1
|
Marlin A, Cao M, El Hamouche J, Glaser O, Boros E. Decoding growth inhibitory associated pathways of xenometal-siderophore antibiotic conjugates in S. aureus. Chem Sci 2025; 16:7039-7050. [PMID: 40144493 PMCID: PMC11934059 DOI: 10.1039/d4sc08509d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Pathogenic Staphylococcus aureus causes most infectious disease related deaths in the developed world. Continuously evolving resistance to clinically approved antibiotics and combination therapies limits treatment efficacy; new strategies that evade and slow resistance or produce resistant mutants with reduced fitness are needed. We employ antibiotics conjugated to bacterially recognized siderophores to potentiate their efficacy. Acting as a Trojan horse, the siderophore antibiotic conjugates efficiently deliver the antibiotic inside the bacterial cytoplasm by hijacking the iron transport system pathways which are crucial for bacterial survival. Here, we investigated the mechanism of action of gallium xenometallomycins (siderophore antibiotic conjugates incorporating non-endogenous metal ions), Ga-DFO-Cip and Ga-LDFC-Cip, which have demonstrated high potency compared to the parent antibiotic's efficacy in vitro in S. aureus infection. Employing physicochemical, synthetic and transcriptomic analysis studies, this work reveals that kinetically inert, gallium-containing xenometallomycins targeting cytoplasmic bacterial targets impart differential resistance and gene expression profiles when compared to their parent antibiotic in S. aureus bacterial strains. Both Ga-DFO-Cip and Ga-LDFC-Cip effectively disrupt iron-siderophore biosynthesis and uptake machinery. We affirm our results with the radioactive surrogate 67/68Ga-DFO-Cip and demonstrate that the bacterial uptake in Ga-DFO-Cip-resistant S. aureus strains is impaired, leading to diminished compound accumulation in vitro and in vivo.
Collapse
Affiliation(s)
- Axia Marlin
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Minhua Cao
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Joelle El Hamouche
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
| | - Owen Glaser
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University Stony Brook New York 11790 USA
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| |
Collapse
|
2
|
Motz RN, Anderson JK, Nolan EM. Re-evaluation of the C-Glucosyltransferase IroB Illuminates Its Ability to C-Glucosylate Non-native Triscatecholate Enterobactin Mimics. Biochemistry 2025; 64:224-237. [PMID: 39718537 DOI: 10.1021/acs.biochem.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The pathogen-associated C-glucosyltransferase IroB is involved in the biosynthesis of salmochelins, C-glucosylated derivatives of enterobactin (Ent), which is a triscatecholate siderophore of enteric bacteria including Salmonella enterica and Escherichia coli. Here, we reassess the ability of IroB to C-glucosylate non-native triscatecholate mimics of Ent, which may have utility in the design and development of siderophore-based therapeutics and diagnostics. We establish TRENCAM (TC) and MECAM (MC), synthetic Ent analogs with tris(2-aminoethyl)amine- or mesitylene-derived backbones replacing the trilactone core of Ent, respectively, and their monoglucosylated congeners as substrates of IroB. Time course analyses and steady-state kinetic studies, which were performed under conditions that provide enhanced activity relative to prior studies, inform the substrate selectivity and catalytic efficiencies of this enzyme. We extend these findings to the preparation of a siderophore-antibiotic conjugate composed of monoglucosylated TC and ampicillin (MGT-Amp). Examination of its antibacterial activity and receptor specificity demonstrates that MGT-Amp targets pathogenicity because it shows specificty for the pathogen-associated outer membrane receptor IroN. Overall, our findings extend the biochemical characterization of IroB and its substrate scope and illustrate the ability to leverage a bacterial C-glucosyltransferase for non-native chemoenzymatic transformations along with potential applications of salmochelin mimics.
Collapse
Affiliation(s)
- Rachel N Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jaden K Anderson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Gräff ÁT, Barry SM. Siderophores as tools and treatments. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:47. [PMID: 39649077 PMCID: PMC11621027 DOI: 10.1038/s44259-024-00053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
In the search for iron, an essential element in many biochemical processes, microorganisms biosynthesise dedicated chelators, known as siderophores, to sequester iron from their environment and actively transport the siderophore complex into the cell. This process has been implicated in bacterial pathogenesis and exploited through siderophore-antibiotic conjugates as a method for selective antibiotic delivery. Here we review this Trojan-horse approach including design considerations and potential in diagnostics and infection imaging.
Collapse
Affiliation(s)
- Á. Tamás Gräff
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| | - Sarah M. Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| |
Collapse
|
4
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
5
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
6
|
LeBlanc A, Wuest WM. Siderophores: A Case Study in Translational Chemical Biology. Biochemistry 2024; 63:1877-1891. [PMID: 39041827 PMCID: PMC11308372 DOI: 10.1021/acs.biochem.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Siderophores are metal-binding secondary metabolites that assist in iron homeostasis and have been of interest to the scientific community for the last half century. Foundational siderophore research has enabled several translational applications including siderophore-antibiotic and siderophore-peptide conjugates, identification of new antimicrobial targets, advances in disease imaging, and novel therapeutics. This review aims to connect the basic science research (biosynthesis, cellular uptake, gene regulation, and effects on homeostasis) of well-known siderophores with the successive translational application that results. Intertwined throughout are connections to the career of Christopher T. Walsh, his impact on the field of chemical biology, and the legacy of his trainees who continue to innovate.
Collapse
Affiliation(s)
- Andrew
R. LeBlanc
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Motz RN, Kamyabi G, Nolan EM. Experimental methods for evaluating siderophore-antibiotic conjugates. Methods Enzymol 2024; 702:21-50. [PMID: 39155112 DOI: 10.1016/bs.mie.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Siderophore-antibiotic conjugates (SACs) are of past and current interest for delivering antibacterials into Gram-negative bacterial pathogens that express siderophore receptors. Studies of SACs are often multifaceted and involve chemical and biological approaches. Major goals are to evaluate the antimicrobial activity and uptake of novel SACs and use the resulting data to inform further mode-of-action studies and molecular design strategies. In this chapter, we describe four key methods that we apply when investigating the antimicrobial activity and uptake of novel SACs based on the siderophore enterobactin (Ent). These methods are based on approaches from the siderophore literature as well as established protocols for antimicrobial activity testing, and include assays for evaluating SAC antimicrobial activity, time-kill kinetics, siderophore competition, and bacterial cell uptake using 57Fe. These assays have served us well in characterizing our Ent-based conjugates and can be applied to study SACs that use other siderophores as targeting vectors.
Collapse
Affiliation(s)
- Rachel N Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ghazal Kamyabi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
8
|
Karadkhelkar NM, Gupta P, Barasa L, Chilamakuri R, Hlordzi CK, Acharekar N, Agarwal S, Chen ZS, Yoganathan S. Chemical Derivatization Leads to the Discovery Of Novel Analogs of Azotochelin, a Natural Siderophore, as Promising Anticancer Agents. ChemMedChem 2024; 19:e202300715. [PMID: 38598189 DOI: 10.1002/cmdc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Siderophores are structurally unique medicinal natural products and exhibit considerable therapeutic potential. Herein, we report the design and synthesis of azotochelin, a natural siderophore, and an extensive library of azotochelin analogs and their anticancer properties. We modified the carboxylic acid and the aromatic ring of azotochelin using various chemical motifs. We evaluated the cytotoxicity of the compounds against six different cancer cell lines (KB-3-1, SNB-19, MCF-7, K-562, SW-620, and NCI-H460) and a non-cancerous cell line (HEK-293). Among the twenty compounds tested, the IC50 values of nine compounds (14, 32, 35-40, and 54) were between 0.7 and 2.0 μM against a lung cancer cell line (NCI-H460). Moreover, several compounds showed good cytotoxicity profile (IC50 <10 μM) against the tested cancer cell lines. The flow cytometry analysis showed that compounds 36 and 38 induced apoptosis in NCI-H460 in a dose-dependent manner. The cell cycle analysis indicated that compounds 36 and 38 significantly arrested the cell cycle at the S phase to block cancer cell proliferation in the NCI-H460 cell line. The study has produced various novel azotochelin analogs that are potentially effective anticancer agents and lead compounds for further synthetic and medicinal chemistry exploration.
