1
|
Robert A, Paloque L, Augereau JM, Nardella F, Nguyen M, Meunier B, Benoit-Vical F. Hybrid Molecules as Efficient Drugs against Multidrug-Resistant Malaria Parasites. ChemMedChem 2025:e2500086. [PMID: 40227011 DOI: 10.1002/cmdc.202500086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Indexed: 04/15/2025]
Abstract
This review is focused on hybrid molecules defined as chemical entities with two or more structural domains, as antimalarial drug-candidates, over the past 25 years. Due to their different pharmacophores, such hybrids can interact with a single biological target by different and complementary mechanisms; they can also act simultaneously on several targets having complementary biological functions (dual mode of action), and can theoretically reduce the selection of parasite drug-resistance. This review is not an exhaustive report of all hybrid drugs tested on malaria parasites but a selection of hybrids with pharmacologically relevant antiplasmodial properties and original chemical structures. The choice of pharmacophore synthons and junction arms is obviously decisive. Among the large varieties of hybrid drugs published, emoquine-1 appears at the moment as a promising antimalarial drug candidate, considering 1) its high activities on several multidrug-resistant Plasmodium lab strains and field isolates, 2) its capacity to eliminate the quiescent forms of the artemisinin-resistant parasites, and 3) its curative properties in a malaria mouse model. Such molecules confirm the synergistic effect of hybrid compounds compared to the combination of the pharmacophores leading to novel chemical structures that meet the critical parameters for new antimalarial drugs.
Collapse
Affiliation(s)
- Anne Robert
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Lucie Paloque
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Jean-Michel Augereau
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Flore Nardella
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Michel Nguyen
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| | - Bernard Meunier
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Françoise Benoit-Vical
- Laboratoire de chimie de coordination du CNRS LCC-CNRS, Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077, Toulouse cedex, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), 205 route de Narbonne, 31077, Toulouse cedex, France
| |
Collapse
|
2
|
Dhara D, Mulard LA, Hollenstein M. Natural, modified and conjugated carbohydrates in nucleic acids. Chem Soc Rev 2025; 54:2948-2983. [PMID: 39936337 DOI: 10.1039/d4cs00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.
Collapse
Affiliation(s)
- Debashis Dhara
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Laurence A Mulard
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
3
|
Peng Z, Xiao Q, Xia Y, Xia M, Yu J, Fang P, Tang Y, Yu B. Stereoselective chemical N-glycoconjugation of amines via CO 2 incorporation. Nat Commun 2024; 15:10373. [PMID: 39613767 DOI: 10.1038/s41467-024-54523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Chemical N-glycoconjugation can provide a unique way to tailor the properties of the ubiquitous amines for further expending their diverse functions and applications. Nevertheless, effective methodology for glycoconjugation of amines remains largely underdeveloped. Inspired by a biotransformation pathway of amine-containing drugs in vivo, we have developed an effective protocol that enables one-step chemical N-glycoconjugation of amines in high stereoselectivity under mild conditions. This protocol involves conversion of the amine moiety into the corresponding carbamate anion under CO2 atmosphere and a subsequent SN2 type reaction with glycosyl halides. This work provides an example of using CO2 as the coupling unit in chemical glycoconjugation reactions. A case study on the resulting N-glycoconjugates of Crizotinib, an anticancer drug, demonstrates a quick cleavage of the glucosyl carbamate linkage, testifying that this N-glyconjugation method could serve as a general approach to procure novel prodrugs.
Collapse
Affiliation(s)
- Zihan Peng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Xiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Ye W, Tang Q, Zhou T, Zhou C, Fan C, Wang X, Wang C, Zhang K, Liao G, Zhou W. Design, synthesis and biological evaluation of the positional isomers of the galactose conjugates able to target hepatocellular carcinoma cells via ASGPR-mediated cellular uptake and cytotoxicity. Eur J Med Chem 2024; 264:115988. [PMID: 38039790 DOI: 10.1016/j.ejmech.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Galactose as a recognizing motif for asialoglycoprotein receptor (ASGPR) is a widely accepted vector to deliver cytotoxic agents in the therapy of hepatocellular carcinoma (HCC), however, the individual hydroxyl group of galactose (Gal) contributed to recognizing ASGPR is obscure and remains largely unanswered in the design of glycoconjugates. Herein, we designed and synthesized five positional isomers of Gal-anthocyanin Cy5.0 conjugates and three Gal-doxorubicin (Dox) isomers, respectively. The fluorescence intensity of Gal-Cy5.0 conjugates accumulated in cancer cells hinted the optimal modification sites of positions C2 and C6. Comparing to the cytotoxicity of other conjugates, C2-Gal-Dox (11) was the most potent. Moreover, Gal-Dox conjugates significantly the toxicity of Dox. A progressively lower internalization capacity and siRNA technology implied the cellular uptake and cytotoxicity directly related to the ASGPR expression level. Accordingly, position C2 of galactose may be the best substitution site via ASGPR mediation in the design of anti-HCC glycoconjugates.
Collapse
Affiliation(s)
- Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, Guangdong, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Tiantian Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Cui Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Guochao Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, Guangdong, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
5
|
Gederaas OA, Sharma A, Mbarak S, Sporsheim B, Høgset A, Bogoeva V, Slupphaug G, Hagen L. Proteomic analysis reveals mechanisms underlying increased efficacy of bleomycin by photochemical internalization in bladder cancer cells. Mol Omics 2023; 19:585-597. [PMID: 37345535 DOI: 10.1039/d2mo00337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Photochemical internalization (PCI) is a promising new technology for site-specific drug delivery, developed from photodynamic therapy (PDT). In PCI, light-induced activation of a photosensitizer trapped inside endosomes together with e.g. chemotherapeutics, nucleic acids or immunotoxins, allows cytosolic delivery and enhanced local therapeutic effect. Here we have evaluated the photosensitizer meso-tetraphenyl chlorine disulphonate (TPCS2a/fimaporfin) in a proteome analysis of AY-27 rat bladder cancer cells in combination with the chemotherapeutic drug bleomycin (BML). We find that BLMPCI attenuates oxidative stress responses induced by BLM alone, while concomitantly increasing transcriptional repression and DNA damage responses. BLMPCI also mediates downregulation of bleomycin hydrolase (Blmh), which is responsible for cellular degradation of BLM, as well as several factors known to be involved in fibrotic responses. PCI-mediated delivery might thus allow reduced dosage of BLM and alleviate unwanted side effects from treatment, including pulmonary fibrosis.
Collapse
Affiliation(s)
- Odrun A Gederaas
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Department of Natural Sciences, UiA, University of Agder, N-4630, Kristiansand, Norway.
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Saide Mbarak
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | - Bjørnar Sporsheim
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- CMIC Cellular & Molecular Imaging Core Facility, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Anders Høgset
- PCI Biotech AS, Ullernchaussen 64, 0379 Oslo, Norway
| | - Vanya Bogoeva
- Department of Molecular Biology and Cell Cycle, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| |
Collapse
|
6
|
Al-Antary ET, Gupte A, Carter J, Kaafarani M, Howard M, Edwards H, Ge Y, Taub JW. Curing childhood cancer the "Natural" Way: Nature as the source of chemotherapy agents. Biochem Pharmacol 2023; 213:115630. [PMID: 37263301 DOI: 10.1016/j.bcp.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
For many centuries, products of natural origin from plants, marine, microbes and soil micro-organisms have been studied by numerous researchers across the world to yield many of the chemotherapeutic agents we use in this modern era. There has been a tremendous gain in knowledge from various screening and separating techniques which led to the discovery of biologically active small molecules from natural products. Preclinical studies testing the antitumor activities of these agents against tumor cell lines and xenograft animal models were the gateway to the clinical trials in humans leading to the approval of these agents that are in clinical use today. This review summarizes how various chemotherapeutic agents were discovered from products of natural origin, their preclinical development, and their indications in both pediatric and adult oncology. Many of these natural products have contributed to the very high cure rates of both pediatric leukemias and solid tumors.
