracaju , Brazil
| | - Raquel de Melo Barbosa
- c Department of Pharmacy, Faculty of Pharmacy, Federal University of Rio Grande do Norte , Petrópolis , Brazil
| | - Antonello Santini
- d Department of Pharmacy, University of Napoli "Federico II" , Napoli , Italy
| | - Ana Cláudia Santos
- e Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC) Polo das Ciências da Saúde Azinhaga de Santa Comba , Coimbra , Portugal.,f Institute for Innovation and Health Research, Group Genetics of Cognitive Dysfunction, Institute for Molecular and Cell Biology , Porto , Portugal
| | - Classius Ferreira da Silva
- g Biotechnology Laboratory of Natural Products (BIONAT), Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo , Diadema , Brazil
| | - Eliana Barbosa Souto
- e Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC) Polo das Ciências da Saúde Azinhaga de Santa Comba , Coimbra , Portugal.,h REQUIMTE/LAQV Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra , Coimbra , Portugal
| | | | | | - Patrícia Severino
- a Universidade Tiradentes - UNIT , Aracaju , Brazil.,b Instituto de Tecnologia e Pesquisa Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas , Aracaju , Brazil
| |
Collapse
|
22
|
Shende P, Khair R, Gaud RS. Nanostructured cochleates: a multi-layered platform for cellular transportation of therapeutics. Drug Dev Ind Pharm 2019; 45:869-881. [PMID: 30767577 DOI: 10.1080/03639045.2019.1583757] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among lipid-based nanocarriers, multi-layered cochleates emerge as a novel delivery system because of prevention of oxidation of hydrophobic and hydrophilic drugs, enhancement in permeability, and reduction in dose of drugs. It also improves oral bioavailability and increases the safety of a drug by targeting at a specific site with less side effects. Nanostructured cochleates are used as a carrier for the delivery of water-insoluble or hydrophobic drugs of anticancer, antiviral and anti-inflammatory action. This review article focuses on different methods for preparation of cochleates, mechanism of formation of cochleates, mechanism of action like cochleate undergoes macrophagic endocytosis and release the drug into the systemic circulation by acting on membrane proteins, phospholipids, and receptors. Advanced methods such as calcium-substituted and β-cyclodextrin-based cochleates, novel techniques include microfluidic and modified trapping method. Cochleates showed enhancement in oral bioavailability of amphotericin B, delivery of factor VII, oral mucosal vaccine adjuvant-delivery system, and delivery of volatile oil. In near future, cochleate will be one of the interesting delivery systems to overcome the stability and encapsulation efficiency issues associated with liposomes. The current limiting factors for commercial preparation of cochleates involve high cost of manufacturing, lack of standardization, and specialized equipments.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| | - Rohan Khair
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| | - Ram S Gaud
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| |
Collapse
|
23
|
Tsuchikawa H, Umegawa Y, Murata M, Oishi T. A Synthetic Approach to the Channel Complex Structure of Antibiotic in a Membrane: Backbone <sup>19</sup>F-Labeled Amphotericin B for Solid-State NMR Analysis. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Tohru Oishi
- Department of Chemistry, Graduate School of Science, Kyushu University
| |
Collapse
|
24
|
Kintali S, Kishor Varshney G, Das K. Interaction of Amphotericin B with Ergosterol/Cholesterol-Containing POPG Liposomes Studied by Absorption, Fluorescence and Second Harmonic Spectroscopy. ChemistrySelect 2018. [DOI: 10.1002/slct.201801924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Srinivasarao Kintali
- Photochem. &Photophys. Appl. Lab, Laser Bio-Medical Applications Section; Raja Ramanna Centre for Advanced Technology; Indore 452013, M.P. India
- HomiBhabha National Institute; Training School Complex, Anushakti Nagar; Mumbai 400094 India
| | - Gopal Kishor Varshney
- Photochem. &Photophys. Appl. Lab, Laser Bio-Medical Applications Section; Raja Ramanna Centre for Advanced Technology; Indore 452013, M.P. India
- HomiBhabha National Institute; Training School Complex, Anushakti Nagar; Mumbai 400094 India
| | - Kaustuv Das
- Photochem. &Photophys. Appl. Lab, Laser Bio-Medical Applications Section; Raja Ramanna Centre for Advanced Technology; Indore 452013, M.P. India
- HomiBhabha National Institute; Training School Complex, Anushakti Nagar; Mumbai 400094 India
| |
Collapse
|
25
|
