1
|
Fagre C, Gilbert W. Beyond reader proteins: RNA binding proteins and RNA modifications in conversation to regulate gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1834. [PMID: 38444048 DOI: 10.1002/wrna.1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Post-transcriptional mRNA modifications play diverse roles in gene expression and RNA function. In many cases, RNA modifications function by altering how cellular machinery such as RNA binding proteins (RBPs) interact with RNA substrates. For instance, N6-methyladenosine (m6A) is recognized by the well-characterized YTH domain-containing family of "reader" proteins. For other mRNA modifications, similar global readers of modification status have not been clearly defined. Rather, most interactions between RBPs and RNA modifications have a more complicated dependence on sequence context and binding modality. The current handful of studies that demonstrate modifications impacting protein binding likely represent only a fraction of the full landscape. In this review, we dissect the known instances of RNA modifications altering RBP binding, specifically m6A, N1-methyladenosine (m1A), 5-methylcytosine (m5C), pseudouridine (Ψ), and internal N7-methylguanosine. We then review the biochemical properties of these and other identified mRNA modifications including dihydrouridine (D), N4-acetylcytosine (ac4C), and 2'-O-Methylation (Nme). We focus on how these properties would be likely to impact RNA:RBP interactions, including by changes to hydrogen bond potential, base-stacking efficiency, and RNA conformational preferences. The effects of RNA modifications on secondary structure have been well-studied, and we briefly discuss how structural effects imparted by modifications can lead to protein binding changes. Finally, we discuss strategies for uncovering as-yet-to-be identified modification-sensitive RBP:RNA Interactions. Coordinating future efforts to intersect the epitranscriptome and the RNA-protein interactome will illuminate the rules governing RNA modification recognition and the mechanisms responsible for the biological consequences of mRNA modification. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Christian Fagre
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Wendy Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Bai N, Adeshina Y, Bychkov I, Xia Y, Gowthaman R, Miller SA, Gupta AK, Johnson DK, Lan L, Golemis EA, Makhov PB, Xu L, Pillai MM, Boumber Y, Karanicolas J. Rationally designed inhibitors of the Musashi protein-RNA interaction by hotspot mimicry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523326. [PMID: 36711508 PMCID: PMC9882015 DOI: 10.1101/2023.01.09.523326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA-binding proteins (RBPs) are key post-transcriptional regulators of gene expression, and thus underlie many important biological processes. Here, we developed a strategy that entails extracting a "hotspot pharmacophore" from the structure of a protein-RNA complex, to create a template for designing small-molecule inhibitors and for exploring the selectivity of the resulting inhibitors. We demonstrate this approach by designing inhibitors of Musashi proteins MSI1 and MSI2, key regulators of mRNA stability and translation that are upregulated in many cancers. We report this novel series of MSI1/MSI2 inhibitors is specific and active in biochemical, biophysical, and cellular assays. This study extends the paradigm of "hotspots" from protein-protein complexes to protein-RNA complexes, supports the "druggability" of RNA-binding protein surfaces, and represents one of the first rationally-designed inhibitors of non-enzymatic RNA-binding proteins. Owing to its simplicity and generality, we anticipate that this approach may also be used to develop inhibitors of many other RNA-binding proteins; we also consider the prospects of identifying potential off-target interactions by searching for other RBPs that recognize their cognate RNAs using similar interaction geometries. Beyond inhibitors, we also expect that compounds designed using this approach can serve as warheads for new PROTACs that selectively degrade RNA-binding proteins.
Collapse
Affiliation(s)
- Nan Bai
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Yusuf Adeshina
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Igor Bychkov
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yan Xia
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Ragul Gowthaman
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Sven A. Miller
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
| | | | - David K. Johnson
- Center for Computational Biology, University of Kansas, Lawrence KS 66045
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
| | - Erica A. Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Petr B. Makhov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence KS 66045
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City KS 66160
| | - Manoj M. Pillai
- Section of Hematology, Yale Cancer Center, New Haven CT 06520
- Department of Pathology, Yale University School of Medicine, New Haven CT 06520
| | - Yanis Boumber
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia PA 19111
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140
| |
Collapse
|
3
|
Sasidharan S, Ramakrishnan V. Aromatic interactions directing peptide nano-assembly. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:119-160. [PMID: 35534106 DOI: 10.1016/bs.apcsb.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Self-assembly is a process of spontaneous organization of molecules as a result of non-covalent interactions. Organized self-assembly at the nano level is emerging as a powerful tool in the bottom-up fabrication of functional nanostructures for targeted applications. Aromatic π-π stacking plays a significant role by facilitating the persistent supramolecular association of individual subunits to the self-assembled structures of high stability. Understanding, the supramolecular chemistry of the materials interacting through aromatic interactions, is of tremendous interest in not only constructing functional materials but also in revealing the mechanism of molecular assembly in living organisms. This chapter aims to focus on understanding the potential role of π-π interactions in directing and regulating the self-assembly of peptide nanostructures. The scope of the chapter starts with an outline of the history and mechanism of the aromatic π-π interactions. It progresses through the design strategy for the assembly of peptides containing aromatic rings, the conditions affecting the aromatic stacking interactions, their resulting nanoassemblies, properties, and applications. The properties and applications of the supramolecular materials formed through the aromatic stacking interactions are highlighted to provide an increased understanding of the role of weak interactions in the design and construction of novel functional materials.
Collapse
Affiliation(s)
- Sajitha Sasidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
4
|
Meyer A, Golbik RP, Sänger L, Schmidt T, Behrens SE, Friedrich S. The RGG/RG motif of AUF1 isoform p45 is a key modulator of the protein's RNA chaperone and RNA annealing activities. RNA Biol 2019; 16:960-971. [PMID: 30951406 DOI: 10.1080/15476286.2019.1602438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RNA-binding protein AUF1 regulates post-transcriptional gene expression by affecting the steady state and translation levels of numerous target RNAs. Remodeling of RNA structures by the largest isoform AUF1 p45 was recently demonstrated in the context of replicating RNA viruses, and involves two RNA remodeling activities, i.e. an RNA chaperone and an RNA annealing activity. AUF1 contains two non-identical RNA recognition motifs (RRM) and one RGG/RG motif located in the C-terminus. In order to determine the functional significance of each motif to AUF1's RNA-binding and remodeling activities we performed a comprehensive mutagenesis study and characterized the wildtype AUF1, and several variants thereof. We demonstrate that each motif contributes to efficient RNA binding and remodeling by AUF1 indicating a tight cooperation of the RRMs and the RGG/RG motif. Interestingly, the data identify two distinct roles for the arginine residues of the RGG/RG motif for each RNA remodeling activity. First, arginine-mediated stacking interactions promote AUF1's helix-destabilizing RNA chaperone activity. Second, the electropositive character of the arginine residues is the major driving force for the RNA annealing activity. Thus, we provide the first evidence that arginine residues of an RGG/RG motif contribute to the mechanism of RNA annealing and RNA chaperoning.