Collapse
Affiliation(s)
- Nishant M Karadkhelkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
- Current affiliation: The Scripps Research Institute, 10550 N Torrey Pines Rd., La Jolla, CA, 92037
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Leonard Barasa
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
- Current affiliation: Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Rameswari Chilamakuri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Christopher K Hlordzi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| |
Collapse
|
9
|
Huang YJ, Yang MH, Lin LY, Liu J, Zang YP, Lin J, Chen WM. Exploring the Localization of Siderophore-Mediated Cargo Delivery in Gram-Negative Bacteria Using 3-Hydroxypyridin-4(1 H)-one-Fluorescein Probes. ACS Infect Dis 2024; 10:2303-2317. [PMID: 38725130 DOI: 10.1021/acsinfecdis.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The design of siderophore-antibiotic conjugates is a promising strategy to overcome drug resistance in negative bacteria. However, accumulating studies have shown that only those antibiotics acting on the cell wall or cell membrane multiply their antibacterial effects when coupled with siderophores, while antibiotics acting on targets in the cytoplasm of bacteria do not show an obvious enhancement of their antibacterial effects when coupled with siderophores. To explore the causes of this phenomenon, we synthesized several conjugate probes using 3-hydroxypyridin-4(1H)-ones as siderophores and replacing the antibiotic cargo with 5-carboxyfluorescein (5-FAM) or malachite green (MG) cargo. By monitoring changes in the fluorescence intensity of FAM conjugate 20 in bacteria, the translocation of the conjugate across the outer membranes of Gram-negative pathogens was confirmed. Further, the use of the fluorogen activating protein(FAP)/MG system revealed that 3-hydroxypyridin-4(1H)-one-MG conjugate 26 was ultimately distributed mainly in the periplasm rather than being translocated into the cytosol of Escherichia coli and Pseudomonas aeruginosa PAO1. Additional mechanistic studies suggested that the uptake of the conjugate involved the siderophore-dependent iron transport pathway and the 3-hydroxypyridin-4(1H)-ones siderophore receptor-dependent mechanism. Meanwhile, we demonstrated that the conjugation of 3-hydroxypyridin-4(1H)-ones to the fluorescein 5-FAM can reduce the possibility of the conjugates crossing the membrane layers of mammalian Vero cells by passive diffusion, and the advantages of the mono-3-hydroxypyridin-4(1H)-ones as a delivery vehicle in the design of conjugates compared to the tri-3-hydroxypyridin-4(1H)-ones. Overall, this work reveals the localization rules of 3-hydroxypyridin-4(1H)-ones as siderophores to deliver the cargo into Gram-negative bacteria. It provides a theoretical basis for the subsequent design of siderophore-antibiotic conjugates, especially based on 3-hydroxypyridin-4(1H)-ones as siderophores.
Collapse
Affiliation(s)
- Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Ming-Han Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Ling-Yin Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jun Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Yi-Peng Zang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| |
Collapse
|
10
|
Pals MJ, Wijnberg L, Yildiz Ç, Velema WA. Catechol-Siderophore Mimics Convey Nucleic Acid Therapeutics into Bacteria. Angew Chem Int Ed Engl 2024; 63:e202402405. [PMID: 38407513 DOI: 10.1002/anie.202402405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
Antibacterial resistance is a major threat for human health. There is a need for new antibacterials to stay ahead of constantly-evolving resistant bacteria. Nucleic acid therapeutics hold promise as powerful antibiotics, but issues with their delivery hamper their applicability. Here, we exploit the siderophore-mediated iron uptake pathway to efficiently transport antisense oligomers into bacteria. We appended a synthetic siderophore to antisense oligomers targeting the essential acpP gene in Escherichia coli. Siderophore-conjugated PNA and PMO antisense oligomers displayed potent antibacterial properties. Conjugates bearing a minimal siderophore consisting of a mono-catechol group showed equally effective. Targeting the lacZ transcript resulted in dose-dependent decreased β-galactosidase production, demonstrating selective protein downregulation. Applying this concept to Acinetobacter baumannii also showed concentration-dependent growth inhibition. Whole-genome sequencing of resistant mutants and competition experiments with the endogenous siderophore verified selective uptake through the siderophore-mediated iron uptake pathway. Lastly, no toxicity towards mammalian cells was found. Collectively, we demonstrate for the first time that large nucleic acid therapeutics can be efficiently transported into bacteria using synthetic siderophore mimics.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Luuk Wijnberg
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Çağlar Yildiz
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Koller AJ, Glaser O, DeLuca MC, Motz RN, Amason EK, Carbo-Bague I, Mixdorf JC, Guzei IA, Aluicio-Sarduy E, Śmiłowicz D, Barnhart TE, Ramogida CF, Nolan EM, Engle JW, Boros E. "Off-Label Use" of the Siderophore Enterobactin Enables Targeted Imaging of Cancer with Radioactive Ti (IV). Angew Chem Int Ed Engl 2024; 63:e202319578. [PMID: 38442302 PMCID: PMC11258920 DOI: 10.1002/anie.202319578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
The development of inert, biocompatible chelation methods is required to harness the emerging positron emitting radionuclide 45Ti for radiopharmaceutical applications. Herein, we evaluate the Ti(IV)-coordination chemistry of four catechol-based, hexacoordinate chelators using synthetic, structural, computational, and radiochemical approaches. The siderophore enterobactin (Ent) and its synthetic mimic TREN-CAM readily form mononuclear Ti(IV) species in aqueous solution at neutral pH. Radiolabeling studies reveal that Ent and TREN-CAM form mononuclear complexes with the short-lived, positron-emitting radionuclide 45Ti(IV), and do not transchelate to plasma proteins in vitro and exhibit rapid renal clearance in naïve mice. These features guide efforts to target the 45Ti isotope to prostate cancer tissue through the design, synthesis, and evaluation of Ent-DUPA, a small molecule conjugate composed of a prostate specific membrane antigen (PSMA) targeting peptide and a monofunctionalized Ent scaffold. The [45Ti][Ti(Ent-DUPA)]2- complex forms readily at room temperature. In a tumor xenograft model in mice, selective tumor tissue accumulation (8±5 %, n=5), and low off-target uptake in other organs is observed. Overall, this work demonstrates targeted imaging with 45Ti(IV), provides a foundation for advancing the application of 45Ti in nuclear medicine, and reveals that Ent can be repurposed as a 45Ti-complexing cargo for targeted nuclear imaging applications.
Collapse
Affiliation(s)
- Angus J Koller
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Owen Glaser
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Molly C DeLuca
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Rachel N Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Edith K Amason
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Imma Carbo-Bague
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jason C Mixdorf
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| |
Collapse
|
12
|
Guo C, Wang KKA, Nolan EM. Investigation of Siderophore-Platinum(IV) Conjugates Reveals Differing Antibacterial Activity and DNA Damage Depending on the Platinum Cargo. ACS Infect Dis 2024; 10:1250-1266. [PMID: 38436588 DOI: 10.1021/acsinfecdis.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The growing threat of bacterial infections coupled with the dwindling arsenal of effective antibiotics has heightened the urgency for innovative strategies to combat bacterial pathogens, particularly Gram-negative strains, which pose a significant challenge due to their outer membrane permeability barrier. In this study, we repurpose clinically approved anticancer agents as targeted antibacterials. We report two new siderophore-platinum(IV) conjugates, both of which consist of an oxaliplatin-based Pt(IV) prodrug (oxPt(IV)) conjugated to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron acquisition. We demonstrate that l/d-Ent-oxPt(IV) (l/d-EOP) are selectively delivered into the Escherichia coli cytoplasm, achieving targeted antibacterial activity, causing filamentous morphology, and leading to enhanced Pt uptake by bacterial cells but reduced Pt uptake by human cells. d-EOP exhibits enhanced potency compared to oxaliplatin and l-EOP, primarily attributed to the intrinsic antibacterial activity of its non-native siderophore moiety. To further elucidate the antibacterial activity of Ent-Pt(IV) conjugates, we probed DNA damage caused by l/d-EOP and the previously reported cisplatin-based conjugates l/d-Ent-Pt(IV) (l/d-EP). A comparative analysis of these four conjugates reveals a correlation between antibacterial activity and the ability to induce DNA damage. This work expands the scope of Pt cargos targeted to the cytoplasm of Gram-negative bacteria via Ent conjugation, provides insight into the cellular consequences of Ent-Pt(IV) conjugates in E. coli, and furthers our understanding of the potential of Pt-based therapeutics for antibacterial applications.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kwo-Kwang A Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Guo C, Nolan EM. Exploring the Antibacterial Activity and Cellular Fates of Enterobactin-Drug Conjugates That Target Gram-Negative Bacterial Pathogens. Acc Chem Res 2024; 57:1046-1056. [PMID: 38483177 PMCID: PMC11258919 DOI: 10.1021/acs.accounts.3c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Siderophores are secondary metabolites utilized by bacteria to acquire iron (Fe), an essential transition metal nutrient. Fe levels in the host environment are tightly regulated and can be further restricted to starve invading bacterial pathogens in a host-defense process known as nutritional immunity. To survive and colonize the Fe-limited host environment, bacteria produce siderophores and express cognate siderophore transport machinery. These active transport pathways present an opportunity for selective and efficient drug delivery into bacterial cells, motivating decades of research on synthetic siderophore-antibiotic conjugates (SACs) as a Trojan-horse strategy for the development of targeted antibiotics.Enterobactin (Ent) is a triscatecholate siderophore produced and utilized by many Gram-negative bacteria, including all Escherichia coli and Salmonella species. Within these species, pathogenic strains cause a variety of human diseases including urinary tract infections, gastroenteritis, and sepsis. Infections caused by these Gram-negative pathogens can be difficult to treat because of the impermeability of the outer membrane (OM). This impermeability can be overcome by utilizing siderophores as drug delivery vectors for targeting Gram-negative pathogens. Ent is a promising delivery vector because it undergoes active transport across the OM mediated by the Ent uptake machinery after scavenging Fe(III) from the extracellular environment. Despite the well-elucidated chemistry and biology of Ent, its use for SAC development was hampered by the lack of an appropriate functional group for cargo attachment. Our laboratory addressed this need by designing and synthesizing monofunctionalized Ent scaffolds. Over the past decade, we have used these scaffolds to explore Ent-based SACs with a variety of drug warheads, including β-lactam and fluoroquinolone antibiotics, and Pt(IV) prodrugs. Investigations of the antibacterial activities of these conjugates and their cellular fates have informed our design principles and revealed approaches to achieving enhanced antibacterial potency and pathogen-targeted activity. Collectively, our studies of Ent-drug conjugates have provided discoveries, understanding, and invaluable insights for future design and evaluation of SACs.In this Account, we present the story of our work on Ent-drug conjugates that began about ten years ago with the development of monofunctionalized Ent scaffolds and the design and synthesis of various conjugates based on these scaffolds. We describe the antibacterial activity profiles and uptake pathways of Ent-drug conjugates harboring traditional antibiotics and repurposed platinum anticancer agents as well as studies that address cellular targets and fates. Finally, we discuss other applications of monofunctionalized Ent scaffolds, including a siderophore-based immunization strategy. We intend for this Account to inspire further investigations into the fundamental understanding and translational applications of siderophores and siderophore-drug conjugates.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Margeta R, Schelhaas S, Hermann S, Schäfers M, Niemann S, Faust A. A novel radiolabelled salmochelin derivative for bacteria-specific PET imaging: synthesis, radiolabelling and evaluation. Chem Commun (Camb) 2024; 60:3507-3510. [PMID: 38385843 DOI: 10.1039/d4cc00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
For specific imaging of bacterial infections we aimed at targeting the exclusive bacterial iron transport system via siderophore-based radiotracers. De novo synthesis and radiolabeling yielded the salmochelin-based PET radiotracer [68Ga]Ga-RMA693, which showed a favourable biodistribution and a bacteria-specific uptake in an animal model of Escherichia coli infection.
