1
|
Kimball JJ, Schurko RW. Acquisition of 1H-Detected 103Rh and 99Ru Solid-State Nuclear Magnetic Resonance Spectra in Stationary Samples. J Phys Chem Lett 2025:4596-4601. [PMID: 40310694 DOI: 10.1021/acs.jpclett.5c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The platinum group elements (PGEs) are among the most important in the periodic table due to their critical roles in a diverse array of applications. There is great interest in using solid-state nuclear magnetic resonance (SSNMR) for studying the structure and bonding in PGE complexes from the perspective of the metal nuclides, yet this has been limited to date. This is largely due to the inherently low Larmor frequencies of many of the PGE nuclides in addition to factors such as low natural abundances and/or large anisotropic interactions that reduce their receptivity to the NMR experiment. In this work, we demonstrate for the first time the ability to indirectly detect (with 1H, I = 1/2) wideline SSNMR powder patterns from stationary samples of compounds featuring 103Rh (S = 1/2) and 99Ru (S = 5/2) using the recently introduced progressive saturation of the proton reservoir (PROSPR) pulse sequence.
Collapse
Affiliation(s)
- James J Kimball
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
2
|
Atterberry BA, Wimmer EJ, Klostermann S, Frey W, Kästner J, Estes DP, Rossini AJ. Structural characterization of surface immobilized platinum hydrides by sensitivity-enhanced 195Pt solid state NMR spectroscopy and DFT calculations. Chem Sci 2025; 16:1271-1287. [PMID: 39677932 PMCID: PMC11638849 DOI: 10.1039/d4sc06450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Supported single-site platinum hydride compounds are promising heterogeneous catalysts for organic transformations. Few methods exist to describe the structures of single-site Pt catalysts with atomic resolution because of their disordered structures and low Pt loadings. Here, we study the compounds formed when bis(tri-tert-butylphosphino)platinum, Pt(P t Bu3)2, is supported on dehydroxylated SiO2 or SiO2-Al2O3. First, we obtain magic angle spinning (MAS) 1H, 31P and 195Pt ssNMR spectra of four model Pt phosphine compounds with oxidation states of 0 or +2 and coordination numbers between 2 and 4. These compounds are analogs of potential structures present in the supported compounds. MAS 195Pt ssNMR spectra were obtained using 31P{195Pt} sideband selective J-resolved and J-HMQC experiments. The measured 1H and 31P chemical shifts, 31P-195Pt J-couplings and 195Pt chemical shift (CS) tensors are shown to be diagnostic of oxidation state and coordination number. Room temperature 1H ssNMR spectra of Pt(P t Bu3)2 supported on SiO2 or SiO2-Al2O3 show diagnostic hydride NMR signals, suggesting that Pt(P t Bu3)2 undergoes oxidative addition, resulting in surface hydrides and Pt-oxygen bonds to the support surface. MAS dynamic nuclear polarization (DNP) enables 31P{195Pt} correlation NMR experiments on the supported compounds. These experiments enable the measurement of the 31P-195Pt J-coupling constants and 195Pt CS tensors. Combined NMR and DFT analyses suggest that the primary surface platinum species are [HPt(P t Bu3)2OSi] on SiO2 and [HPt(P t Bu3)2]+[Si-O--Al] on SiO2-Al2O3. The Pt-oxygen bond length is dependent on the support and estimated as 2.1-2.3 Å and 2.7-3.0 Å for SiO2 and SiO2-Al2O3, respectively.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- Iowa State University, Department of Chemistry Ames IA 50011 USA
- US DOE Ames National Laboratory Ames Iowa 50011 USA
| | - Erik J Wimmer
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Sina Klostermann
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Wolfgang Frey
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Johannes Kästner
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Deven P Estes
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Aaron J Rossini
- Iowa State University, Department of Chemistry Ames IA 50011 USA
- US DOE Ames National Laboratory Ames Iowa 50011 USA
| |
Collapse
|
3
|
Batista PR, Ducati LC, Autschbach J. Dynamic and relativistic effects on Pt-Pt indirect spin-spin coupling in aqueous solution studied by ab initio molecular dynamics and two- vs four-component density functional NMR calculations. J Chem Phys 2024; 160:114307. [PMID: 38497474 DOI: 10.1063/5.0196853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Treating 195Pt nuclear magnetic resonance parameters in solution remains a considerable challenge from a quantum chemistry point of view, requiring a high level of theory that simultaneously takes into account the relativistic effects, the dynamic treatment of the solvent-solute system, and the dynamic electron correlation. A combination of Car-Parrinello molecular dynamics (CPMD) and relativistic calculations based on two-component zeroth order regular approximation spin-orbit Kohn-Sham (2c-ZKS) and four-component Dirac-Kohn-Sham (4c-DKS) Hamiltonians is performed to address the solvent effect (water) on the conformational changes and JPtPt1 coupling. A series of bridged PtIII dinuclear complexes [L1-Pt2(NH3)4(Am)2-L2]n+ (Am = α-pyrrolidonate and pivalamidate; L = H2O, Cl-, and Br-) are studied. The computed Pt-Pt coupling is strongly dependent on the conformational dynamics of the complexes, which, in turn, is correlated with the trans influence among axial ligands and with the angle N-C-O from the bridging ligands. The J-coupling is decomposed in terms of dynamic contributions. The decomposition reveals that the vibrational and explicit solvation contributions reduce JPtPt1 of diaquo complexes (L1 = L2 = H2O) in comparison to the static gas-phase magnitude, whereas the implicit solvation and bulk contributions correspond to an increase in JPtPt1 in dihalo (L1 = L2 = X-) and aquahalo (L1 = H2O; L2 = X-) complexes. Relativistic treatment combined with CPMD shows that the 2c-ZKS Hamiltonian performs as well as 4c-DKS for the JPtPt1 coupling.
Collapse
Affiliation(s)
- Patrick R Batista
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Lucas C Ducati
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA
| |
Collapse
|
4
|
Lamahewage SNS, Atterberry BA, Dorn RW, Gi E, Kimball MR, Blümel J, Vela J, Rossini AJ. Accelerated acquisition of wideline solid-state NMR spectra of spin 3/2 nuclei by frequency-stepped indirect detection experiments. Phys Chem Chem Phys 2024; 26:5081-5096. [PMID: 38259035 DOI: 10.1039/d3cp05055f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
73% of all NMR-active nuclei are quadrupolar nuclei with a nuclear spin I > 1/2. The broadening of the solid-state NMR signals by the quadrupolar interaction often leads to poor sensitivity and low resolution. In this work we present experimental and theoretical investigations of magic angle spinning (MAS) 1H{X} double-echo resonance-echo saturation-pulse double-resonance (DE-RESPDOR) and Y{X} J-resolved solid-state NMR experiments for the indirect detection of spin 3/2 quadrupolar nuclei (X = spin 3/2 nuclei, Y = spin 1/2 nuclei). In these experiments, the spectrum of the quadrupolar nucleus is reconstructed by plotting the observed dephasing of the detected spin as a function of the transmitter offset of the indirectly detected spin. Numerical simulations were used to investigate the achievable levels of dephasing and to predict the lineshapes of indirectly detected NMR spectra of the quadrupolar nucleus. We demonstrate 1H, 31P and 207Pb detection of 35Cl, 81Br, and 63Cu (I = 3/2) nuclei in trans-Cl2Pt(NH3)2 (transplatin), (CH3NH3)PbCl3 (methylammonium lead chloride, MAPbCl3), (CH3NH3)PbBr3 (methylammonium lead bromide, MAPbBr3) and CH3C(CH2PPh2)3CuI (1,1,1-tris(diphenylphosphinomethyl)ethane copper(I) iodide, triphosCuI), respectively. In all of these experiments, we were able to detect megahertz wide central transition or satellite transition powder patterns. Significant time savings and gains in sensitivity were attained in several test cases. Additionally, the indirect detection experiments provide valuable structural information because they confirm the presence of dipolar or scalar couplings between the detected nucleus and the quadrupolar nucleus of interest. Finally, numerical simulations suggest these methods are also potentially applicable to abundant spin 5/2 and spin 7/2 quadrupolar nuclei.
