1
|
Liu H, Yang N, Ma M, Chen D, Tian S, Xu L, Huang W, Yang J. Substitutional Platinum-Phosphorus Solid Solution by Phosphidation of Worm-Like Pt Nanoparticles Using Tri-n-octylphosphine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409927. [PMID: 39937522 DOI: 10.1002/smll.202409927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 02/13/2025]
Abstract
Herein, the investigations into the phosphidation of platinum (Pt) nanoparticles are reported using tri-n-octylphosphine (TOP) at elevated temperature in an organic solvent, and identify a unique phenomenon not addressed before: The phosphorus (P) atoms can replace partial Pt atoms from their lattice points to form a substitutional Pt-P solid solution. The rationality is authenticated for forming substitutional Pt-P solid solution via P doping by various characterizations and density functional theory (DFT) calculations, both of which suggests that the maximum P content in the Pt-P solid solution is approximately ≈10% for maintaining the stability of the face-centered cubic crystal structure.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Niuwa Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Mengyuan Ma
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaonan Tian
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenlai Huang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Li Y, Huang Y, Zhao P, Fei J, Xie Y. A review on Pd-M bimetallic electrochemical sensors: Techniques, performance, and applications. Talanta 2025; 282:126989. [PMID: 39383725 DOI: 10.1016/j.talanta.2024.126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Environmental pollution, food safety, and medical diagnostics pose severe threats to human health, making the development of effective detection technologies crucial. Electrochemical sensors, as an efficient detection method, are extensively employed in detecting environmental pollutants, food additives, and biomolecules. Pd-M bimetallic materials, known for their excellent electrocatalytic performance, are extensively utilized as electrode modification materials. Although earlier reviews have covered the sensing applications of bimetallic materials, they have not targeted discussed Pd-based bimetallic materials. This paper systematically summarizes the preparation methods of Pd-M bimetallic materials, explores their structural and morphological regulation, and elaborates on their recent applications in pesticide detection, environmental pollutant detection, food additive detection, drug detection, and biosensing. It enumerates the detection performance of various Pd-M bimetallic material-modified electrochemical sensors for the aforementioned analytes in detail, including specific modification materials, linear range, detection limits, and sensitivity parameters.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, People's Republic of China.
| |
Collapse
|
3
|
Roncaglia C, Ferrando R. Tetrahedral Clusters Stabilized by Alloying. J Phys Chem A 2024; 128:89-96. [PMID: 38113287 PMCID: PMC10788904 DOI: 10.1021/acs.jpca.3c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
A family of nanoclusters of tetrahedral symmetry is proposed. These clusters consist of symmetrically truncated tetrahedra with additional hexagonal islands on the four facets of the starting tetrahedron. The islands are placed in stacking fault positions. The geometric magic numbers of these clusters are derived. Global optimization searches within an atomistic potential model of Pt-Pd show that the tetrahedral structures can be stabilized for intermediate compositions of these nanoalloys, even when they are not the most stable structures of the elemental clusters. These results are also confirmed by density functional theory calculations for the magic sizes 59, 100, and 180. A thermodynamic analysis by the harmonic superposition approximation shows that Pt-Pd tetrahedral nanoalloys can be stable even above room temperature.
Collapse
Affiliation(s)
- Cesare Roncaglia
- Dipartimento
di Fisica dell’Università di Genova, via Dodecaneso 33, Genova 16146, Italy
| | - Riccardo Ferrando
- Dipartimento
di Fisica dell’Università di Genova, via Dodecaneso 33, Genova 16146, Italy
- CNR-IMEM, via Dodecaneso 33, Genova 16146, Italy
| |
Collapse
|
4
|
Wang S, Ma L, Song D, Yang S. Au Doping PtNi Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2855. [PMID: 37947700 PMCID: PMC10650142 DOI: 10.3390/nano13212855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
To boost the electrocatalytic methanol oxidation reaction (MOR) of Platinum (Pt), making binary PtM (M = transition metals, for example, Fe, Cu, and Ni) with specific morphology is known as a promising method. Although great progress has been made in the synthesis of shaped PtM catalysts toward MOR, enhancing the catalytic performance of the PtM to enable it to be commercialized is still a hotspot. In this work, the Au-doped PtNi dendritic nanoparticles (Au-PtNi DNPs) were obtained by doping a small amount of gold (Au) into initially prepared PtNi DNPs, greatly improving their MOR catalytic activity and durability. The energy-dispersive X-ray spectroscopy mapping (EDXS) indicates that the surface of DNPs is mainly composed of Au dopant and PtNi, while the core is mainly Pt, indicating the formation of Au-doped PtNi/Pt core-shell-like DNP structures. The electrocatalytic performance of the prepared Au-PtNi DNPs with different compositions for the MOR was evaluated using cyclic voltammetry, chronoamperometry, and CO-stripping tests. The experimental findings indicate that the Au-PtNi DNPs showed better MOR performance in comparison with PtNi DNPs and commercial Pt catalysts. Among all the catalysts, 6% Au-PtNi DNPs showed 4.3 times improved mass catalytic activity for the MOR in comparison with commercial Pt catalysts. In addition, all the prepared Au-PtNi DNPs display a remarkable CO tolerance compared to that of PtNi DNPs and commercial Pt catalysts. The dendritic structure of Au-PtNi DNPs can effectively enhance catalytic performance, combined with the electronic effect of Au, Pt, and Ni.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, No. 6 East Wenhui Road, Xianyang 712082, China; (L.M.); (D.S.)
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, No. 6 East Wenhui Road, Xianyang 712082, China; (L.M.); (D.S.)
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, No. 6 East Wenhui Road, Xianyang 712082, China; (L.M.); (D.S.)
| | - Shengchun Yang
- Ministry of Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China
- Shaanxi Collaborative Innovation Center for Hydrogen Fuel Cell Performance Improvement, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China
| |
Collapse
|
5
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Ying J, Xiao Y, Chen J, Hu ZY, Tian G, Tendeloo GV, Zhang Y, Symes MD, Janiak C, Yang XY. Fractal Design of Hierarchical PtPd with Enhanced Exposed Surface Atoms for Highly Catalytic Activity and Stability. NANO LETTERS 2023; 23:7371-7378. [PMID: 37534973 DOI: 10.1021/acs.nanolett.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Hierarchical assembly of arc-like fractal nanostructures not only has its unique self-similarity feature for stability enhancement but also possesses the structural advantages of highly exposed surface-active sites for activity enhancement, remaining a great challenge for high-performance metallic nanocatalyst design. Herein, we report a facile strategy to synthesize a novel arc-like hierarchical fractal structure of PtPd bimetallic nanoparticles (h-PtPd) by using pyridinium-type ionic liquids as the structure-directing agent. Growth mechanisms of the arc-like nanostructured PtPd nanoparticles have been fully studied, and precise control of the particle sizes and pore sizes has been achieved. Due to the structural features, such as size control by self-similarity growth of subunits, structural stability by nanofusion of subunits, and increased numbers of exposed active atoms by the curved homoepitaxial growth, h-PtPd displays outstanding electrocatalytic activity toward oxygen reduction reaction and excellent stability during hydrothermal treatment and catalytic process.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuxuan Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiangbo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Gustaaf Van Tendeloo
- EMAT (Electron Microscopy for Materials Science), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, U.K
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
7
|
Chen M, Chen XT, Zhang LY, Meng W, Chen YJ, Zhang YS, Chen ZC, Wang HM, Luo CM, Shi XD, Zhang WH, Wang MS, Chen JX. Kinetically and thermodynamically controlled one-pot growth of gold nanoshells with NIR-II absorption for multimodal imaging-guided photothermal therapy. J Nanobiotechnology 2023; 21:138. [PMID: 37106405 PMCID: PMC10141956 DOI: 10.1186/s12951-023-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Since the successful clinical trial of AuroShell for photothermal therapy, there is currently intense interest in developing gold-based core-shell structures with near-infrared (NIR) absorption ranging from NIR-I (650-900 nm) to NIR-II (900-1700 nm). Here, we propose a seed-mediated successive growth approach to produce gold nanoshells on the surface of the nanoscale metal-organic framework (NMOF) of UiO-66-NH2 (UiO = the University of Oslo) in one pot. The key to this strategy is to modulate the proportion of the formaldehyde (reductant) and its regulator / oxidative product of formic acid to harness the particle nucleation and growth rate within the same system. The gold nanoshells propagate through a well-oriented and controllable diffusion growth pattern (points → facets → octahedron), which has not been identified. Most strikingly, the gold nanoshells prepared hereby exhibit an exceedingly broad and strong absorption in NIR-II with a peak beyond 1300 nm and outstanding photothermal conversion efficiency of 74.0%. Owing to such superior performance, these gold nanoshells show promising outcomes in photoacoustic (PA), computed tomography (CT), and photothermal imaging-guided photothermal therapy (PTT) for breast cancer, as demonstrated both in vitro and in vivo.