Collapse
Affiliation(s)
- Renato Margeta
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
15
|
Motz RN, Guo C, Sargun A, Walker GT, Sassone-Corsi M, Raffatellu M, Nolan EM. Conjugation to Native and Nonnative Triscatecholate Siderophores Enhances Delivery and Antibacterial Activity of a β-Lactam to Gram-Negative Bacterial Pathogens. J Am Chem Soc 2024; 146:7708-7722. [PMID: 38457782 PMCID: PMC11037102 DOI: 10.1021/jacs.3c14490] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the β-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic β-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Rachel N. Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory T. Walker
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Martina Sassone-Corsi
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, CA 92093, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Su L, Souaibou Y, Hôtel L, Paris C, Weissman KJ, Aigle B. Biosynthesis of novel desferrioxamine derivatives requires unprecedented crosstalk between separate NRPS-independent siderophore pathways. Appl Environ Microbiol 2024; 90:e0211523. [PMID: 38323847 PMCID: PMC10952394 DOI: 10.1128/aem.02115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Iron is essential to many biological processes but its poor solubility in aerobic environments restricts its bioavailability. To overcome this limitation, bacteria have evolved a variety of strategies, including the production and secretion of iron-chelating siderophores. Here, we describe the discovery of four series of siderophores from Streptomyces ambofaciens ATCC23877, three of which are unprecedented. MS/MS-based molecular networking revealed that one of these series corresponds to acylated desferrioxamines (acyl-DFOs) recently identified from S. coelicolor. The remaining sets include tetra- and penta-hydroxamate acyl-DFO derivatives, all of which incorporate a previously undescribed building block. Stable isotope labeling and gene deletion experiments provide evidence that biosynthesis of the acyl-DFO congeners requires unprecedented crosstalk between two separate non-ribosomal peptide synthetase (NRPS)-independent siderophore (NIS) pathways in the producing organism. Although the biological role(s) of these new derivatives remain to be elucidated, they may confer advantages in terms of metal chelation in the competitive soil environment due to the additional bidentate hydroxamic functional groups. The metabolites may also find application in various fields including biotechnology, bioremediation, and immuno-PET imaging.IMPORTANCEIron-chelating siderophores play important roles for their bacterial producers in the environment, but they have also found application in human medicine both in iron chelation therapy to prevent iron overload and in diagnostic imaging, as well as in biotechnology, including as agents for biocontrol of pathogens and bioremediation. In this study, we report the discovery of three novel series of related siderophores, whose biosynthesis depends on the interplay between two NRPS-independent (NIS) pathways in the producing organism S. ambofaciens-the first example to our knowledge of such functional cross-talk. We further reveal that two of these series correspond to acyl-desferrioxamines which incorporate four or five hydroxamate units. Although the biological importance of these novel derivatives is unknown, the increased chelating capacity of these metabolites may find utility in diagnostic imaging (for instance, 89Zr-based immuno-PET imaging) and other applications of metal chelators.
Collapse
Affiliation(s)
- Li Su
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| | - Yaouba Souaibou
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| | | | | | | | | |
Collapse
|
17
|
Tsylents U, Burmistrz M, Wojciechowska M, Stępień J, Maj P, Trylska J. Iron uptake pathway of Escherichia coli as an entry route for peptide nucleic acids conjugated with a siderophore mimic. Front Microbiol 2024; 15:1331021. [PMID: 38357356 PMCID: PMC10864483 DOI: 10.3389/fmicb.2024.1331021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Bacteria secrete various iron-chelators (siderophores), which scavenge Fe3+ from the environment, bind it with high affinity, and retrieve it inside the cell. After the Fe3+ uptake, bacteria extract the soluble iron(II) from the siderophore. Ferric siderophores are transported inside the cell via the TonB-dependent receptor system. Importantly, siderophore uptake paths have been also used by sideromycins, natural antibiotics. Our goal is to hijack the transport system for hydroxamate-type siderophores to deliver peptide nucleic acid oligomers into Escherichia coli cells. As siderophore mimics we designed and synthesized linear and cyclic Nδ-acetyl-Nδ-hydroxy-l-ornithine based peptides. Using circular dichroism spectroscopy, we found that iron(III) is coordinated by the linear trimer with hydroxamate groups but not by the cyclic peptide. The internal flexibility of the linear siderophore oxygen atoms and their interactions with Fe3+ were confirmed by all-atom molecular dynamics simulations. Using flow cytometry we found that the designed hydroxamate trimer transports PNA oligomers inside the E. coli cells. Growth recovery assays on various E. coli mutants suggest the pathway of this transport through the FhuE outer-membrane receptor, which is responsible for the uptake of the natural iron chelator, ferric-coprogen. This pathway also involves the FhuD periplasmic binding protein. Docking of the siderophores to the FhuE and FhuD receptor structures showed that binding of the hydroxamate trimer is energetically favorable corroborating the experimentally suggested uptake path. Therefore, this siderophore mimic, as well as its conjugate with PNA, is most probably internalized through the hydroxamate pathway.
Collapse
|
18
|
Caradec T, Anoz-Carbonell E, Petrov R, Billamboz M, Antraygues K, Cantrelle FX, Boll E, Beury D, Hot D, Drobecq H, Trivelli X, Hartkoorn RC. A Novel Natural Siderophore Antibiotic Conjugate Reveals a Chemical Approach to Macromolecule Coupling. ACS CENTRAL SCIENCE 2023; 9:2138-2149. [PMID: 38033789 PMCID: PMC10683483 DOI: 10.1021/acscentsci.3c00965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Inspired by natural sideromycins, the conjugation of antibiotics to siderophores is an attractive strategy to facilitate "Trojan horse" delivery of antibiotics into bacteria. Genome analysis of a soil bacterium, Dactylosporangium fulvum, found a "hybrid" biosynthetic gene cluster responsible for the production of both an antibiotic, pyridomycin, and a novel chlorocatechol-containing siderophore named chlorodactyloferrin. While both of these natural products were synthesized independently, analysis of the culture supernatant also identified a conjugate of both molecules. We then found that the addition of ferric iron to purified chlorodactyloferrin and pyridomycin instigated their conjugation, leading to the formation of a covalent bond between the siderophore-catechol and the pyridomycin-pyridine groups. Using model reactants, this iron-based reaction was found to proceed through a Michael-type addition reaction, where ferric iron oxidizes the siderophore-catechol group into its quinone form, which is then attacked by the antibiotic pyridyl-nitrogen to form the catechol-pyridinium linkage. These findings prompted us to explore if other "cargo" molecules could be attached to chlorodactyloferrin in a similar manner, and this was indeed confirmed with a pyridine-substituted TAMRA fluorophore as well as with pyridine-substituted penicillin, rifampicin, and norfloxacin antibiotic analogues. The resultant biomimetic conjugates were demonstrated to effectively enter a number of bacteria, with TAMRA-chlorodactyloferrin conjugates causing fluorescent labeling of the bacteria, and with penicillin and rifampicin conjugates eliciting antibiotic activity. These findings open up new opportunities for the design and facile synthesis of a novel class of biomimetic siderophore conjugates with antibiotic activity.