Collapse
Affiliation(s)
- Sujeewa N S Lamahewage
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Benjamin A Atterberry
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Rick W Dorn
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Eunbyeol Gi
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Maxwell R Kimball
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Janet Blümel
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Javier Vela
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Aaron J Rossini
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| |
Collapse
|
5
|
Holmes ST, Schönzart J, Philips AB, Kimball JJ, Termos S, Altenhof AR, Xu Y, O'Keefe CA, Autschbach J, Schurko RW. Structure and bonding in rhodium coordination compounds: a 103Rh solid-state NMR and relativistic DFT study. Chem Sci 2024; 15:2181-2196. [PMID: 38332836 PMCID: PMC10848688 DOI: 10.1039/d3sc06026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Jasmin Schönzart
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam B Philips
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - James J Kimball
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Sara Termos
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Yijue Xu
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Christopher A O'Keefe
- Department of Chemistry & Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
6
|
Mian MR, Afrin U, Takaishi S, Breedlove BK, Yamashita M, Iguchi H. Hexagonal crystalline Magnus' green salt analogues prepared from hydroxy-functionalised Pt and Pd complexes. Dalton Trans 2023; 52:15503-15509. [PMID: 37577755 DOI: 10.1039/d3dt01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
New Magnus' green salt (MGS) analogues, [M(dabdOH)2][MCl4]·2H2O (dabdOH = (2S,3S)-2,3-diaminobutane-1,4-diol; M = Pd (1) and M = Pt(2)), in which [M(dabdOH)2]2+ and [MCl4]2- are stacked alternately to form linear chains, were obtained as hexagonal plate crystals. The hexagonal shape and large crystal size are unprecedented features as MGS analogues. An unusual trigonal grade separation of chain complexes has been revealed by the structural analysis. 1 and 2 exhibited remarkable yellow and pink colours, respectively, which are derived from weak M⋯M interactions. The dabdOH ligand, which has an additional hydrogen donor group (hydroxy group), produces a multiple-hydrogen-bond network. The combination of intrachain and interchain hydrogen bonds gives a two-dimensional (2D) hydrogen-bond sheet, and each 2D sheet is indirectly connected by hydrogen bonds via lattice water molecules. The OH-functionalised ligand greatly increases the hydrophilicity of the MGS analogues and yields the largest single crystals of all MGS analogues reported so far. The trigonal grade-separated chain structure is likely due to the geometric matching between the periodicity of chains and the short axis width of the chain. This strategy opens up new insight for preparing large crystals of MGS analogues and for constructing trigonal grade-separated nanowires in molecular crystals.
Collapse
Affiliation(s)
- Mohammad Rasel Mian
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan.
| | - Unjila Afrin
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan.
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan.
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan.
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan.
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan.
| |
Collapse
|
7
|
Jaroszewicz MJ, Altenhof AR, Schurko RW, Frydman L. An automated multi-order phase correction routine for processing ultra-wideline NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107528. [PMID: 37632988 DOI: 10.1016/j.jmr.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Efficient acquisition of wideline solid-state nuclear magnetic resonance (NMR) spectra with patterns affected by large inhomogeneous broadening is accomplished with the use of broadband pulse sequences. These specialized pulse sequences often use frequency-swept pulses, which feature time-dependent phase and amplitude modulations that in turn deliver broad and uniform excitation across large spectral bandwidths. However, the resulting NMR spectra are often affected by complex frequency-dependent phase dispersions, owing to the interplay between the frequency-swept excitations and anisotropic resonance frequencies. Such phase distortions necessitate the use of multi-order non-linear corrections in order to obtain absorptive, distortion-free patterns with uniform phasing. Performing such corrections is often challenging due to the complex interdependence of the linear and non-linear phase contributions, and how these may affect the NMR signal. Hence, processing of these data usually involves calculating the spectra in magnitude mode wherein the phase information is discarded. Herein, we present a fully automated phasing routine that is capable of processing and phase correcting such wideline NMR spectra. Its performance is corroborated via processing of NMR data acquired using both the WURST-CPMG (Wideband, Uniform-Rate, Smooth Truncation with Carr-Purcell Meiboom-Gill acquisition) and BRAIN-CP (BRoadband Adiabatic Inversion Cross Polarization) pulse sequences for a variety of nuclei (i.e., 119Sn, 195Pt, 35Cl, 87Rb, and 14N). Based on both simulated and experimental NMR datasets, it is demonstrated that automatic phase corrections up to and including second order can be readily achieved without a priori information regarding the nature of the phase-distorted NMR datasets, and independently of the exact manner in which time-domain NMR data are collected and subsequently processed. In addition, it is shown that NMR spectra acquired at both single and multiple transmitter frequencies that are processed with this automated phasing routine have improved signal-to-noise properties than those processed with conventional magnitude calculations, along with powder patterns that better match those of ideal NMR spectra, even for datasets possessing low signal-to-noise ratios and/or affected by spectral artifacts.
Collapse
Affiliation(s)
- Michael J Jaroszewicz
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot 7610001, Israel.
| | - Adam R Altenhof
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot 7610001, Israel; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
8
|
Atterberry BA, Wimmer E, Estes DP, Rossini AJ. Acceleration of indirect detection 195Pt solid-state NMR experiments by sideband selective excitation or alternative indirect sampling schemes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107457. [PMID: 37163927 DOI: 10.1016/j.jmr.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
The measurement of the of chemical shift (CS) tensors via solid-state NMR (ssNMR) spectroscopy has proven to be a powerful probe of structure for organic molecules, biomolecules, and inorganic materials. However, when measuring the NMR spectra of heavy spin-1/2 isotopes the chemical shift anisotropy (CSA) is commonly on the order of thousands of parts per million, which makes acquisition of NMR spectra difficult due to the low NMR sensitivity imposed by the breadth of the signals and challenges in uniformly exciting the NMR spectrum. We have recently shown that complete 195Pt NMR spectra could be rapidly measured by using 195Pt saturation or excitation selective long pulses (SLP) with multiple rotor-cycle durations and RF fields less than 50 kHz into 1H{195Pt} or 1H-31P{195Pt} PE S-RESPDOR, TONE D-HMQC-4, J-resolved, and J-HMQC pulse sequences. The SLP only provide signal or dephasing when they are applied on resonance with a spinning sideband. The magic angle spinning 195Pt NMR spectrum is reconstructed in the sideband selective NMR experiments by acquiring 1D NMR spectra at variable 195Pt pulse offsets. In this work, we present a detailed investigation of the specific pulse conditions required for the ideal performance of sideband selective experiments. Sideband selective experiments are shown to be able to accurately reproduce MAS NMR spectra with minimal distortions of relative sideband intensities. It is also demonstrated that a 195Pt NMR spectrum indirectly detected with HMQC can be rapidly obtained by acquiring a single rotor cycle of indirect dimension evolution points. We dub this method One Rotor Cycle of Acquisition (ORCA) HMQC. Sideband selective experiments and ORCA HMQC experiments are shown to provide a one order of magnitude improvement in experiment times as compared to conventional wideline HMQC experiments.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Erik Wimmer
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Deven P Estes
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Aaron J Rossini
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Fernández-Alarcón A, Autschbach J. Relativistic Density Functional NMR Tensors Analyzed with Spin-free Localized Molecular Orbitals. Chemphyschem 2023; 24:e202200667. [PMID: 36169984 DOI: 10.1002/cphc.202200667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Indexed: 01/07/2023]
Abstract
The implementation of fast relativistic methods based on density functional theory, in conjunction with localized molecular orbital (LMO) based analysis, allows straightforward interpretations of NMR parameters in terms of contributions from core shells, lone pairs, and bonds, for compounds containing elements from across the periodic table. We present a conceptual review of a frequently used LMO analysis of NMR parameters calculated in the presence of spin-orbit interactions and other relativistic effects. An accompanying example focuses on the 15 N shielding in a heavy metal complex.