Grela E, Wieczór M, Luchowski R, Zielinska J, Barzycka A, Grudzinski W, Nowak K, Tarkowski P, Czub J, Gruszecki WI. Mechanism of Binding of Antifungal Antibiotic Amphotericin B to Lipid Membranes: An Insight from Combined Single-Membrane Imaging, Microspectroscopy, and Molecular Dynamics. Mol Pharm 2018; 15:4202-4213. [PMID: 30081640 DOI: 10.1021/acs.molpharmaceut.8b00572] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphotericin B is a lifesaving polyene antibiotic used in the treatment of systemic mycoses. Unfortunately, the pharmacological applicability of this drug is limited because of its severe toxic side effects. At the same time, the lack of a well-defined mechanism of selectivity hampers the efforts to rationally design safer derivatives. As the drug primarily targets the biomembranes of both fungi and humans, new insights into the binding of amphotericin B to lipid membranes can be helpful in unveiling the molecular mechanisms underlying both its pharmacological activity and toxicity. We use fluorescence-lifetime-imaging microscopy combined with fluorescence-emission spectroscopy in the microscale to study the interaction of amphotericin B with single lipid bilayers, using model systems based on giant unilamellar liposomes formed with three lipids: dipalmitoylphosphatidylcholine (DPPC), dimirystoylphosphatidylcholine (DMPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). The results show that amphotericin B introduced into the water phase as a DMSO solution binds to the membrane as dimers and small-molecular aggregates that we identify as tetramers and trimers. Fluorescence-detected linear-dichroism measurements revealed high orientational freedom of all the molecular-organization forms with respect to the membrane plane, which suggests that the drug partially binds to the membrane surface. The presence of sterols in the lipid phase (cholesterol but particularly ergosterol at 30 mol %) promotes the penetration of drug molecules into the lipid membrane, as concluded on the basis of the decreased orientation angle of amphotericin B molecules with respect to the axis normal to the membrane plane. Moreover, ergosterol facilitates the association of amphotericin B dimers into aggregated structures that can play a role in membrane destabilization or permeabilization. The presence of cholesterol inhibits the formation of small aggregates in the lipid phase of liposomes, making this system a promising candidate for a low-toxicity antibiotic-delivery system. Our conclusions are supported with molecular simulations that reveal the conformational properties of AmB oligomers in both aqueous solution and lipid bilayers of different compositions.
Collapse
Affiliation(s)
- Ewa Grela
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland.,Department of Biophysics, Institute of Biology , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry , Gdansk University of Technology , 80-233 Gdansk , Poland
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| | - Joanna Zielinska
- Department of Pharmaceutical Chemistry , Medical University of Gdansk , 80-416 Gdansk , Poland
| | - Angelika Barzycka
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| | - Wojciech Grudzinski
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| | - Katarzyna Nowak
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics , Polish Academy of Sciences , 20-290 Lublin , Poland
| | | | - Jacek Czub
- Department of Physical Chemistry , Gdansk University of Technology , 80-233 Gdansk , Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland
| |
Collapse
|
26
|
Thanki K, Prajapati R, Sangamwar AT, Jain S. Long chain fatty acid conjugation remarkably decreases the aggregation induced toxicity of Amphotericin B. Int J Pharm 2018; 544:1-13. [DOI: 10.1016/j.ijpharm.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/22/2023]
|
27
|
Singh VP, Bansal C, Kaintura M. Sinonasal Mucormycosis: A to Z. Indian J Otolaryngol Head Neck Surg 2018; 71:1962-1971. [PMID: 31763277 DOI: 10.1007/s12070-018-1384-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/27/2018] [Indexed: 11/29/2022] Open
Abstract
Mucormycosis caused by one of the members of Mucoraceae family, is one of the most rapidly spreading and fatal fungal infection occurring mostly in Diabetic or Immunocompromised patients especially in developing countries. 26 patients suffering from sinonasal mucormycosis admitted in SGRRIM&HS, Dehradun from January 2013 to January 2017 are discussed. Diagnosis of mucormycosis was established on strong clinical suspicion with presence of grayish black crusting on nasal endoscopy which is confirmed by histopathology examination. Immediate correction of underlying immunocompromised status with debridement with intravenous liposomal amphotericin B was done in all the 26 cases out of which 10 patients were cured. Early detection and aggressive multidisciplinary management is must for the successful treatment of mucormycosis.