Collapse
Affiliation(s)
- Thibault Caradec
- Université
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Ernesto Anoz-Carbonell
- Université
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Ravil Petrov
- Université
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Muriel Billamboz
- Université
Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related
Diseases, F-59000 Lille, France
- JUNIA,
Health and Environment, Laboratory of Sustainable
Chemistry and Health, F-59000 Lille, France
| | - Kevin Antraygues
- Université
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Francois-Xavier Cantrelle
- Université
Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related
Diseases, F-59000 Lille, France
- CNRS, EMR9002
BSI Integrative Structural Biology, 59000 Lille, France
| | - Emmanuelle Boll
- Université
Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related
Diseases, F-59000 Lille, France
- CNRS, EMR9002
BSI Integrative Structural Biology, 59000 Lille, France
| | - Delphine Beury
- Université
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie
& Santé, F-59000 Lille, France
| | - David Hot
- Université
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie
& Santé, F-59000 Lille, France
| | - Herve Drobecq
- Université
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and
Immunity of Lille, F-59000 Lille, France
| | - Xavier Trivelli
- Université
Lille, CNRS, INRAE, Centrale Lille, Université d’Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Ruben C. Hartkoorn
- Université
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and
Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
19
|
Wang C, Xia Y, Wang R, Li J, Chan CL, Kao RYT, Toy PH, Ho PL, Li H, Sun H. Metallo-sideromycin as a dual functional complex for combating antimicrobial resistance. Nat Commun 2023; 14:5311. [PMID: 37658047 PMCID: PMC10474269 DOI: 10.1038/s41467-023-40828-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
The rapid emergence of antimicrobial resistance (AMR) pathogens highlights the urgent need to approach this global burden with alternative strategies. Cefiderocol (Fetroja®) is a clinically-used sideromycin, that is utilized for the treatment of severe drug-resistant infections, caused by Gram-negative bacteria; there is evidence of cefiderocol-resistance occurring in bacterial strains however. To increase the efficacy and extend the life-span of sideromycins, we demonstrate strong synergisms between cefiderocol and metallodrugs (e.g., colloidal bismuth citrate (CBS)), against Pseudomonas aeruginosa and Burkholderia cepacia. Moreover, CBS enhances cefiderocol efficacy against biofilm formation, suppresses the resistance development in P. aeruginosa and resensitizes clinically isolated resistant P. aeruginosa to cefiderocol. Notably, the co-therapy of CBS and cefiderocol significantly increases the survival rate of mice and decreases bacterial loads in the lung in a murine acute pneumonia model. The observed phenomena are partially attributable to the competitive binding of Bi3+ to cefiderocol with Fe3+, leading to enhanced uptake of Bi3+ and reduced levels of Fe3+ in cells. Our studies provide insight into the antimicrobial potential of metallo-sideromycins.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Yushan Xia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Jingru Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, PR China
| | - Chun-Lung Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Pak-Leung Ho
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
- Carol Yu Centre for Infection, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
- State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
- State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
| |
Collapse
|
20
|
Rayner B, Verderosa AD, Ferro V, Blaskovich MAT. Siderophore conjugates to combat antibiotic-resistant bacteria. RSC Med Chem 2023; 14:800-822. [PMID: 37252105 PMCID: PMC10211321 DOI: 10.1039/d2md00465h] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/21/2023] [Indexed: 10/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to society due to the increasing emergence of multi-drug resistant bacteria that are not susceptible to our last line of defence antibiotics. Exacerbating this issue is a severe gap in antibiotic development, with no new clinically relevant classes of antibiotics developed in the last two decades. The combination of the rapidly increasing emergence of resistance and scarcity of new antibiotics in the clinical pipeline means there is an urgent need for new efficacious treatment strategies. One promising solution, known as the 'Trojan horse' approach, hijacks the iron transport system of bacteria to deliver antibiotics directly into cells - effectively tricking bacteria into killing themselves. This transport system uses natively produced siderophores, which are small molecules with a high affinity for iron. By linking antibiotics to siderophores, to make siderophore antibiotic conjugates, the activity of existing antibiotics can potentially be reinvigorated. The success of this strategy was recently exemplified with the clinical release of cefiderocol, a cephalosporin-siderophore conjugate with potent antibacterial activity against carbapenem-resistant and multi-drug resistant Gram-negative bacilli. This review discusses the recent advancements in siderophore antibiotic conjugates and the challenges associated with the design of these compounds that need to be overcome to deliver more efficacious therapeutics. Potential strategies have also been suggested for new generations of siderophore-antibiotics with enhanced activity.
Collapse
Affiliation(s)
- Beth Rayner
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Anthony D Verderosa
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Vito Ferro
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| |
Collapse
|
21
|
Huang YJ, Zhong XL, Zang YP, Yang MH, Lin J, Chen WM. 3-Hydroxy-pyridin-4(1H)-ones as siderophores mediated delivery of isobavachalcone enhances antibacterial activity against pathogenic Pseudomonas aeruginosa. Eur J Med Chem 2023; 257:115454. [PMID: 37210837 DOI: 10.1016/j.ejmech.2023.115454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
The natural prenylated chalcone isobavachalcone (IBC) shows good antibacterial activity against Gram-positive bacteria but is ineffective against Gram-negative bacteria, most likely due to the outer membrane barrier of Gram-negative bacteria. The Trojan horse strategy has been shown to be an effective strategy to overcome the reduction in the permeability of the outer membrane of Gram-negative bacteria. In this study, eight different 3-hydroxy-pyridin-4(1H)-one-isobavachalcone conjugates were designed and synthesized based on the siderophore Trojan horse strategy. The conjugates exhibited 8- to 32-fold lower minimum inhibitory concentrations (MICs) and 32- to 177-fold lower half-inhibitory concentrations (IC50s) against Pseudomonas aeruginosa PAO1 as well as clinical multidrug-resistant (MDR) strains compared to the parent IBC under iron limitation. Further studies showed that the antibacterial activity of the conjugates was regulated by the bacterial iron uptake pathway under different iron concentration conditions. Studies on the antibacterial mechanism of conjugate 1b showed that it exerts antibacterial activity by disrupting cytoplasmic membrane integrity and inhibiting cell metabolism. Finally, conjugate 1b showed a lower cytotoxic effects on Vero cells than IBC and a positive therapeutic effect in the treatment of bacterial infections caused by Gram-negative bacteria PAO1. Overall, this work demonstrates that IBC can be delivered to Gram-negative bacteria when combined with 3-hydroxy-pyridin-4(1H)-ones as siderophores and provides a scientific basis for the development of effective antibacterial agents against Gram-negative bacteria.
Collapse
Affiliation(s)
- Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Xiao-Lin Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Yi-Peng Zang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Ming-Han Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China.
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China.
| |
Collapse
|
22
|
Rodríguez D, González-Bello C. Siderophores: Chemical Tools for Precise Antibiotic Delivery. Bioorg Med Chem Lett 2023; 87:129282. [PMID: 37031730 DOI: 10.1016/j.bmcl.2023.129282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The success of precision medicine coupled with the disappointing impact of broad-spectrum antibiotic use on microbiome stability and bacterial resistance, has triggered a shift in antibiotic design strategies toward precision antibiotics. This also includes the implementation of novel vectorization approaches directed to improve the internalization of antibacterial agents into deadly gram-negative pathogens through precise and well-defined mechanisms. The conjugation of antibiotics to siderophores (iron scavengers), which are compounds that are able to afford stable iron-complexes that facilitate the internalization into the cell by using bacterial iron uptake pathways as gateways, is a strategy that has begun to show excellent results with the commercialization of the first antibiotic based on this principle, cefiderocol. This digests review provides an overview of the molecular basis for this antibiotic-siderophore conjugation approach, along with recent successful examples and highlights future challenges facing this booming research area.