Collapse
Affiliation(s)
- Alexandra Meyer
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Ralph P Golbik
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Lennart Sänger
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Tobias Schmidt
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Sven-Erik Behrens
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Susann Friedrich
- a Institute of Biochemistry and Biotechnology , Martin Luther University Halle-Wittenberg , Halle , Germany
| |
Collapse
|
5
|
Belashov IA, Crawford DW, Cavender CE, Dai P, Beardslee PC, Mathews DH, Pentelute BL, McNaughton BR, Wedekind JE. Structure of HIV TAR in complex with a Lab-Evolved RRM provides insight into duplex RNA recognition and synthesis of a constrained peptide that impairs transcription. Nucleic Acids Res 2018; 46:6401-6415. [PMID: 29961805 PMCID: PMC6061845 DOI: 10.1093/nar/gky529] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Natural and lab-evolved proteins often recognize their RNA partners with exquisite affinity. Structural analysis of such complexes can offer valuable insight into sequence-selective recognition that can be exploited to alter biological function. Here, we describe the structure of a lab-evolved RNA recognition motif (RRM) bound to the HIV-1 trans-activation response (TAR) RNA element at 1.80 Å-resolution. The complex reveals a trio of arginines in an evolved β2-β3 loop penetrating deeply into the major groove to read conserved guanines while simultaneously forming cation-π and salt-bridge contacts. The observation that the evolved RRM engages TAR within a double-stranded stem is atypical compared to most RRMs. Mutagenesis, thermodynamic analysis and molecular dynamics validate the atypical binding mode and quantify molecular contributions that support the exceptionally tight binding of the TAR-protein complex (KD,App of 2.5 ± 0.1 nM). These findings led to the hypothesis that the β2-β3 loop can function as a standalone TAR-recognition module. Indeed, short constrained peptides comprising the β2-β3 loop still bind TAR (KD,App of 1.8 ± 0.5 μM) and significantly weaken TAR-dependent transcription. Our results provide a detailed understanding of TAR molecular recognition and reveal that a lab-evolved protein can be reduced to a minimal RNA-binding peptide.
Collapse
Affiliation(s)
- Ivan A Belashov
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - David W Crawford
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Chapin E Cavender
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Peng Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrick C Beardslee
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Brian R McNaughton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Venkatesh V, Kumaran MDB, Saravanan RK, Kalaichelvan PT, Verma S. Luminescent Silver-Purine Double Helicate: Synthesis, Self-Assembly and Antibacterial Action. Chempluschem 2016; 81:1266-1271. [PMID: 31964074 DOI: 10.1002/cplu.201600293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/27/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022]
Abstract
The synthesis, self-assembly and antibacterial activity of a luminescent silver-purine double helicate is reported. The structure of the newly synthesized silver-supported helicate [C36 H24 N16 O4 Cl5 Ag1 ] was unambiguously characterized by single-crystal X-ray crystallography. It exhibited a bright bluish-green emission (λmax =460 nm), when excited with 380 nm light. Microscopic investigations showed that the complex has a propensity to self-assemble into nanospheres. The antibacterial activity of this silver-containing helicate was studied against both Gram-positive and Gram-negative bacteria. MIC (minimal inhibitory concentration) values showed that the complex is very active against Gram-negative bacteria. Further internalization of the silver complex into E. coli bacteria was mapped with the help of microscopic techniques. These results are significant as silver was recently found to enhance antibiotic action against Gram-negative bacteria, raising hope in countering severe bacterial infections.
Collapse
Affiliation(s)
- V Venkatesh
- Department of Chemistry, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - M D Bala Kumaran
- Centre for Advanced Studies in Botany, Guindy Campus, University of Madras, Chennai, 600025, TN, India.,Deapartment of Biotechnology, D. G. Vaishnav College, Chennai, 600106, TN, India
| | - R Kamal Saravanan
- Department of Chemistry, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - P T Kalaichelvan
- Centre for Advanced Studies in Botany, Guindy Campus, University of Madras, Chennai, 600025, TN, India
| | - Sandeep Verma
- Department of Chemistry, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| |
Collapse
|
7
|
Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA (NEW YORK, N.Y.) 2015; 21:2007-22. [PMID: 26574518 PMCID: PMC4647455 DOI: 10.1261/rna.053918.115] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Among chromatin modifying factors shown to be recruited and regulated by long noncoding RNAs (lncRNAs), PRC2 is one of the most studied. Mammalian PRC2 binds thousands of RNAs in vivo, and it is becoming a model system for the recruitment of chromatin modifying factors by RNA. Yet, well-defined PRC2-binding motifs within target RNAs have been elusive. From the protein side, PRC2 RNA-binding subunits contain no known RNA-binding domains, complicating functional studies. Here we provide a critical review of existing models for the recruitment of PRC2 to chromatin by RNAs. This discussion may also serve researchers who are studying the recruitment of other chromatin modifiers by lncRNAs.
Collapse
Affiliation(s)
- Chen Davidovich
- BioFrontiers Institute and Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Thomas R Cech
- BioFrontiers Institute and Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
8
|
Davidovich C, Wang X, Cifuentes-Rojas C, Goodrich KJ, Gooding AR, Lee JT, Cech TR. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol Cell 2015; 57:552-8. [PMID: 25601759 DOI: 10.1016/j.molcel.2014.12.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/23/2014] [Accepted: 12/06/2014] [Indexed: 01/23/2023]
Abstract
Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Early works suggested binding specificity of PRC2 to certain long non-coding RNAs for recruitment to chromatin. More recent studies provided evidence both in favor and against this idea. Here, we bridge the two existing models of PRC2-RNA interaction. RepA RNA is a good binding partner for PRC2, while multiple non-relevant RNAs, including bacterial mRNAs, also bind PRC2; Kds depend to some extent on the experimental conditions. Human and mouse PRC2 have broadly similar RNA-binding properties in vitro. Examination of evidence supporting an existing model for site-specific recruitment of PRC2 by a well-defined RNA motif in cells reveals that results are PRC2 independent. We conclude that promiscuous and specific RNA-binding activities of PRC2 in vitro are not mutually exclusive, and that binding specificity in vivo remains to be demonstrated.
Collapse
Affiliation(s)
- Chen Davidovich
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Xueyin Wang
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Catherine Cifuentes-Rojas
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Karen J Goodrich
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Anne R Gooding
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
9
|
Blakeley BD, Shattuck J, Coates MB, Tran E, Laird-Offringa IA, McNaughton BR. Analysis of protein-RNA complexes involving a RNA recognition motif engineered to bind hairpins with seven- and eight-nucleotide loops. Biochemistry 2013; 52:4745-7. [PMID: 23806102 DOI: 10.1021/bi400801q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
U1A binds U1hpII, a hairpin RNA with a 10-nucleotide loop. A U1A mutant (ΔK50ΔM51) binds U1hpII-derived hairpins with shorter loops, making it an interesting scaffold for engineering or evolving proteins that bind similarly sized disease-related hairpin RNAs. However, a more detailed understanding of complexes involving ΔK50ΔM51 is likely a prerequisite to generating such proteins. Toward this end, we measured mutational effects for complexes involving U1A ΔK50ΔM51 and U1hpII-derived hairpin RNAs with seven- or eight-nucleotide loops and identified contacts that are critical to the stabilization of these complexes. Our data provide valuable insight into sequence-selective recognition of seven- or eight-nucleotide loop hairpins by an engineered RNA binding protein.