Collapse
Affiliation(s)
- V P Singh
- Department of ENT, Shri Mahant Indiresh Hospital, Shri Guru Ram Rai Institute of Medical Sciences, Dehradun, Uttarakhand India
| | - Chetan Bansal
- Department of ENT, Shri Mahant Indiresh Hospital, Shri Guru Ram Rai Institute of Medical Sciences, Dehradun, Uttarakhand India
| | - Madhuri Kaintura
- Department of ENT, Shri Mahant Indiresh Hospital, Shri Guru Ram Rai Institute of Medical Sciences, Dehradun, Uttarakhand India
| |
Collapse
|
28
|
Liu M, Chen M, Yang Z. Design of amphotericin B oral formulation for antifungal therapy. Drug Deliv 2017; 24:1-9. [PMID: 28155335 PMCID: PMC8241147 DOI: 10.1080/10717544.2016.1225852] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/28/2022] Open
Abstract
Amphotericin B (AmB) remains the "gold standard" for systemic antifungal therapy, even though new drugs are emerging as the attractive antifungal agents. Since AmB has negligible oral absorption as a consequence of its unfavorable physicochemical characterizations, its use is restricted to parenteral administration which is accompanied by severe side effects. As greater understanding of the gastrointestinal tract has developed, the advanced drug delivery systems are emerging with the potential to overcome the barriers of AmB oral delivery. Much research has demonstrated that oral AmB formulations such as lipid formulations may have beneficial therapeutic efficacy with reduced adverse effects and suitable for clinical application. Here we reviewed the different formulation strategies to enhance oral drug efficacy, and discussed the current trends and future perspectives for AmB oral administration in the treatment of antifungal infections.
Collapse
Affiliation(s)
- Min Liu
- Urology Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China, and
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Iwamoto M, Sumino A, Shimada E, Kinoshita M, Matsumori N, Oiki S. Channel Formation and Membrane Deformation via Sterol-Aided Polymorphism of Amphidinol 3. Sci Rep 2017; 7:10782. [PMID: 28883505 PMCID: PMC5589915 DOI: 10.1038/s41598-017-11135-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/18/2017] [Indexed: 11/21/2022] Open
Abstract
Amphidinol 3 (AM3) is an anti-fungal polyene extracted from a marine dinoflagellate. Here, we examined the ion channel activity and membrane-embedded structure of AM3 using a lipid bilayer method and atomic force microscopy (AFM). AM3 exhibited large-conductance (~1 nS) and non-selective single-channel activity only when sterols were present in the membrane leaflet of the AM3-added side. The variable conductance suggests the formation of a multimeric barrel-stave pore. At high AM3 concentrations, giant-conductance “jumbo” channels (~40 nS) emerged. AFM revealed a thicker raft-like membrane phase with the appearance of a wrinkled surface, in which phase pores (diameter: ~10 nm) were observed. The flip-flop of ergosterol occurred only after the appearance of the jumbo channel, indicating that the jumbo channel induced a continuity between the outer and inner leaflets of the membrane: a feature characteristic of toroidal-like pores. Thus, AM3 forms different types of sterol-aided polymorphic channels in a concentration dependent manner.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Ayumi Sumino
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan.,High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.,Bio-AFM frontier Research Center, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Eri Shimada
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
30
|
Falcón-González JM, Jiménez-Domínguez G, Ortega-Blake I, Carrillo-Tripp M. Multi-Phase Solvation Model for Biological Membranes: Molecular Action Mechanism of Amphotericin B. J Chem Theory Comput 2017; 13:3388-3397. [DOI: 10.1021/acs.jctc.7b00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. M. Falcón-González
- Laboratorio
de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados Unidad Monterrey, Vía del Conocimiento 201,
Parque PIIT, C.P. 66600, Apodaca, Nuevo León, México
- Unidad
Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Av. Mineral de Valenciana No. 200,
Col. Fraccionamiento Industrial Puerto Interior, C.P. 36275, Silao de la Victoria, Guanajuato, México
| | - G. Jiménez-Domínguez
- Laboratorio
de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados Unidad Monterrey, Vía del Conocimiento 201,
Parque PIIT, C.P. 66600, Apodaca, Nuevo León, México
| | - I. Ortega-Blake
- Instituto
de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, C.P. 62251, Cuernavaca, Morelos, México
| | - M. Carrillo-Tripp
- Laboratorio
de la Diversidad Biomolecular, Centro de Investigación y de Estudios Avanzados Unidad Monterrey, Vía del Conocimiento 201,
Parque PIIT, C.P. 66600, Apodaca, Nuevo León, México
| |
Collapse
|
31
|
Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog Lipid Res 2017; 65:24-44. [DOI: 10.1016/j.plipres.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
32
|
Antillón A, de Vries AH, Espinosa-Caballero M, Falcón-González JM, Flores Romero D, González–Damián J, Jiménez-Montejo FE, León-Buitimea A, López-Ortiz M, Magaña R, Marrink SJ, Morales-Nava R, Periole X, Reyes-Esparza J, Rodríguez Lozada J, Santiago-Angelino TM, Vargas González MC, Regla I, Carrillo-Tripp M, Fernández-Zertuche M, Rodríguez-Fragoso L, Ortega-Blake I. An Amphotericin B Derivative Equally Potent to Amphotericin B and with Increased Safety. PLoS One 2016; 11:e0162171. [PMID: 27683101 PMCID: PMC5040443 DOI: 10.1371/journal.pone.0162171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/16/2016] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is the most potent antimycotic known to date. However due to its large collateral toxicity, its use, although long standing, had been limited. Many attempts have been made to produce derivatives with reduced collateral damage. The molecular mechanism of polyene has also been closely studied for this purpose and understanding it would contribute to the development of safe derivatives. Our study examined polyene action, including chemical synthesis, electrophysiology, pharmacology, toxicology and molecular dynamics. The results were used to support a novel Amphotericin B derivative with increased selectivity: L-histidine methyl ester of Amphotericin B. We found that this derivative has the same form of action as Amphotericin B, i.e. pore formation in the cell membrane. Its reduced dimerization in solution, when compared to Amphotericin B, is at least partially responsible for its increased selectivity. Here we also present the results of preclinical tests, which show that the derivative is just as potent as Amphotericin B and has increased safety.