Collapse
Affiliation(s)
- Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Discipline of Pediatrics, Central Michigan University, Mt. Pleasant, MI, USA
| | - Avanti Gupte
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Discipline of Pediatrics, Central Michigan University, Mt. Pleasant, MI, USA
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Discipline of Pediatrics, Central Michigan University, Mt. Pleasant, MI, USA; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Jiang G, Lou XF, Zuo S, Liu X, Ren TB, Wang L, Zhang XB, Yuan L. Tuning the Cellular Uptake and Retention of Rhodamine Dyes by Molecular Engineering for High-Contrast Imaging of Cancer Cells. Angew Chem Int Ed Engl 2023; 62:e202218613. [PMID: 36855015 DOI: 10.1002/anie.202218613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Probes allowing high-contrast discrimination of cancer cells and effective retention are powerful tools for the early diagnosis and treatment of cancer. However, conventional small-molecule probes often show limited performance in both aspects. Herein, we report an ingenious molecular engineering strategy for tuning the cellular uptake and retention of rhodamine dyes. Introduction of polar aminoethyl leads to the increased brightness and reduced cellular uptake of dyes, and this change can be reversed by amino acetylation. Moreover, these modifications allow cancer cells to take up more dyes than normal cells (16-fold) through active transport. Specifically, we further improve the signal contrast (56-fold) between cancer and normal cells by constructing activatable probes and confirm that the released fluorophore can remain in cancer cells with extended time, enabling long-term and specific tumor imaging.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiao-Feng Lou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Shan Zuo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xixuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P.R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
8
|
Akiyama Y, Kimura K, Komatsu S, Takarada T, Maeda M, Kikuchi A. A Simple Colorimetric Assay of Bleomycin-Mediated DNA Cleavage Utilizing Double-Stranded DNA-Modified Gold Nanoparticles. Chembiochem 2023; 24:e202200451. [PMID: 36156837 PMCID: PMC10092608 DOI: 10.1002/cbic.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Indexed: 01/05/2023]
Abstract
A colorimetric assay of DNA cleavage by bleomycin (BLM) derivatives was developed utilizing high colloidal stability on double-stranded (ds) DNA-modified gold nanoparticles (dsDNA-AuNPs) possessing a cleavage site. The assay was performed using dsDNA-AuNPs treated with inactive BLM or activated BLM (Fe(II)⋅BLM). A 10-min exposure in dsDNA-AuNPs with inactive BLM treatment resulted in a rapid color change from red to purple because of salt-induced non-crosslinking aggregation of dsDNA-AuNPs. In contrast, the addition of active Fe(II)⋅BLM retained the red color, probably because of the formation of protruding structures at the outermost phase of dsDNA-AuNPs caused by BLM-mediated DNA cleavage. Furthermore, the results of our model experiments indicate that oxidative base release and DNA-cleavage pathways could be visually distinguished with color change. The present methodology was also applicable to model screening assays using several drugs with different mechanisms related to antitumor activity. These results strongly suggest that this assay with a rapid color change could lead to simple and efficient screening of potent antitumor agents.
Collapse
Affiliation(s)
- Yoshitsugu Akiyama
- Katsushika Division, Institute of Arts and Sciences, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan.,Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Kazunori Kimura
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Syuuhei Komatsu
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Tohru Takarada
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, 351-0198, Wako, Saitama, Japan
| | - Mizuo Maeda
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, 351-0198, Wako, Saitama, Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| |
Collapse
|
9
|
Li X, Wu J, Tang W. General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- trans-Diols to 1,2- cis-Diols. J Am Chem Soc 2022; 144:3727-3736. [PMID: 35168319 DOI: 10.1021/jacs.1c13399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycoconjugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activities. Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium toward 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.
Collapse
Affiliation(s)
- Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jicheng Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Tähtinen V, Gulumkar V, Maity SK, Yliperttula AM, Siekkinen S, Laine T, Lisitsyna E, Haapalehto I, Viitala T, Vuorimaa-Laukkanen E, Yliperttula M, Virta P. Assembly of Bleomycin Saccharide-Decorated Spherical Nucleic Acids. Bioconjug Chem 2022; 33:206-218. [PMID: 34985282 PMCID: PMC8778632 DOI: 10.1021/acs.bioconjchem.1c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Indexed: 11/30/2022]
Abstract
Glyco-decorated spherical nucleic acids (SNAs) may be attractive delivery vehicles, emphasizing the sugar-specific effect on the outer sphere of the construct and at the same time hiding unfavorable distribution properties of the loaded oligonucleotides. As examples of such nanoparticles, tripodal sugar constituents of bleomycin were synthesized and conjugated with a fluorescence-labeled antisense oligonucleotide (AONARV7). Successive copper(I)-catalyzed azide-alkyne and strain-promoted alkyne-nitrone cycloadditions (SPANC) were utilized for the synthesis. Then, the glyco-AONARV7 conjugates were hybridized with complementary strands of a C60-based molecular spherical nucleic acid (i.e., a hybridization-mediated carrier). The formation and stability of these assembled glyco-decorated SNAs were evaluated by polyacrylamide gel electrophoresis (PAGE), UV melting profile analysis, and time-resolved fluorescence spectroscopy. Association constants were extracted from time-resolved fluorescence data. Preliminary cellular uptake experiments of the glyco-AONARV7 conjugates (120 nM solutions) and of the corresponding glyco-decorated SNAs (10 nM solutions) with human prostate cancer cells (PC3) showed an efficient uptake in each case. A marked variation in intracellular distribution was observed.
Collapse
Affiliation(s)
- Ville Tähtinen
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| | - Vijay Gulumkar
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| | - Sajal K. Maity
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| | - Ann-Mari Yliperttula
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Saara Siekkinen
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Toni Laine
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| | - Ekaterina Lisitsyna
- Faculty
of Engineering and Natural Sciences, Tampere
University, FI-33014 Tampere, Finland
| | - Iida Haapalehto
- Faculty
of Engineering and Natural Sciences, Tampere
University, FI-33014 Tampere, Finland
| | - Tapani Viitala
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Pharmaceutical
Sciences, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | | | - Marjo Yliperttula
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| |
Collapse
|
11
|
Beerens K, Gevaert O, Desmet T. GDP-Mannose 3,5-Epimerase: A View on Structure, Mechanism, and Industrial Potential. Front Mol Biosci 2022; 8:784142. [PMID: 35087867 PMCID: PMC8787198 DOI: 10.3389/fmolb.2021.784142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily and catalyses the conversion of GDP-d-mannose towards GDP-l-galactose. Although the overall reaction seems relatively simple (a double epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction), to perform the double epimerization of GDP-mannose to GDP-l-galactose. The enzyme is involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in bacteria. In this review, we provide a clear overview of these interesting epimerases, including the latest findings such as the recently characterized bacterial and thermostable GM35E representative and its mechanism revision but also focus on their industrial potential in rare sugar synthesis and glycorandomization.