Collapse
Affiliation(s)
- Brett D Blakeley
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| | | | | | | | | | | |
Collapse
|
10
|
Law MJ, Lee DS, Lee CS, Anglim PP, Haworth IS, Laird-Offringa IA. The role of the C-terminal helix of U1A protein in the interaction with U1hpII RNA. Nucleic Acids Res 2013; 41:7092-100. [PMID: 23703211 PMCID: PMC3737524 DOI: 10.1093/nar/gkt326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous kinetic investigations of the N-terminal RNA Recognition Motif (RRM) domain of spliceosomal A protein of the U1 small nuclear ribonucleoprotein particle (U1A) interacting with its RNA target U1 hairpin II (U1hpII) provided experimental evidence for a ‘lure and lock’ model of binding. The final step of locking has been proposed to involve conformational changes in an α-helix immediately C-terminal to the RRM domain (helix C), which occludes the RNA binding surface in the unbound protein. Helix C must shift its position to accommodate RNA binding in the RNA–protein complex. This results in a new hydrophobic core, an intraprotein hydrogen bond and a quadruple stacking interaction between U1A and U1hpII. Here, we used a surface plasmon resonance-based biosensor to gain mechanistic insight into the role of helix C in mediating the interaction with U1hpII. Truncation, removal or disruption of the helix exposes the RNA-binding surface, resulting in an increase in the association rate, while simultaneously reducing the ability of the complex to lock, reflected in a loss of complex stability. Disruption of the quadruple stacking interaction has minor kinetic effects when compared with removal of the intraprotein hydrogen bonds. These data provide new insights into the mechanism whereby sequences C-terminal to an RRM can influence RNA binding.
Collapse
Affiliation(s)
- Michael J Law
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
11
|
Sivasakthi V, Anbarasu A, Ramaiah S. π–π Interactions in Structural Stability: Role in RNA Binding Proteins. Cell Biochem Biophys 2013; 67:853-63. [DOI: 10.1007/s12013-013-9573-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Rau M, Stump WT, Hall KB. Intrinsic flexibility of snRNA hairpin loops facilitates protein binding. RNA (NEW YORK, N.Y.) 2012; 18:1984-1995. [PMID: 23012481 PMCID: PMC3479389 DOI: 10.1261/rna.035006.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
Stem-loop II of U1 snRNA and Stem-loop IV of U2 snRNA typically have 10 or 11 nucleotides in their loops. The fluorescent nucleobase 2-aminopurine was used as a substitute for the adenines in each loop to probe the local and global structures and dynamics of these unusually long loops. Using steady-state and time-resolved fluorescence, we find that, while the bases in the loops are stacked, they are able to undergo significant local motion on the picosecond/nanosecond timescale. In addition, the loops have a global conformational change at low temperatures that occurs on the microsecond timescale, as determined using laser T-jump experiments. Nucleobase and loop motions are present at temperatures far below the melting temperature of the hairpin stem, which may facilitate the conformational change required for specific protein binding to these RNA loops.
Collapse
Affiliation(s)
- Michael Rau
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri 63110, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri 63110, USA
| | - Kathleen B. Hall
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri 63110, USA
| |
Collapse
|
13
|
Sternberg SH, Haurwitz RE, Doudna JA. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA (NEW YORK, N.Y.) 2012; 18:661-72. [PMID: 22345129 PMCID: PMC3312554 DOI: 10.1261/rna.030882.111] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacteria and archaea possess adaptive immune systems that rely on small RNAs for defense against invasive genetic elements. CRISPR (clustered regularly interspaced short palindromic repeats) genomic loci are transcribed as long precursor RNAs, which must be enzymatically cleaved to generate mature CRISPR-derived RNAs (crRNAs) that serve as guides for foreign nucleic acid targeting and degradation. This processing occurs within the repetitive sequence and is catalyzed by a dedicated Cas6 family member in many CRISPR systems. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4 (Cas6f), which binds and cleaves at the 3' side of a stable RNA stem-loop structure encoded by the CRISPR repeat. We show here that Csy4 recognizes its RNA substrate with an ~50 pM equilibrium dissociation constant, making it one of the highest-affinity protein:RNA interactions of this size reported to date. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product and thereby sequester the crRNA for downstream targeting. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. Collectively, our data highlight diverse modes of substrate recognition employed by Csy4 to enable accurate selection of CRISPR transcripts while avoiding spurious, off-target RNA binding and cleavage.
Collapse
Affiliation(s)
| | | | - Jennifer A. Doudna
- Department of Chemistry
- Department of Molecular and Cell Biology
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Corresponding author.E-mail .
| |
Collapse
|
14
|
Koh YY, Wang Y, Qiu C, Opperman L, Gross L, Tanaka Hall TM, Wickens M. Stacking interactions in PUF-RNA complexes. RNA (NEW YORK, N.Y.) 2011; 17:718-27. [PMID: 21372189 PMCID: PMC3062182 DOI: 10.1261/rna.2540311] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to "target" versus "off-target" interactions, and thus be an important consideration in the design of proteins with new specificities.
Collapse
Affiliation(s)
- Yvonne Yiling Koh
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Multistep kinetics of the U1A-SL2 RNA complex dissociation. J Mol Biol 2011; 408:896-908. [PMID: 21419778 DOI: 10.1016/j.jmb.2011.02.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 11/23/2022]
Abstract
The U1A-SL2 RNA complex is a model system for studying interactions between RNA and the RNA recognition motif (RRM), which is one of the most common RNA binding domains. We report here kinetic studies of dissociation of the U1A-SL2 RNA complex, using laser temperature jump and stopped-flow fluorescence methods with U1A proteins labeled with the intrinsic chromophore tryptophan. An analysis of the kinetic data suggests three phases of dissociation with time scales of ∼100 μs, ∼50 ms, and ∼2 s. We propose that the first step of dissociation is a fast rearrangement of the complex to form a loosely bound complex. The intermediate step is assigned to be the dissociation of the U1A-SL2 RNA complex, and the final step is assigned to a reorganization of the U1A protein structure into the conformation of the free protein. These assignments are consistent with previous proposals based on thermodynamic, NMR, and surface plasmon resonance experiments and molecular dynamics simulations. Together, these results begin to build a comprehensive model of the complex dynamic processes involved in the formation and dissociation of an RRM-RNA complex.