Collapse
Affiliation(s)
- Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos, México
| | - Alexander H. de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marcel Espinosa-Caballero
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Km 6, Carretera Antigua a Progreso, Cordemex, 97310, Mérida, Yucatán, México
| | - José Marcos Falcón-González
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36821, México
| | - David Flores Romero
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, México
| | - Javier González–Damián
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos, México
| | - Fabiola Eloísa Jiménez-Montejo
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, México
| | - Angel León-Buitimea
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, México
| | - Manuel López-Ortiz
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla del 5 de Mayo y Fuerte de Loreto México DF, 09230, México City, México
| | - Ricardo Magaña
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla del 5 de Mayo y Fuerte de Loreto México DF, 09230, México City, México
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Rosmarbel Morales-Nava
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos, México
| | - Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jorge Reyes-Esparza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, México
| | - Josué Rodríguez Lozada
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, México
| | - Tania Minerva Santiago-Angelino
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, México
| | - María Cristina Vargas González
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Km 6, Carretera Antigua a Progreso, Cordemex, 97310, Mérida, Yucatán, México
| | - Ignacio Regla
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla del 5 de Mayo y Fuerte de Loreto México DF, 09230, México City, México
| | - Mauricio Carrillo-Tripp
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Mario Fernández-Zertuche
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, México
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos, México
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
33
|
Nakagawa Y, Umegawa Y, Matsushita N, Yamamoto T, Tsuchikawa H, Hanashima S, Oishi T, Matsumori N, Murata M. The Structure of the Bimolecular Complex between Amphotericin B and Ergosterol in Membranes Is Stabilized by Face-to-Face van der Waals Interaction with Their Rigid Cyclic Cores. Biochemistry 2016; 55:3392-402. [DOI: 10.1021/acs.biochem.6b00193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yasuo Nakagawa
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Naohiro Matsushita
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tomoya Yamamoto
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Oishi
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department
of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
34
|
Neumann A, Wieczor M, Zielinska J, Baginski M, Czub J. Membrane Sterols Modulate the Binding Mode of Amphotericin B without Affecting Its Affinity for a Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3452-3461. [PMID: 27007267 DOI: 10.1021/acs.langmuir.5b04433] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Membrane-active antibiotics are known to selectively target certain pathogens based on cell membrane properties, such as fluidity, lipid ordering, and phase behavior. These are in turn modulated by the composition of a lipid bilayer and in particular by the presence and type of membrane sterols. Amphotericin B (AmB), the golden standard of antifungal treatment, exhibits higher activity toward ergosterol-rich fungal membranes, which permits its use against systemic mycoses; however, the selectivity for fungal membranes is far from satisfactory leading to severe side effects. Despite decades of research, no consensus has emerged on the origin of AmB specificity for fungal cells and its actual mode of action at the molecular level. Previously, it has been proposed that the specific action of AmB is related to differences in its affinity for membranes of different composition. In this work, we investigate this relationship by employing molecular dynamics simulations to compare the free energy of insertion of AmB into three types of membranes: a pure DMPC bilayer and DMPC bilayers containing 30% of cholesterol or ergosterol. We analyze the orientation of AmB molecules within the bilayer in order to unambiguously establish their membrane binding mode and relate the orientational freedom to the sterol-dependent tightness of lipid packing. Our results strongly indicate that the membrane insertion of AmB proceeds virtually to completion independent of membrane type, and hence the higher toxicity against fungal membranes may rather result from differences in subsequent oligomerization in the membrane and assembly of monomers into functional transmembrane pores. In particular, the latter could be facilitated by sterol-induced ordering of AmB molecules along the membrane normal, revealed by our free energy profiles. Moreover--in contrast to certain claims--we find no stable binding mode corresponding to the horizontal adsorption of AmB on the membrane surface.