Collapse
Affiliation(s)
- Alberto Fernández-Alarcón
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| |
Collapse
|
10
|
Venkatesh A, Gioffrè D, Atterberry BA, Rochlitz L, Carnahan SL, Wang Z, Menzildjian G, Lesage A, Copéret C, Rossini AJ. Molecular and Electronic Structure of Isolated Platinum Sites Enabled by the Expedient Measurement of 195Pt Chemical Shift Anisotropy. J Am Chem Soc 2022; 144:13511-13525. [PMID: 35861681 DOI: 10.1021/jacs.2c02300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Techniques that can characterize the molecular structures of dilute surface species are required to facilitate the rational synthesis and improvement of Pt-based heterogeneous catalysts. 195Pt solid-state NMR spectroscopy could be an ideal tool for this task because 195Pt isotropic chemical shifts and chemical shift anisotropy (CSA) are highly sensitive probes of the local chemical environment and electronic structure. However, the characterization of Pt surface-sites is complicated by the typical low Pt loadings that are between 0.2 and 5 wt% and broadening of 195Pt solid-state NMR spectra by CSA. Here, we introduce a set of solid-state NMR methods that exploit fast MAS and indirect detection using a sensitive spy nucleus (1H or 31P) to enable the rapid acquisition of 195Pt MAS NMR spectra. We demonstrate that high-resolution wideline 195Pt MAS NMR spectra can be acquired in minutes to a few hours for a series of molecular and single-site Pt species grafted on silica with Pt loading of only 3-5 wt%. Low-power, long-duration, sideband-selective excitation, and saturation pulses are incorporated into t1-noise eliminated dipolar heteronuclear multiple quantum coherence, perfect echo resonance echo saturation pulse double resonance, or J-resolved pulse sequences. The complete 195Pt MAS NMR spectrum is then reconstructed by recording a series of 1D NMR spectra where the offset of the 195Pt pulses is varied in increments of the MAS frequency. Analysis of the 195Pt MAS NMR spectra yields the 195Pt chemical shift tensor parameters. Zeroth order approximation density functional theory calculations accurately predict 195Pt CS tensor parameters. Simple and predictive orbital models relate the CS tensor parameters to the Pt electronic structure and coordination environment. The methodology developed here paves the way for the detailed structural and electronic analysis of dilute platinum surface-sites.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Domenico Gioffrè
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Georges Menzildjian
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Anne Lesage
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
Daniels CL, Gi E, Atterberry BA, Blome-Fernández R, Rossini AJ, Vela J. Phosphine Ligand Binding and Catalytic Activity of Group 10-14 Heterobimetallic Complexes. Inorg Chem 2022; 61:6888-6897. [PMID: 35481778 DOI: 10.1021/acs.inorgchem.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterobimetallic complexes have attracted much interest due to their broad range of structures and reactivities as well as unique catalytic abilities. Additionally, these complexes can be utilized as single-source precursors for the synthesis of binary intermetallic compounds. An example is the family of bis(pyridine-2-thiolato)dichloro-germanium and tin complexes of group 10 metals (Pd and Pt). The reactivity of these heterobimetallic complexes is highly tunable through substitution of the group 14 element and the neutral ligand bound to the transition metal. Here, we study the binding energies of three different phosphorous-based ligands, PR3 (R = Bu, Ph, and OPh) by density functional theory and restricted Hartree-Fock methods. The PR3 ligand-binding energies follow the trend of PBu3 > PPh3 > P(OPh)3, in agreement with their sigma-bonding ability. These results are confirmed by ligand exchange experiments monitored with 31P NMR spectroscopy, in which a weaker binding PR3 ligand is replaced with a stronger one. Furthermore, we demonstrate that the heterobimetallic complexes are active catalysts in the Negishi coupling reaction, where stronger binding PR3 ligands inhibit access to an active site at the metal center. Similar strategies could be applied to other complexes to better understand their ligand-binding energetics and predict their reactivity as both precursors and catalysts.
Collapse
Affiliation(s)
- Carena L Daniels
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Eunbyeol Gi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | | | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Javier Vela
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
12
|
Bayzou R, Trébosc J, Hung I, Gan Z, Lafon O, Amoureux JP. Indirect NMR detection via proton of nuclei subject to large anisotropic interactions, such as 14N, 195Pt, and 35Cl, using the T-HMQC sequence. J Chem Phys 2022; 156:064202. [DOI: 10.1063/5.0082700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Racha Bayzou
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638–IMEC–Fédération Chevreul, 59000 Lille, France
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
- Riken NMR Science and Development Division, Yokohama-shi 230-0045, Kanagawa, Japan
- Bruker Biospin, 34 rue de l’industrie, 67166 Wissembourg, France
| |
Collapse
|
13
|
Pinter P, Hennersdorf F, Weigand JJ, Strassner T. Polymorphic Phosphorescence from Separable Aggregates with Unique Photophysical Properties. Chemistry 2021; 27:13135-13138. [PMID: 34405914 PMCID: PMC8518788 DOI: 10.1002/chem.202100483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Platinum complexes aggregate into polymorphs with different intermolecular interactions leading to different photophysical properties. Strong intermolecular interactions stabilize the aggregate to such an extent that the polymorphs can be separated directly by column chromatography. Solid‐state structures as well as quantum‐chemical calculations confirmed the effect of the interactions on the photophysical properties.
Collapse
Affiliation(s)
- Piermaria Pinter
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Felix Hennersdorf
- Anorganische Molekülchemie, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jan J Weigand
- Anorganische Molekülchemie, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
14
|
Koppe J, Bußkamp M, Hansen MR. Frequency-Swept Ultra-Wideline Magic-Angle Spinning NMR Spectroscopy. J Phys Chem A 2021; 125:5643-5649. [PMID: 34138561 DOI: 10.1021/acs.jpca.1c02958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent years have witnessed the development of solid-state NMR techniques that allow the direct investigation of extremely wide inhomogeneously broadened resonance lines. To date, this typically involves the application of frequency sweeps as offered by wideband uniform rate smooth truncation (WURST) pulses. While the effects of such advanced irradiation schemes on static samples are well understood, the interference between the varying carrier frequency and the time-dependent evolution of the spin system under magic-angle spinning (MAS) conditions is more complex. Herein, we introduce the well-known WURST-Carr-Purcell-Meiboom-Gill (WCPMG) pulse sequence for spinning samples. Using numerical spin-density matrix analysis, an ideal design based on fast frequency sweeps and high truncation of the incorporated WURST pulses is presented that enables uniform excitation/refocusing under MAS conditions with low-to-moderate radio-frequency power requirements. This permits the acquisition of ultra-wideline MAS NMR lines exceeding 500 kHz with chemical shift resolution in a single transmitter step.
Collapse
Affiliation(s)
- Jonas Koppe
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany
| | - Max Bußkamp
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany
| | - Michael Ryan Hansen
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität, Corrensstrasse 40, DE-48149 Münster, Germany
| |
Collapse
|
15
|
Venkatesh A, Perras FA, Rossini AJ. Proton-detected solid-state NMR spectroscopy of spin-1/2 nuclei with large chemical shift anisotropy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106983. [PMID: 33964731 DOI: 10.1016/j.jmr.2021.106983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Constant-time (CT) dipolar heteronuclear multiple quantum coherence (D-HMQC) has previously been demonstrated as a method for proton detection of high-resolution wideline NMR spectra of spin-1/2 nuclei with large chemical shift anisotropy (CSA). However, 1H transverse relaxation and t1-noise often reduce the sensitivity of D-HMQC experiments, preventing the theoretical gains in sensitivity provided by 1H detection from being realized. Here we demonstrate a series of improved pulse sequences for 1H detection of spin-1/2 nuclei under fast MAS, with 195Pt SSNMR experiments on cisplatin as an example. First, a t1-incrementation protocol for D-HMQC dubbed Arbitrary Indirect Dwell (AID) is demonstrated. AID allows the use of arbitrary, rotor asynchronous t1-increments, but removes the constant time period from CT D-HMQC, resulting in improved sensitivity by reducing transverse relaxation losses. Next, we show that short high-power adiabatic pulses (SHAPs), which efficiently invert broad MAS sideband manifolds, can be effectively incorporated into 1H detected symmetry-based resonance echo double resonance (S-REDOR) and t1-noise eliminated (TONE) D-HMQC experiments. The S-REDOR experiments with SHAPs provide approximately double the dipolar dephasing, as compared to experiments with rectangular inversion pulses. We lastly show that sensitivity and resolution can be further enhanced with the use of swept excitation pulses as well as adiabatic magic angle turning (aMAT).