Collapse
|
16
|
Kormos BL, Pieniazek SN, Beveridge DL, Baranger AM. U1A protein-stem loop 2 RNA recognition: prediction of structural differences from protein mutations. Biopolymers 2011; 95:591-606. [PMID: 21384338 DOI: 10.1002/bip.21616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/01/2011] [Accepted: 02/07/2011] [Indexed: 01/02/2023]
Abstract
Molecular dynamics (MD) simulations were carried out to compare the free and bound structures of wild type U1A protein with several Phe56 mutant U1A proteins that bind the target stem loop 2 (SL2) RNA with a range of affinities. The simulations indicate the free U1A protein is more flexible than the U1A-RNA complex for both wild type and Phe56 mutant systems. A complete analysis of the hydrogen-bonding (HB) and non-bonded (VDW) interactions over the course of the MD simulations suggested that changes in the interactions in the free U1A protein caused by the Phe56Ala and Phe56Leu mutations may stabilize the helical character in loop 3, and contribute to the weak binding of these proteins to SL2 RNA. Compared with wild type, changes in HB and VDW interactions in Phe56 mutants of the free U1A protein are global, and include differences in β-sheet, loop 1 and loop 3 interactions. In the U1A-RNA complex, the Phe56Ala mutation leads to a series of differences in interactions that resonate through the complex, while the Phe56Leu and Phe56Trp mutations cause local differences around the site of mutation. The long-range networks of interactions identified in the simulations suggest that direct interactions and dynamic processes in both the free and bound forms contribute to complex stability.
Collapse
Affiliation(s)
- Bethany L Kormos
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
17
|
Yenikaya C, Sarı M, Bülbül M, İlkimen H, Çınar B, Büyükgüngör O. Synthesis and characterisation of two novel proton transfer compounds and their inhibition studies on carbonic anhydrase isoenzymes. J Enzyme Inhib Med Chem 2010; 26:104-14. [DOI: 10.3109/14756361003733639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Cengiz Yenikaya
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Musa Sarı
- Department of Physics Education, Gazi University, Beşevler, Ankara, Turkey
| | - Metin Bülbül
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Halil İlkimen
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Burcu Çınar
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Orhan Büyükgüngör
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, Samsun, Turkey
| |
Collapse
|
18
|
Hardin JW, Hu YX, McKay DB. Structure of the RNA binding domain of a DEAD-box helicase bound to its ribosomal RNA target reveals a novel mode of recognition by an RNA recognition motif. J Mol Biol 2010; 402:412-27. [PMID: 20673833 DOI: 10.1016/j.jmb.2010.07.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 01/30/2023]
Abstract
DEAD-box RNA helicases of the bacterial DbpA subfamily are localized to their biological substrate when a carboxy-terminal RNA recognition motif domain binds tightly and specifically to a segment of 23S ribosomal RNA (rRNA) that includes hairpin 92 of the peptidyl transferase center. A complex between a fragment of 23S rRNA and the RNA binding domain (RBD) of the Bacillus subtilis DbpA protein YxiN was crystallized and its structure was determined to 2.9 A resolution, revealing an RNA recognition mode that differs from those observed with other RNA recognition motifs. The RBD is bound between two RNA strands at a three-way junction. Multiple phosphates of the RNA backbone interact with an electropositive band generated by lysines of the RBD. Nucleotides of the single-stranded loop of hairpin 92 interact with the RBD, including the guanosine base of G2553, which forms three hydrogen bonds with the peptide backbone. A G2553U mutation reduces the RNA binding affinity by 2 orders of magnitude, confirming that G2553 is a sequence specificity determinant in RNA binding. Binding of the RBD to 23S rRNA in the late stages of ribosome subunit maturation would position the ATP-binding duplex destabilization fragment of the protein for interaction with rRNA in the peptidyl transferase cleft of the subunit, allowing it to "melt out" unstable secondary structures and allow proper folding.
Collapse
Affiliation(s)
- John W Hardin
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80301, USA
| | | | | |
Collapse
|
19
|
Syntheses and characterization of two copper pyridine-dicarboxylate compounds containing water clusters. Polyhedron 2010. [DOI: 10.1016/j.poly.2010.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Qian J, Cuerrier D, Davies PL, Li Z, Powers JC, Campbell RL. Cocrystal structures of primed side-extending alpha-ketoamide inhibitors reveal novel calpain-inhibitor aromatic interactions. J Med Chem 2008; 51:5264-70. [PMID: 18702462 DOI: 10.1021/jm800045t] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calpains are intracellular cysteine proteases that catalyze the cleavage of target proteins in response to Ca(2+) signaling. When Ca(2+) homeostasis is disrupted, calpain overactivation causes unregulated proteolysis, which can contribute to diseases such as postischemic injury and cataract formation. Potent calpain inhibitors exist, but of these many cross-react with other cysteine proteases and will need modification to specifically target calpain. Here, we present crystal structures of rat calpain 1 protease core (muI-II) bound to two alpha-ketoamide-based calpain inhibitors containing adenyl and piperazyl primed-side extensions. An unexpected aromatic-stacking interaction is observed between the primed-side adenine moiety and the Trp298 side chain. This interaction increased the potency of the inhibitor toward muI-II and heterodimeric m-calpain. Moreover, stacking orients the adenine such that it can be used as a scaffold for designing novel primed-side address regions, which could be incorporated into future inhibitors to enhance their calpain specificity.
Collapse
Affiliation(s)
- Jin Qian
- Department of Biochemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Kawakami J, Okabe S, Tanabe Y, Sugimoto N. Recognition of a flipped base in a hairpinloop DNA by a small peptide. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:292-308. [PMID: 18260012 DOI: 10.1080/15257770701845261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two tiny hairpin DNAs, CORE (dAGGCTTCGGCCT) and AP2 (dAGGCTXCGGCCT; X: abasic nucleotide), fold into almost the same tetraloop hairpin structure with one exception, that is, the sixth thymine (T6) of CORE is exposed to the solvent water (Kawakami, J. et al., Chem. Lett. 2001, 258-259). In the present study, we selected small peptides that bind to CORE or AP2 from a combinatorial pentapeptide library with 2.5 x 10(6) variants. On the basis of the structural information, the selected peptide sequences should indicate the essential qualifications for recognition of the hairpin loop DNA with and without a flipped base. In the selected DNA binding peptides, aromatic amino acids such as histidine for CORE and glutamine/aspartic acid for AP2 were found to be abundant amino acids. This amino acid preference suggests that CORE-binding peptides use pi-pi stacking to recognize the target while hydrogen bonding is dominant for AP2-binding peptides. To investigate the binding properties of the selected peptide to the target, surface plasmon resonance was used. The binding constant of the interaction between CORE and a CORE-binding peptide (HWHHE) was about 1.1 x 10(6) M(-1) at 25 degrees C and the resulting binding free energy change at 25 degrees C (DeltaG degrees (25)) was -8.2 kcal mol(-1). The binding of the peptide to AP2 was also analyzed and the resulting binding constant and DeltaG degrees (25) were about 4.2 x 10(4) M(-1) and -6.3 kcal mol(-1), respectively. The difference in the binding free energy changes (DeltaDeltaG degrees (25)) of 1.9 kcal mol(-1) was comparable to the values reported in other systems and was considered a consequence of the loss of pi-pi stacking. Moreover, the stabilization effect by stacking affected the dissociation step as well as the association step. Our results suggest that the existence of an aromatic ring (T6 base) produces new dominant interactions between peptides and nucleic acids, although hydrogen bonding is the preferable mode of interaction in the absence of the flipping base. These findings regarding CORE and AP2 recognition are expected to give useful information in the design of novel artificial DNA binding peptides.