Collapse
Affiliation(s)
- Ming Chen
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Xiao-Tong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lian-Ying Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Jian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Shan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Cong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Min Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chun-Mei Luo
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Xiu-Dong Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mao-Sheng Wang
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Guo K, Xu D, Xu L, Li Y, Tang Y. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications. MATERIALS HORIZONS 2023; 10:1234-1263. [PMID: 36723011 DOI: 10.1039/d2mh01408d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inorganic nanodendrites (NDs) have become a kind of advanced nanomaterials with broad application prospects because of their unique branched architecture. The structural characteristics of nanodendrites include highly branched morphology, abundant tips/edges and high-index crystal planes, and a high atomic utilization rate, which give them great potential for usage in the fields of electrocatalysis, sensing, and therapeutics. Therefore, the rational design and controlled synthesis of inorganic (especially noble metals) nanodendrites have attracted widespread attention nowadays. The development of synthesis strategies and characterization methodology provides unprecedented opportunities for the preparation of abundant nanodendrites with interesting crystallographic structures, morphologies, and application performances. In this review, we systematically summarize the formation mechanisms of noble metal nanodendrites reported in recent years, with a special focus on surfactant-mediated mechanisms. Some typical examples obtained by innovative synthetic methods are then highlighted and recent advances in the application of noble metal nanodendrites are carefully discussed. Finally, we conclude and present the prospects for the future development of nanodendrites. This review helps to deeply understand the synthesis and application of noble metal nanodendrites and may provide some inspiration to develop novel functional nanomaterials (especially electrocatalysts) with enhanced performance.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
9
|
Gu Y, Guo W, Bao J, Li Y, Lu L. Au-modified PtCu nanodendrites as a highly stable and active electrocatalyst. Chem Commun (Camb) 2023; 59:3582-3585. [PMID: 36883349 DOI: 10.1039/d3cc00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Direct galvanic replacement of surface Cu with Au3+ in PtCu3 nanodendrites is applied to synthesize an Au-modified PtCu3 nanodendrite catalyst (PtCu3-Au), which shows both superior stability and excellent activity for the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). The PtCu3-Au catalyst only lost 7% of its MOR activity and its ORR half-wave potential decreased 8 mV after 10 000 potential cycles.
Collapse
Affiliation(s)
- Yuelin Gu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Weiyi Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Jingqi Bao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Yunxia Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
10
|
Zhang G, Han Y, Liu Z, Fan L, Guo Y. Triple Amplification Ratiometric Electrochemical Aptasensor for CA125 Based on H-Gr/SH-β-CD@PdPtNFs. Anal Chem 2023; 95:1294-1300. [PMID: 36576891 DOI: 10.1021/acs.analchem.2c04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A triple-amplified and ratiometric electrochemical aptasensor for CA125 was designed based on hemin-graphene/SH-β-cyclodextrin@PdPt nanoflower (H-Gr/SH-β-CD@PdPtNF) composites and an exonuclease I (Exo I)-assisted strategy. In the nanocomposite, hemin acts as an internal reference signal owing to the reversible heminox/heminred pair. PdPtNFs can significantly improve the electron transfer rate. SH-β-CD can efficiently enrich quercetin probes through host-guest recognition and increase the second indicator signal. In the presence of CA125, due to the specific binding between the aptamer and CA125, the conformational change of dsDNA (designed by the CA125 aptamer and its complementary DNA) results in the release of quercetin embedded in dsDNA. Subsequently, the free quercetin and DNA fragments are enriched on the H-Gr/SH-β-CD@PdPtNF-modified electrode. Thus, an enhanced oxidation peak from quercetin (IQ) and a reduced peak from hemin (Ihemin) can indicate the same biological identification event. In addition, the recycling amplification of CA125 by Exo I can effectively assist the increase of the quercetin signal. The value of IQ/Ihemin is linear with the concentration of CA125 in the range from 6.0 × 10-4 to 1.0 × 103 ng/mL, and the limit of detection is 1.4 × 10-4 ng/mL. The recovery of CA125 in human blood serum samples was from 99.2 to 104.4%. The proposed sensor is sensitive and reliable, which provides an avenue for the development of triple amplification and ratiometric signal strategies for detecting tumor markers in clinical diagnostics.
Collapse
Affiliation(s)
- Guojuan Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China.,Department of Basic Courses, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yujie Han
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
11
|
Palladium-platinum bimetallic nanomaterials and their application in Staphylococcus aureus detection on paper-based devices. Biosens Bioelectron 2022; 216:114669. [DOI: 10.1016/j.bios.2022.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
|
12
|
Logeshwaran N, Panneerselvam IR, Ramakrishnan S, Kumar RS, Kim AR, Wang Y, Yoo DJ. Quasihexagonal Platinum Nanodendrites Decorated over CoS 2 -N-Doped Reduced Graphene Oxide for Electro-Oxidation of C1-, C2-, and C3-Type Alcohols. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105344. [PMID: 35048552 PMCID: PMC8922112 DOI: 10.1002/advs.202105344] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Indexed: 05/27/2023]
Abstract
The development of efficient and highly durable materials for renewable energy conversion devices is crucial to the future of clean energy demand. Herein, cage-like quasihexagonal structured platinum nanodendrites decorated over the transition metal chalcogenide core (CoS2 )-N-doped graphene oxide (PtNDs@CoS2 -NrGO) through optimized shape engineering and structural control technology are fabricated. The prepared electrocatalyst of PtNDs@CoS2 -NrGO is effectively used as anodic catalyst for alcohol oxidation in direct liquid alcohol fuel cells. Notably, the prepared PtNDs@CoS2 -NrGO exhibits superior electrocatalytic performance toward alcohol oxidation with higher oxidation peak current densities of 491.31, 440.25, and 438.12 mA mgpt -1 for (methanol) C1, (ethylene glycol) C2, and (glycerol) C3 fuel electrolytes, respectively, as compared to state-of-the-art Pt-C in acidic medium. The electro-oxidation durability of PtNDs@CoS2 -NrGO is investigated through cyclic voltammetry and chronoamperometry tests, which demonstrate excellent stability of the electrocatalyst toward various alcohols. Furthermore, the surface and adsorption energies of PtNDs and CoS2 are calculated using density functional theory along with the detailed bonding analysis. Overall, the obtained results emphasize the advances in effective precious material utilization and fabricating techniques of active electrocatalysts for direct alcohol oxidation fuel cell applications.