Collapse
Affiliation(s)
- Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | | | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
16
|
Gao Q, Peng F, Wang C, Lin J, Chang X, Zou C, Lu W. Phosphorescent Zwitterionic Pt(
II
)
N
‐Heterocyclic
Allenylidene Complexes: Metallophilicity and Ionic
Self‐Assembly
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qin Gao
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Fei Peng
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuanfei Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jinqiang Lin
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chao Zou
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
17
|
Altenhof AR, Jaroszewicz MJ, Harris KJ, Schurko RW. Broadband adiabatic inversion experiments for the measurement of longitudinal relaxation time constants. J Chem Phys 2021; 154:034202. [PMID: 33499635 DOI: 10.1063/5.0039017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accurate measurements of longitudinal relaxation time constants (T1) in solid-state nuclear magnetic resonance (SSNMR) experiments are important for the study of molecular-level structure and dynamics. Such measurements are often made under magic-angle spinning conditions; however, there are numerous instances where they must be made on stationary samples, which often give rise to broad powder patterns arising from large anisotropic NMR interactions. In this work, we explore the use of wideband uniform-rate smooth-truncation pulses for the measurement of T1 constants. Two experiments are introduced: (i) BRAIN-CPT1, a modification of the BRAIN-CP (BRoadband Adiabatic-INversion-Cross Polarization) sequence, for broadband CP-based T1 measurements and (ii) WCPMG-IR, a modification of the WURST-CPMG sequence, for direct-excitation (DE) inversion-recovery experiments. A series of T1 constants are measured for spin-1/2 and quadrupolar nuclei with broad powder patterns, such as 119Sn (I = 1/2), 35Cl (I = 3/2), 2H (I = 1), and 195Pt (I = 1/2). High signal-to-noise spectra with uniform patterns can be obtained due to signal enhancements from T2 eff-weighted echo trains, and in favorable cases, BRAIN-CPT1 allows for the rapid measurement of T1 in comparison to DE experiments. Protocols for spectral acquisition, processing, and analysis of relaxation data are discussed. In most cases, relaxation behavior can be modeled with either monoexponential or biexponential functions based upon measurements of integrated powder pattern intensity; however, it is also demonstrated that one must interpret such T1 values with caution, as demonstrated by measurements of T1 anisotropy in 119Sn, 2H, and 195Pt NMR spectra.
Collapse
Affiliation(s)
- Adam R Altenhof
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Michael J Jaroszewicz
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Kristopher J Harris
- Department of Chemistry, Louisiana Tech University, Ruston, Louisiana 71272, USA
| | - Robert W Schurko
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| |
Collapse
|
18
|
Venkatesh A, Lund A, Rochlitz L, Jabbour R, Gordon CP, Menzildjian G, Viger-Gravel J, Berruyer P, Gajan D, Copéret C, Lesage A, Rossini AJ. The Structure of Molecular and Surface Platinum Sites Determined by DNP-SENS and Fast MAS 195Pt Solid-State NMR Spectroscopy. J Am Chem Soc 2020; 142:18936-18945. [DOI: 10.1021/jacs.0c09101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Alicia Lund
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ribal Jabbour
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Georges Menzildjian
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Jasmine Viger-Gravel
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - David Gajan
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Anne Lesage
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, FRE 2034, F-69100 Villeurbanne, France
| | - Aaron J. Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
19
|
Benedetti M, De Castro F, Papadia P, Antonucci D, Fanizzi FP. 195
Pt and
15
N NMR Data in Square Planar Platinum(II) Complexes of the Type [Pt(NH
3
)
a
X
b
]
n
(X
b
= Combination of Halides): “
NMR Effective Molecular Radius
” of Coordinated Ammonia. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| | - Paride Papadia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| | - Daniela Antonucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| | - Francesco P. Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento Via Monteroni 73100 Lecce Italy
| |
Collapse
|
20
|
Lucier BEG, Terskikh VV, Guo J, Bourque JL, McOnie SL, Ripmeester JA, Huang Y, Baines KM. Chlorine-35 Solid-State Nuclear Magnetic Resonance Spectroscopy as an Indirect Probe of the Oxidation Number of Tin in Tin Chlorides. Inorg Chem 2020; 59:13651-13670. [PMID: 32883071 DOI: 10.1021/acs.inorgchem.0c02025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrawideline 35Cl solid-state nuclear magnetic resonance (SSNMR) spectra of a series of 12 tin chlorides were recorded. The magnitude of the 35Cl quadrupolar coupling constant (CQ) was shown to consistently indicate the chemical state (oxidation number) of the bound Sn center. The chemical state of the Sn center was independently verified by tin Mössbauer spectroscopy. CQ(35Cl) values of >30 MHz correspond to Sn(IV), while CQ(35Cl) readings of <30 MHz indicate that Sn(II) is present. Tin-119 SSNMR experiments would seem to be the most direct and effective route to interrogating tin in these systems, yet we show that ambiguous results can emerge from this method, which may lead to an incorrect interpretation of the Sn oxidation number. The accumulated 35Cl NMR data are used as a guide to assign the Sn oxidation number in the mixed-valent metal complex Ph3PPdImSnCl2. The synthesis and crystal structure of the related Ph3PPtImSnCl2 are reported, and 195Pt and 35Cl SSNMR experiments were also used to investigate its Pt-Sn bonding. Plane-wave DFT calculations of 35Cl, 119Sn, and 195Pt NMR parameters are used to model and interpret experimental data, supported by computed 119Sn and 195Pt chemical shift tensor orientations. Given the ubiquity of directly bound Cl centers in organometallic and inorganic systems, there is tremendous potential for widespread usage of 35Cl SSNMR parameters to provide a reliable indication of the chemical state in metal chlorides.
Collapse
Affiliation(s)
- Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jiacheng Guo
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jeremy L Bourque
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sarah L McOnie
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - John A Ripmeester
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kim M Baines
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
21
|
Yoo TY, Yoo JM, Sinha AK, Bootharaju MS, Jung E, Lee HS, Lee BH, Kim J, Antink WH, Kim YM, Lee J, Lee E, Lee DW, Cho SP, Yoo SJ, Sung YE, Hyeon T. Direct Synthesis of Intermetallic Platinum-Alloy Nanoparticles Highly Loaded on Carbon Supports for Efficient Electrocatalysis. J Am Chem Soc 2020; 142:14190-14200. [PMID: 32787259 DOI: 10.1021/jacs.0c05140] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Compared to nanostructured platinum (Pt) catalysts, ordered Pt-based intermetallic nanoparticles supported on a carbon substrate exhibit much enhanced catalytic performance, especially in fuel cell electrocatalysis. However, direct synthesis of homogeneous intermetallic alloy nanocatalysts on carbonaceous supports with high loading is still challenging. Herein, we report a novel synthetic strategy to directly produce highly dispersed MPt alloy nanoparticles (M = Fe, Co, or Ni) on various carbon supports with high catalyst loading. Importantly, a unique bimetallic compound, composed of [M(bpy)3]2+ cation (bpy = 2,2'-bipyridine) and [PtCl6]2- anion, evenly decomposes on carbon surface and forms uniformly sized intermetallic nanoparticles with a nitrogen-doped carbon protection layer. The excellent oxygen reduction reaction (ORR) activity and stability of the representative reduced graphene oxide (rGO)-supported L10-FePt catalyst (37 wt %-FePt/rGO), exhibiting 18.8 times higher specific activity than commercial Pt/C catalyst without degradation over 20 000 cycles, well demonstrate the effectiveness of our synthetic approach toward uniformly alloyed nanoparticles with high homogeneity.