Collapse
Affiliation(s)
| | | | - Tom Desmet
- *Correspondence: Koen Beerens, ; Tom Desmet,
| |
Collapse
|
12
|
Zhou C, Ye W, Cao Y, Wang M, Qi D, Liao G, Li H, Huang W, Chen W, Wang X, Zhou W. A gulose moiety contributes to the belomycin (BLM) disaccharide selective targeting to lung cancer cells. Eur J Med Chem 2021; 226:113866. [PMID: 34619466 DOI: 10.1016/j.ejmech.2021.113866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
Eight mono- or disaccharide analogues derived from BLM disaccharide, along with the corresponding carbohydate-dye conjugates have been designed and synthesized in this study, aiming at exploring the effect of a gulose residue on the cellular binding/uptake of BLM disaccharide and it possible uptake mechanism. Our evidence is presented indicating that, for the cellular binding/uptake of BLM disaccharide, a gulose residue is an essential subunit but unrelated to its chemical nature. Interestingly, d-gulose-dye conjugate is able to selectively target A549 cancer cells, but l-gulose-dye conjugate fails. Further uptake mechanism studies demonstrate d-gulose-dye derivatives similar to BLM disaccharide-dye ones behave in a temperature- and ATP-dependent manner, and are partly directed by the GLUT1 receptor. Moreover, d-gulose modifying gemcitabine 53a exhibits more potent antitumor activity compared to derivatives 53b-c in which gemcitabine is decorated with other monosaccharides. Taken together, the monosacharide d-gulose conjugate offers a new strategy for solving cytotoxic drugs via the increased tumor targeting in the therapy of lung cancer.
Collapse
Affiliation(s)
- Cui Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Wenchong Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Yongjun Cao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, 510120, Guangdong, China
| | - Meizhu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Dongxia Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Guohao Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Wenming Chen
- Department of Pharmaceutical Production Center&TCM and Ethnomedicine Development International Laboratory, The First Hospital of Hunan University of Chinese Medicine, 95, Shaoshan Rd, Changsha, Hunan, 41007, China.
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
13
|
Kuroishikawa T, Yoshihara A, Furuta I, Mochizuki S, Watanabe A, Izumori K, Asada Y. Efficient production of the rare sugar l-gulose using a wheat-bran culture extract of Penicillium sp. KU-1. Biosci Biotechnol Biochem 2021; 85:1915-1918. [PMID: 34124745 DOI: 10.1093/bbb/zbab107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 11/14/2022]
Abstract
We found that l-gulose, a rare sugar, was produced from d-sorbitol efficiently, using a wheat-bran culture extract of the fungus Penicillium sp. KU-1 isolated from soil. The culture extract showed enzyme activity for the oxidation of d-sorbitol to produce l-gulose; a high production yield of approximately 94% was achieved.
Collapse
Affiliation(s)
- Takayuki Kuroishikawa
- The United Graduate School of Agricultural Sciences, Ehime University, Tarumi, Ehime, Japan
| | - Akihide Yoshihara
- Internatioal Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa, Japan
| | - Itsumi Furuta
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Susumu Mochizuki
- Internatioal Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa, Japan
| | - Akira Watanabe
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Ken Izumori
- Internatioal Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa, Japan
| | - Yasuhiko Asada
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
14
|
Alsarraf J, Petitpoisson L, Pichette A. Catalytic Site-Selective Carbamoylation of Pyranosides. Org Lett 2021; 23:6052-6056. [PMID: 34283624 DOI: 10.1021/acs.orglett.1c02116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbamate-bearing carbohydrates contribute to the pharmacological properties of various natural glycosides. The catalytic site-selective carbamoylation of minimally protected pyranosides was achieved for the first time to bypass protection/deprotection sequences. 1-Carbamoylimidazoles were used as the carbamoylation reagents to circumvent the harmful and unstable phosgene and isocyanates. This borinic acid catalyzed transformation granted an expedient access to the tumor cell-binding carbamoylmannoside moiety of bleomycins and analogs in yields of 56% to 89%.
Collapse
Affiliation(s)
- Jérôme Alsarraf
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - Lucas Petitpoisson
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - André Pichette
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| |
Collapse
|
15
|
Talib SH, Lu Z, Yu X, Ahmad K, Bashir B, Yang Z, Li J. Theoretical Inspection of M 1/PMA Single-Atom Electrocatalyst: Ultra-High Performance for Water Splitting (HER/OER) and Oxygen Reduction Reactions (OER). ACS Catal 2021. [DOI: 10.1021/acscatal.1c01294] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Zhansheng Lu
- School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis and School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, People’s Republic of China
| | - Khalil Ahmad
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur 10250, Azad Jammu and Kashmir, Pakistan
| | - Beenish Bashir
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Zongxian Yang
- School of Physics, Henan Normal University, Xinxiang 453007, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, People’s Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
16
|
Österlund T, Aho A, Äärelä A, Tähtinen V, Korhonen H, Virta P. Immobilized Carbohydrates for Preparation of 3'-Glycoconjugated Oligonucleotides. ACTA ACUST UNITED AC 2021; 83:e122. [PMID: 33290641 DOI: 10.1002/cpnc.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A detailed protocol for preparation 3'-glycoconjugated oligonucleotides is described based on one-pot immobilization of 4,4'-dimethoxytrityl-protected carbohydrates to a solid support followed by on-support peracetylation and automated oligonucleotide assembly. Compared to an appropriate building block approach and post-synthetic manipulation of oligonucleotides, this protocol may simplify the synthesis scheme and increase overall yield of the conjugates. Furthermore, the immobilization to a solid support typically increases the stability of reactants, enabling prolonged storage, and makes subsequent processing convenient. Automated assembly on these carbohydrate-modified supports using conventional phosphoramidite chemistry produces 3'-glycoconjugated oligonucleotides in relatively high yield and purity. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 1-O-tert-butyldimethylsilyl-6-O-(4,4'-dimethoxytrityl)-β-D-glucose Basic Protocol 2: Synthesis of 6-O-dimethoxytrityl-2,3,1',3',4',6'-hexa-O-benzoylsucrose Basic Protocol 3: Synthesis of 6″-O-dimethoxytrityl-N-trifluoroacetyl-protected aminoglycosides Basic Protocol 4: Synthesis of 3-O-dimethoxytrityl-propyl β-D-galactopyranoside Basic Protocol 5: Synthesis of trivalent N-acetyl galactosamine cluster Basic Protocol 6: Synthesis of carbohydrate monosuccinates and their immobilization to a solid support Basic Protocol 7: Oligonucleotide synthesis using immobilized carbohydrates.
Collapse
Affiliation(s)
- Tommi Österlund
- Department of Chemistry, University of Turku, Turku, Finland
| | - Aapo Aho
- Department of Chemistry, University of Turku, Turku, Finland
| | - Antti Äärelä
- Department of Chemistry, University of Turku, Turku, Finland
| | - Ville Tähtinen
- Department of Chemistry, University of Turku, Turku, Finland
| | - Heidi Korhonen
- Department of Chemistry, University of Turku, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Kong J, Xiong Y, Duan Y, Zhu X. Deoxidized gulose moiety attenuates the pulmonary toxicity of 6'-deoxy-bleomycin Z without effect on its antitumor activity. Biomed Pharmacother 2021; 136:111222. [PMID: 33450497 DOI: 10.1016/j.biopha.2021.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022] Open
Abstract
Bleomycins (BLMs) are broad-spectrum antitumor drugs, but the dose-dependent lung toxicity has restricted their therapeutic applications. Many efforts have contributed to develop novel BLM analogues, but mainly focused on single functional domain owing to the structural complexity of BLM. Benefit from the engineered production of two novel analogues 6'-deoxy-BLM Z (6'-DO-BLM Z) and BLM Z, they together with clinical BLM-sulfate comprised a good model with varied sugar or C-terminal domain in any two of them, allowing us to study their structure-activity relationships pairwise. Our investigations suggested the biological activities of BLM or its analogues are mainly depended on the C-terminal amine, while the changed C-terminal amine endowed BLM Z with much higher pulmonary toxicity comparing to BLM-sulfate, whereas the deoxidized gulose unit with same C-terminal amine evidently attenuated the pulmonary toxicity of 6'-DO-BLM Z without effect on antitumor activity. Further mechanistic studies revealed that the alleviation of pulmonary toxicity in 6'-DO-BLM Z by a slight change in the sugar moiety could attribute to the decrease of ROS production and thereby reduce the subsequent caspase-1 activity and resulting inflammatory response. Therefore, the synergistic modifications on C-terminal amine and sugar moiety provide new insights to efficiently develop potential BLM candidate with good clinical performance.