Collapse
Affiliation(s)
- Natarajan Logeshwaran
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | | | - Shanmugam Ramakrishnan
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Ramasamy Santhosh Kumar
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Ae Rhan Kim
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Department of Life ScienceJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Yan Wang
- Department of Mechanical EngineeringUniversity of Nevada, RenoRenoNV89557USA
| | - Dong Jin Yoo
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Department of Life ScienceJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| |
Collapse
|
13
|
Chen Y, Fan S, Chen J, Deng L, Xiao Z. Catalytic Membrane Nanoreactor with Cu-Ag x Bimetallic Nanoparticles Immobilized in Membrane Pores for Enhanced Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9106-9115. [PMID: 35143180 DOI: 10.1021/acsami.1c22753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalytic membrane nanoreactor (CMNR) with Cu-Agx (where x is the millimolar concentration of AgNO3) bimetallic catalysts immobilized in membrane pores has been fabricated via coupling flowing synthesis and replacement reaction. Surface characterization by transmission electron microscopy (TEM) gives obvious evidence of the formation of Cu-Ag bimetallic core-shell nanostructures with Ag islands deposited on the Cu core metal. An apparent high shift phenomenon for the Cu element and a low shift phenomenon for the Ag element was determined by X-ray photoelectron spectroscopy (XPS), indicating a close interaction with the transfer of electron density from the Cu atom to the Ag atom. The hydrogenation catalysis of p-nitrophenol (p-NP) was tested to evaluate the catalytic performance. During the catalytic process, the Cu core acts as an electron-deficient site to adsorb and activate the -NO2 group for p-NP, and the Ag shell is beneficial for enhancing active H spilling to the Cu surface and then performing hydrogenation. A volcano-shaped apparent reaction rate constant can be achieved, which rises initially with the increasing Ag content and subsequently drops with a further increase in the Ag content. The highest value of 1071 min-1 can be achieved for CMNR immobilized with Cu-Ag2 owing to the suitable adsorption activation behavior and the best hydrogen spillover behavior.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqin Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Lei Deng
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
14
|
Guo J, Zhang M, Xu J, Fang J, Luo S, Yang C. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction. RSC Adv 2022; 12:2246-2252. [PMID: 35425232 PMCID: PMC8979267 DOI: 10.1039/d1ra07998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Pd-P@Pt-Ni core-shell nanoparticles, which consisted of a Pd-P alloy as a core and Pt-Ni thin layer as a shell, were explored as electrocatalysts for methanol oxidation reaction. The crystallographic information and the electronic properties were fully investigated by X-ray diffraction and X-ray photoelectron spectroscopy. In the methanol electrooxidation reaction, the particles showed high catalytic activity and strong resistance to the poisoning carbonaceous species in comparison with those of commercial Pt/C and the as-prepared Pt/C catalysts. The excellent durability was demonstrated by electrochemically active surface area loss and chronoamperometric measurements. These results would be due to the enhanced catalytic properties of Pt by the double synergistic effects from the core part and the nickel species in the shell part.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| |
Collapse
|
15
|
Ge Y, Wang X, Chen B, Huang Z, Shi Z, Huang B, Liu J, Wang G, Chen Y, Li L, Lu S, Luo Q, Yun Q, Zhang H. Preparation of fcc-2H-fcc Heterophase Pd@Ir Nanostructures for High-Performance Electrochemical Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107399. [PMID: 34719800 DOI: 10.1002/adma.202107399] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
With the development of phase engineering of nanomaterials (PEN), construction of noble-metal heterostructures with unconventional crystal phases, including heterophases, has been proposed as an attractive approach toward the rational design of highly efficient catalysts. However, it still remains challenging to realize the controlled preparation of such unconventional-phase noble-metal heterostructures and explore their crystal-phase-dependent applications. Here, various Pd@Ir core-shell nanostructures are synthesized with unconventional fcc-2H-fcc heterophase (2H: hexagonal close-packed; fcc: face-centered cubic) through a wet-chemical seeded method. As a result, heterophase Pd66 @Ir34 nanoparticles, Pd45 @Ir55 multibranched nanodendrites, and Pd68 @Ir22 Co10 trimetallic nanoparticles are obtained via the phase-selective epitaxial growth of fcc-2H-fcc-heterophase Ir-based nanostructures on 2H-Pd seeds. Importantly, the heterophase Pd45 @Ir55 nanodendrites exhibit excellent catalytic performance toward electrochemical hydrogen evolution reaction (HER) under acidic conditions. An overpotential of only 11.0 mV is required to achieve a current density of 10 mA cm-2 on Pd45 @Ir55 nanodendrites, which is lower than those of the conventional fcc-Pd47 @Ir53 counterparts, commercial Ir/C and Pt/C. This work not only demonstrates an appealing route to synthesize novel heterophase nanomaterials for promising applications in the emerging field of PEN, but also highlights the significant role of the crystal phase in determining their catalytic properties.
Collapse
Affiliation(s)
- Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
16
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
17
|
Sai Bhavani K, Anusha T, Stuparu MC, Brahman PK. Synthesis and characterization of palladium nanoparticles-corannulene nanocomposite: An anode electrocatalyst for direct oxidation of methanol in alkaline medium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Liu D, Yang N, Zeng Q, Liu H, Chen D, Cui P, Xu L, Hu C, Yang J. Core-shell Ag–Pt nanoparticles: A versatile platform for the synthesis of heterogeneous nanostructures towards catalyzing electrochemical reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Wang TJ, Sun HY, Xue Q, Zhong MJ, Li FM, Tian X, Chen P, Yin SB, Chen Y. Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution. Sci Bull (Beijing) 2021; 66:2079-2089. [PMID: 36654266 DOI: 10.1016/j.scib.2021.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023]
Abstract
The catalytic/electrocatalytic performance of platinum (Pt) nanostructures highly relates to their morphology. Herein, we propose a facile self-template pyrolysis strategy at high temperature to synthesize one-dimensionally holey Pt nanotubes (Pt-hNTs) using PtII-dimethylglyoxime complex (PtII-DMG) nanorods as the reaction precursor. The coordination capability of DMG results in the generation of PtII-DMG nanorods, whereas the reducibility of DMG at high temperature leads to the reduction of PtII species in PtII-DMG nanorods. During the reaction process, the inside-out Ostwald ripening phenomenon leads to the hollow morphology of Pt-hNTs. Benefiting from the physical characteristics of hollow and holey structure, Pt-hNTs with clean surface show superior electroactivity and durability for catalyzing ethanol electrooxidation as well as hydrogen evolution reaction in alkaline media. Under optimized experimental conditions, the constructed symmetric Pt-hNTs||Pt-hNTs ethanol electrolyzer only requires an electrolysis voltage of 0.40 V to achieve the electrochemical hydrogen production, demonstrating a highly energy saving strategy relative to traditional water electrolysis.