Collapse
Affiliation(s)
- Tae Yong Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Arun Kumar Sinha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Euiyeon Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Hyeon Seok Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Jiheon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Wytse Hooch Antink
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Yong Min Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Jongmin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Eungjun Lee
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea.,Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dong Wook Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Pyo Cho
- National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Koppe J, Hansen MR. Minimizing Lineshape Distortions in Static Ultra-wideline Nuclear Magnetic Resonance of Half-Integer Spin Quadrupolar Nuclei. J Phys Chem A 2020; 124:4314-4321. [DOI: 10.1021/acs.jpca.0c03658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonas Koppe
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität, Corrensstrasse 40, D-48149 Münster, Germany
| |
Collapse
|
23
|
Djouama R, Hamza Reguig F, Bounaceur B, Dauchez M, Krallafa AM. Structure, Dynamics, and Photophysical Properties of a Series of [Pt(NH 2R) 4]–[PtX 4] Complexes. J Phys Chem A 2020; 124:911-923. [DOI: 10.1021/acs.jpca.9b10300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rabie Djouama
- LCPM Laboratory, Faculty of Sciences, Chemistry Department, University of Oran 1 Ahmed BenBella, 31000 Oran, Algeria
| | - Farouk Hamza Reguig
- LCPM Laboratory, Faculty of Sciences, Chemistry Department, University of Oran 1 Ahmed BenBella, 31000 Oran, Algeria
| | - Boumediene Bounaceur
- LCPM Laboratory, Faculty of Sciences, Chemistry Department, University of Oran 1 Ahmed BenBella, 31000 Oran, Algeria
| | - Manuel Dauchez
- SirMa CNRS UMR 7369, MEDyC, University of Reims Champagne Ardenne, Reims 51097, France
| | - Abdelghani Mohamed Krallafa
- LCPM Laboratory, Faculty of Sciences, Chemistry Department, University of Oran 1 Ahmed BenBella, 31000 Oran, Algeria
- SirMa CNRS UMR 7369, MEDyC, University of Reims Champagne Ardenne, Reims 51097, France
| |
Collapse
|
24
|
Kuzniak E, Hooper J, Srebro-Hooper M, Kobylarczyk J, Dziurka M, Musielak B, Pinkowicz D, Raya J, Ferlay S, Podgajny R. A concerted evolution of supramolecular interactions in a {cation; metal complex; π-acid; solvent} anion-π system. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00101e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Comprehensive studies on a concerted evolution of supramolecular interactions with multicomponent synthon reproduction provide a new tool to describe the trapping of flat [M(L)4]2− complexes within π-acidic cavities.
Collapse
Affiliation(s)
- Emilia Kuzniak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - James Hooper
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | | | | | | | - Bogdan Musielak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Jesus Raya
- Membrane Biophysics and NMR
- Institute of Chemistry
- UMR 7177
- University of Strasbourg
- 67000 Strasbourg
| | - Sylvie Ferlay
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| | - Robert Podgajny
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| |
Collapse
|
25
|
Benedetti M, De Castro F, Ciccarese A, Fanizzi FP. Is hydrogen electronegativity higher than Pauling’s value? New clues from the 13C and 29Si NMR chemical shifts of [CHF 3] and [SiHF 3] molecules. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractWe previously demonstrated that the δ NMR chemical shift of central NMR active atoms (A), in simple halido [AXn] (A=C, Si, Ge, Sn, Pb, Pt; Xn = combination of n halides, n = 4 or 6) derivatives, could be directly related to X radii overall sum, Σ(rL). Further correlation have also been observed for tetrahedral [AX4] (A=C, Si; X4 = combination of four halides) compounds where the X Pauling electronegativities sum,Σ(χLPau),$\Sigma (\chi _L^{{\rm{Pau}}}),$exceeds a specific value (≈12.4). In this work, we focused on these latter systems considering the H vs. X substitution. The analysis of the literature reported δ(13C) and δ(29Si) NMR chemical shift for the mono hydrogenated derivatives and in particular for [CHF3] and [SiHF3], characterized by the lowest Σ(rL) and the highestΣ(χLPau),$\Sigma (\chi _L^{{\rm{Pau}}}),$suggests a revised value for the H electronegativity ranking with respect to Pauling’s.
Collapse
Affiliation(s)
- Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Monteroni, I-73100 Lecce , Italy , Tel.: +39 0832299264, Fax: +39 0832 298626
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Monteroni , I-73100 Lecce , Italy
| | - Antonella Ciccarese
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Monteroni , I-73100 Lecce , Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Monteroni , I-73100 Lecce , Italy , Tel.: +39 0832299265, Fax: +39 0832 298626
| |
Collapse
|
26
|
Holmes ST, Schurko RW. A DFT/ZORA Study of Cadmium Magnetic Shielding Tensors: Analysis of Relativistic Effects and Electronic-State Approximations. J Chem Theory Comput 2019; 15:1785-1797. [PMID: 30721042 DOI: 10.1021/acs.jctc.8b01296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theoretical considerations are discussed for the accurate prediction of cadmium magnetic shielding tensors using relativistic density functional theory (DFT). Comparison is made between calculations that model the extended lattice of the cadmium-containing solids using periodic boundary conditions and pseudopotentials with calculations that use clusters of atoms. The all-electron cluster-based calculations afford an opportunity to examine the importance of (i) relativistic effects on cadmium magnetic shielding tensors, as introduced through the ZORA Hamiltonian at either the scalar (SC) or spin-orbit (SO) levels and (ii) variation in the class of the DFT approximation. Twenty-three combinations of pseudopotentials or all-electron methods, DFT functionals, and relativistic treatments are assessed for the prediction of the principal components of the magnetic shielding tensors of 30 cadmium sites. We find that the inclusion of SO coupling can increase the cadmium magnetic shielding by as much as ca. 1100 ppm for a certain principal values; these effects are most pronounced for cadmium sites featuring bonds to other heavy atoms such as cadmium, iodine, or selenium. The best agreement with experimental values is found at the ZORA SO level in combination with a hybrid DFT method featuring a large admixture of Hartree-Fock exchange such as BH&HLYP. Finally, a theoretical examination is presented of the magnetic shielding tensor of the Cd(I) site in Cd2(AlCl4)2.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON , Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON , Canada N9B 3P4
| |
Collapse
|
27
|
Ariai J, Saielli G. "Through-Space" Relativistic Effects on NMR Chemical Shifts of Pyridinium Halide Ionic Liquids. Chemphyschem 2019; 20:108-115. [PMID: 30312005 DOI: 10.1002/cphc.201800955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 12/27/2022]
Abstract
We have investigated, using two-component relativistic density functional theory (DFT) at ZORA-SO-BP86 and ZORA-SO-PBE0 level, the occurrence of relativistic effects on the 1 H, 13 C, and 15 N NMR chemical shifts of 1-methylpyridinium halides [MP][X] and 1-butyl-3-methylpyridinium trihalides [BMP][X3 ] ionic liquids (ILs) (X=Cl, Br, I) as a result of a non-covalent interaction with the heavy anions. Our results indicate a sizeable deshielding effect in ion pairs when the anion is I- and I3 - . A smaller, though nonzero, effect is observed also with bromine while chlorine based anions do not produce an appreciable relativistic shift. The chemical shift of the carbon atoms of the aromatic ring shows an inverse halogen dependence that has been rationalized based on the little C-2s orbital contribution to the σ-type interaction between the cation and anion. This is the first detailed account and systematic theoretical investigation of a relativistic heavy atom effect on the NMR chemical shifts of light atoms in the absence of covalent bonds. Our work paves the way and suggests the direction for an experimental investigation of such elusive signatures of ion pairing in ILs.
Collapse
Affiliation(s)
- Jama Ariai
- Department of Chemical Sciences University of Padova, Via Marzolo 1, 35131, Padua, Italy.,Present address: Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Giacomo Saielli
- CNR Institute on Membrane Technology, Padova Unit, Via Marzolo 1, 35131, Padua, Italy
| |
Collapse
|
28
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
29
|
Alkan F, Dybowski C. Spin-orbit effects on the 125Te magnetic-shielding tensor: A cluster-based ZORA/DFT investigation. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 95:6-11. [PMID: 30189330 DOI: 10.1016/j.ssnmr.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Cluster-based calculations of 125Te magnetic-shielding tensors demonstrate that inclusion of spin-orbit effects is necessary to obtain the best agreement of theoretical predictions with experiment. The spin-orbit contribution to shielding depends on the oxidation state and stereochemistry of the 125Te site. Comparison of the performance of various density functionals indicates that GGA functionals behave similarly to each other in predicting NMR magnetic shielding. The use of hybrid functionals improves the predictive ability on average for a large set of 125Te-containing materials. The amount of Hartree-Fock exchange affects the predicted parameters. Inclusion of larger Hartree-Fock exchange contributions in hybrid functionals results in larger slopes of the correlation between calculated magnetic-shielding and experimental chemical-shift principal components, by 10-15% from the ideal value.