Collapse
Affiliation(s)
- Junji Kawakami
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan.
| | | | | | | |
Collapse
|
22
|
Monsaert S, Drozdzak R, Dragutan V, Dragutan I, Verpoort F. Indenylidene-Ruthenium Complexes Bearing Saturated N-Heterocyclic Carbenes: Synthesis and Catalytic Investigation in Olefin Metathesis Reactions. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200700879] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Kormos BL, Baranger AM, Beveridge DL. Do collective atomic fluctuations account for cooperative effects? Molecular dynamics studies of the U1A-RNA complex. J Am Chem Soc 2007; 128:8992-3. [PMID: 16834346 PMCID: PMC2603296 DOI: 10.1021/ja0606071] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A complete understanding of gene expression relies on a comprehensive understanding of the protein-RNA recognition process. However, the study of protein-RNA recognition is complicated by many factors that contribute to both binding affinity and specificity, including structure, energetics, dynamical motions, and cooperative interactions. Several recent studies have suggested that energetic coupling between residues contributes to formation of the complex between the U1A protein and stem loop 2 of U1 snRNA as a consequence of a cooperative network of interactions. We have performed molecular dynamics simulations on the U1A-RNA complex, including explicit water and counterions, and analyzed the results based on the calculated positional cross-correlations of atomic fluctuations. The results indicate that cross-correlations calculated on a per residue basis agree well with the observed inter-residue cooperativity and predict that the networks identified to date may also be coupled into an extensive hyper-network that reflects the intrinsic rigidity of the RNA recognition motif. In addition, we report a comparison of the MD calculated correlations with the results of a positional covariance analysis based on the sequences of 330 RNA recognition motifs, including U1A. The calculated inter-residue cross-correlations agree very well with the results of the sites exhibiting positional covariance. Collectively, these results strongly support the hypothesis that collective fluctuations contribute to cooperativity and the corresponding observed thermodynamic coupling. Predictions of additional sites in U1A that may be involved in cooperative networks are advanced.
Collapse
|
24
|
Abstract
Statistical analysis of structures from the PBD has been used to examine the role that the aromatic amino acids play in protein-nucleic acid recognition. In protein-DNA complexes, the residues Phe and His are found to bind selectively to the DNA chain--Phe to A and T, and His to T and G. The preferred binding modes are identified, and the interactions involving Phe are shown to be important in the transcription process. In protein-RNA complexes, Phe is found to occur far less often and is instead replaced by Trp, which binds selectively to C and G, offering a possible mechanism for differentiation between the two nucleic acids. SASA analysis of the two sets of complexes suggests that all of the aromatic amino acids are more heavily involved in binding than would be expected on the balance of probability. Phe and Tyr occur approximately equal in both sets of data, whereas the proportions of His and Trp vary considerably, supporting the idea that these residues may be involved in differentiating between the two nucleic acids.
Collapse
Affiliation(s)
- Christopher M Baker
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | | |
Collapse
|
25
|
Rix D, Caïjo F, Laurent I, Gulajski L, Grela K, Mauduit M. Highly recoverable pyridinium-tagged Hoveyda-Grubbs pre-catalyst for olefin metathesis. Design of the boomerang ligand toward the optimal compromise between activity and reusability. Chem Commun (Camb) 2007:3771-3. [PMID: 17851623 DOI: 10.1039/b705451c] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whereas the boomerang ligand of Hoveyda-Grubbs pre-catalysts can be modified by attachment of a pyridinium tag to its benzylidene moiety, a precise adjustment of the length of the spacer allows the optimum balance to be reached between the activity of the catalyst and its recoverability, exceeding 98% after 6 catalytic runs in the best case.
Collapse
Affiliation(s)
- Diane Rix
- Sciences Chimiques de Rennes UMR 6226 CNRS, Equipe Chimie Organique et Supramoléculaire, Ecole Nationale Supérieure de Chimie de Rennes, Av. du Général Leclerc, 35700 Rennes, France
| | | | | | | | | | | |
Collapse
|
26
|
Kormos BL, Benitex Y, Baranger AM, Beveridge DL. Affinity and specificity of protein U1A-RNA complex formation based on an additive component free energy model. J Mol Biol 2007; 371:1405-19. [PMID: 17603075 PMCID: PMC2034351 DOI: 10.1016/j.jmb.2007.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/02/2007] [Accepted: 06/04/2007] [Indexed: 11/26/2022]
Abstract
An MM-GBSA computational protocol was used to investigate wild-type U1A-RNA and F56 U1A mutant experimental binding free energies. The trend in mutant binding free energies compared to wild-type is well-reproduced. Following application of a linear-response-like equation to scale the various energy components, the binding free energies agree quantitatively with observed experimental values. Conformational adaptation contributes to the binding free energy for both the protein and the RNA in these systems. Small differences in DeltaGs are the result of different and sometimes quite large relative contributions from various energetic components. Residual free energy decomposition indicates differences not only at the site of mutation, but throughout the entire protein. MM-GBSA and ab initio calculations performed on model systems suggest that stacking interactions may nearly, but not completely, account for observed differences in mutant binding affinities. This study indicates that there may be different underlying causes of ostensibly similar experimentally observed binding affinities of different mutants, and thus recommends caution in the interpretation of binding affinities and specificities purely by inspection.
Collapse
Affiliation(s)
- Bethany L Kormos
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA.
| | | | | | | |
Collapse
|
27
|
Clavier H, Petersen JL, Nolan SP. A pyridine-containing ruthenium–indenylidene complex: Synthesis and activity in ring-closing metathesis. J Organomet Chem 2006. [DOI: 10.1016/j.jorganchem.2006.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Rix D, Clavier H, Coutard Y, Gulajski L, Grela K, Mauduit M. Activated pyridinium-tagged ruthenium complexes as efficient catalysts for ring-closing metathesis. J Organomet Chem 2006. [DOI: 10.1016/j.jorganchem.2006.07.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Kawakami J, Sugimoto N, Tokitoh H, Tanabe Y. A novel stable RNA pentaloop that interacts specifically with a motif peptide of lambda-N protein. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:397-416. [PMID: 16838834 DOI: 10.1080/15257770600684027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To achieve a novel specific peptide-nucleic acid binding model, we designed an in vitro selection procedure to decrease the energetic contribution of the electrostatic interaction in the total binding energy and to increase the contribution of hydrogen bonding and pi-pi stacking. After the selection of hairpin-loop RNAs that specifically bound to a model peptide of lambda N protein (N peptide), a new thermostable pentaloop RNA motif (N binding thermostable RNA hairpin: NTS RNA) was revealed. The obtained NTS RNA was able to bind to the N peptide with superior specificity to the boxB RNA, which is the naturally occurring partner of the lambda N protein.