Collapse
Affiliation(s)
- Tian-Jiao Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Hui-Ying Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qi Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ming-Jun Zhong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Fu-Min Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China.
| | - Pei Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Shi-Bin Yin
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
20
|
Zhang F, Liu Z, Han Y, Fan L, Guo Y. Sandwich electrochemical carcinoembryonic antigen aptasensor based on signal amplification of polydopamine functionalized graphene conjugate Pd-Pt nanodendrites. Bioelectrochemistry 2021; 142:107947. [PMID: 34507161 DOI: 10.1016/j.bioelechem.2021.107947] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 02/09/2023]
Abstract
Carcinoembryonic antigen (CEA) is considered as a disease biomarker, which is related to various cancers and tumors in the human bodies. Sensitive detection of CEA is significant for clinical diagnosis and treatment. Herein, we proposed an electrochemical aptasensor for CEA detection based on the amplification driven by polydopamine functional graphene and Pd-Pt nanodendrites (PDA@Gr/Pd-PtNDs), conjugated hemin/G-quadruplex (hemin/G4), which possess mimicking peroxidases activity. Firstly, PDA@Gr was modified on the electrode surface for fixing CEA aptamer 1 (Apt1). Then, PDA@Gr/Pd-PtNDs with large surface area served as matrix for immobilization of hemin/G4 to obtain the secondary aptamer. In virtue of the sandwich-type specific reaction between CEA and the corresponding aptamers, the second aptamer was captured on the sensing interface, which can catalyze the oxidation of signal probe hydroquinone (HQ) with H2O2 and amplify current signal. Furthermore, the electrochemical signals of HQ were proportional with CEA concentrations. Under the optimal conditions, a dynamic response range from 50 pg/mL to 1.0 μg/mL and a detection limit of 6.3 pg/mL for CEA were obtained. Moreover, the proposed strategy represented satisfactory sensitivity and stability, and showed a good precision in real samples application.
Collapse
Affiliation(s)
- Fenglin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yujie Han
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
21
|
Li G, Zhang W, Luo N, Xue Z, Hu Q, Zeng W, Xu J. Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1926. [PMID: 34443756 PMCID: PMC8401639 DOI: 10.3390/nano11081926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.
Collapse
Affiliation(s)
- Gaojie Li
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenshuang Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Qingmin Hu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Wen Zeng
- School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
22
|
Kottayintavida R, Gopalan NK. PdAu alloy nano wires for the elevated alcohol electro-oxidation reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Wang H, Zhou T, Mao Q, Wang S, Wang Z, Xu Y, Li X, Deng K, Wang L. Porous PdAg alloy nanostructures with a concave surface for efficient electrocatalytic methanol oxidation. NANOTECHNOLOGY 2021; 32:355402. [PMID: 34030138 DOI: 10.1088/1361-6528/ac0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Tuning the composition and surface structure of the metal nanocrystals offered viable avenues for enhancing catalytic performances. Herein, we report a facile one-pot strategy for the formation of PdAg porous alloy nanostructures (PANs) with a concave surface. Due to their highly open nanostructures and tunable d-band center features, PdAg PANs exhibit superior electrocatalytic activity and long-term durability than Pd nanoparticles (NPs) and Pd/C for methanol oxidation reaction (MOR) in alkaline media. Our results provide a feasible and efficient approach for the controlled synthesis of high-performance Pd-based nanomaterials for alkaline MOR.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Shengqi Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
24
|
Abstract
PtPd nanoparticles are among the most widely studied nanoscale systems, mainly because of their applications as catalysts in chemical reactions. In this work, a combined experimental-theoretical study is presented about the dependence of growth shape of PtPd alloy nanocrystals on their composition. The particles are grown in the gas phase and characterized by STEM-HRTEM. PtPd nanoalloys present a bimodal size distribution. The size of the larger population can be tuned between 3.8 ± 0.4 and 14.1 ± 2.0 nm by controlling the deposition parameters. A strong dependence of the particle shape on the composition is found: Pd-rich nanocrystals present more rounded shapes whereas Pt-rich ones exhibit sharp tips. Molecular dynamics simulations and excess energy calculations show that the growth structures are out of equilibrium. The growth simulations are able to follow the growth shape evolution and growth pathways at the atomic level, reproducing the structures in good agreement with the experimental results. Finally the optical absorption properties are calculated for PtPd nanoalloys of the same shapes and sizes grown in our experiments.
Collapse
|
25
|
Yaqoob L, Noor T, Iqbal N. A comprehensive and critical review of the recent progress in electrocatalysts for the ethanol oxidation reaction. RSC Adv 2021; 11:16768-16804. [PMID: 35479139 PMCID: PMC9032615 DOI: 10.1039/d1ra01841h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023] Open
Abstract
The human craving for energy is continually mounting and becoming progressively difficult to gratify. At present, the world's massive energy demands are chiefly encountered by nonrenewable and benign fossil fuels. However, the development of dynamic energy cradles for a gradually thriving world to lessen fossil fuel reserve depletion and environmental concerns is currently a persistent issue for society. The discovery of copious nonconventional resources to fill the gap between energy requirements and supply is the extreme obligation of the modern era. A new emergent, clean, and robust alternative to fossil fuels is the fuel cell. Among the different types of fuel cells, the direct ethanol fuel cell (DEFCs) is an outstanding option for light-duty vehicles and portable devices. A critical tactic for obtaining sustainable energy sources is the production of highly proficient, economical and green catalysts for energy storage and conversion devices. To date, a broad range of research is available for using Pt and modified Pt-based electrocatalysts to augment the C2H5OH oxidation process. Pt-based nanocubes, nanorods, nanoflowers, and the hybrids of Pt with metal oxides such as Fe2O3, TiO2, SnO2, MnO, Cu2O, and ZnO, and with conducting polymers are extensively utilized in both acidic and basic media. Moreover, Pd-based materials, transition metal-based materials, as well as transition metal-based materials are also points of interest for researchers nowadays. This review article delivers a broad vision of the current progress of the EOR process concerning noble metals and transition metals-based materials.
Collapse
Affiliation(s)
- Lubna Yaqoob
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan +92 51 9085 5121
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| |
Collapse
|
26
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN. Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies. Top Curr Chem (Cham) 2021; 379:22. [PMID: 33890199 DOI: 10.1007/s41061-021-00332-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
In recent years, bimetallic and trimetallic nanoparticles (NPs) have become attractive materials for many researchers especially in the field of catalysis due to their interesting physical and chemical properties. These unique properties arise mainly from simultaneous effects of two different metal atoms in their structure. In this review, recent theoretical studies on these NPs using molecular dynamics simulation are presented. Since investigation of thermodynamic stabilities of metallic NPs is a critical factor in their construction for catalytic applications, our focus in this review is on the thermal stability of bimetallic and trimetallic NPs. The melting behavior of these materials with different atomic arrangements including core-shell, three-shell, crown-jewel, ordered and disordered alloy, and Janus materials are discussed. Other factors including stress, strain, atomic radius, thermal expansion coefficient, cohesive energy, surface energy, size, composition, and morphology are described in detail, because these properties lead to complexity in the melting behavior of bimetallic and trimetallic NPs.
Collapse
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran.