Collapse
Affiliation(s)
- Jieqian Kong
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, 410013, China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
18
|
Gevaert O, Van Overtveldt S, Da Costa M, Beerens K, Desmet T. GDP-altrose as novel product of GDP-mannose 3,5-epimerase: Revisiting its reaction mechanism. Int J Biol Macromol 2020; 165:1862-1868. [PMID: 33075338 DOI: 10.1016/j.ijbiomac.2020.10.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the double epimerization of GDP-mannose to yield GDP-l-galactose. GDP-l-gulose (C5-epimer) has previously been detected as a byproduct of this reaction, indicating that C3,5-epimerization occurs through an initial epimerization at C5. Given these products, GM35E constitutes a valuable bridge between d- and l-hexoses. In order to fully exploit this potential, the enzyme might be subjected to specificity engineering for which profound mechanistic insights are beneficial. Accordingly, this study further elucidated GM35E's reaction mechanism. For the first time, the production of the C3-epimer GDP-altrose was demonstrated, resulting in an adjustment of the acknowledged reaction mechanism. As GM35E converts GDP-mannose to GDP-l-gulose, GDP-altrose and GDP-l-galactose in a 72:4:4:20 ratio, this indicates that the enzyme does not discriminate between the C3 and C5 position as initial epimerization site. This was also confirmed by a structural investigation. Based on a mutational analysis of the active site, residues S115 and R281 were attributed a stabilizing function, which is believed to support the reactivation process of the catalytic residues. This paper eventually reflected on some engineering strategies that aim to change the enzyme towards a single specificity.
Collapse
Affiliation(s)
- Ophelia Gevaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Stevie Van Overtveldt
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
19
|
Wang JL, Wang KX, Han TL, Li JM, He X, Rong RX, Cao ZR, Li XL, Wang KR. Antitumour properties based on the self-assembly of camptothecin and carbamoylmannose conjugates. Chem Biol Drug Des 2020; 96:870-877. [PMID: 32321194 DOI: 10.1111/cbdd.13698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Camptothecin (CPT) and its analogues show potent antitumour activity. However, poor water solubility and severe side effects have restricted their applications in clinical practice. In this paper, a novel self-assembly based on camptothecin and carbamoylmannose conjugates (CPT-Man) was constructed. The self-assembly increased the water solubility of camptothecin to 0.64 mg/ml and antitumour activity. Moreover, CPT-Man could induce obvious cancer cell apoptosis. This work provides a new approach for exploring carbohydrate-modified antitumour properties by self-assembled CPT drugs.
Collapse
Affiliation(s)
- Jia-Li Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Kai-Xin Wang
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding, China
| | - Tian-Lei Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Jin-Mei Li
- Department of Pathology, The First Central Hospital of Baoding, Baoding, China
| | - Xu He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Rui-Xue Rong
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding, China
| | - Zhi-Ran Cao
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding, China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| |
Collapse
|
20
|
Angelbello AJ, DeFeo ME, Glinkerman CM, Boger DL, Disney MD. Precise Targeted Cleavage of a r(CUG) Repeat Expansion in Cells by Using a Small-Molecule-Deglycobleomycin Conjugate. ACS Chem Biol 2020; 15:849-855. [PMID: 32186845 DOI: 10.1021/acschembio.0c00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA repeat expansions cause more than 30 neurological and neuromuscular diseases with no known cures. Since repeat expansions operate via diverse pathomechanisms, one potential therapeutic strategy is to rid them from disease-affected cells, using bifunctional small molecules that cleave the aberrant RNA. Such an approach has been previously implemented for the RNA repeat that causes myotonic dystrophy type 1 [DM1, r(CUG)exp] with Cugamycin, which is a small molecule that selectively binds r(CUG)exp conjugated to a bleomycin A5 cleaving module. Herein, we demonstrate that, by replacing bleomycin A5 with deglycobleomycin, an analogue in which the carbohydrate domain of bleomycin A5 is removed, the selectivity of the resulting small-molecule conjugate (DeglycoCugamycin) was enhanced, while maintaining potent and allele-selective cleavage of r(CUG)exp and rescue of DM1-associated defects. In particular, DeglycoCugamycin did not induce the DNA damage that is observed with high concentrations (25 μM) of Cugamycin, while selectively cleaving the disease-causing allele and improving DM1 defects at 1 μM.
Collapse
Affiliation(s)
- Alicia J. Angelbello
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mary E. DeFeo
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christopher M. Glinkerman
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
21
|
Qin C, Yang X, Wu Y, Lv Y, Zhang L, Xin X, Yang L, He W, Han X, Yin L, Wu C. Matrix metalloproteinases sensitive multifunctional micelles for inhibition of metastatic tumor growth and metastasis. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.08.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Biancalana L, Gruchała M, Batchelor LK, Błauż A, Monti A, Pampaloni G, Rychlik B, Dyson PJ, Marchetti F. Conjugating Biotin to Ruthenium(II) Arene Units via Phosphine Ligand Functionalization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Martyna Gruchała
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Andrzej Błauż
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Andrea Monti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Błażej Rychlik
- Cytometry Lab Department of Molecular Biophysics University of Łódź ul. Pomorska 141/143 90‐236 Łódź Poland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
23
|
Characterization of the First Bacterial and Thermostable GDP-Mannose 3,5-Epimerase. Int J Mol Sci 2019; 20:ijms20143530. [PMID: 31330931 PMCID: PMC6678494 DOI: 10.3390/ijms20143530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the conversion of GDP-mannose towards GDP-l-galactose and GDP-l-gulose. Although this reaction represents one of the few enzymatic routes towards the production of l-sugars and derivatives, it has not yet been exploited for that purpose. One of the reasons is that so far only GM35Es from plants have been characterized, yielding biocatalysts that are relatively unstable and difficult to express heterologously. Through the mining of sequence databases, we succeeded in identifying a promising bacterial homologue. The gene from the thermophilic organism Methylacidiphilum fumariolicum was codon optimized for expression in Escherichia coli, resulting in the production of 40 mg/L of recombinant protein. The enzyme was found to act as a self-sufficient GM35E, performing three chemical reactions in the same active site. Furthermore, the biocatalyst was highly stable at temperatures up to 55 °C, making it well suited for the synthesis of new carbohydrate products with application in the pharma industry.
Collapse
|
24
|
Yang T, Zuo Y, Zhang Y, Gou Z, Lin W. Novel polysiloxane-based rhodamine B fluorescent probe for selectively detection of Al 3+ and its application in living-cell and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:207-213. [PMID: 30901706 DOI: 10.1016/j.saa.2019.01.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Polysiloxanes have excellent stability and biological relevance and are suitable for biological research. However, there were few polysiloxane-based fluorescent probes for bioimaging. This report successfully designed a new polysiloxane-based polymer fluorescent probe (RB-1) for the first time as a "turn-on" fluorescent probe response to Al3+ ion with highly sensitive and selectivity. Importantly, this probe could also apply both in cell and zebrafish imaging, indicating the huge application development prospects of polysiloxane-based fluorescent probes in future.