Collapse
Affiliation(s)
- Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Kim DY, Yeom S, Park J, Lee H, Kim HJ. Cytoplasmic Delivery of an Antibiotic, Trimethoprim, with a Simple Bidentate Catechol Analog as a Siderophore Mimetic. ACS Infect Dis 2023; 9:554-566. [PMID: 36753707 DOI: 10.1021/acsinfecdis.2c00556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Concerns about antibiotic-resistant Gram-negative pathogens are escalating, and accordingly siderophore-based intracellular antibiotic delivery is attracting more attention as an effective means to overcome these infections. Despite the successful clinical translation of this strategy, the delivery potential of siderophores has been limited to periplasm targeting, and this has appreciably restricted the repertoire of applicable antibiotics. To overcome this shortcoming of the current technology, this study focused on investigating the capability of simple bidentate catechol analogs to function as vehicles for cytoplasmic antibiotic delivery. Specifically, by employing trimethoprim, an inhibitor of dihydrofolate reductase located in the cytoplasm, as a model antibiotic, a chemical library of chelator-antibiotic conjugates featuring four different catechol analogs was prepared. Then, their various pharmacological properties and antimicrobial activities were evaluated. Analysis of these characterization data led to the identification of the active conjugates exhibiting notable iron- and trimethoprim-dependent potency against Escherichia coli. Further characterization of these hit molecules using E. coli mutant strains revealed that 2,3-dihydroxybenzoate could effectively deliver several corresponding conjugates to the cytoplasm by exploiting the siderophore uptake machineries present across the outer and inner membranes, originally designated for the native siderophore of E. coli, enterobactin. Considering the synthetic simplicity, such a catechol analog could have appreciable usage in potentiating cytoplasm-active antibiotics against recalcitrant Gram-negative pathogens.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Suyeon Yeom
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Jimin Park
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Heeyeong Lee
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
24
|
Wang YY, Zhang XY, Zhong XL, Huang YJ, Lin J, Chen WM. Design and Synthesis of 3-Hydroxy-pyridin-4(1 H)-ones-Ciprofloxacin Conjugates as Dual Antibacterial and Antibiofilm Agents against Pseudomonas aeruginosa. J Med Chem 2023; 66:2169-2193. [PMID: 36692083 DOI: 10.1021/acs.jmedchem.2c02044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pseudomonas aeruginosa infections are often complicated by the fact that it can easily form a biofilm that increases its resistance to antibiotics. Consequently, the development of novel antibacterial agents against biofilm-associated drug-resistant P. aeruginosa is urgently needed. Herein, we report a series of 3-hydroxy-pyridin-4(1H)-ones-ciprofloxacin conjugates that were designed and synthesized as dual antibacterial and antibiofilm agents against P. aeruginosa. A potential 2-substituted 3-hydroxy-1,6-dimethylpyridin-4(1H)-one-ciprofloxacin conjugate (5e) was identified and had the best minimum inhibitory concentrations of 0.86 and 0.43 μM against P. aeruginosa 27853 and PAO1 and reduced 78.3% of biofilm formation. In addition, 5e eradicates mature biofilms and kills living bacterial cells that are incorporated into the biofilm. Studies on the antibiofilm mechanism of conjugates showed that 5e interferes with iron uptake by bacteria, inhibits their motility, and reduces the production of virulence. These results demonstrate that 3-hydroxy-pyridin-4(1H)-ones-ciprofloxacin conjugates are potent in the treatment of biofilm-associated drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Yi Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Lin Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| |
Collapse
|
25
|
Synthesis and study of new siderophore analog-ciprofloxacin conjugates with antibiotic activities against Pseudomonas aeruginosa and Burkholderia spp. Eur J Med Chem 2022; 245:114921. [DOI: 10.1016/j.ejmech.2022.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
26
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
27
|
Guo C, Nolan EM. Heavy-Metal Trojan Horse: Enterobactin-Directed Delivery of Platinum(IV) Prodrugs to Escherichia coli. J Am Chem Soc 2022; 144:12756-12768. [PMID: 35803281 DOI: 10.1021/jacs.2c03324] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The global crisis of untreatable microbial infections necessitates the design of new antibiotics. Drug repurposing is a promising strategy for expanding the antibiotic repertoire. In this study, we repurpose the clinically approved anticancer agent cisplatin into a targeted antibiotic by conjugating its Pt(IV) prodrug to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron (Fe) acquisition. The l-Ent-Pt(IV) conjugate (l-EP) exhibits antibacterial activity against Escherichia coli K12 and the uropathogenic isolate E. coli CFT073. Similar to cisplatin, l-EP causes a filamentous morphology in E. coli and initiates lysis in lysogenic bacteria. Studies with E. coli mutants defective in Ent transport proteins show that Ent mediates the delivery of l-EP into the E. coli cytoplasm, where reduction of the Pt(IV) prodrug releases the cisplatin warhead, causing growth inhibition and filamentation of E. coli. Substitution of Ent with its enantiomer affords the d-Ent-Pt(IV) conjugate (d-EP), which displays enhanced antibacterial activity, presumably because d-Ent cannot be hydrolyzed by Ent esterases and thus Fe cannot be released from this conjugate. E. coli treated with l/d-EP accumulate ≥10-fold more Pt as compared to cisplatin treatment. By contrast, human embryonic kidney cells (HEK293T) accumulate cisplatin but show negligible Pt uptake after treatment with either conjugate. Overall, this work demonstrates that the attachment of a siderophore repurposes a Pt anticancer agent into a targeted antibiotic that is recognized and transported by siderophore uptake machinery, providing a design strategy for drug repurposing by siderophore modification and heavy-metal "trojan-horse" antibiotics.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Fritsch S, Gasser V, Peukert C, Pinkert L, Kuhn L, Perraud Q, Normant V, Brönstrup M, Schalk IJ. Uptake Mechanisms and Regulatory Responses to MECAM- and DOTAM-Based Artificial Siderophores and Their Antibiotic Conjugates in Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1134-1146. [PMID: 35500104 DOI: 10.1021/acsinfecdis.2c00049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of new antibiotics against Gram-negative bacteria has to deal with the low permeability of the outer membrane. This obstacle can be overcome by utilizing siderophore-dependent iron uptake pathways as entrance routes for antibiotic uptake. Iron-chelating siderophores are actively imported by bacteria, and their conjugation to antibiotics allows smuggling the latter into bacterial cells. Synthetic siderophore mimetics based on MECAM (1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene) and DOTAM (1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane) cores, both chelating iron via catechol groups, have been recently applied as versatile carriers of functional cargo. In the present study, we show that MECAM and the MECAM-ampicillin conjugate 3 transport iron into Pseudomonas aeruginosa cells via the catechol-type outer membrane transporters PfeA and PirA and DOTAM solely via PirA. Differential proteomics and quantitative real-time polymerase chain reaction (qRT-PCR) showed that MECAM import induced the expression of pfeA, whereas 3 led to an increase in the expression of pfeA and ampc, a gene conferring ampicillin resistance. The presence of DOTAM did not induce the expression of pirA but upregulated the expression of two zinc transporters (cntO and PA0781), pointing out that bacteria become zinc starved in the presence of this compound. Iron uptake experiments with radioactive 55Fe demonstrated that import of this nutrient by MECAM and DOTAM was as efficient as with the natural siderophore enterobactin. The study provides a functional validation for DOTAM- and MECAM-based artificial siderophore mimetics as vehicles for the delivery of cargo into Gram-negative bacteria.
Collapse
Affiliation(s)
- Sarah Fritsch
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Véronique Gasser
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex F-67084, France
| | - Quentin Perraud
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Vincent Normant
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig 38124, Germany
- Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, Hannover 30159, Germany
| | - Isabelle J. Schalk
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| |
Collapse
|
29
|
Pandey A, Cao M, Boros E. Tracking Uptake and Metabolism of Xenometallomycins Using a Multi-Isotope Tagging Strategy. ACS Infect Dis 2022; 8:878-888. [PMID: 35319188 DOI: 10.1021/acsinfecdis.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic and naturally occurring siderophores and their conjugates provide access to the bacterial cytoplasm via active membrane transport. Previously, we displaced iron with the radioactive isotope 67Ga to quantify and track in vitro and in vivo uptake and distribution of siderophore Trojan Horse antibiotic conjugates. Here, we introduce a multi-isotope tagging strategy to individually elucidate the fate of metal cargo and the ligand construct with radioisotopes 67Ga and 124I. We synthesized gallium(III) model complexes of a ciprofloxacin-functionalized linear desferrichrome (Ga-D6) and deferoxamine (Ga-D7) incorporating an iodo-tyrosine linker to enable radiolabeling using the metal-binding (67Ga) and the cargo-conjugation site (124I). Radiochemical experiments with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa wt strains show that 67Ga-D6/D7 and Ga-D6-124I/D7-124I have comparable uptake, indicating intact complex import and siderophore-mediated uptake. In naive mice, 67Ga-D6/D7 and Ga-D6-124I/D7-124I demonstrate predominantly renal clearance; urine metabolite analysis indicates in vivo dissociation of Ga(III) is a likely mechanism of degradation for 67Ga-D6/D7 when compared to ligand radiolabeled compounds, Ga-D6-124I/D7-124I, which remain >60% intact in urine. Cumulatively, this work demonstrates that a multi-isotope tagging strategy effectively elucidates the in vitro uptake, pharmacokinetics, and in vivo stability of xenometallomycins with modular chemical structures.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Minhua Cao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
30
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
31
|
Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in 1H/ 31P magnetic resonance imaging. Sci Rep 2022; 12:2118. [PMID: 35136162 PMCID: PMC8826874 DOI: 10.1038/s41598-022-06125-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
We present the MR properties of a novel bio-responsive phosphorus probe doped with iron for dual proton and phosphorus magnetic resonance imaging (1H/31P-MRI), which provide simultaneously complementary information. The probes consist of non-toxic biodegradable calcium phytate (CaIP6) nanoparticles doped with different amounts of cleavable paramagnetic Fe3+ ions. Phosphorus atoms in the phytate structure delivered an efficient 31P-MR signal, with iron ions altering MR contrast for both 1H and 31P-MR. The coordinated paramagnetic Fe3+ ions broadened the 31P-MR signal spectral line due to the short T2 relaxation time, resulting in more hypointense signal. However, when Fe3+ was decomplexed from the probe, relaxation times were prolonged. As a result of iron release, intensity of 1H-MR, as well as the 31P-MR signal increase. These 1H and 31P-MR dual signals triggered by iron decomplexation may have been attributable to biochemical changes in the environment with strong iron chelators, such as bacterial siderophore (deferoxamine). Analysing MR signal alternations as a proof-of-principle on a phantom at a 4.7 T magnetic field, we found that iron presence influenced 1H and 31P signals and signal recovery via iron chelation using deferoxamine.