Collapse
Affiliation(s)
- Junji Kawakami
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Higashinada-ku, Kobe, Japan.
| | | | | | | |
Collapse
|
30
|
Kormos BL, Baranger AM, Beveridge DL. A study of collective atomic fluctuations and cooperativity in the U1A-RNA complex based on molecular dynamics simulations. J Struct Biol 2006; 157:500-13. [PMID: 17194603 PMCID: PMC1994251 DOI: 10.1016/j.jsb.2006.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 11/21/2022]
Abstract
Cooperative interactions play an important role in recognition and binding in macromolecular systems. In this study, we find that cross-correlated atomic fluctuations can be used to identify cooperative networks in a protein-RNA system. The dynamics of the RRM-containing protein U1A-stem loop 2 RNA complex have been calculated theoretically from a 10 ns molecular dynamics (MD) simulation. The simulation was analyzed by calculating the covariance matrix of all atomic fluctuations. These matrix elements are then presented in the form of a two-dimensional grid, which displays fluctuations on a per residue basis. The results indicate the presence of strong, selective cross-correlated fluctuations throughout the RRM in U1A-RNA. The atomic fluctuations correspond well with previous biophysical studies in which a multiplicity of cooperative networks have been reported and indicate that the various networks identified in separate individual experiments are fluctuationally correlated into a hyper-network encompassing most of the RRM. The calculated results also correspond well with independent results from a statistical covariance analysis of 330 aligned RRM sequences. This method has significant implications as a predictive tool regarding cooperativity in the protein-nucleic acid recognition process.
Collapse
Affiliation(s)
- Bethany L Kormos
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, 237 Church St., Middletown, CT 06459, USA.
| | | | | |
Collapse
|
31
|
Auweter SD, Oberstrass FC, Allain FHT. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 2006; 34:4943-59. [PMID: 16982642 PMCID: PMC1635273 DOI: 10.1093/nar/gkl620] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A code predicting the RNA sequence that will be bound by a certain protein based on its amino acid sequence or its structure would provide a useful tool for the design of RNA binders with desired sequence-specificity. Such de novo designed RNA binders could be of extraordinary use in both medical and basic research applications. Furthermore, a code could help to predict the cellular functions of RNA-binding proteins that have not yet been extensively studied. A comparative analysis of Pumilio homology domains, zinc-containing RNA binders, hnRNP K homology domains and RNA recognition motifs is performed in this review. Based on this, a set of binding rules is proposed that hints towards a code for RNA recognition by these domains. Furthermore, we discuss the intermolecular interactions that are important for RNA binding and summarize their importance in providing affinity and specificity.
Collapse
Affiliation(s)
- Sigrid D. Auweter
- Department of Biology, Institute for Molecular Biology and BiophysicsETH Zürich, CH-8093 Zürich, Switzerland
- Molecular Life Science PhD ProgramZürich, Switzerland
| | - Florian C. Oberstrass
- Department of Biology, Institute for Molecular Biology and BiophysicsETH Zürich, CH-8093 Zürich, Switzerland
- Molecular Life Science PhD ProgramZürich, Switzerland
| | - Frédéric H.-T. Allain
- Department of Biology, Institute for Molecular Biology and BiophysicsETH Zürich, CH-8093 Zürich, Switzerland
- To whom correspondence should be addressed. Tel: +41 44 633 3940; Fax: +41 44 63 31294;
| |
Collapse
|
32
|
Zhao Y, Kormos BL, Beveridge DL, Baranger AM. Molecular dynamics simulation studies of a protein-RNA complex with a selectively modified binding interface. Biopolymers 2006; 81:256-69. [PMID: 16278830 DOI: 10.1002/bip.20408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The RNA recognition motif (RRM) is one of the most common RNA binding domains. We have investigated the contribution of three highly conserved aromatic amino acids to RNA binding by the N-terminal RRM of the U1A protein. Recently, we synthesized a modified base (A-4CPh) in which a phenyl group is tethered to adenine using a linker of 4 methylene groups. The substitution of this base for adenine in the target RNA selectively stabilizes the complex formed with a U1A protein in which one of the conserved aromatic amino acids is replaced with Ala (Phe56Ala). In this article, we report molecular dynamics (MD) simulations that probe the structural consequences of the substitution of A-4CPh for adenine in the wild type and Phe56Ala U1A-RNA complexes and in the free RNA. The simulations suggest that A-4CPh stabilizes the complex formed with Phe56Ala by adopting a folded conformation in which the tethered phenyl group fills the site occupied by the phenyl group of Phe56 in the wild-type complex. In contrast, an extended conformation of A-4CPh is predicted to be most stable in the complex formed with the wild-type protein. The calculations indicate A-4CPh is in an extended conformation in the free RNA. Therefore, preorganizing the structure of the phenyl-tethered base for binding may improve both the affinity and specificity of the RNA containing A-4CPh for the Phe56Ala U1A protein. Taken together, the previous experimental work and the calculations reported here suggest a general design strategy for altering RRM-RNA complex stability.
Collapse
Affiliation(s)
- Ying Zhao
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
33
|
Wang S, Hu Y, Overgaard MT, Karginov FV, Uhlenbeck OC, McKay DB. The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold. RNA (NEW YORK, N.Y.) 2006; 12:959-67. [PMID: 16611943 PMCID: PMC1464845 DOI: 10.1261/rna.5906] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The YxiN protein of Bacillus subtilis is a member of the DbpA subfamily of prokaryotic DEAD-box RNA helicases. Like DbpA, it binds with high affinity and specificity to segments of 23S ribosomal RNA as short as 32 nucleotides (nt) that include hairpin 92. Several experiments have shown that the 76-residue carboxy-terminal domain of YxiN is responsible for the high-affinity RNA binding. The domain has been crystallized and its structure has been solved to 1.7 Angstroms resolution. The structure reveals an RNA recognition motif (RRM) fold that is found in many eukaryotic RNA binding proteins; the RRM fold was not apparent from the amino acid sequence. The domain has two solvent exposed aromatic residues at sites that correspond to the aromatic residues of the ribonucleoprotein (RNP) motifs RNP1 and RNP2 that are essential for RNA binding in many RRMs. However, mutagenesis of these residues (Tyr404 and Tyr447) to alanine has little effect on RNA affinity, suggesting that the YxiN domain binds target RNAs in a manner that differs from the binding mode commonly found in many eukaryotic RRMs.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Crystallization
- Crystallography, X-Ray
- DEAD-box RNA Helicases
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Folding
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Shuying Wang
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The free energy per monomer of a protein aggregate varies with the number of participating monomers n. The change of this free energy with aggregate size, DeltaDeltaG(n), is difficult to determine by sedimentation or concentration studies. We introduce a kinetic approach to quantitate the free energy of aggregates in the presence of tethers. By linking the protein U1A into dimers and trimers, a high effective concentration of the monomers is achieved, together with exact size control of the aggregates. We found that the free energy of the aggregate relative to the native monomer reached a maximum for n = 2, and decreased by DeltaDeltaG(2) = -3.1 kT between dimer and trimer.