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
| |
Collapse
|
27
|
Su K, Zhang H, Qian S, Li J, Zhu J, Tang Y, Qiu X. Atomic Crystal Facet Engineering of Core-Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region. ACS NANO 2021; 15:5178-5188. [PMID: 33588529 DOI: 10.1021/acsnano.0c10376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Simultaneously engineering the size and surface crystal facets of bimetallic core-shell nanocrystals offers an effective route to not only reduce the extravagance of innermost core metal and maximize the utilization efficiency of shell atoms but also strengthen the core-to-shell interaction via ligand and/or strain effects. Herein, we systematically study the architecture transition and crystal facet engineering at the atomic level on the surface of sub-5 nm Pd(111) tetrahedrons (Ths), aimed at embodying how the variations in the local facet and shape of a sub-10 nm core-shell structure affect its surface geometrical properties and electronic structures. Specifically, surface atomic replication is predominant when the shell metal deposits less than five atomic layers, thus forming a series of Pd@M (M = Pt, Ru, and Rh) core-shell Ths enclosed by (111) facets (∼6.8 nm), while over five atomic layers, spontaneous facets tropism of each metal is predominant, where Pt atoms still follow fcc-(111) packing, Ru atoms select hcp-phase stacking, and Rh atoms choose fcc-(100) crystallization, respectively. In particular, Pt atoms take a seamless geometrical transformation from Pd@Pt Ths into Pd@Pt truncated octahedrons (TOhs, ∼7.6 nm). As a proof-of-concept application, such sub-10 nm core-shell architectures with Pt skin show a component-dependent relationship toward oxygen reduction reaction (ORR), where the catalytic activity follows the order of Pd@Pt(111) TOhs (E1/2 = 0.916 V, 1.632 A mgPt-1) > Pd@Pt(111) Ths > Pt black. Meanwhile the Ru skin show a facet-dependent relationship toward acidic hydrogen evolution reaction (HER) where the catalytic activity follows the order of Pd@Ru(111) Ths > Pd@Ru(hcp) Ths > Pd Ths.
Collapse
Affiliation(s)
- Keying Su
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huaifang Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyun Qian
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiatian Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiawei Zhu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Qiu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
28
|
Lu L, Wang B, Wu D, Zou S, Fang B. Engineering porous Pd-Cu nanocrystals with tailored three-dimensional catalytic facets for highly efficient formic acid oxidation. NANOSCALE 2021; 13:3709-3722. [PMID: 33544114 DOI: 10.1039/d0nr09164b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rational synthesis of bi- or multi-metallic nanomaterials with both dendritic and porous features is appealing yet challenging. Herein, with the cubic Cu2O nanoparticles composed of ultrafine Cu2O nanocrystals as a self-template, a series of Pd-Cu nanocrystals with different morphologies (e.g., aggregates, porous nanodendrites, meshy nanochains and porous nanoboxes) are synthesized through simply regulating the molar ratio of the Pd precursor to the cubic Cu2O, indicating that the galvanic replacement and Kirkendall effect across the alloying process are well controlled. Among the as-developed various Pd-Cu nanocrystals, the porous nanodendrites with both dendritic and hollow features show superior electrocatalytic activity toward formic acid oxidation. Comprehensive characterizations including three-dimensional simulated reconstruction of a single particle and high-resolution transmission electron microscopy reveal that the surface steps, defects, three-dimensional architecture, and the electronic/strain effects between Cu and Pd are responsible for the outstanding catalytic activity and excellent stability of the Pd-Cu porous nanodendrites.
Collapse
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Bing Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Di Wu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6 T 1Z3, Canada.
| |
Collapse
|
29
|
Nelli D, Cerbelaud M, Ferrando R, Minnai C. Tuning the coalescence degree in the growth of Pt-Pd nanoalloys. NANOSCALE ADVANCES 2021; 3:836-846. [PMID: 36133833 PMCID: PMC9416879 DOI: 10.1039/d0na00891e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Coalescence is a phenomenon in which two or more nanoparticles merge to form a single larger aggregate. By means of gas-phase magnetron-sputtering aggregation experiments on Pt-Pd nanoalloys, it is shown that the degree of coalescence can be tuned from a growth regime in which coalescence is negligible to a regime where the growth outcome is dominated by coalescence events. This transition is achieved by varying both the length of the aggregation zone and the pressure difference between the aggregation and the deposition chamber. In the coalescence-dominated regime, a wide variety of coalescing aggregates is produced and analyzed by TEM. The experimental results are interpreted with the aid of molecular-dynamics simulations. This allows to distinguish four different steps through which coalescence proceeds towards equilibrium. These steps, occurring on a hierarchy of well-separated time scales, consist in: (i) alignment of atomic columns; (ii) alignment of close-packed atomic planes; (iii) equilibration of shape; (iv) equilibration of chemical ordering.
Collapse
Affiliation(s)
- Diana Nelli
- Dipartimento di Fisica dell'Università di Genova Via Dodecaneso 33 Genova 16146 Italy
| | | | - Riccardo Ferrando
- Dipartimento di Fisica dell'Università di Genova and CNR-IMEM Via Dodecaneso 33 Genova 16146 Italy
| | - Chloé Minnai
- Nanoparticles by Design Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son, Kunigami-gun Okinawa Japan 904-0495
| |
Collapse
|
30
|
Zheng G, Mourdikoudis S, Zhang Z. Plasmonic Metallic Heteromeric Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002588. [PMID: 32762017 DOI: 10.1002/smll.202002588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Binary, ternary, and other high-order plasmonic heteromers possess remarkable physical and chemical properties, enabling them to be used in numerous applications. The seed-mediated approach is one of the most promising and versatile routes to produce plasmonic heteromers. Selective growth of one or multiple domains on desired sites of noble metal, semiconductor, or magnetic seeds would form desired heteromeric nanostructures with multiple functionalities and synergistic effects. In this work, the challenges for the synthetic approaches are discussed with respect to tuning the thermodynamics, as well as the kinetic properties (e.g., pH, temperature, injection rate, among others). Then, plasmonic heteromers with their structure advantages displaying unique activities compared to other hybrid nanostructures (e.g., core-shell, alloy) are highlighted. Some of the main most recent applications of plasmonic heteromers are also presented. Finally, perspectives for further exploitation of plasmonic heteromers are demonstrated. The goal of this work is to provide the current know-how on the synthesis routes of plasmonic heteromers in a summarized manner, so as to achieve a better understanding of the resulting properties and to gain an improved control of their performances and extend their breadth of applications.
Collapse
Affiliation(s)
- Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London (UCL), London, WC1E 6BT, UK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, London, W1S 4BS, UK
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
31
|
Peng X, Lu D, Qin Y, Li M, Guo Y, Guo S. Pt-on-Pd Dendritic Nanosheets with Enhanced Bifunctional Fuel Cell Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30336-30342. [PMID: 32525299 DOI: 10.1021/acsami.0c05868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pd-Pt bimetallic nanocrystals have become appealing in the electrocatalytic field by virtue of their synergy effects derived from the electronic coupling between two metals. Herein, a facile seed-mediated growth approach is reported for synthesis of Pt-on-Pd dendritic nanosheets (DNSs) through the growth of Pt branches on ultrathin Pd nanosheets (NSs). The as-obtained Pt-on-Pd DNSs exhibit superior catalytic activity toward both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR), with mass activities (MAs) 2.2 times higher for ORR and 3.4 times higher for MOR than commercial Pt/C catalysts. Moreover, these spatially separated Pt branches supported on 2D NSs also endow the Pt-on-Pd DNSs with impressive durability for ORR with only 18.9% loss in MA, whereas the Pt/C catalyst loses 50.0% after 10,000-cycle accelerated durability tests. This 2D DNS architecture can be extended to other 2D metallic NS substrates for constructing Pt-based electrocatalysts with excellent electrocatalytic performance.