Collapse
|
32
|
Selective detection of Aeromonas spp. by a fluorescent probe based on the siderophore amonabactin. J Inorg Biochem 2022; 230:111743. [DOI: 10.1016/j.jinorgbio.2022.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/19/2022]
|
33
|
Pandey A, Śmiłowicz D, Boros E. Galbofloxacin: a xenometal-antibiotic with potent in vitro and in vivo efficacy against S. aureus. Chem Sci 2021; 12:14546-14556. [PMID: 34881006 PMCID: PMC8580130 DOI: 10.1039/d1sc04283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Siderophore-antibiotic drug conjugates are considered potent tools to deliver and potentiate the antibacterial activity of antibiotics, but only few have seen preclinical and clinical success. Here, we introduce the gallium(iii) complex of a ciprofloxacin-functionalized linear desferrichrome, Galbofloxacin, with a cleavable serine linker as a potent therapeutic for S. aureus bacterial infections. We employed characterization using in vitro inhibitory assays, radiochemical, tracer-based uptake and pharmacokinetic assessment of our lead compound, culminating in in vivo efficacy studies in a soft tissue model of infection. Galbofloxacin exhibits a minimum inhibitory concentration of (MIC98) 93 nM in wt S. aureus, exceeding the potency of the parent antibiotic ciprofloxacin (0.9 μM). Galbofloxacin is a protease substrate that can release the antibiotic payload in the bacterial cytoplasm. Radiochemical experiments with wt bacterial strains reveal that 67Galbofloxacin is taken up efficiently using siderophore mediated, active uptake. Biodistribution of 67Galbofloxacin in a mouse model of intramuscular S. aureus infection revealed renal clearance and enhanced uptake in infected muscle when compared to 67Ga-citrate, which showed no selectivity. A subsequent in vivo drug therapy study reveals efficient reduction in S. aureus infection burden and sustained survival with Galbofloxacin for 7 days. Ciprofloxacin had no treatment efficacy at identical molecular dose (9.3 μmol kg−1) and resulted in death of all study animals in <24 hours. Taken together, the favorable bacterial growth inhibitory, pharmacokinetic and in vivo efficacy properties qualify Galbofloxacin as the first rationally designed Ga-coordination complex for the management of S. aureus bacterial infections. Galbofloxacin, a novel theranostic xenosiderophore antibiotic, exhibits unparalleled potency in combating S. aureus infections in vivo.![]()
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| |
Collapse
|
34
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
35
|
Kim DY, Kim HJ. Function of Fimsbactin B as an Acinetobacter-Selective Antibiotic Delivery Vehicle. Org Lett 2021; 23:5256-5260. [PMID: 34133175 DOI: 10.1021/acs.orglett.1c01786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of fimsbactin B, a natural siderophore of Acinetobacter baumannii, to function as an antibiotic delivery vehicle was investigated by synthesizing three structurally diversified fimsbactin B-cefaclor conjugates. Their antimicrobial activities were Acinetobacter-selective and up to 128-fold more potent than that of cefaclor alone. This activity enhancement originated from the fimsbactin-B-dependent active uptake of cefaclor. Thus, fimsbactin-B-based antibiotic delivery can be an effective approach in combating antibiotic-resistant Acinetobacter infections.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Chemistry and Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry and Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
36
|
Pandey A, Boros E. Coordination Complexes to Combat Bacterial Infections: Recent Developments, Current Directions and Future Opportunities. Chemistry 2021; 27:7340-7350. [PMID: 33368662 DOI: 10.1002/chem.202004822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Indexed: 12/29/2022]
Abstract
Drug discovery aimed at the efficient eradication of life-threatening bacterial infections, especially in light of the emergence of multi-drug resistance of pathogenic bacteria, has remained a challenge for medicinal chemists over the past several decades. As nutrient acquisition and metabolism at the host-pathogen interface become better elucidated, new drug targets continue to emerge. Metal homeostasis is among these processes, and thus provides opportunities for medicinal inorganic chemists to alter or disrupt these processes selectively to impart bacteriostatic or bacteriotoxic effects. In this minireview, we showcase some of the recent work from the field of metal-based antibacterial agents and highlight divergent strategies and mechanisms of action.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| |
Collapse
|
37
|
Miller MJ, Liu R. Design and Syntheses of New Antibiotics Inspired by Nature's Quest for Iron in an Oxidative Climate. Acc Chem Res 2021; 54:1646-1661. [PMID: 33684288 DOI: 10.1021/acs.accounts.1c00004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This Account describes fundamental chemistry that promoted the discovery of new antibiotics. Specifically, the NH acidity of simple hydroxamic acid derivatives facilitated the syntheses of novel β-lactams (oxamazins and monobactams), siderophore mimics that limit bacterial iron uptake and bacterially targeted sideromycins (siderophore-antibiotic conjugates). The development of resistance to our current limited set of antibiotic scaffolds has created a dire medical situation. As recently stated, "if you weren't taking antibiotic resistance seriously before, now would be a good time to start." A project commissioned by the British government (https://amr-review.org/) has released estimates of the near-future global toll of antibiotic resistance that are jaw-dropping in their seriousness and scale: 10 million deaths per year and at least $100 trillion in sacrificed gross national product. The 2020 COVID pandemic confirmed that infectious disease problems are no longer localized but worldwide. Many classical antibiotics, especially β-lactams, previously provided economical cures, but the evolution of antibiotic destructive enzymes (i.e., β-lactamases), efflux pumps, and bacterial cell wall permeability barriers has made many types of bacteria, especially Gram-negative strains, resistant. Still, and in contrast to other therapies, the public expectation is that any new antibiotic must be inexpensive. This creates market limitations that have caused most major pharmaceutical companies to abandon antibiotic research. Much needs to be done to address this significant problem.The critical need for bacteria to sequester essential iron provides an Achilles' heel for new antibiotic development. Although ferric iron is extremely insoluble, bacteria need micromolar intracellular concentrations for growth and virulence. To this end, they biosynthesize siderophores (Gr. iron bearer) and excrete them into their environment, where they bind iron with high affinity. The iron complexes are recognized by specific outer-membrane transporters, and once actively internalized, the iron is released for essential processes. To conserve biosynthetic energy, some bacteria recognize and utilize siderophores made by competing strains. As a counter-revolution in the never-ending fight for survival, bacteria have also evolved sideromycins, which are siderophores conjugated to warheads that are lethal to rogue bacteria. While none are now used therapeutically, natural sideromycins called albomycins have been used clinically, and others have been shown to be well tolerated and active in animal infection models. Herein we describe practical methods to synthesize new antibiotics and artificial sideromycins with the generalized structure shown above (siderophore-linker drug). Utilizing the molecular-recognition-based siderophore/sideromycin bacterial assimilation processes, it is possible to design both broad spectrum and exquisitely narrow spectrum (targeted) sideromycins and even repurpose older or more classical antibiotics. Relevant microbiological assays, in vivo animal infection studies, and the recent FDA approval of cefiderocol demonstrate their effectiveness.
Collapse
Affiliation(s)
- Marvin J. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rui Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
38
|
Zeng X, Wang H, Huang C, Logue CM, Barbieri NL, Nolan LK, Lin J. Evaluation of the Immunogenic Response of a Novel Enterobactin Conjugate Vaccine in Chickens for the Production of Enterobactin-Specific Egg Yolk Antibodies. Front Immunol 2021; 12:629480. [PMID: 33868248 PMCID: PMC8050339 DOI: 10.3389/fimmu.2021.629480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Passive immunization with specific egg yolk antibodies (immunoglobulin Y, IgY) is emerging as a promising alternative to antibiotics to control bacterial infections. Recently, we developed a novel conjugate vaccine that could trigger a strong immune response in rabbits directed against enterobactin (Ent), a highly conserved siderophore molecule utilized by different Gram-negative pathogens. However, induction of Ent-specific antibodies appeared to be affected by the choice of animal host and vaccination regimen. It is still unknown if the Ent conjugate vaccine can trigger a specific immune response in layers for the purpose of production of anti-Ent egg yolk IgY. In this study, three chicken vaccination trials with different regimens were performed to determine conditions for efficient production of anti-Ent egg yolk IgY. Purified Ent was conjugated to three carrier proteins, keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) and CmeC (a subunit vaccine candidate), respectively. Intramuscular immunization of Barred Rock layers with KLH-Ent conjugate four times induced strong immune response against whole conjugate vaccine but the titer of Ent-specific IgY did not change in yolk with only a 4 fold increase detected in serum. In the second trial, three different Ent conjugate vaccines were evaluated in Rhode Island Red pullets with four subcutaneous injections. The KLH-Ent or CmeC-Ent conjugate consistently induced high level of Ent-specific IgY in both serum (up to 2,048 fold) and yolk (up to 1,024 fold) in each individual chicken. However, the Ent-specific immune response was only temporarily and moderately induced using a BSA-Ent vaccination. In the third trial, ten White Leghorn layers were subcutaneously immunized three times with KLH-Ent, leading to consistent and strong immune response against both whole conjugate and the Ent molecule in each chicken; the mean titer of Ent-specific IgY increased approximately 32 and 256 fold in serum and yolk, respectively. Consistent with its potent binding to various Ent derivatives, the Ent-specific egg yolk IgY also inhibited in vitro growth of a representative Escherichia coli strain. Together, this study demonstrated that the novel Ent conjugate vaccine could induce strong, specific, and robust immune response in chickens. The Ent-specific hyperimmune egg yolk IgY has potential for passive immune intervention against Gram-negative infections.
Collapse
Affiliation(s)
- Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Canghai Huang
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States.,College of Fisheries, Jimei University, Xiamen, China
| | - Catherine M Logue
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Nicolle L Barbieri
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lisa K Nolan
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
39
|
Fan D, Fang Q. Siderophores for medical applications: Imaging, sensors, and therapeutics. Int J Pharm 2021; 597:120306. [PMID: 33540031 DOI: 10.1016/j.ijpharm.2021.120306] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/07/2023]
Abstract
Siderophores are low-molecular-weight chelators produced by microorganisms to scavenge iron from the environment and deliver it to cells via specific receptors. Tremendous researches on the molecular basis of siderophore regulation, synthesis, secretion, and uptake have inspired their diverse applications in the medical field. Replacing iron with radionuclides in siderophores, such as the most prominent Ga-68 for positron emission tomography (PET), carves out ways for targeted imaging of infectious diseases and cancers. Additionally, the high affinity of siderophores for metal ions or microorganisms makes them a potent detecting moiety in sensors that can be used for diagnosis. As for therapeutics, the notable Trojan horse-inspired siderophore-antibiotic conjugates demonstrate enhanced toxicity against multi-drug resistant (MDR) pathogens. Besides, siderophores can tackle iron overload diseases and, when combined with moieties such as hydrogels and nanoparticles, a wide spectrum of iron-induced diseases and even cancers. In this review, we briefly outline the related mechanisms, before summarizing the siderophore-based applications in imaging, sensors, and therapeutics.