Collapse
Affiliation(s)
- Fahri Alkan
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
30
|
Wi S, Schurko RW, Frydman L. Broadband adiabatic inversion cross-polarization phenomena in the NMR of rotating solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:31-53. [PMID: 30125798 DOI: 10.1016/j.ssnmr.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
We explore the use of cross-polarization magic-angle spinning (CPMAS) methods incorporating an adiabatic frequency sweep in a standard Hartman-Hahn CPMAS pulse scheme, to achieve signal enhancements in solid-state NMR spectra of rare spins under fast MAS spinning rates, including spin-1/2, integer spin, and half-integer spin nuclides. These experiments, dubbed Broadband Adiabatic INversion Cross-Polarization Magic-Angle Spinning (BRAIN-CPMAS) experiments, involve an adiabatic inversion pulse on the S-channel of a rare spin nuclide while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). The signal enhancement imparted by this CP scheme on the S-spin is broadbanded, while employing low RF field strengths on both I- and S-channels. A feature demanded by these BRAIN-CPMAS methods is to impose a selective adiabatic frequency sweep over a single MAS spinning centerband or sideband, to avoid interference between the MAS modulation and sweeps over multiple sidebands. Upon implementing this swept-CP method, a number of MAS-driven processes happen, including broadband zero- and double-quantum CP transfers, and MAS-driven rotary-resonance phenomena. When this CP method is applied to integer and half-integer quadrupolar nuclei at very fast MAS spinning rates, a favorable double-quantum CP condition is found that can be easily achieved, and avoids the level-crossings among various ms energy levels that complicate quadrupolar CPMAS NMR experiments along lines first shown by Alex Vega. An additional CP mechanism was found in the 1H-2H case, involving static-like zero-quantum CP modes driven by a quadrupole-modulated RF-dipolar zero-order recoupling under MAS. All these phenomena were examined using average Hamiltonian theory, numerical simulations, and experiments on model compounds. Sensitivity-enhanced, distortion-free CP over wide bandwidths were predicted and observed for S = 1/2 and for S = 1 (2H) under fast MAS rates. BRAIN-CPMAS also delivered undistorted central transition NMR spectra of half-integer quadrupolar nuclei, while utilizing low RF field strengths that avoid complex level-crossing effects under high MAS rates.
Collapse
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, FL, 32304, USA.
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, NPB 3P4, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, FL, 32304, USA; Department of Chemical and Biological Physics, Weizmann Institute of Sciences, Rehovot, 76100, Israel.
| |
Collapse
|
31
|
Gan Z, Hung I, Nishiyama Y, Amoureux JP, Lafon O, Nagashima H, Trébosc J, Hu B. 14N overtone nuclear magnetic resonance of rotating solids. J Chem Phys 2018; 149:064201. [PMID: 30111134 PMCID: PMC8808743 DOI: 10.1063/1.5044653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 11/14/2022] Open
Abstract
By irradiating and observing at twice the 14N Larmor frequency, overtone (OT) nuclear magnetic resonance (NMR) is capable of obtaining 14NOT spectra without first-order quadrupolar broadening. Direct excitation and detection of the usually "forbidden" double-quantum transition is mediated by the perturbation from the large quadrupole interaction to the spin states quantized by the Zeeman interaction. A recent study [L. A. O'Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)] has shown that 14NOT NMR under magic-angle spinning (MAS) can yield high-resolution spectra with typical second-order quadrupolar line shapes allowing the measurement of 14N chemical shift and quadrupolar coupling parameters. This article has also shown that under MAS the main 14NOT peak is shifted by twice the sample spinning frequency with respect to its static position. We present the theory of 14NOT NMR of static or rotating samples and the physical picture of the intriguing spinning-induced shift in the second case. We use perturbation theory for the case of static samples and Floquet theory for rotating samples. In both cases, the results can be described by a so-called OT parameter that scales down the 14NOT radio-frequency (rf) excitation and signal detection. This OT parameter shows that the components of the rf field, which are transverse and longitudinal with respect to the magnetic field, are both effective for 14NOTrf excitation and signal detection. In the case of MAS at angular frequency ωr , the superposition of the excitation and detection components in the OT parameter makes either the +2ωr or -2ωr term the dominant 14NOT signal, depending on the sense of sample spinning with respect to the magnetic field. This leads to an apparent 14NOT signal shifted at twice the spinning frequency. The features of 14NOT NMR spectra for both static and rotating samples are illustrated with simulations. The spinning induced shift and its dependence on the spinning direction are confirmed experimentally by reversing the spinning direction and the field of the 36 T series-connected hybrid magnet at the US National High Magnetic Field Laboratory.
Collapse
Affiliation(s)
- Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | | | | | | | - Hiroki Nagashima
- Univ. Lille, CNRS UMR 8181, UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS UMR 8181, UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
32
|
Benedetti M, De Castro F, Fanizzi FP. Pauling Electronegativity On/Off Effects Assessed by 13C and 29Si NMR Spectroscopic Analysis. Chemistry 2017; 23:16877-16884. [DOI: 10.1002/chem.201703934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Via Monteroni 73100 Lecce Italy
| | - Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Via Monteroni 73100 Lecce Italy
| | - Francesco P. Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Via Monteroni 73100 Lecce Italy
| |
Collapse
|
33
|
Veinberg SL, Lindquist AW, Jaroszewicz MJ, Schurko RW. Practical considerations for the acquisition of ultra-wideline 14N NMR spectra. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:45-58. [PMID: 28130009 DOI: 10.1016/j.ssnmr.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Several considerations for the acquisition, processing, and analysis of high quality ultra-wideline (UW) 14N solid-state NMR (SSNMR) powder patterns under static conditions are discussed. It is shown that the 14N quadrupolar parameters may be determined accurately using the frequencies of only two discontinuities in 14N NMR powder patterns that are dominated by the first-order quadrupolar interaction, thereby eliminating the need for the acquisition of the entire pattern and concomitantly reducing experimental time. A framework for utilizing the WURST-CPMG pulse sequence to improve the efficiency of UW 14N SSNMR experiments is explored in two parts: (i) a systematic investigation of the design and parameterization of the WURST pulse is presented, and (ii) the development of the practical aspects of CPMG refocusing for the acquisition of UW 14N SSNMR powder patterns is discussed, with a focus on maximizing both signal-to-noise and resolution, and minimizing spectral distortions. Finally, a strategy is demonstrated that allows for the measurement of the 14N quadrupolar parameters for any nitrogen moiety whose quadrupolar coupling constant falls within the range 0.8≤|CQ|≤1.5MHz, by acquiring only two 14N NMR sub-spectra at strategically located transmitter frequencies; these results are compared to full powder patterns which are acquired using frequency-stepped methods. The methodologies and practical considerations outlined herein are not only useful for the rapid acquisition of UW 14N NMR spectra, but may also be modified and applied for UW NMR of a plethora of quadrupolar and spin-1/2 nuclides.