Collapse
Affiliation(s)
- Xiuying Peng
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Dongtao Lu
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yingnan Qin
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Miaomiao Li
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shaojun Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
32
|
Mesoporous Pd@Pt nanoparticle-linked immunosorbent assay for detection of atrazine. Anal Chim Acta 2020; 1116:36-44. [DOI: 10.1016/j.aca.2020.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 11/19/2022]
|
33
|
Bhol P, Bhavya MB, Swain S, Saxena M, Samal AK. Modern Chemical Routes for the Controlled Synthesis of Anisotropic Bimetallic Nanostructures and Their Application in Catalysis. Front Chem 2020; 8:357. [PMID: 32528924 PMCID: PMC7262677 DOI: 10.3389/fchem.2020.00357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Bimetallic nanoparticles (BNPs) have attracted greater attention compared to its monometallic counterpart because of their chemical/physical properties. The BNPs have a wide range of applications in the fields of health, energy, water, and environment. These properties could be tuned with a number of parameters such as compositions of the bimetallic systems, their preparation method, and morphology. Monodisperse and anisotropic BNPs have gained considerable interest and numerous efforts have been made for the controlled synthesis of bimetallic nanostructures (BNS) of different sizes and shapes. This review offers a brief summary of the various synthetic routes adopted for the synthesis of Palladium(Pd), Platinum(Pt), Nickel(Ni), Gold(Au), Silver(Ag), Iron(Fe), Cobalt(Co), Rhodium(Rh), and Copper(Cu) based transition metal bimetallic anisotropic nanostructures, growth mechanisms e.g., seed mediated co-reduction, hydrothermal, galvanic replacement reactions, and antigalvanic reaction, and their application in the field of catalysis. The effect of surfactant, reducing agent, metal precursors ratio, pH, and reaction temperature for the synthesis of anisotropic nanostructures has been explained with examples. This review further discusses how slight modifications in one of the parameters could alter the growth mechanism, resulting in different anisotropic nanostructures which highly influence the catalytic activity. The progress or modification implied in the synthesis techniques within recent years is focused on in this article. Furthermore, this article discussed the improved activity, stability, and catalytic performance of BNS compared to the monometallic performance. The synthetic strategies reported here established a deeper understanding of the mechanisms and development of sophisticated and controlled BNS for widespread application.
Collapse
Affiliation(s)
- Prangya Bhol
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - M B Bhavya
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Swarnalata Swain
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| |
Collapse
|
34
|
Scaria J, Nidheesh PV, Kumar MS. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110011. [PMID: 32072958 DOI: 10.1016/j.jenvman.2019.110011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 05/07/2023]
Abstract
Bimetallic nanoparticles are the complex combination of two different metal constituents in nanoscale. Water and wastewater treatment utilizing bimetallic particles is an emerging research area. When two metals are combined, it can show not only the properties of its constituents but also new and enhanced properties derived by the synergy of the combination. These properties of bimetallic nanoparticles inevitably depend on the size, structure, and morphology of the particles. Thus the adopting synthesis strategy is very crucial to achieve desired results. Here in this review, the various bimetallic synthesis strategies are compared. The bimetallic nanoparticles decontaminate water through adsorption and/or catalysis mechanism. The various degradation pathways, specifically, adsorption, reduction, oxidation, and advanced oxidation processes are discussed in detail in this review.
Collapse
Affiliation(s)
- Jaimy Scaria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
35
|
Li C, Xu Y, Yu H, Deng K, Liu S, Wang Z, Li X, Wang L, Wang H. Facile dual tuning of PtPdP nanoparticles by metal-nonmetal co-incorporation and dendritic engineering for enhanced formic acid oxidation electrocatalysis. NANOTECHNOLOGY 2020; 31:045401. [PMID: 31574496 DOI: 10.1088/1361-6528/ab49ae] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tuning the compositions and morphologies of catalysts is very important for the design of efficient formic acid oxidation reaction (FAOR) electrocatalysts. Herein, unique PtPdP dendritic nanoparticles (PtPdP DNs) with uniform size and open-pore structure are fabricated by a facile method, in which the Pd and P elements are simultaneously incorporated into Pt DNs. The prepared PtPdP DNs show enhanced catalytic activity and stability for FAOR. The improved electrocatalytic activity toward FAOR for the PtPdP DNs is mainly attributed to the synergic enhancement effect of the structural and compositional advantages, which jointly promote the electrocatalytic kinetics and thus enhance the electrocatalytic performance.
Collapse
Affiliation(s)
- Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu H, Li L, Luo L, He Y, Cong C, He Y, Hao Z, Gao D. Green dual-template synthesis of AgPd core-shell nanoparticles with enhanced electrocatalytic activity. NANOTECHNOLOGY 2020; 31:035603. [PMID: 31557747 DOI: 10.1088/1361-6528/ab4836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A key challenge in developing an ethanol oxidation reaction is nontoxic fabrication of highly active stable and low-cost catalysts. Here we design a green synthetic strategy of AgPd bimetallic nanosphere by a dual-template cascade method. The Pd nanoshell is firstly prepared using Vapreotide acetate as a primary template, and then the Ag nanoshell acts as a secondary template for the distribution of AgPd alloy nanoparticles. The AgPd nanoparticles have core-shell structures and various sizes, and their shell thicknesses are tuned by controlling the amount of PdCl2. The six different samples are prepared, named AgPd-1, AgPd-2, AgPd-3, AgPd-4, AgPd-5, and AgPd-6, respectively. The mass current density of AgPd-5, is higher 3.87 times that of commercial Pd/C, and exhibits the best ethanol oxidation reaction activity and long-term stability. The main reasons are that the AgPd-5 possessed excellent specific surface area due to their rough structure, and Ag can remove more CO-like species. This is the first time a Vapreotide acetate/Ag-template method has been used to synthesize a AgPd core-shell structure, which would have broad application prospects for direct ethanol fuel cells.
Collapse
Affiliation(s)
- Huan Liu
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, People's Republic of China. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lang Z, Zhuang Z, Li S, Xia L, Zhao Y, Zhao Y, Han C, Zhou L. MXene Surface Terminations Enable Strong Metal-Support Interactions for Efficient Methanol Oxidation on Palladium. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2400-2406. [PMID: 31868343 DOI: 10.1021/acsami.9b17088] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Efficient catalysis of the methanol oxidation reaction (MOR) greatly determines the widespread implementation of direct methanol fuel cells. Exploring a suitable support for noble metal catalysts with regard to decreasing the mass loading and optimizing the MOR activity remains a key challenge. Herein, we achieve an over 60% activity enhancement of a palladium (Pd) catalyst by introducing a two-dimensional Ti3C2Tx MXene as the support compared to a commercial Pd/C catalyst. Not only are more catalytically active Pd sites exposed on the Pd/MXene catalyst while maintaining a low mass loading, but the introduction of the MXene support also significantly alters the surface electronic structure of Pd. Specifically, spectroscopy and density functional theory (DFT) computations indicate that sufficiently electronegative terminations of the Ti3C2Tx MXene surface can induce strong metal-support interactions (SMSI) with the Pd catalyst, leading to optimal methanol adsorption. This MXene-supported Pd catalyst exhibits a much higher MOR current density (12.4 mA cm-2) than that of commercial Pd/C (7.6 mA cm-2). Our work largely optimizes the intrinsic activity of a Pd catalyst by the utilization of MXene surface terminations, and the crucial SMSI effects revealed herein open a rational avenue to the design of more efficient noble metal catalysts for MOR.