Collapse
Affiliation(s)
- Di Fan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; Sino-Danish Center for Education and Research, Beijing 101408, PR China.
| |
Collapse
|
40
|
Sargun A, Johnstone TC, Zhi H, Raffatellu M, Nolan EM. Enterobactin- and salmochelin-β-lactam conjugates induce cell morphologies consistent with inhibition of penicillin-binding proteins in uropathogenic Escherichia coli CFT073. Chem Sci 2021; 12:4041-4056. [PMID: 34163675 PMCID: PMC8179508 DOI: 10.1039/d0sc04337k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
The design and synthesis of narrow-spectrum antibiotics that target a specific bacterial strain, species, or group of species is a promising strategy for treating bacterial infections when the causative agent is known. In this work, we report the synthesis and evaluation of four new siderophore-β-lactam conjugates where the broad-spectrum β-lactam antibiotics cephalexin (Lex) and meropenem (Mem) are covalently attached to either enterobactin (Ent) or diglucosylated Ent (DGE) via a stable polyethylene glycol (PEG3) linker. These siderophore-β-lactam conjugates showed enhanced minimum inhibitory concentrations against Escherichia coli compared to the parent antibiotics. Uptake studies with uropathogenic E. coli CFT073 demonstrated that the DGE-β-lactams target the pathogen-associated catecholate siderophore receptor IroN. A comparative analysis of siderophore-β-lactams harboring ampicillin (Amp), Lex and Mem indicated that the DGE-Mem conjugate is advantageous because it targets IroN and exhibits low minimum inhibitory concentrations, fast time-kill kinetics, and enhanced stability to serine β-lactamases. Phase-contrast and fluorescence imaging of E. coli treated with the siderophore-β-lactam conjugates revealed cellular morphologies consistent with the inhibition of penicillin-binding proteins PBP3 (Ent/DGE-Amp/Lex) and PBP2 (Ent/DGE-Mem). Overall, this work illuminates the uptake and cell-killing activity of Ent- and DGE-β-lactam conjugates against E. coli and supports that native siderophore scaffolds provide the opportunity for narrowing the activity spectrum of antibiotics in clinical use and targeting pathogenicity.
Collapse
Affiliation(s)
- Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-452-2495
| | - Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-452-2495
| | - Hui Zhi
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego La Jolla CA 92093 USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego La Jolla CA 92093 USA
- Center for Microbiome Innovation, University of California San Diego La Jolla CA 92093 USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines La Jolla CA 92093 USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-452-2495
| |
Collapse
|
41
|
Nodwell MB, Britton R. Enterobactin on a Bead: Parallel, Solid Phase Siderophore Synthesis Reveals Structure-Activity Relationships for Iron Uptake in Bacteria. ACS Infect Dis 2021; 7:153-161. [PMID: 33290047 DOI: 10.1021/acsinfecdis.0c00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A solid-phase platform for the precise and sequential synthesis of enterobactin analogues is described. This chemistry unites the power of solid-phase peptide synthesis with the unique opportunities and applications offered by siderophore chemistry. Here, a series of hybrid enterobactin hydroxamate/catecholate (HEHC) analogues were synthesized using both catechols and amino acid derived hydroxmate chelators. The HEHC analogues were evaluated for their ability to bind free iron and to promote growth in siderophore-auxotrophic mutant bacteria. We find that, in contrast to S. aureus or E. coli, a number of HEHC analogues promote growth in P. aeruginosa and structure-activity relationships (SARs) exist for the growth promotion via HEHC analogues in this organism.
Collapse
Affiliation(s)
- Matthew B. Nodwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S2, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S2, Canada
| |
Collapse
|
42
|
Sargun A, Gerner RR, Raffatellu M, Nolan EM. Harnessing Iron Acquisition Machinery to Target Enterobacteriaceae. J Infect Dis 2020; 223:S307-S313. [PMID: 33330928 DOI: 10.1093/infdis/jiaa440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Infections caused by Gram-negative bacteria can be challenging to treat due to the outer membrane permeability barrier and the increasing emergence of antibiotic resistance. During infection, Gram-negative pathogens must acquire iron, an essential nutrient, in the host. Many Gram-negative bacteria utilize sophisticated iron acquisition machineries based on siderophores, small molecules that bind iron with high affinity. In this review, we provide an overview of siderophore-mediated iron acquisition in Enterobacteriaceae and show how these systems provide a foundation for the conceptualization and development of approaches to prevent and/or treat bacterial infections. Differences between the siderophore-based iron uptake machineries of pathogenic Enterobacteriaceae and commensal microbes may lead to the development of selective "Trojan-horse" antimicrobials and immunization strategies that will not harm the host microbiota.
Collapse
Affiliation(s)
- Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Romana R Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, California, USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Boyce JH, Dang B, Ary B, Edmondson Q, Craik CS, DeGrado WF, Seiple IB. Platform to Discover Protease-Activated Antibiotics and Application to Siderophore-Antibiotic Conjugates. J Am Chem Soc 2020; 142:21310-21321. [PMID: 33301681 DOI: 10.1021/jacs.0c06987] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we present a platform for discovery of protease-activated prodrugs and apply it to antibiotics that target Gram-negative bacteria. Because cleavable linkers for prodrugs had not been developed for bacterial proteases, we used substrate phage to discover substrates for proteases found in the bacterial periplasm. Rather than focusing on a single protease, we used a periplasmic extract of E. coli to find sequences with the greatest susceptibility to the endogenous mixture of periplasmic proteases. Using a fluorescence assay, candidate sequences were evaluated to identify substrates that release native amine-containing payloads. We next designed conjugates consisting of (1) an N-terminal siderophore to facilitate uptake, (2) a protease-cleavable linker, and (3) an amine-containing antibiotic. Using this strategy, we converted daptomycin-which by itself is active only against Gram-positive bacteria-into an antibiotic capable of targeting Gram-negative Acinetobacter species. We similarly demonstrated siderophore-facilitated delivery of oxazolidinone and macrolide antibiotics into a number of Gram-negative species. These results illustrate this platform's utility for development of protease-activated prodrugs, including Trojan horse antibiotics.
Collapse
Affiliation(s)
- Jonathan H Boyce
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Bobo Dang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.,Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Beatrice Ary
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Quinn Edmondson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
44
|
Southwell JW, Black CM, Duhme-Klair AK. Experimental Methods for Evaluating the Bacterial Uptake of Trojan Horse Antibacterials. ChemMedChem 2020; 16:1063-1076. [PMID: 33238066 DOI: 10.1002/cmdc.202000806] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/10/2023]
Abstract
The field of antibacterial siderophore conjugates, referred to as Trojan Horse antibacterials, has received increasing attention in recent years, driven by the rise of antimicrobial resistance. Trojan Horse antibacterials offer an opportunity to exploit the specific pathways present in bacteria for active iron uptake, potentially allowing the drugs to bypass membrane-associated resistance mechanisms. Hence, the Trojan Horse approach might enable the redesigning of old antibiotics and the development of antibacterials that target specific pathogens. Critical parts of evaluating such Trojan Horse antibacterials and improving their design are the quantification of their bacterial uptake and the identification of the pathways by which this occurs. In this minireview, we highlight a selection of the biological and chemical methods used to study the uptake of Trojan Horse antibacterials, exemplified with case studies, some of which have led to drug candidates in clinical development or approved antibiotics.
Collapse
Affiliation(s)
- James W Southwell
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Conor M Black
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | | |
Collapse
|
45
|
Cui Y, Guo F, Guo J, Cao X, Wang H, Yang B, Zhou H, Su X, Zeng X, Lin J, Xu F. Immunization of Chickens with the Enterobactin Conjugate Vaccine Reduced Campylobacter jejuni Colonization in the Intestine. Vaccines (Basel) 2020; 8:vaccines8040747. [PMID: 33316999 PMCID: PMC7768380 DOI: 10.3390/vaccines8040747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of human enteritis in developed countries. Chicken is the major animal reservoir of C. jejuni and a powerful infection model for human campylobacteriosis. No commercial vaccine against C. jejuni is available to date. The high affinity iron acquisition mediated through enterobactin (Ent), a small siderophore, plays a critical role in the colonization of C. jejuni in the intestine. Recently, an innovative Ent conjugate vaccine has been demonstrated to induce high-level of Ent-specific antibodies in rabbits; the Ent-specific antibodies displayed potent binding ability to Ent and inhibited Ent-dependent growth of C. jejuni. In this study, using specific-pathogen-free (SPF) chickens, we performed three trials to evaluate the immunogenicity of the Ent conjugate vaccine and its efficacy to control C. jejuni colonization in the intestine. The purified Ent was conjugated to the carrier keyhole limpet hemocyanin (KLH). Intramuscular immunization of chickens with the Ent-KLH conjugate for up to three times did not affect the body weight gain, the development of major immune organs and the gut microbiota. In the first two trials, immunizations of chickens with different regimens (two or three times of vaccination) consistently induced strong Ent-specific immune response when compared to control group. Consistent with the high-level of systemic anti-Ent IgG, C. jejuni colonization was significantly reduced by 3-4 log10 units in the cecum in two independent vaccination trials. The third trial demonstrated that single Ent-KLH vaccination is sufficient to elicit high level of systemic Ent-specific antibodies, which could persist for up to eight weeks in chickens. Taken together, the Ent-KLH conjugate vaccine could induce high-level of Ent-specific antibodies in chickens and confer host protection against C. jejuni colonization, which provides a novel strategy for Campylobacter control in poultry and humans.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.C.); (F.G.); (J.G.); (X.C.); (B.Y.); (H.Z.); (X.S.)