Collapse
Affiliation(s)
- Tingxin Yang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Yujing Zuo
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Yu Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Zhiming Gou
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
25
|
Rubis B, Luczak MW, Krawic C, Zhitkovich A. Vitamin C increases DNA breaks and suppresses DNA damage-independent activation of ATM by bleomycin. Free Radic Biol Med 2019; 136:12-21. [PMID: 30926564 PMCID: PMC6488359 DOI: 10.1016/j.freeradbiomed.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
Bleomycin is a redox-active drug with anticancer and other clinical applications. It is also frequently used as a tool in fundamental research on cellular responses to DNA double-strand breaks (DSBs). A conversion of bleomycin into its DNA-breaking form requires Fe, one-electron donors and O2. Here, we examined how a major biological antioxidant ascorbate (reduced vitamin C), which is practically absent in standard cell culture, impacts cellular responses to bleomycin. We found that restoration of physiological levels of vitamin C in human cancer cells increased their killing by bleomycin in 2D cultures and 3D tumor spheroids. Higher cytotoxicity of bleomycin occurred in cells with normal and shRNA-depleted p53. Cellular vitamin C enhanced the ability of bleomycin by produce DSBs, which was established by direct measurements of these lesions in three cell lines. Vitamin C-restored cancer cells also showed a higher sensitivity to killing by low-dose bleomycin in combination with inhibitors of DSB repair-activating ATM or DNA-PK kinases. The presence of ascorbate in bleomycin-treated cells suppressed a DSB-independent activation of the ATM-CHK2 axis by blocking superoxide radical. In vitro studies detected a greatly superior ability of ascorbate over other cellular reducers to catalyze DSB formation by bleomycin. Ascorbate was faster than other antioxidants in promoting two steps in activation of bleomycin. Our results demonstrate strong activation effects of vitamin C on bleomycin, shifting its toxicity further toward DNA damage and making it more sensitive to manipulations of DNA repair.
Collapse
Affiliation(s)
- Blazej Rubis
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA.
| |
Collapse
|
26
|
Blaszczak W, Barczak W, Masternak J, Kopczyński P, Zhitkovich A, Rubiś B. Vitamin C as a Modulator of the Response to Cancer Therapy. Molecules 2019; 24:E453. [PMID: 30695991 PMCID: PMC6384696 DOI: 10.3390/molecules24030453] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 01/04/2023] Open
Abstract
Ascorbic acid (vitamin C) has been gaining attention as a potential treatment for human malignancies. Various experimental studies have shown the ability of pharmacological doses of vitamin C alone or in combinations with clinically used drugs to exert beneficial effects in various models of human cancers. Cytotoxicity of high doses of vitamin C in cancer cells appears to be related to excessive reactive oxygen species generation and the resulting suppression of the energy production via glycolysis. A hallmark of cancer cells is a strongly upregulated aerobic glycolysis, which elevates its relative importance as a source of ATP (Adenosine 5'-triphosphate). Aerobic glycolysis is maintained by a highly increased uptake of glucose, which is made possible by the upregulated expression of its transporters, such as GLUT-1, GLUT-3, and GLUT-4. These proteins can also transport the oxidized form of vitamin C, dehydroascorbate, permitting its preferential uptake by cancer cells with the subsequent depletion of critical cellular reducers as a result of ascorbate formation. Ascorbate also has a potential to affect other aspects of cancer cell metabolism due to its ability to promote reduction of iron(III) to iron(II) in numerous cellular metalloenzymes. Among iron-dependent dioxygenases, important targets for stimulation by vitamin C in cancer include prolyl hydroxylases targeting the hypoxia-inducible factors HIF-1/HIF-2 and histone and DNA demethylases. Altered metabolism of cancer cells by vitamin C can be beneficial by itself and promote activity of specific drugs.
Collapse
Affiliation(s)
- Wiktoria Blaszczak
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
| | - Wojciech Barczak
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
| | - Julia Masternak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland.
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| |
Collapse
|
27
|
Zhu S, Yuan Q, Yang M, You J, Yin T, Gu Z, Hu Y, Xiong S. A quantitative comparable study on multi-hierarchy conformation of acid and pepsin-solubilized collagens from the skin of grass carp (Ctenopharyngodon idella). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:446-457. [PMID: 30606554 DOI: 10.1016/j.msec.2018.11.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 10/25/2018] [Accepted: 11/24/2018] [Indexed: 12/31/2022]
Abstract
This work aimed to improve yield of collagen from the grass carp skin by employing different strategies (acid-acid method, pepsin-pepsin method and acid-pepsin method, denoted as A-A, P-P, A-P, respectively). And further to conduct quantitative characterization on structural properties, self-assembly kinetics and gelation properties of these collagens. Herein, a two-step collagen extraction method (pepsin-pepsin) was established with the high yield. Meanwhile, structural measurements of high-yield collagen (pepsin-soluble collagen, PSC) and acid-soluble collagen (ASC) indicated that both collagens maintained the typical triple helical conformation of collagen type I. Moreover, the fibrillogenesis tests of PSC and ASC at the various temperatures confirmed that self-assembly were the entropy-driven process. The gelation time of both ASC and PSC was determined by the dynamic time sweep at the different frequencies combined with Winter's criterion. The self-assembly kinetics results showed that fibrillogenesis rate for ASC solution was faster, and more liable to gelation relative to PSC. Mechanical measurements suggested that ASC showed the more resistance ability to deformation than PSC due to more complicated architecture, confirmed by higher fractal dimension. However, the equivalent typical assemblies of PSC to ASC at the various stages can still be expected via controlling incubation time or temperature under the guidance of Arrhenius equation. This study would provide some strategies for achieving maximum utilization of waste biomass and significant insights into the mechanisms underlying the quantitative differences in multiple hierarchy conformation (molecule, fibrillogenesis and hydrogel) of ASC and PSC, which may benefit for subsequent design, development and optimization of collagen-based hydrogels in biomedical industries.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, PR China
| | - Qijuan Yuan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Mingtao Yang
- College of Chemistry and Bioengineering, Yichun University, Yichun 336000, PR China
| | - Juan You
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tao Yin
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, PR China.
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, PR China.
| |
Collapse
|
28
|
Li M, Huang W, Jiang Z, Shi Y, Yuan S, Fu K, Chen Y, Zhou L, Zhou W. Multi-gram scale synthesis of a bleomycin (BLM) carbohydrate moiety: exploring the antitumor beneficial effect of BLM disaccharide attached to 10-hydroxycamptothecine (10-HCPT). NEW J CHEM 2019. [DOI: 10.1039/c8nj06191b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient multi-gram synthesis of bleomycin disaccharide has been developed, and its conjugate with 10-HCPT displayed obvious selectivity, clearly indicating the potential of bleomycin disaccharide in solving the targeted therapy of cytotoxic drugs.