Collapse
Affiliation(s)
- Stanislav L Veinberg
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Austin W Lindquist
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Michael J Jaroszewicz
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4.
| |
Collapse
|
34
|
Jaroszewicz MJ, Frydman L, Schurko RW. Relaxation-Assisted Separation of Overlapping Patterns in Ultra-Wideline NMR Spectra. J Phys Chem A 2016; 121:51-65. [DOI: 10.1021/acs.jpca.6b10007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Jaroszewicz
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| | - Lucio Frydman
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Robert W. Schurko
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
35
|
Laurencin D, Ribot F, Gervais C, Wright AJ, Baker AR, Campayo L, Hanna JV, Iuga D, Smith ME, Nedelec JM, Renaudin G, Bonhomme C. 87Sr,119Sn,127I Single and {1H/19F}-Double Resonance Solid-State NMR Experiments: Application to Inorganic Materials and Nanobuilding Blocks. ChemistrySelect 2016. [DOI: 10.1002/slct.201600805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM; Université de Montpellier; Montpellier France
| | - François Ribot
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Christel Gervais
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Adrian J. Wright
- School of Chemistry; University of Birmingham, Edgbaston; Birmingham B15 2TT UK
| | - Annabelle R. Baker
- Diamond Light Source; Harwell Science and Innovation Campus; Didcot OX11 0DE UK
| | - Lionel Campayo
- CEA, DEN, DTCD, SECM; Laboratoire d'Etude et de Développement de Matrices de Conditionnement, Centre de Marcoule; 30207 Bagnols sur Cèze France
| | - John V. Hanna
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
| | - Dinu Iuga
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
| | - Mark E. Smith
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
- Vice-Chancellor's Office, University House; Lancaster University; Lancaster LA1 4YW UK
| | - Jean-Marie Nedelec
- ICCF, CNRS UMR 6295, SIGMA Clermont; Université Clermont Auvergne, Campus des Céseaux; CS 20265 Aubière France
| | - Guillaume Renaudin
- ICCF, CNRS UMR 6295, SIGMA Clermont; Université Clermont Auvergne, Campus des Céseaux; CS 20265 Aubière France
| | - Christian Bonhomme
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| |
Collapse
|
36
|
Benedetti M, De Castro F, Fanizzi FP. Square-Planar PtIIversus Octahedral PtIVHalido Complexes:195Pt NMR Explained by a Simple Empirical Approach. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Via Monteroni 73100 Lecce Italy
| | - Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Via Monteroni 73100 Lecce Italy
| | - Francesco P. Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Via Monteroni 73100 Lecce Italy
| |
Collapse
|
37
|
Terskikh VV, Pawsey S, Ripmeester JA. High-field solid-state 35Cl NMR in selenium(IV) and tellurium(IV) hexachlorides. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476616020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Conley MP, Lapadula G, Sanders K, Gajan D, Lesage A, del Rosal I, Maron L, Lukens WW, Copéret C, Andersen RA. The Nature of Secondary Interactions at Electrophilic Metal Sites of Molecular and Silica-Supported Organolutetium Complexes from Solid-State NMR Spectroscopy. J Am Chem Soc 2016; 138:3831-43. [PMID: 26887899 DOI: 10.1021/jacs.6b00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lu[CH(SiMe3)2]3 reacts with [SiO2-700] to give [(≡SiO)Lu[CH(SiMe3)2]2] and CH2(SiMe3)2. [(≡SiO)Lu[CH(SiMe3)2]2] is characterized by solid-state NMR and EXAFS spectroscopy, which show that secondary Lu···C and Lu···O interactions, involving a γ-CH3 and a siloxane bridge, are present. From X-ray crystallographic analysis, the molecular analogues Lu[CH(SiMe3)2]3-x[O-2,6-tBu-C6H3]x (x = 0-2) also have secondary Lu···C interactions. The (1)H NMR spectrum of Lu[CH(SiMe3)2]3 shows that the -SiMe3 groups are equivalent to -125 °C and inequivalent below that temperature, ΔG(⧧)(Tc = 148 K) = 7.1 kcal mol(-1). Both -SiMe3 groups in Lu[CH(SiMe3)2]3 have (1)JCH = 117 ± 1 Hz at -140 °C. The solid-state (13)C CPMAS NMR spectrum at 20 °C shows three chemically inequivalent resonances in the area ratio of 4:1:1 (12:3:3); the J-resolved spectra for each resonance give (1)JCH = 117 ± 2 Hz. The (29)Si CPMAS NMR spectrum shows two chemically inequivalent resonances with different values of chemical shift anisotropy. Similar observations are obtained for Lu[CH(SiMe3)2]3-x[O-2,6-tBu-C6H3]x (x = 1 and 2). The spectroscopic data point to short Lu···Cγ contacts corresponding to 3c-2e Lu···Cγ-Siβ interactions, which are supported by DFT calculations. Calculated natural bond orbital (NBO) charges show that Cγ carries a negative charge, while Lu, Hγ, and Siβ carry positive charges; as the number of O-based ligands increases so does the positive charge at Lu, which in turns shortens the Lu···Cγ distance. The change in NBO charges and the resulting changes in the spectroscopic and crystallographic properties show how ligands and surface-support sites rearrange to accommodate these changes, consistent with Pauling's electroneutrality concept.
Collapse
Affiliation(s)
- Matthew P Conley
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Giuseppe Lapadula
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Kevin Sanders
- Centre de RMN à Très Hauts Champs, CRNS/ENS-Lyon/UCB Lyon 1, Université de Lyon , 5 rue de la Doua, 69100 Villeurbanne, France
| | - David Gajan
- Centre de RMN à Très Hauts Champs, CRNS/ENS-Lyon/UCB Lyon 1, Université de Lyon , 5 rue de la Doua, 69100 Villeurbanne, France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, CRNS/ENS-Lyon/UCB Lyon 1, Université de Lyon , 5 rue de la Doua, 69100 Villeurbanne, France
| | - Iker del Rosal
- Université de Toulouse and CNRS, LPCNO INSA/UPS/CNRS , 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Laurent Maron
- Université de Toulouse and CNRS, LPCNO INSA/UPS/CNRS , 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Richard A Andersen
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
39
|
Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys 2016; 18:17713-30. [DOI: 10.1039/c6cp02855a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N and 15N solid-state NMR at natural abundance are used in tandem for the investigation of pharmaceuticals and their polymorphs.
Collapse
Affiliation(s)
| | | | | | - Brianna M. Kispal
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Iowa State University
- Ames
- USA
- Department of Chemistry
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
40
|
Rossini AJ, Hanrahan MP, Thuo M. Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences. Phys Chem Chem Phys 2016; 18:25284-25295. [DOI: 10.1039/c6cp04279a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fast MAS and proton detection are applied to rapidly acquire wideline solid-state NMR spectra of spin-1/2 and half-integer quadrupolar nuclei.
Collapse
Affiliation(s)
- Aaron J. Rossini
- Iowa State University
- Department of Chemistry
- Ames
- USA
- US DOE Ames Laboratory
| | | | - Martin Thuo
- US DOE Ames Laboratory
- Ames
- USA
- Iowa State University
- Materials Science and Engineering Department
| |
Collapse
|
41
|
Alkan F, Dybowski C. Effect of Co-Ordination Chemistry and Oxidation State on the (207)Pb Magnetic-Shielding Tensor: A DFT/ZORA Investigation. J Phys Chem A 2015; 120:161-8. [PMID: 26683366 DOI: 10.1021/acs.jpca.5b10991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The magnetic shielding tensor of (207)Pb is calculated for various solids exhibiting (1) a holodirected lead(II) center containing a stereochemically inactive lone pair, (2) a hemidirected lead(II) center with a stereochemically active lone-pair, or (3) a lead(IV) center. Tensors investigated at the scalar relativistic level are compared with those calculated with the full ZORA/spin-orbit Hamiltonian. The effect of using GGA density functionals is compared to the use of hybrid density functionals.