Collapse
Affiliation(s)
- Wei Yuan Yang
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, 61801, USA
| | | |
Collapse
|
35
|
Ramezanipour F, Aghabozorg H, Shokrollahi A, Shamsipur M, Stoeckli-Evans H, Soleimannejad J, Sheshmani S. Different complexation behavior of a proton transfer compound obtained from 1,10-phenanthroline and pyridine-2,6-dicarboxylic acid with InIII and CeIII: Synthesis, crystal structures and solution studies. J Mol Struct 2005. [DOI: 10.1016/j.molstruc.2005.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Olefin metathesis in room temperature ionic liquids using imidazolium-tagged ruthenium complexes. J Organomet Chem 2005. [DOI: 10.1016/j.jorganchem.2005.04.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Guallar V, Borrelli KW. A binding mechanism in protein-nucleotide interactions: implication for U1A RNA binding. Proc Natl Acad Sci U S A 2005; 102:3954-9. [PMID: 15753311 PMCID: PMC554833 DOI: 10.1073/pnas.0500888102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a close electronic view of the protein-base interface for the N-terminal domain of the human protein U1A. Combining accurate mixed quantum mechanics/molecular mechanics techniques and protein structure prediction methods, we provide a detailed electronic structure description of the protein-RNA stacking interactions. Our analysis indicates the evolution of the protein structure optimizing the interaction between Asp-92 and the RNA bases. The results show a direct coupling of the C-terminal tail and Asp-92, providing a direct rationalization of the experimentally determined role of the C-terminal domain in RNA binding. Here, we propose a mechanism where a protein side chain, with a delocalized electronic pi system, assists in the nucleotide binding. The binding mechanism involves a short-range interaction of the side chain with the nucleotide base and an electronic long-range interaction through a sandwich-stacking motif. The structural motif of the binding mechanism is observed in similar protein-RNA interactions and in various protein-ATP-binding sites.
Collapse
Affiliation(s)
- Victor Guallar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | |
Collapse
|
38
|
Zhao Y, Truhlar DG. How well can new-generation density functional methods describe stacking interactions in biological systems? Phys Chem Chem Phys 2005; 7:2701-5. [PMID: 16189582 DOI: 10.1039/b507036h] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We compare the performance of four recently developed DFT methods (MPW1B95, MPWB1K, PW6B95, and PWB6K) and two previous, generally successful DFT methods (B3LYP and B97-1) for the calculation of stacking interactions in six nucleic acid bases complexes and five amino acid pairs and for the calculation of hydrogen bonding interactions in two Watson-Crick type base pairs. We found that the four newly developed DFT methods give reasonable results for the stacking interactions in the DNA base pairs and amino acid pairs, whereas the previous DFT methods fail to describe interactions in these stacked complexes. We conclude that the new generation of DFT methods have greatly improved performance for stacking interaction as compared to previously available methods. We recommend the PWB6K method for investigating large DNA or protein systems where stacking plays an important role.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA
| | | |
Collapse
|
39
|
Clavier H, Audic N, Mauduit M, Guillemin JC. Ring-closing metathesis in biphasic BMI·PF6ionic liquid/toluene medium: a powerful recyclable and environmentally friendly process. Chem Commun (Camb) 2004:2282-3. [PMID: 15489981 DOI: 10.1039/b407964g] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biphasic BMI[middle dot]PF(6)/toluene solvent is a remarkably suitable and clean medium for performing olefin metathesis with a new 2nd generation ionic liquid supported-ruthenium catalyst: high levels of recyclability and reusability combined with a high reactivity were obtained with a variety of di- or tri-substituted and/or oxygen-containing dienes, and very low residual ruthenium levels were detected (1 to 22 ppm) in the products.
Collapse
Affiliation(s)
- Hervé Clavier
- UMR CNRS 6052, Laboratoire de Synthèses et Activations de Biomolécules, ENSCR, Institut de Chimie de Rennes, France
| | | | | | | |
Collapse
|
40
|
Frisch AC, Rataboul F, Zapf A, Beller M. First Kumada reaction of alkyl chlorides using N-heterocyclic carbene/palladium catalyst systems. J Organomet Chem 2003. [DOI: 10.1016/s0022-328x(03)00723-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Audic N, Clavier H, Mauduit M, Guillemin JC. An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. J Am Chem Soc 2003; 125:9248-9. [PMID: 12889926 DOI: 10.1021/ja021484x] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of an ionic liquid-supported olefin metathesis catalyst derived from Grubb's ruthenium carbene complex is described. This new supported catalyst has been used in BMI.PF6 solvent, and this allowed success in solving the challenging problem of catalyst recycling. The IL catalyst in BMI.PF6 can be recovered and reused up to 10 consecutive cycles in RCM reactions of several dienes with excellent conversions. Moreover, the IL catalyst shows a remarkable stability in BMI.PF6 and can be stored several months without loss of activity. These results clearly demonstrate the importance of anchoring an imidazolium ionic liquid pattern to the catalyst to avoid its leaching from the BMI.PF6 phase.