Collapse
Affiliation(s)
- MaoLin Li
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- University Town
- Waihuan Rd
- Panyu
| | - Weiping Huang
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- University Town
- Waihuan Rd
- Panyu
| | - Zhilin Jiang
- Puer University
- Puer
- Yunan
- China
- Institute of Comparative Study of Traditional Material Medica
| | - Yonghui Shi
- Department of Pharmacy
- Sun Yat-Sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou
- China
| | - Sisi Yuan
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- University Town
- Waihuan Rd
- Panyu
| | - Kaishuo Fu
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- University Town
- Waihuan Rd
- Panyu
| | - YongJun Chen
- South China Research Centre for Acupuncture and Moxibustion
- Medical College of Acu-Moxi and Rehabilitation
- Guangzhou University of Chinese Medicine
- University Town
- Waihuan Rd
| | - Li Zhou
- College of Science
- Hunan Agricultural University
- Changsha
- China
| | - Wen Zhou
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- University Town
- Waihuan Rd
- Panyu
| |
Collapse
|
29
|
Chen H, Fu W, Chen H, You S, Liu X, Yang Y, Wei Y, Huang J, Rui W. Magnolol attenuates the inflammation and enhances phagocytosis through the activation of MAPK, NF-κB signal pathways in vitro and in vivo. Mol Immunol 2019; 105:96-106. [DOI: 10.1016/j.molimm.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/22/2018] [Accepted: 11/11/2018] [Indexed: 12/25/2022]
|
30
|
Maity SK, Yim CB, Jadhav S, Verhassel A, Tuomela J, Solin O, Grönroos TJ, Virta P. Synthesis of an Alkyne-Modified Bleomycin Disaccharide Precursor, Conversion to a 18
F-Labeled Radiotracer, and Preliminary in vivo-PET Imaging Studies. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sajal K. Maity
- Department of Chemistry; University of Turku; 20014 Turku Finland
| | - Cheng-Bin Yim
- Turku PET Centre (Å)bo Akademi University; 20520 Turku Finland
| | - Satish Jadhav
- Department of Chemistry; University of Turku; 20014 Turku Finland
- Department of Cellular and Molecular Medicine; School of Medicine; University of California; 92093 San Diego, La Jolla CA USA
| | - Alejandra Verhassel
- Department of Cell biology and Anatomy; Institute of Biomedicine; University of Turku; 20520 Turku Finland
| | - Johanna Tuomela
- Department of Cell biology and Anatomy; Institute of Biomedicine; University of Turku; 20520 Turku Finland
| | - Olof Solin
- Department of Chemistry; University of Turku; 20014 Turku Finland
- Turku PET Centre; University of Turku; 20520 Finland
| | | | - Pasi Virta
- Department of Chemistry; University of Turku; 20014 Turku Finland
| |
Collapse
|
31
|
Follett SE, Murray SA, Ingersoll AD, Reilly TM, Lehmann TE. Structural changes of Zn(II)bleomycin complexes when bound to DNA hairpins containing the 5'-GT-3' and 5'-GC-3' binding sites studied through NMR spectroscopy. MAGNETOCHEMISTRY 2018; 4. [PMID: 30464999 DOI: 10.3390/magnetochemistry4010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bleomycins are antitumor antibiotics that can chelate a metal center and cause site-specific DNA cleavage at 5'-Gpyrimidine-3' regions of DNA. These antibiotics are successful in the treatment of various cancers, but are known to cause pulmonary fibrosis to patients under bleomycin regimes. Substantial research has resulted in the development of over 300 bleomycin analogs, aiming to improve the therapeutic index of the drug. Previous studies have proposed that the lung toxicity caused by bleomycin is related to the C-terminal regions of these drugs, which have been shown to closely interact with DNA in metal-bleomycin-DNA complexes. Some of the research studying metallo-bleomycin-DNA interactions have suggested three different binding modes of the metal form of the drug to DNA, including total and/or partial intercalation, and minor groove binding. However, there is still lack of consensus regarding this matter, and solid conclusions on the subject have not yet been established. Previously we investigated the diverse levels of disruption caused to DNA hairpins containing 5'-GC-3' and 5'-GT-3' binding sites, which are consequence of the binding of bleomycins with different C-termini. The results of these investigation indicate that both the DNA-binding site and the bleomycin C-termini have an impact on the final conformations of drug and target. The present study focuses on the structural alterations exhibited by Zn(II)bleomycin-A2, -B2, -A5 and Zn(II)peplomycin upon binding to DNA hairpins containing 5'-GC-3' and 5'-GT-3' binding sites. Evidence that each Zn(II)bleomycin is structurally affected depending on both its C-terminus and the DNA-binding site present in the hairpin is provided.
Collapse
Affiliation(s)
- Shelby E Follett
- Department of Chemistry, University of Wyoming, Laramie, WY, United Sates of America
| | - Sally A Murray
- Department of Chemistry, University of Wyoming, Laramie, WY, United Sates of America
| | - Azure D Ingersoll
- Department of Chemistry, University of Wyoming, Laramie, WY, United Sates of America
| | - Teresa M Reilly
- Department of Chemical Engineering, University of Wyoming, Laramie, WY, United Sates of America
| | - Teresa E Lehmann
- Department of Chemistry, University of Wyoming, Laramie, WY, United Sates of America
| |
Collapse
|
32
|
Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Bioinspired mimics: Self-assembly of redox-activated phosphorylcholine–based biodegradable copolymers for enhancing antitumor efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:401-412. [DOI: 10.1016/j.msec.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 01/16/2023]
|
34
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
35
|
Kong J, Yi L, Xiong Y, Huang Y, Yang D, Yan X, Shen B, Duan Y, Zhu X. The discovery and development of microbial bleomycin analogues. Appl Microbiol Biotechnol 2018; 102:6791-6798. [DOI: 10.1007/s00253-018-9129-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
|
36
|
Hamilton ME, Bols NC, Duncker BP. The characterization of γH2AX and p53 as biomarkers of genotoxic stress in a rainbow trout (Oncorhynchus mykiss) brain cell line. CHEMOSPHERE 2018; 201:850-858. [PMID: 29554631 DOI: 10.1016/j.chemosphere.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Rainbow trout cell cultures were exposed to three genotoxicants and examined for effects on γH2AX and p53 levels by western blotting and on cell viability using the indicator dyes Alamar Blue (AB) for energy metabolism and 5'-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) for plasma membrane integrity. Bleomycin induced γH2AX and p53 in a dose- and time-dependent manner and had little cytotoxic effect. However, induction was first seen at 0.3 μM for γH2AX but not until 16.5 μM for p53. Methyl methanesulfonate (MMS) increased H2AX phosphorylation but diminished p53 levels as the dose was increased from 908 μM up to 2724 μM. Over this dose range cell viability was progressively lost. 4-nitroquinoline N-oxide (NQO) induced both γH2AX and p53, beginning at 62.5 nM, which was also the concentration at which cell viability began to decline. As the NQO concentration increased further, elevated γH2AX was detected at up to 2.0 μM, while p53 was elevated up to 1.0 μM. Therefore, H2AX phosphorylation was superior to p53 levels as a marker of DNA damage caused by genotoxicants that act by introducing double-stranded DNA breaks (bleomycin), alkyl groups (MMS), and quinoline adducts (NQO).
Collapse
Affiliation(s)
- Mark E Hamilton
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
37
|
Murray V, Chen JK, Chung LH. The Interaction of the Metallo-Glycopeptide Anti-Tumour Drug Bleomycin with DNA. Int J Mol Sci 2018; 19:E1372. [PMID: 29734689 PMCID: PMC5983701 DOI: 10.3390/ijms19051372] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
The cancer chemotherapeutic drug, bleomycin, is clinically used to treat several neoplasms including testicular and ovarian cancers. Bleomycin is a metallo-glycopeptide antibiotic that requires a transition metal ion, usually Fe(II), for activity. In this review, the properties of bleomycin are examined, especially the interaction of bleomycin with DNA. A Fe(II)-bleomycin complex is capable of DNA cleavage and this process is thought to be the major determinant for the cytotoxicity of bleomycin. The DNA sequence specificity of bleomycin cleavage is found to at 5′-GT* and 5′-GC* dinucleotides (where * indicates the cleaved nucleotide). Using next-generation DNA sequencing, over 200 million double-strand breaks were analysed, and an expanded bleomycin sequence specificity was found to be 5′-RTGT*AY (where R is G or A and Y is T or C) in cellular DNA and 5′-TGT*AT in purified DNA. The different environment of cellular DNA compared to purified DNA was proposed to be responsible for the difference. A number of bleomycin analogues have been examined and their interaction with DNA is also discussed. In particular, the production of bleomycin analogues via genetic manipulation of the modular non-ribosomal peptide synthetases and polyketide synthases in the bleomycin gene cluster is reviewed. The prospects for the synthesis of bleomycin analogues with increased effectiveness as cancer chemotherapeutic agents is also explored.