Collapse
Affiliation(s)
| | | | - Joanna Zielinska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk , Gdansk, Poland
| | | | | |
Collapse
|
35
|
Sun H, Chen P, Li D, Li Y, Hou T. Directly Binding Rather than Induced-Fit Dominated Binding Affinity Difference in (S)- and (R)-Crizotinib Bound MTH1. J Chem Theory Comput 2016; 12:851-60. [DOI: 10.1021/acs.jctc.5b00973] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | | |
Collapse
|
36
|
Thermodynamics and kinetics of amphotericin B self-association in aqueous solution characterized in molecular detail. Sci Rep 2016; 6:19109. [PMID: 26742886 PMCID: PMC4705489 DOI: 10.1038/srep19109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 11/09/2022] Open
Abstract
Amphotericin B (AmB) is a potent but toxic drug commonly used to treat systemic mycoses. Its efficiency as a therapeutic agent depends on its ability to discriminate between mammalian and fungal cell membranes. The association of AmB monomers in an aqueous environment plays an important role in drug selectivity, as oligomers formed prior to membrane insertion - presumably dimers - are believed to act differently on fungal (ergosterol-rich) and mammalian (cholesterol-rich) membranes. In this work, we investigate the initial steps of AmB self-association by studying the structural, thermodynamic and spectral properties of AmB dimers in aqueous medium using molecular dynamics simulations. Our results show that in water, the hydrophobic aggregation of AmB monomers yields almost equiprobable populations of parallel and antiparallel dimers that rapidly interconvert into each other, and the dipole-dipole interaction between zwitterionic head groups plays a minor role in determining the drug's tendency for self-aggregation. A simulation of circular dichroism (CD) spectra indicates that in experimental measurements, the signature CD spectrum of AmB aggregates should be attributed to higher-order oligomers rather than dimers. Finally, we suggest that oligomerization can impair the selectivity of AmB molecules for fungal membranes by increasing their hydrophobic drive for non-specific membrane insertion.
Collapse
|
37
|
Boukari K, Balme S, Janot JM, Picaud F. Towards New Insights in the Sterol/Amphotericin Nanochannels Formation: A Molecular Dynamic Simulation Study. J Membr Biol 2015; 249:261-70. [PMID: 26700625 DOI: 10.1007/s00232-015-9865-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Amphotericin B (AmB) is a well-known polyene which self-organizes into membrane cell in order to cause the cell death. Its specific action towards fungal cell is not fully understood but was proved to become from sterol composition. The mechanism was shown experimentally to require the formation of stable sterol/polyene couples which could then organize in a nanochannel. This would allow the leakage of ions responsible for the death of fungal cells, only. In this present study, we investigate the arrangement of AmB/sterols in biological membrane using molecular dynamic simulations in order to understand the role of the sterol structure on the antifungal action of the polyene. We show in particular that the nanochannels tend to close up when cell was composed with cholesterol (animal cell) due to strong interaction between amphotericin and sterol. On the other side, with ergosterol (fungal cell) the largest interactions between amphotericin and lipid membrane lead to the appearance of large hole that could favor the important leakage of ions and thus, the fungal cell death. This work appears as a good complement in the extensive studies linked to the understanding of the antifungal molecules in membrane cells.
Collapse
Affiliation(s)
- Khaoula Boukari
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA 4662, Université Franche-Comté, Centre Hospitalier Universitaire de Besançon, UFR ST, 16 route de Gray, 25030, Besançon Cedex, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 CNRS-UM2-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 CNRS-UM2-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA 4662, Université Franche-Comté, Centre Hospitalier Universitaire de Besançon, UFR ST, 16 route de Gray, 25030, Besançon Cedex, France.
| |
Collapse
|
38
|
Waters AL, Oh J, Place AR, Hamann MT. Stereochemical Studies of the Karlotoxin Class Using NMR Spectroscopy and DP4 Chemical‐Shift Analysis: Insights into their Mechanism of Action. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amanda L. Waters
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Joonseok Oh
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Allen R. Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Suite 236 Columbus Center, Baltimore, MD 21202 (USA)
| | - Mark T. Hamann
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (USA)
| |
Collapse
|
39
|
Waters AL, Oh J, Place AR, Hamann MT. Stereochemical Studies of the Karlotoxin Class Using NMR Spectroscopy and DP4 Chemical-Shift Analysis: Insights into their Mechanism of Action. Angew Chem Int Ed Engl 2015; 54:15705-10. [PMID: 26568046 DOI: 10.1002/anie.201507418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/22/2015] [Indexed: 12/13/2022]
Abstract
After publication of karlotoxin 2 (KmTx2; 1), the harmful algal bloom dinoflagellate Karlodinium sp. was collected and scrutinized to identify additional biologically active complex polyketides. The structure of 1 was validated and revised at C49 using computational NMR tools including J-based configurational analysis and chemical-shift calculations. The characterization of two new compounds [KmTx8 (2) and KmTx9 (3)] was achieved through overlaid 2D HSQC NMR techniques, while the relative configurations were determined by comparison to 1 and computational chemical-shift calculations. The detailed evaluation of 2 using the NCI-60 cell lines, NMR binding studies, and an assessment of the literature supports a mode of action (MoA) for targeting cancer-cell membranes, especially of cytostatic tumors. This MoA is uniquely different from that of current agents employed in the control of cancers for which 2 shows sensitivity.