Collapse
Affiliation(s)
- Zhiquan Lang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , P. R. China
| | - Zechao Zhuang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , P. R. China
| | - Shikun Li
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology , University of Bremen , Bremen 28359 , Germany
| | - Lixue Xia
- State Key Laboratory of Silicate Materials forArchitectures, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , P. R. China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials forArchitectures, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , P. R. China
| | - Yunlong Zhao
- Advanced Technology Institute , University of Surrey , Guildford GU2 7XH , U.K
| | - Chunhua Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , P. R. China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , P. R. China
| |
Collapse
|
38
|
Guo J, Lin Y, Wang Q. Development of nanotubes coated with platinum nanodendrites using a virus as a template. NANOTECHNOLOGY 2020; 31:015502. [PMID: 31519011 DOI: 10.1088/1361-6528/ab4448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a facile method to fabricate platinum (Pt) porous nanotubes coated with interconnected Pt dendrites using the tobacco mosaic virus (TMV) as a template. The surface-exposed arginine residues of the TMV induced the selective deposition of Pt seeds on the TMV outside surface, and poly(sodium-p-styrenesulfonate) (PSS) was chosen to stabilize the dispersity of TMV coated with Pt seeds (TMV/SPt). The limited space between the Pt seeds and their uniform distribution on the TMV exterior confined the growth of Pt dendrites, resulting in continuous dendritic platinum nanotubes (TMV/DPtNT). The synergistic effects of porous dendrites and anisotropic structures of the TMV/DPtNTs provided an increase in the active sites, the enhancement of transport efficiency and long-distance electron transfer, which greatly improved the catalytic activity. We also demonstrated that such nanotubes could be used in the detection of H2O2 with good sensitivity.
Collapse
Affiliation(s)
- Jiawang Guo
- The State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. University of Science and Technology of China, Hefei 230026, People's Republic of China
| | | | | |
Collapse
|
39
|
Yang Y, Huang H, Shen B, Jin L, Jiang Q, Yang L, He H. Anchoring nanosized Pd on three-dimensional boron- and nitrogen-codoped graphene aerogels as a highly active multifunctional electrocatalyst for formic acid and methanol oxidation reactions. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01448a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A facile and scalable strategy is developed for the preparation of nanosized Pd crystals anchored on 3D B- and N-codoped graphene aerogels, which show multifunctional electrocatalytic ability.
Collapse
Affiliation(s)
- Ying Yang
- College of Mechanics and Materials
- Hohai University
- Nanjing 210098
- China
| | - Huajie Huang
- College of Mechanics and Materials
- Hohai University
- Nanjing 210098
- China
| | - Binfeng Shen
- College of Mechanics and Materials
- Hohai University
- Nanjing 210098
- China
| | - Ling Jin
- Jiangsu & Nanjing Energy Conservation Center
- Nanjing 210007
- China
| | - Quanguo Jiang
- College of Mechanics and Materials
- Hohai University
- Nanjing 210098
- China
| | - Lu Yang
- College of Mechanics and Materials
- Hohai University
- Nanjing 210098
- China
| | - Haiyan He
- College of Mechanics and Materials
- Hohai University
- Nanjing 210098
- China
| |
Collapse
|
40
|
Abbas G, Kumar N, Kumar D, Pandey G. Effect of Reaction Temperature on Shape Evolution of Palladium Nanoparticles and Their Cytotoxicity against A-549 Lung Cancer Cells. ACS OMEGA 2019; 4:21839-21847. [PMID: 31891061 PMCID: PMC6933587 DOI: 10.1021/acsomega.9b02776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Palladium nanoparticles (Pd NPs) of different shapes and sizes have been synthesized by reducing potassium tetrachloropalladinate(II) by l-ascorbic acid (AA) in an aqueous solution phase in the presence of an amphiphilic nonionic surfactant poly ethylene glycol (PEG) via a sonochemical method. Materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray soectrscopy (EDX), Fourier transform infrared (FTIR), surface-enhanced Raman spectroscopy (SERS), particle distribution, and zeta potential studies. Truncated octahedron/fivefold twinned pentagonal rods are formed at room temperature (RT) (25 °C) while hexagonal/trigonal plates are formed at 65 °C. XRD results show evolution of anisotropically grown, phase-pure, and well crystalline face-centered cubic Pd NPs at both temperatures. FTIR and SERS studies revealed adsorption of ascorbic acid (AA) and PEG at NP's surface. Particle's size distribution graph indicates formation of particles having wide size distribution while the zeta potential particle surface is negatively charged and stable. The truncated octahedron/fivefold twinned pentagonal rod-shaped Pd NPs, formed at RT, while thermally stable and kinetically controlled hexagonal/trigonal plate-like Pd NPs, evolved at higher temperature 65 °C. The obtained Pd NPs have a high surface area and narrow pore size distribution. To predict protein reactivity of the Pd cluster, docking has been done with DNA and lung cancer-effective proteins. The cytotoxicity of the Pd NPs has been screened on human lung cancer cells A-549 at 37 °C. The biological adaptability exhibited by Pd NPs has opened a pathway in biochemical applications.
Collapse
Affiliation(s)
- Gulam Abbas
- Department
of Chemistry and Department of Physics, Babasaheb Bhimrao
Ambedkar University, Lucknow 226025, India
| | - Narinder Kumar
- Department
of Chemistry and Department of Physics, Babasaheb Bhimrao
Ambedkar University, Lucknow 226025, India
| | - Devesh Kumar
- Department
of Chemistry and Department of Physics, Babasaheb Bhimrao
Ambedkar University, Lucknow 226025, India
| | - Gajanan Pandey
- Department
of Chemistry and Department of Physics, Babasaheb Bhimrao
Ambedkar University, Lucknow 226025, India
- E-mail:
| |
Collapse
|
41
|
Ultrasensitive and ultrawide range electrochemical determination of bisphenol A based on PtPd bimetallic nanoparticles and cationic pillar[5]arene decorated graphene. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113487] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Barman BK, Sarkar B, Nanda KK. Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts. Chem Commun (Camb) 2019; 55:13928-13931. [PMID: 31682248 DOI: 10.1039/c9cc06208d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, Pd-coated Ru nanocrystals supported on N-doped graphene (Pd-Ru@NG) are obtained via electroless deposition of Pd on Ru nanocrystals. We have demonstrated that Pd boosts the electrocatalytic performance of Pd-Ru@NG towards the hydrogen evolution reaction (HER) and alcohol tolerant oxygen reduction reaction (ORR) as compared to Pt/C.