Collapse
Affiliation(s)
- Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
38
|
Yuan SS, Li ML, Chen JS, Zhou L, Zhou W. Application of Mono- and Disaccharides in Drug Targeting and Efficacy. ChemMedChem 2018; 13:764-778. [DOI: 10.1002/cmdc.201700762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Si S. Yuan
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Mao L. Li
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Jian S. Chen
- College of Horticulture; South China Agricultural University; 483 Wushan Road Guangzhou 510642 China
| | - Li Zhou
- College of Science; Hunan Agricultural University; Furong Road Changsha 410128 China
| | - Wen Zhou
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| |
Collapse
|
39
|
Chang M, Zhang T, Han X, Tang Q, Yanagita T, Xu J, Xue C, Wang Y. Comparative Analysis of EPA/DHA-PL Forage and Liposomes in Orotic Acid-Induced Nonalcoholic Fatty Liver Rats and Their Related Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1408-1418. [PMID: 29345914 DOI: 10.1021/acs.jafc.7b05173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one predictive factor of death from various illnesses. The present study was to comparatively investigate the effects of eicosapentaenoic acid-enriched and docosahexaenoic acid-enriched phospholipids forage (EPA-PL and DHA-PL) and liposomes (lipo-EPA and lipo-DHA) on NAFLD and demonstrate the possible protective mechanisms involved. The additive doses of EPA-PL and DHA-PL in all treatment groups were 1% of total diets, respectively. The results showed that Lipo-EPA could significantly improve hepatic function by down-regulating orotic acid-induced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels by 55.6% and 34.2%, respectively (p < 0.01). Moreover, lipo-EPA exhibited excellent inhibition on the mRNA expression of SREBP-1c and FAS at the values of 0.454 ± 0.09 (p < 0.01) and 0.523 ± 0.08 (p < 0.01), respectively, thus ameliorating OA-induced NAFLD. Meanwhile, lipo-EPA could significantly suppress the SREBP-2 and HMGR levels (31.4% and 66.7%, p < 0.05, respectively). In addition, EPA-PL and lipo-DHA could also significantly suppress hepatic lipid accumulation mainly by enhancement of hepatic lipolysis and cholesterol efflux. Furthermore, DHA-PL played a certain role in inhibiting hepatic lipogenesis and accelerating cholesterol efflux. The results obtained in this work might contribute to the understanding of the biological activities of EPA/DHA-PL and liposomes and further investigation on its potential application values for food supplements.
Collapse
Affiliation(s)
- Mengru Chang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Xiuqing Han
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University , Saga 840-8502, Japan
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao, Shandong Province PR China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao, Shandong Province PR China
| |
Collapse
|
40
|
A novel ratiometric fluorescence and colorimetric probe with a large stokes shift for Hg2+ sensing. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Che R, Zhu Q, Yu J, Li J, Yu J, Lu W. Syntheses of two kinds of disaccharide subunits of antitumor antibiotic bleomycins. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Yu Z, Cowan JA. Catalytic Metallodrugs: Substrate-Selective Metal Catalysts as Therapeutics. Chemistry 2017; 23:14113-14127. [PMID: 28688119 DOI: 10.1002/chem.201701714] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Zhen Yu
- Department of Chemistry and Biochemistry; The Ohio State University; 100 West 18th Avenue Columbus OH 43210 USA
| | - James A. Cowan
- Department of Chemistry and Biochemistry; The Ohio State University; 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
43
|
Zhang TT, Liu YJ, Yang L, Jiang JG, Zhao JW, Zhu W. Extraction of antioxidant and antiproliferative ingredients from fruits of Rubus chingii Hu by active tracking guidance. MEDCHEMCOMM 2017; 8:1673-1680. [PMID: 30108878 PMCID: PMC6072464 DOI: 10.1039/c7md00240h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/24/2017] [Indexed: 12/14/2022]
Abstract
Rubus chingii Hu, namely "Fu-pen-zi" in Chinese, has been used as a functional food in China for a long time. This study aims to identify its bioactive constituents with antioxidant and anti-tumor properties. R. chingii was extracted with 95% ethanol and then partitioned into four fractions: petroleum ether fraction, ethyl acetate fraction, n-butanol fraction, and water fraction. Results showed that the ethyl acetate fraction had the strongest antioxidant activity and cytotoxicity against human cancer cell lines (HepG-2, Bel-7402, A549 and MCF-7). Therefore, four compounds were isolated from the ethyl acetate fraction, and they were identified as ent-16α,17-dihydroxy-kauran-19-oic acid, tormentic acid, oleanolic acid and β-daucosterol, the first two of which were isolated and identified from R. chingii for the first time. In particular, tormentic acid exhibited excellent cytotoxicity activities against human tumor cell lines. The results obtained in this work might contribute to the understanding of biological activities of R. chingii and further investigation on its potential application is valued for food and drugs.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- College of Food and Bioengineering , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +86 20 87113849
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Ya-Jun Liu
- The First Affiliated Hospital , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Li Yang
- College of Food and Bioengineering , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +86 20 87113849
| | - Jian-Guo Jiang
- College of Food and Bioengineering , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +86 20 87113849
| | - Jing-Wen Zhao
- The second Affiliated Hospital , Guangzhou University of Chinese Medicine , Guangzhou 510120 , China . ; ; Tel: +86 20 39318571
| | - Wei Zhu
- The second Affiliated Hospital , Guangzhou University of Chinese Medicine , Guangzhou 510120 , China . ; ; Tel: +86 20 39318571
| |
Collapse
|
44
|
Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm 2017; 115:159-167. [DOI: 10.1016/j.ejpb.2017.02.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/19/2022]
|
45
|
Abstract
Covering: July 2012 to June 2015. Previous review: Nat. Prod. Rep., 2013, 30, 869-915The structurally diverse imidazole-, oxazole-, and thiazole-containing secondary metabolites are widely distributed in terrestrial and marine environments, and exhibit extensive pharmacological activities. In this review the latest progress involving the isolation, biological activities, and chemical and biogenetic synthesis studies on these natural products has been summarized.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
46
|
Gautam SD, Chen JK, Murray V. The DNA sequence specificity of bleomycin cleavage in a systematically altered DNA sequence. J Biol Inorg Chem 2017; 22:881-892. [PMID: 28509989 DOI: 10.1007/s00775-017-1466-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Bleomycin is an anti-tumour agent that is clinically used to treat several types of cancers. Bleomycin cleaves DNA at specific DNA sequences and recent genome-wide DNA sequencing specificity data indicated that the sequence 5'-RTGT*AY (where T* is the site of bleomycin cleavage, R is G/A and Y is T/C) is preferentially cleaved by bleomycin in human cells. Based on this DNA sequence, we constructed a plasmid clone to explore this bleomycin cleavage preference. By systematic variation of single nucleotides in the 5'-RTGT*AY sequence, we were able to investigate the effect of nucleotide changes on bleomycin cleavage efficiency. We observed that the preferred consensus DNA sequence for bleomycin cleavage in the plasmid clone was 5'-YYGT*AW (where W is A/T). The most highly cleaved sequence was 5'-TCGT*AT and, in fact, the seven most highly cleaved sequences conformed to the consensus sequence 5'-YYGT*AW. A comparison with genome-wide results was also performed and while the core sequence was similar in both environments, the surrounding nucleotides were different.