Collapse
Affiliation(s)
- Fahri Alkan
- Department of Chemistry and Biochemistry University of Delaware Newark, Delaware 19716-2522 United States
| | - C Dybowski
- Department of Chemistry and Biochemistry University of Delaware Newark, Delaware 19716-2522 United States
| |
Collapse
|
42
|
Shen M, Trébosc J, Lafon O, Gan Z, Pourpoint F, Hu B, Chen Q, Amoureux JP. Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:104-117. [PMID: 26411981 DOI: 10.1016/j.ssnmr.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Under Magic-Angle Spinning (MAS), a long radio-frequency (rf) pulse applied on resonance achieves the selective excitation of the center-band of a wide NMR spectrum. We show herein that these rf pulses can be applied on the indirect channel of Hetero-nuclear Multiple-Quantum Correlation (HMQC) sequences, which facilitate the indirect detection via spin-1/2 isotopes of nuclei exhibiting wide spectra. Numerical simulations show that this indirect excitation method is applicable to spin-1/2 nuclei experiencing a large chemical shift anisotropy, as well as to spin-1 isotopes subject to a large quadrupole interaction, such as (14)N. The performances of the long pulses are analyzed by the numerical simulations of scalar-mediated HMQC (J-HMQC) experiments indirectly detecting spin-1/2 or spin-1 nuclei, as well as by dipolar-mediated HMQC (D-HMQC) experiments achieving indirect detection of (14)N nuclei via (1)H in crystalline γ-glycine and N-acetyl-valine samples at a MAS frequency of 60kHz. We show on these solids that for the acquisition of D-HMQC spectra between (1)H and (14)N nuclei, the efficiency of selective moderate excitation with long-pulses at the (14)N Larmor frequency, ν0((14)N), is comparable to those with strong excitation pulses at ν0((14)N) or 2ν0((14)N) frequencies, given the rf field delivered by common solid-state NMR probes. Furthermore, the D-HMQC experiments also demonstrate that the use of long pulses does not produce significant spectral distortions along the (14)N dimension. In summary, the use of center-band selective weak pulses is advantageous for HMQC experiments achieving the indirect detection of wide spectra since it (i) requires a moderate rf field, (ii) can be easily optimized, (iii) displays a high robustness to CSAs, offsets, rf-field inhomogeneities, and fluctuations in MAS frequency, and (iv) is little dependent on the quadrupolar coupling constant.
Collapse
Affiliation(s)
- Ming Shen
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Julien Trébosc
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France
| | - Olivier Lafon
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France.
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, NHMFL, Tallahassee, FL 32310, USA
| | | | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Jean-Paul Amoureux
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
43
|
Xu J, Lucier BEG, Sinelnikov R, Terskikh VV, Staroverov VN, Huang Y. Monitoring and Understanding the Paraelectric-Ferroelectric Phase Transition in the Metal-Organic Framework [NH4][M(HCOO)3] by Solid-State NMR Spectroscopy. Chemistry 2015; 21:14348-61. [DOI: 10.1002/chem.201501954] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/08/2022]
|
44
|
Ibrahim B, Lucier BE, Xu J, He P, Huang Y. Investigating adsorption of organic compounds in metal-organic framework MIL-53. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal-organic frameworks (MOFs) are versatile materials that incorporate metal centers along with organic linkers in highly ordered, intricate structures. MIL-53 is a MOF that exhibits a “breathing effect,” where the pore size and MOF topology are profoundly influenced by the identity and binding mechanism of guest molecules. This phenomenon renders MIL-53 a promising candidate for sensing applications. In this report, the adsorption of various organic compounds within MIL-53 is investigated using a combination of complementary techniques. Thermal gravimetric analysis experiments confirm loading of the guest molecules and yield insight into adsorption interactions and strengths. Significant guest-induced changes in the crystal structure of MIL-53 are revealed by powder X-ray diffraction experiments; specific unique phases of MIL-53 are related to the identity of the guest molecule and its binding mechanism to the framework. 27Al and 13C solid-state NMR experiments probe the interaction between guest molecules and MIL-53. The relationship between the nature of the guest, the structure of MIL-53, and 27Al NMR parameters is explored. 27Al NMR parameters are sensitive to the host-guest binding mechanism (i.e., hydrogen-bonding or π–π stacking interactions) and yield valuable information regarding the influence of the adsorbates on the local aluminum environment. This combination of physical characterization techniques is a useful probe of guest adsorption and the breathing effect within MIL-53 and should prove useful for investigation of related MOFs.
Collapse
Affiliation(s)
- Balsam Ibrahim
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Bryan E.G. Lucier
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jun Xu
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Peng He
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
45
|
Mastrorilli P, Todisco S, Bagno A, Gallo V, Latronico M, Fortuño C, Gudat D. Multinuclear Solid-State NMR and DFT Studies on Phosphanido-Bridged Diplatinum Complexes. Inorg Chem 2015; 54:5855-63. [PMID: 26001215 DOI: 10.1021/acs.inorgchem.5b00627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Piero Mastrorilli
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Via Orabona 4, 70125 Bari, Italy
| | - Stefano Todisco
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
| | - Alessandro Bagno
- Dipartimento
di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Vito Gallo
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
| | - Mario Latronico
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Via Orabona 4, 70125 Bari, Italy
| | - Consuelo Fortuño
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea, Universidad de Zaragoza-C.S.I.C., E-50009 Zaragoza, Spain
| | - Dietrich Gudat
- Institut
für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| |
Collapse
|
46
|
Wi S, Gan Z, Schurko R, Frydman L. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps. J Chem Phys 2015; 142:064201. [DOI: 10.1063/1.4907206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | - Robert Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor N9B 3P4, Ontario, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
- Department of Chemical Physics, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| |
Collapse
|
47
|
Mollica G, Dekhil M, Ziarelli F, Thureau P, Viel S. Probing crystal packing of uniformly (13)C-enriched powder samples using homonuclear dipolar coupling measurements. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 65:114-121. [PMID: 25595367 DOI: 10.1016/j.ssnmr.2014.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 11/26/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
The relationship between the crystal packing of powder samples and long-range (13)C-(13)C homonuclear dipolar couplings is presented and illustrated for the case of uniformly (13)C-enriched L-alanine and L-histidine·HCl·H2O. Dipolar coupling measurement is based on the partial reintroduction of dipolar interactions by spinning the sample slightly off-magic-angle, while the coupling of interest for a given spin pair is isolated with a frequency-selective pulse. A cost function is used to correlate the so-derived dipolar couplings to trial crystal structures of the samples under study. This procedure allowed for the investigation of the l-alanine space group and L-histidine·HCl·H2O space group and unit-cell parameters.
Collapse
Affiliation(s)
- Giulia Mollica
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Myriam Dekhil
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Fabio Ziarelli
- Aix-Marseille Université, Centrale Marseille, CNRS, Fédération des sciences chimiques de Marseille FR 1739, 13397 Marseille, France
| | - Pierre Thureau
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France.
| | - Stéphane Viel
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| |
Collapse
|
48
|
Veinberg SL, Friedl ZW, Harris KJ, O'Dell LA, Schurko RW. Ultra-wideline 14N solid-state NMR as a method for differentiating polymorphs: glycine as a case study. CrystEngComm 2015. [DOI: 10.1039/c5ce00060b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N solid-state NMR is useful for differentiating polymorphs and chemically distinct nitrogen-containing compounds. A case study of glycine is presented.
Collapse
Affiliation(s)
| | - Zachary W. Friedl
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada
| | | | - Luke A. O'Dell
- Institute for Frontier Materials
- Deakin University
- Waurn Ponds Campus
- Geelong, Australia
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada
| |
Collapse
|
49
|
Alkan F, Dybowski C. Chemical-shift tensors of heavy nuclei in network solids: a DFT/ZORA investigation of 207Pb chemical-shift tensors using the bond-valence method. Phys Chem Chem Phys 2015; 17:25014-26. [DOI: 10.1039/c5cp03348a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate computation of 207Pb magnetic shielding principal components is within the reach of quantum chemistry methods by employing relativistic ZORA/DFT and cluster models adapted from the bond valence model.
Collapse
Affiliation(s)
- Fahri Alkan
- Department of Chemistry and Biochemistry
- University of Delaware
- Newark
- USA
| | - C. Dybowski
- Department of Chemistry and Biochemistry
- University of Delaware
- Newark
- USA
| |
Collapse
|
50
|
Martineau C. NMR crystallography: Applications to inorganic materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 63-64:1-12. [PMID: 25112798 DOI: 10.1016/j.ssnmr.2014.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 05/15/2023]
Abstract
Current developments of NMR crystallography as well as some recent applications to diamagnetic inorganic solids are presented. First, we illustrate how solid-state NMR data can be used in combination with diffraction data for the determination of the periodic part of the crystal structures, from the space group selection, to the structure determination over the refinement and validation processes. As ss-NMR, contrary to diffraction (powder and single-crystal), is not restricted to periodic boundary conditions, ss-NMR data can be used to further complete the structural description of materials, including studies of local order/disorder, etc. This illustrated through examples, which are shown and discussed in the second part of this review.
Collapse
Affiliation(s)
- Charlotte Martineau
- Tectospin, Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45, avenue des Etats-Unis, 78035 Versailles cedex, France.
| |
Collapse
|