Collapse
Affiliation(s)
- Amanda L Waters
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Joonseok Oh
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA)
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Suite 236 Columbus Center, Baltimore, MD 21202 (USA)
| | - Mark T Hamann
- Department of Pharmacognosy, Pharmacology, School of Pharmacy, and Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 (USA). , .,Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (USA). ,
| |
Collapse
|
40
|
Abstract
A strategy is introduced for enhancing the cellular selectivity of Amphotericin B (AmB) and other classes of membrane-disrupting agents. This strategy involves attaching the agent to a molecular umbrella to minimize the disruptive power of aggregated forms. Based on this approach, AmB has been coupled to a molecular umbrella derived from one spermidine and two cholic acid molecules and found to have antifungal activities approaching that of the native drug. However, in sharp contrast to AmB, the hemolytic activity and the cytotoxcity of this conjugate toward HEK293 T cells have been dramatically reduced.
Collapse
Affiliation(s)
- Vaclav Janout
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wiley A. Schell
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuming Yu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Steven L. Regen
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
41
|
de Ghellinck A, Fragneto G, Laux V, Haertlein M, Jouhet J, Sferrazza M, Wacklin H. Lipid polyunsaturation determines the extent of membrane structural changes induced by Amphotericin B in Pichia pastoris yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2317-25. [PMID: 26055896 DOI: 10.1016/j.bbamem.2015.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022]
Abstract
The activity of the potent but highly toxic antifungal drug Amphotericin B (AmB), used intravenously to treat systemic fungal and parasitic infections, is widely accepted to result from its specific interaction with the fungal sterol ergosterol. While the effect of sterols on AmB activity has been intensely investigated, the role of membrane phospholipid composition has largely been ignored, and structural studies of native membranes have been hampered by their complex and disordered nature. We show for the first time that the structure of fungal membranes derived from Pichia pastoris yeast depends on the degree of lipid polyunsaturation, which has an impact on the structural consequences of AmB activity. AmB inserts in yeast membranes even in the absence of ergosterol, and forms an extra-membraneous layer whose thickness is resolved to be 4-5 nm. In ergosterol-containing membranes, AmB insertion is accompanied by ergosterol extraction into this layer. The AmB-sponge mediated depletion of ergosterol from P. pastoris membranes gives rise to a significant membrane thinning effect that depends on the degree of lipid polyunsaturation. The resulting hydrophobic mismatch is likely to interfere with a much broader range of membrane protein functions than those directly involving ergosterol, and suggests that polyunsaturated lipids could boost the efficiency of AmB. Furthermore, a low degree of lipid polyunsaturation leads to least AmB insertion and may protect host cells against the toxic effects of AmB. These results provide a new framework based on lipid composition and membrane structure through which we can understand its antifungal action and develop better treatments.
Collapse
Affiliation(s)
- Alexis de Ghellinck
- Institut Laue-Langevin, 71 av des Martyrs, P.O. Box 156, 38000 Grenoble, France; Departement de Physique, Faculté des Sciences, Université Libre de Bruxelles, Bd du Triomphe CP223, 1050 Bruxelles, Belgium
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 av des Martyrs, P.O. Box 156, 38000 Grenoble, France
| | - Valerie Laux
- Institut Laue-Langevin, 71 av des Martyrs, P.O. Box 156, 38000 Grenoble, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 av des Martyrs, P.O. Box 156, 38000 Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/Univ. Grenoble Alpes/INRA, 38000 Grenoble, France
| | - Michele Sferrazza
- Departement de Physique, Faculté des Sciences, Université Libre de Bruxelles, Bd du Triomphe CP223, 1050 Bruxelles, Belgium
| | - Hanna Wacklin
- European Spallation Source ESS AB, P.O. Box 176, 22100 Lund, Sweden; Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| |
Collapse
|
42
|
Davis SA, Vincent BM, Endo MM, Whitesell L, Marchillo K, Andes DR, Lindquist S, Burke MD. Nontoxic antimicrobials that evade drug resistance. Nat Chem Biol 2015; 11:481-7. [PMID: 26030729 PMCID: PMC4472574 DOI: 10.1038/nchembio.1821] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/10/2015] [Indexed: 01/21/2023]
Abstract
Drugs that act more promiscuously provide fewer routes for the emergence of resistant mutants. But this benefit often comes at the cost of serious off-target and dose-limiting toxicities. The classic example is the antifungal amphotericin B (AmB), which has evaded resistance for more than half a century. We report dramatically less toxic amphotericins that nevertheless evade resistance. They are scalably accessed in just three steps from the natural product, and bind their target (the fungal sterol, ergosterol) with far greater selectivity than AmB. Hence, they are less toxic and far more effective in a mouse model of systemic candidiasis. Surprisingly, exhaustive efforts to select for mutants resistant to these more selective compounds revealed that they are just as impervious to resistance as AmB. Thus, highly selective cytocidal action and the evasion of resistance are not mutually exclusive, suggesting practical routes to the discovery of less toxic, resistance-evasive therapies.