Collapse
Affiliation(s)
- Barun Kumar Barman
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | | | | |
Collapse
|
43
|
Zhang W, Yao Q, Jiang G, Li C, Fu Y, Wang X, Yu A, Chen Z. Molecular Trapping Strategy To Stabilize Subnanometric Pt Clusters for Highly Active Electrocatalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02987] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wenyao Zhang
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
| | - Qiushi Yao
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gaopeng Jiang
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Chun Li
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
| | - Yongsheng Fu
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
| | - Xin Wang
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China
| | - Aiping Yu
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Zhongwei Chen
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
44
|
Sun Q, Gao F, Zhang Y, Wang C, Zhu X, Du Y. Ultrathin one-dimensional platinum-cobalt nanowires as efficient catalysts for the glycerol oxidation reaction. J Colloid Interface Sci 2019; 556:441-448. [DOI: 10.1016/j.jcis.2019.08.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
|
45
|
Zhu Q, Zhang X, Wang Y, Zhu A, Gao R, Zhao X, Zhang Y, Chen L. Controlling the Growth Locations of Ag Nanoparticles at Nanoscale by Shifting LSPR Hotspots. NANOMATERIALS 2019; 9:nano9111553. [PMID: 31683724 PMCID: PMC6915484 DOI: 10.3390/nano9111553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022]
Abstract
Controlling chemical reactions by plasma is expected to be a new method for improving the structural properties of substrates. An Au nanojar array was prepared when Au was deposited onto a 2D polystyrene (PS) array. The site-selective chemical growth of Ag nanoparticle rings was realized around the Au nanojar necks by a local surface plasmon resonance (LSPR)-assisted chemical reaction. The catalytic hotspots in the nanostructure array could be controlled by both etching the nanojars and Au or TiO2 sputtering onto the nanojars, which were confirmed by the growth sites of the Ag nanoparticle in the LSPR-assisted chemical reaction. The structure of the nanojars and the electric field distributions of the growing nanoparticles were simulated and analyzed using Finite-Difference Time-Domain. FDTD simulations showed that the changes in the nanojar shape led to the changed hotspot distributions. At the same time, tracking the hotspot shifts in the process of structural change was also achieved by the observation of Ag growth. Nanoarray structure prepared by LSPR-assisted chemical reaction is one of the hot fields in current research and is also of great significance for the application of Surface-Enhanced Raman Scattering.
Collapse
Affiliation(s)
- Qi Zhu
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Yaxin Wang
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Aonan Zhu
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Renxian Gao
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Xiaoyu Zhao
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China.
| | - Yongjun Zhang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China.
| | - Lei Chen
- College of Chemistry, Jilin Normal University, Siping 136000, China.
| |
Collapse
|
46
|
Ghosh S, Bysakh S, Basu RN. Bimetallic Pd 96Fe 4 nanodendrites embedded in graphitic carbon nanosheets as highly efficient anode electrocatalysts. NANOSCALE ADVANCES 2019; 1:3929-3940. [PMID: 36132105 PMCID: PMC9417808 DOI: 10.1039/c9na00317g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/16/2019] [Indexed: 05/26/2023]
Abstract
A facile route to anchor a nanoalloy catalyst on graphitic carbon nanosheets (GCNs) has been developed for preparing high-performance electrode materials for application in direct alcohol fuel cells (DAFCs). Uniformly dispersed bimetallic Pd-Fe nanoparticles (NPs) with tunable composition have been immobilized on GCNs derived from mesocarbon microbeads (MCMBs) by a one-pot radiolytic reduction method. The Pd-Fe/GCN hybrid shows promising electrocatalytic activity for the methanol, ethanol, ethylene glycol, tri-ethylene glycol and glycerol oxidation reactions in alkaline medium. The as-prepared flower-shape Pd96Fe4/GCN nanohybrids have high mass activity for the ethanol oxidation reaction (EOR), which is ∼36 times (11 A per mg Pd) higher than that of their monometallic counterparts. Moreover, the onset oxidation potential for the EOR on the Pd96Fe4/GCN nanohybrids negatively shifts ca. 780 mV compared to that on commercial Pd/C electrocatalysts, suggesting fast kinetics and superior electrocatalytic activity. Additionally, chronoamperometry measurements display good long-term cycling stability of the Pd96Fe4/GCN nanohybrids for the EOR and also demonstrate only ∼7% loss in forward current density after 1000 cycles. The superior catalytic activity and stability may have originated from the modified electronic structure of the Pd-Fe nanoalloys and excellent physicochemical properties of the graphitic nanosheets. The present synthetic route using GCNs as the supporting material will contribute to further design of multimetallic nanoarchitectures with controlled composition and desired functions for fuel cell applications.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Fuel Cell and Battery Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| | - Sandip Bysakh
- Materials Characterization Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| | - Rajendra Nath Basu
- Fuel Cell and Battery Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| |
Collapse
|
47
|
Comparative study between homo-metallic & hetero-metallic nanostructures based agar in catalytic degradation of dyes. Int J Biol Macromol 2019; 138:450-461. [DOI: 10.1016/j.ijbiomac.2019.07.098] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
|
48
|
Brandiele R, Amendola V, Guadagnini A, Rizzi GA, Badocco D, Pastore P, Isse AA, Durante C, Gennaro A. Facile synthesis of Pd3Y alloy nanoparticles for electrocatalysis of the oxygen reduction reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Wang Z, Ai B, Wang Y, Guan Y, Möhwald H, Zhang G. Hierarchical Control of Plasmonic Nanochemistry in Microreactor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35429-35437. [PMID: 31483594 DOI: 10.1021/acsami.9b10917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A microreactor that can confine chemical reactions exclusively in tiny vessels with the volume of ∼0.015 μm3 is introduced. Aluminum inversed hollow nanocone arrays (IHNAs) are fabricated by a simple and efficient colloidal lithography method. Ag and Au nanoparticles (NPs), as well as polypyrrole, grow exclusively in the conic cavities under light illumination. The photocatalytic effect arising from the plasmonic enhanced electric fields (E-fields) of IHNAs boosts the reactions and is in charge of the submicrometer site-selectivity. By partially inhibiting light to IHNAs, various hierarchical patterns at the macro-, micro-, and sub-microscale are obtained, inspiring a facile patterning technique by varying the light source. In addition, the Al IHNA films are transferred to flexible and curved substrates with unchanged performances, showing high flexibility for wide applications. Microreactors based on the IHNAs will contribute to the control of chemical reactions at different dimensions and offer great potentials in developing novel nanofabrication techniques.
Collapse
Affiliation(s)
- Zengyao Wang
- State Key Lab of Supramolecular Structure and Materials , College of Chemistry Jilin University , Changchun 130012 , P.R. China
| | - Bin Ai
- Department of Aerospace Engineering , Texas A&M University , College Station , Texas 77843-3141 , United States
| | - Yu Wang
- State Key Lab of Supramolecular Structure and Materials , College of Chemistry Jilin University , Changchun 130012 , P.R. China
| | - Yuduo Guan
- State Key Lab of Supramolecular Structure and Materials , College of Chemistry Jilin University , Changchun 130012 , P.R. China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces , Potsdam D-14424 , Germany
| | - Gang Zhang
- State Key Lab of Supramolecular Structure and Materials , College of Chemistry Jilin University , Changchun 130012 , P.R. China
| |
Collapse
|
50
|
A Mesoporous Nanorattle‐Structured Pd@PtRu Electrocatalyst. Chem Asian J 2019; 14:3397-3403. [DOI: 10.1002/asia.201901058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/01/2019] [Indexed: 11/07/2022]
|