Collapse
Affiliation(s)
- Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
47
|
Hindra, Yang D, Teng Q, Dong LB, Crnovčić I, Huang T, Ge H, Shen B. Genome Mining of Streptomyces mobaraensis DSM40847 as a Bleomycin Producer Providing a Biotechnology Platform To Engineer Designer Bleomycin Analogues. Org Lett 2017; 19:1386-1389. [PMID: 28256838 DOI: 10.1021/acs.orglett.7b00283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptomyces mobaraensis DSM40847 has been identified by genome mining and confirmed to be a new bleomycin (BLM) producer. Manipulation of BLM biosynthesis in S. mobaraensis has been demonstrated, as exemplified by the engineered production of 6'-deoxy-BLM A2, providing a biotechnology platform for BLM biosynthesis and engineering. Comparison of DNA cleavage efficiency and kinetics among 6'-deoxy-BLM A2 and selected analogues supports the wisdom of altering the disaccharide moiety to fine-tune BLM activity.
Collapse
Affiliation(s)
- Hindra
- Department of Chemistry, ‡Department of Molecular Medicine, §Natural Products Library Initiative at the Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, ‡Department of Molecular Medicine, §Natural Products Library Initiative at the Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Qihui Teng
- Department of Chemistry, ‡Department of Molecular Medicine, §Natural Products Library Initiative at the Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Liao-Bin Dong
- Department of Chemistry, ‡Department of Molecular Medicine, §Natural Products Library Initiative at the Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ivana Crnovčić
- Department of Chemistry, ‡Department of Molecular Medicine, §Natural Products Library Initiative at the Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Tingting Huang
- Department of Chemistry, ‡Department of Molecular Medicine, §Natural Products Library Initiative at the Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Huiming Ge
- Department of Chemistry, ‡Department of Molecular Medicine, §Natural Products Library Initiative at the Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, ‡Department of Molecular Medicine, §Natural Products Library Initiative at the Scripps Research Institute, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
48
|
Yao X, Zhu Q, Li C, Yuan K, Che R, Zhang P, Yang C, Lu W, Wu W, Jiang X. Carbamoylmannose enhances the tumor targeting ability of supramolecular nanoparticles formed through host-guest complexation of a pair of homopolymers. J Mater Chem B 2017; 5:834-848. [PMID: 32263852 DOI: 10.1039/c6tb02863b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugation of sugars to antitumor drugs can facilitate drug binding to tumor cells and the saccharide motifs of bleomycins (BLMs) play a crucial role in tumor-seeking. Here, we synthesized BLM monosaccharide, carbamoylmannose, and subsequently prepared carbamoylmannose decorated platinum-incorporating supramolecular nanoparticles formed through the host-guest complexation of poly(N-vinylpyrrolidone) and poly(aspartic acid). The targeting effects of carbamoylmannose decorated supramolecular nanoparticles in various cancer cells and tumor-bearing mice were investigated. It was found that the nanoparticles showed a specific in vitro and in vivo carbamoylmannose-mediated cellular uptake and drug delivery. The cellular uptake of the nanoparticles followed the receptor-mediated endocytosis mechanism in cancer cells but not in healthy cells. In a murine hepatic H22 tumor model, it was demonstrated that the carbamoylmannose moiety increased the plasma concentration, tumor targeting ability and tumor penetration of the nanoparticles, leading to high tumor accumulation and superior antitumor efficacy. This carbamoylmannose molecule may bring an opportunity to design and construct inexpensive but highly efficient drug and gene delivery systems in the future.
Collapse
Affiliation(s)
- Xikuang Yao
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Han HH, Wang CZ, Zang Y, Li J, James TD, He XP. Supramolecular core–glycoshell polythiophene nanodots for targeted imaging and photodynamic therapy. Chem Commun (Camb) 2017; 53:9793-9796. [DOI: 10.1039/c7cc04525e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We show that supramolecular core–glycoshell nanodots are capable of targeted imaging and photodynamic therapy of liver and triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- National Center for Drug Screening
| | - Chang-Zheng Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi Zang
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Jia Li
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
50
|
Eloy JO, Petrilli R, Brueggemeier RW, Marchetti JM, Lee RJ. Rapamycin-loaded Immunoliposomes Functionalized with Trastuzumab: A Strategy to Enhance Cytotoxicity to HER2-positive Breast Cancer Cells. Anticancer Agents Med Chem 2017; 17:48-56. [PMID: 27225450 PMCID: PMC5123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/26/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Liposomes have been employed to improve pharmacokinetics and reduce side effects of drugs. They can be functionalized with antibodies for targeted delivery. While the monoclonal antibody trastuzumab has been employed in the therapy of HER2-positive breast cancer, the resistance developed during treatment has been reported. Rapamycin could be used in combination with trastuzumab for improved therapeutic response. OBJECTIVE In this study, we aimed to develop rapamycin-loaded liposomes and immunoliposomes with trastuzumab, characterize them and evaluate their in vitro cytotoxicity. METHOD Formulations were prepared by the thin film hydration method and immunoliposome was conjugated to antibody by covalent bond. Characterization involved particle size, polydispersity, zeta potential, encapsulation efficiency, functionalization efficiency, DSC and FTIR assays. Cell studies were conducted through the MTT assay. RESULTS SPC:Chol:DSPE-PEG formulation prepared at 1:10 drug to lipid ratio presented high encapsulation efficiency, appropriate particle size, low polydispersity, negative zeta potential and colloidal stability. Rapamycin exhibited intermolecular interactions with lipids and underwent crystallinity reduction. Rapamycin-loaded immunoliposomes were prepared with high trastuzumab functionalization efficiency and antibody stability. Cytotoxicity studies showed that the HER2-positive SK-BR-3 cell line was sensitive to trastuzumab, either as free drug or in the context of immunoliposomes, and is more sensitive to rapamycin than the triple negative MDA-MB-231 cells. For MDA-MB-231, the liposomal rapamycin was more cytotoxic than the free drug. Furthermore, the immunoliposomes showed potent cytotoxicity against SK-BR-3 cells. Finally, rapamycin and trastuzumab exhibited in vitro synergistic effect, particularly through immunoliposomes. CONCLUSION The formulation developed herein has potential for in vivo evaluation.
Collapse
Affiliation(s)
- Josimar O. Eloy
- College of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903, Ribeirao Preto, SP, Brazil
- College of Pharmacy, The Ohio State University, Columbus, 500 W 12 Ave, Columbus, OH 43210, USA
| | - Raquel Petrilli
- College of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903, Ribeirao Preto, SP, Brazil
- College of Pharmacy, The Ohio State University, Columbus, 500 W 12 Ave, Columbus, OH 43210, USA
| | - Robert W. Brueggemeier
- College of Pharmacy, The Ohio State University, Columbus, 500 W 12 Ave, Columbus, OH 43210, USA
| | - Juliana Maldonado Marchetti
- College of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903, Ribeirao Preto, SP, Brazil
| | - Robert J. Lee
- College of Pharmacy, The Ohio State University, Columbus, 500 W 12 Ave, Columbus, OH 43210, USA
| |
Collapse
|