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.C.); (F.G.); (J.G.); (X.C.); (B.Y.); (H.Z.); (X.S.)
| | - Jie Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.C.); (F.G.); (J.G.); (X.C.); (B.Y.); (H.Z.); (X.S.)
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.C.); (F.G.); (J.G.); (X.C.); (B.Y.); (H.Z.); (X.S.)
| | - Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; (H.W.); (X.Z.)
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.C.); (F.G.); (J.G.); (X.C.); (B.Y.); (H.Z.); (X.S.)
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.C.); (F.G.); (J.G.); (X.C.); (B.Y.); (H.Z.); (X.S.)
| | - Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.C.); (F.G.); (J.G.); (X.C.); (B.Y.); (H.Z.); (X.S.)
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; (H.W.); (X.Z.)
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; (H.W.); (X.Z.)
- Correspondence: (J.L.); (F.X.)
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.C.); (F.G.); (J.G.); (X.C.); (B.Y.); (H.Z.); (X.S.)
- Correspondence: (J.L.); (F.X.)
| |
Collapse
|
46
|
Madaoui M, Vidal O, Meyer A, Noël M, Lacroix JM, Vasseur JJ, Marra A, Morvan F. Modified Galacto- or Fuco-Clusters Exploiting the Siderophore Pathway to Inhibit the LecA- or LecB-Associated Virulence of Pseudomonas aeruginosa. Chembiochem 2020; 21:3433-3448. [PMID: 32701213 DOI: 10.1002/cbic.202000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Galacto- and fuco-clusters conjugated with one to three catechol or hydroxamate motifs were synthesised to target LecA and LecB lectins of Pseudomonas aeruginosa (PA) localised in the outer membrane and inside the bacterium. The resulting glycocluster-pseudosiderophore conjugates were evaluated as Trojan horses to cross the outer membrane of PA by iron transport. The data suggest that glycoclusters with catechol moieties are able to hijack the iron transport, whereas those with hydroxamates showed strong nonspecific interactions. Mono- and tricatechol galactoclusters (G1C and G3C) were evaluated as inhibitors of infection by PA in comparison with the free galactocluster (G0). All of them exhibited an inhibitory effect between 46 to 75 % at 100 μM, with a higher potency than G0. This result shows that LecA localised in the outer membrane of PA is involved in the infection mechanism.
Collapse
Affiliation(s)
- Mimouna Madaoui
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Olivier Vidal
- Unité de Glycobiologie Structurelle et Fonctionnelle (UGSF), UMR 8576 CNRS, Université de Lille Cité Scientifique, Avenue Mendeleiev, Bat. C9, 59655, Villeneuve d'Ascq Cedex, France
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Mathieu Noël
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurelle et Fonctionnelle (UGSF), UMR 8576 CNRS, Université de Lille Cité Scientifique, Avenue Mendeleiev, Bat. C9, 59655, Villeneuve d'Ascq Cedex, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - François Morvan
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
47
|
Palmer JD, Mortzfeld BM, Piattelli E, Silby MW, McCormick BA, Bucci V. Microcin H47: A Class IIb Microcin with Potent Activity Against Multidrug Resistant Enterobacteriaceae. ACS Infect Dis 2020; 6:672-679. [PMID: 32096972 DOI: 10.1021/acsinfecdis.9b00302] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microcin H47 (MccH47) is an antimicrobial peptide produced by some strains of Escherichia coli that has demonstrated inhibitory activity against enteric pathogens in vivo and has been heterologously overexpressed in proof-of-concept engineered probiotic applications. While most studies clearly demonstrate inhibitory activity against E. coli isolates, there are conflicting results on the qualitative capacity for MccH47 to inhibit strains of Salmonella. Here, we rectify these inconsistencies via the overexpression and purification of a form of MccH47, termed MccH47-monoglycosylated enterobactin (MccH47-MGE). We then use purified MccH47 to estimate minimum inhibitory concentrations (MICs) against a number of medically relevant Enterobacteriaceae, including Salmonella and numerous multidrug resistant (MDR) strains. While previous reports suggested that the spectrum of activity for MccH47 is quite narrow and restricted to activity against E. coli, our data demonstrate that MccH47 has broad and potent activity within the Enterobacteriaceae family, suggesting it as a candidate for further development toward treating MDR enteric infections.
Collapse
Affiliation(s)
- Jacob D. Palmer
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, Massachusetts 02747-2300, United States
| | - Benedikt M. Mortzfeld
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, Massachusetts 02747-2300, United States
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, Massachusetts 02747-2300, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Emma Piattelli
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, Massachusetts 02747-2300, United States
| | - Mark W. Silby
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, Massachusetts 02747-2300, United States
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, United States
- Center for Microbiome Research, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Vanni Bucci
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, Massachusetts 02747-2300, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, United States
- Center for Microbiome Research, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
48
|
Pandey A, Savino C, Ahn SH, Yang Z, Van Lanen SG, Boros E. Theranostic Gallium Siderophore Ciprofloxacin Conjugate with Broad Spectrum Antibiotic Potency. J Med Chem 2019; 62:9947-9960. [PMID: 31580658 DOI: 10.1021/acs.jmedchem.9b01388] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathogenic bacteria scavenge ferric iron from the host for survival and proliferation using small-molecular chelators, siderophores. Here, we introduce and assess the gallium(III) complex of ciprofloxacin-functionalized desferrichrome (D2) as a potential therapeutic for bacterial infection using an in vitro assay and radiochemical, tracer-based approach. Ga-D2 exhibits a minimum inhibitory concentration of 0.23 μM in Escherichia coli, in line with the parent fluoroquinolone antibiotic. Competitive and mutant strain assays show that Ga-D2 relies on FhuA-mediated transport for internalization. Ga-D2 is potent against Pseudomonas aeruginosa (3.8 μM), Staphylococcus aureus (0.94 μM), and Klebsiella pneumoniae (12.5 μM), while Fe-D2 is inactive in these strains. Radiochemical experiments with E. coli reveal that 67Ga-D2 is taken up more efficiently than 67Ga-citrate. In naive mice, 67Ga-D2 clears renally and is excreted 13% intact in the urine. These pharmacokinetic and bacterial growth inhibitory properties qualify Ga-D2 for future investigations as a diagnosis and treatment tool for infection.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Chloé Savino
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Shin Hye Ahn
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington 40536 , Kentucky , United States
| | - Eszter Boros
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| |
Collapse
|
49
|
ROS-based lethality of Caenorhabditis elegans mitochondrial electron transport mutants grown on Escherichia coli siderophore iron release mutants. Proc Natl Acad Sci U S A 2019; 116:21651-21658. [PMID: 31591219 PMCID: PMC6815122 DOI: 10.1073/pnas.1912628116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans consumes bacteria, which can supply essential vitamins and cofactors, especially for mitochondrial functions that have a bacterial ancestry. Therefore, we screened the Keio Escherichia coli knockout library for mutations that induce the C. elegans hsp-6 mitochondrial damage response gene, and identified 45 E. coli mutations that induce hsp-6::gfp We tested whether any of these E. coli mutations that stress the C. elegans mitochondrion genetically interact with C. elegans mutations in mitochondrial functions. Surprisingly, 4 E. coli mutations that disrupt the import or removal of iron from the bacterial siderophore enterobactin were lethal in combination with a collection of C. elegans mutations that disrupt particular iron-sulfur proteins of the electron transport chain. Bacterial mutations that fail to synthesize enterobactin are not synthetic lethal with these C. elegans mitochondrial mutants; it is the enterobactin-iron complex that is lethal in combination with the C. elegans mitochondrial mutations. Antioxidants suppress this inviability, suggesting that reactive oxygen species (ROS) are produced by the mutant mitochondria in combination with the bacterial enterobactin-iron complex.
Collapse
|
50
|
Kong H, Cheng W, Wei H, Yuan Y, Yang Z, Zhang X. An overview of recent progress in siderophore-antibiotic conjugates. Eur J Med Chem 2019; 182:111615. [PMID: 31434038 DOI: 10.1016/j.ejmech.2019.111615] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023]
Abstract
Multi-drug resistant infections caused by Gram-negative bacteria have become one of the most important reasons for the failure of clinical anti-infective treatment. Siderophore-antibiotic conjugates, which were designed based on a "Trojan horse" strategy wherein features enabled active uptake to bypass the Gram-negative cell wall, have been expected to be a weapon for anti-infective treatment in the clinic. Herein, we review antibiotic drug design strategies based on mimics of nature siderophores reported in recent years, we also focus our attention on the relationship between the type of linker and the corresponding antibacterial activity.
Collapse
Affiliation(s)
- Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongliang Yuan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|