Collapse
Affiliation(s)
- Stephen A Davis
- 1] Howard Hughes Medical Institute, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Roger Adam Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Benjamin M Vincent
- 1] Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Matthew M Endo
- 1] Howard Hughes Medical Institute, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Roger Adam Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Karen Marchillo
- 1] Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA. [2] Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - David R Andes
- 1] Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA. [2] Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Susan Lindquist
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Martin D Burke
- 1] Howard Hughes Medical Institute, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Roger Adam Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
43
|
Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:245-97. [PMID: 25708465 DOI: 10.1016/bs.ircmb.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic fields generated on and within biological membranes play a fundamental role in key processes in cell functions. The role of the membrane dipole potential is of particular interest because of its powerful impact on membrane permeability and lipid-protein interactions, including protein insertion, oligomerization, and function. The membrane dipole potential is defined by the orientation of electric dipoles of lipid headgroups, fatty acid carbonyl groups, and membrane-adsorbed water. As a result, the membrane interior is several hundred millivolts more positive than the external aqueous phase. This potential decrease depends on the lipid, and especially sterol, composition of the membrane. The adsorption of certain electroneutral molecules known as dipole modifiers may also lead to significant changes in the magnitude of the potential decrease. These agents are widely used to study the effects of the dipole potential on membrane transport. This review presents a critical analysis of a variety of data from studies dedicated to ion channel formation and functioning in membranes with different dipole potentials. The types of ion channels found in cellular membranes and pores formed by antimicrobial agents and toxins in artificial lipid membranes are summarized. The mechanisms underlying the influence of the membrane dipole potential on ion channel activity, including dipole-dipole and charge-dipole interactions in the pores and in membranes, are discussed. A hypothesis, in which lipid rafts in both model and cellular membranes also modulate ion channel activity by virtue of an increased or decreased dipole potential, is also considered.
Collapse
|
44
|
Nakagawa Y, Umegawa Y, Nonomura K, Matsushita N, Takano T, Tsuchikawa H, Hanashima S, Oishi T, Matsumori N, Murata M. Axial Hydrogen at C7 Position and Bumpy Tetracyclic Core Markedly Reduce Sterol’s Affinity to Amphotericin B in Membrane. Biochemistry 2015; 54:303-12. [DOI: 10.1021/bi5012942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuo Nakagawa
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenichi Nonomura
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Naohiro Matsushita
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tetsuro Takano
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Oishi
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry,
Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
45
|
Starzyk J, Gruszecki M, Tutaj K, Luchowski R, Szlazak R, Wasko P, Grudzinski W, Czub J, Gruszecki WI. Self-Association of Amphotericin B: Spontaneous Formation of Molecular Structures Responsible for the Toxic Side Effects of the Antibiotic. J Phys Chem B 2014; 118:13821-32. [DOI: 10.1021/jp510245n] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joanna Starzyk
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marcin Gruszecki
- Department
of Informatics and Statistics, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Tutaj
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Rafal Luchowski
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Radoslaw Szlazak
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Wasko
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Wojciech Grudzinski
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jacek Czub
- Department
of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Wieslaw I. Gruszecki
- Department
of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
46
|
Kamiński DM. Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:453-67. [PMID: 25173562 PMCID: PMC4212203 DOI: 10.1007/s00249-014-0983-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/08/2014] [Accepted: 08/19/2014] [Indexed: 11/12/2022]
Abstract
In the past decade substantial progress has been made in understanding the organization and biological activity of amphotericin B (AmB) in the presence of sterols in lipid environments. This review concentrates mainly on interactions of AmB with lipids and sterols, AmB channel formation in membranes, AmB aggregation, AmB modifications important for understanding its biological activity, and AmB models explaining its mechanism of action. Most of the reviewed studies concern monolayers at the water–gas interface, monolayers deposited on a solid substrate by use of the Langmuir–Blodgett technique, micelles, vesicles, and multi-bilayers. Liposomal AmB formulations and drug delivery are intentionally omitted, because several reviews dedicated to this subject are already available.
Collapse
Affiliation(s)
- Daniel Michał Kamiński
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland,
| |
Collapse
|
47
|
Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:378280. [PMID: 25250053 PMCID: PMC4163309 DOI: 10.1155/2014/378280] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/16/2014] [Accepted: 08/05/2014] [Indexed: 11/18/2022]
Abstract
Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast's morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral's mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.
Collapse
|
48
|
Kamiński DM, Czernel G, Murphy B, Runge B, Magnussen OM, Gagoś M. Effect of cholesterol and ergosterol on the antibiotic amphotericin B interactions with dipalmitoylphosphatidylcholine monolayers: X-ray reflectivity study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2947-53. [PMID: 25128151 DOI: 10.1016/j.bbamem.2014.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023]
Abstract
Amphotericin B is a Streptomyces nodosus metabolite and one of the oldest polyene antibiotics used in the treatment of invasive systemic fungal infections. Despite its over 50-year existence in clinical practice and the recognition of amphotericin B as the gold standard in the treatment of serious systemic mycosis, it still remains one of the most toxic pharmaceuticals. Understanding of the processes at the molecular levels and the interactions between amphotericin B with lipid membranes containing sterols should elucidate the mechanisms of the action and toxicity of this widely used antibiotic. In this work, we use X-ray reflectivity to study the structural changes on a molecular scale after amphotericin B incorporation. These changes are accompanied by an increase in monolayer surface pressure which is more pronounced for ergosterol - rather than cholesterol-rich membranes. The data indicate that this difference is not due to the higher affinity of amphotericin B towards ergosterol-containing membranes but is rather due to a ~3Angstrom corrugation of the monolayer. Furthermore, the total quantity of amphotericin B incorporated into lipid monolayers containing cholesterol and ergosterol is the same.
Collapse
Affiliation(s)
- Daniel M Kamiński
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland.
| | - Grzegorz Czernel
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Bridget Murphy
- Institute for Experimental and Applied Physics, University of Kiel, 24098 Kiel, Germany; Ruprecht Haensel Laboratory, University of Kiel, 24098 Kiel, Germany
| | - Benjamin Runge
- Institute for Experimental and Applied Physics, University of Kiel, 24098 Kiel, Germany; Ruprecht Haensel Laboratory, University of Kiel, 24098 Kiel, Germany
| | - Olaf M Magnussen
- Institute for Experimental and Applied Physics, University of Kiel, 24098 Kiel, Germany; Ruprecht Haensel Laboratory, University of Kiel, 24098 Kiel, Germany
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland.
| |
Collapse
|
49
|
Chitosan-Assisted Immunotherapy for Intervention of Experimental Leishmaniasis via Amphotericin B-Loaded Solid Lipid Nanoparticles. Appl Biochem Biotechnol 2014; 174:1309-1330. [DOI: 10.1007/s12010-014-1084-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/22/2014] [Indexed: 01/27/2023]
|
50
|
Foglia F, Fragneto G, Clifton LA, Lawrence MJ, Barlow DJ. Interaction of amphotericin B with lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9147-9156. [PMID: 25019324 DOI: 10.1021/la501835p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Langmuir isotherm, neutron reflectivity, and Brewster angle microscopy experiments have been performed to study the interaction of amphotericin B (AmB) with monolayers prepared from 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and mixtures of this lipid with cholesterol or ergosterol to mimic mammalian and fungal cell membranes, respectively. Isotherm data show that AmB causes a more pronounced change in surface pressure in the POPC/ergosterol system than in the POPC and POPC/cholesterol systems, and its interaction with the POPC/ergosterol monolayer is also more rapid than with the POPC and POPC/cholesterol monolayers. Brewster angle microscopy shows that, in interaction with POPC monolayers, AmB causes the formation of small domains which shrink and disappear within a few minutes. The drug also causes domain formation in the POPC/cholesterol and POPC/ergosterol monolayers; in the former case, these are formed more slowly than is seen with the POPC monolayers and are ultimately much smaller; in the latter case, they are formed rather more quickly and are more heterogeneous in size. Neutron reflectivity data show that the changes in monolayer structure following interaction with AmB are the same for all three systems studied: the data are consistent with the drug inserting into the monolayers with its macrocyclic ring intercalated among the lipid acyl chains and sterol ring systems, with its mycosamine moiety colocalizing with the sterol hydroxyl and POPC head groups. On the basis of these studies, it is concluded that AmB inserts in a similar manner into POPC, POPC/cholesterol, and POPC/ergosterol monolayers but does so with differing kinetics and with the formation of quite different in-plane structures. The more rapid time scale for interaction of the drug with the POPC/ergosterol monolayer, its more pronounced effect on monolayer surface pressure, and its more marked changes as regards domain formation are all consistent with the drug's selectivity for fungal vs mammalian cell membranes.
Collapse
Affiliation(s)
- F Foglia
- Institute of Pharmaceutical Science, King's College London , Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | | | | | | | | |
Collapse
|