Collapse
Affiliation(s)
- Nicolas Audic
- Laboratoire de Synthèses et Activations de Biomolécules, UMR CNRS 6052, Ecole Nationale Supérieure de Chimie, Institut de Chimie de Rennes, 35700 Rennes, France
| | | | | | | |
Collapse
|
42
|
Zhao Y, Baranger AM. Design of an adenosine analogue that selectively improves the affinity of a mutant U1A protein for RNA. J Am Chem Soc 2003; 125:2480-8. [PMID: 12603136 DOI: 10.1021/ja021267w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RNA recognition motif (RRM), one of the most common RNA binding domains, contains three highly conserved aromatic amino acids that participate in stacking interactions with RNA bases. We have investigated the contribution of these highly conserved aromatic amino acids to the affinity of the complex formed between the N-terminal RRM of the U1A protein and stem loop 2 of U1 snRNA. Previously, we found that substitution of one of these conserved aromatic amino acids, Phe56, with Ala resulted in a large destabilization of the complex. Here, we have modified A6, the base in stem loop 2 RNA that stacks with Phe56, to compensate for a portion of the destabilization caused by the Phe56Ala mutation. We have designed two modified adenosines, A-3CPh and A-4CPh, in which a phenyl group is linked to the adenosine such that it may replace the phenyl group that is eliminated by the Phe56Ala mutation in the complex. We have found that incorporation of A-3CPh into stem loop 2 RNA stabilizes the complex formed with Phe56Ala by 0.6 kcal/mol, while incorporation of A-4CPh into stem loop 2 RNA stabilizes this complex by 1.8 kcal/mol. Either base modification destabilizes the wild-type complex by 0.8-0.9 kcal/mol. Experiments with other U1A mutant proteins suggest that the stabilization of the complex between the Phe56Ala U1A protein and stem loop 2 RNA is due to a specific interaction between the Phe56Ala U1A protein and A6-4CPh stem loop 2 RNA.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
43
|
Dunne AM, Mix S, Blechert S. A highly efficient olefin metathesis initiator: improved synthesis and reactivity studies. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)00346-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Pitici F, Beveridge DL, Baranger AM. Molecular dynamics simulation studies of induced fit and conformational capture in U1A-RNA binding: do molecular substates code for specificity? Biopolymers 2002; 65:424-35. [PMID: 12434430 DOI: 10.1002/bip.10251] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular dynamics (MD) simulations on stem loop 2 of U1 small nuclear RNA and a construct of the U1A protein were carried out to obtain predictions of the structures for the unbound forms in solution and to elucidate dynamical aspects of induced fit upon binding. A crystal structure of the complex between the U1A protein and stem loop 2 RNA and an NMR structure for the uncomplexed form of the U1A protein are available from Oubridge et al. (Nature, 1994, Vol. 372, pp. 432-438) and Avis et al. (Journal of Molecular Biology, 1996, Vol. 257, pp. 398-411), respectively. As a consequence, U1A-RNA binding is a particularly attractive case for investigations of induced fit in protein-nucleic acid complexation. When combined with the available structural data, the results from simulations indicate that structural adaptation of U1A protein and RNA define distinct mechanisms for induced fit. For the protein, the calculations indicate that induced fit upon binding involves a non-native thermodynamic substate in which the structure is preorganized for binding. In contrast, induced fit of the RNA involves a distortion of the native structure in solution to an unstable form. However, the RNA solution structures predicted from simulation show evidence that structures in which groups of bases are favorably oriented for binding the U1A protein are thermally accessible. These results, which quantify with computational modeling recent proposals on induced fit and conformational capture by Leuillot and Varani (Biochemistry, 2001, Vol. 40, pp. 7947-7956) and by Williamson (Nature Structural Biology, 2000, Vol. 7, pp. 834-837) suggest an important role for intrinsic molecular architecture and substates other than the native form in the specificity of protein-RNA interactions.
Collapse
Affiliation(s)
- Felicia Pitici
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA
| | | | | |
Collapse
|
45
|
Abstract
A thorough knowledge of noncovalent interactions is crucial to the understanding of biological complexity. One of the less well understood but significant weak interactions in nature is the aromatic interaction. Recent studies have provided new insight into the driving force, stability and selectivity of these interactions. The contribution of solvophobic and electrostatic interactions have been shown to be inextricably linked. Moreover, the influence of electrostatic and solvophobic components on the selectivity of aromatic interactions has been demonstrated.
Collapse
Affiliation(s)
- Marcey L Waters
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
46
|
Boehr DD, Farley AR, Wright GD, Cox JR. Analysis of the pi-pi stacking interactions between the aminoglycoside antibiotic kinase APH(3')-IIIa and its nucleotide ligands. CHEMISTRY & BIOLOGY 2002; 9:1209-17. [PMID: 12445771 DOI: 10.1016/s1074-5521(02)00245-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A key contact in the active site of an aminoglycoside phosphotransferase enzyme (APH(3')-IIIa) is a pi-pi stacking interaction between Tyr42 and the adenine ring of bound nucleotides. We investigated the prevalence of similar Tyr-adenine contacts and found that many different protein systems employ Tyr residues in the recognition of the adenine ring. The geometry of these stacking interactions suggests that electrostatics play a role in the attraction between these aromatic systems. Kinetic and calorimetric experiments on wild-type and mutant forms of APH(3')-IIIa yielded further experimental evidence of the importance of electrostatics in the adenine binding region and suggested that the stacking interaction contributes approximately 2 kcal/mol of binding energy. This type of information concerning the forces that govern nucleotide binding in APH(3')-IIIa will facilitate inhibitor design strategies that target the nucleotide binding site of APH-type enzymes.
Collapse
Affiliation(s)
- David D Boehr
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|
47
|
Katsamba PS, Bayramyan M, Haworth IS, Myszka DG, Laird-Offringa IA. Complex role of the beta 2-beta 3 loop in the interaction of U1A with U1 hairpin II RNA. J Biol Chem 2002; 277:33267-74. [PMID: 12082087 DOI: 10.1074/jbc.m200304200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA recognition motifs (RRMs) are characterized by highly conserved regions located centrally on a beta-sheet, which forms the RNA binding surface. Variable flanking regions, such as the loop connecting beta-strands 2 and 3, are thought to be important in determining the RNA-binding specificities of individual RRMs. The N-terminal RRM of the spliceosomal U1A protein mediates binding to an RNA hairpin (U1hpII) in the U1 small nuclear RNA. In this complex, the beta(2)-beta(3) loop protrudes through the 10-nucleotide RNA loop. Shortening of the RNA loop strongly perturbs binding, suggesting that an optimal "fit" of the beta(2)-beta(3) loop into the RNA loop is an important factor in complexation. To understand this interaction further, we mutated or deleted loop residues Lys(50) and Met(51), which protrude centrally into the RNA loop but do not make any direct contacts to the bases. Using BIACORE, we analyzed the ability of these U1A mutants to bind to wild type RNAs, or RNAs with shortened loops. Alanine replacement mutations only modestly affected binding to wild type U1hpII. Interestingly, simultaneous replacement of Lys(50) and Met(51) with alanine appeared to alleviate the loss of binding caused by shortening of the RNA loop. Deletion of Lys(50) or Met(51) caused a dramatic loss in stability of the U1A.U1hpII complex. However, deletion of both residues simultaneously was much less deleterious. Simulated annealing molecular dynamics analyses suggest this is due to the ability of this mutant to rearrange flanking amino acids to substitute for the two deleted residues. The double deletion mutant also exhibited substantially reduced negative effects of RNA loop shortening, suggesting the rearranged loop is better able to accommodate a short RNA loop. Our results indicate that one of the roles of the beta(2)-beta(3) loop is to provide a steric fit into the RNA loop, thereby stabilizing the RNA.protein complex.
Collapse
Affiliation(s)
- Phinikoula S Katsamba
- Norris Cancer Center/University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9176, USA
| | | | | | | | | |
Collapse
|
48
|
Rosales V, Zambrano JL, Demuth M. Regioselective palladium-catalyzed alkylation of allylic halides with benzylic grignard reagents. Two-step synthesis of abietane terpenes and tetracyclic polyprenoid compounds. J Org Chem 2002; 67:1167-70. [PMID: 11846658 DOI: 10.1021/jo010786z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly regioselective palladium-catalyzed alpha-alkylation of allylic bromides 1a,c-e and chloride 1b with substituted and unsubstituted benzylic Grignard reagents is reported. The resulting all-trans polyenehomobenzene derivatives were obtained in excellent yields and regioselectivity. These products were easily converted to abietane-type diterpenes (10-12) and tetracyclic polyprenoid compounds (13, 14) through a Lewis acid-promoted cascade polyene cyclization reaction.
Collapse
Affiliation(s)
- Viale Rosales
- Max-Planck-Institut für Strahlenchemie, D-45413 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
49
|
Abstract
[reaction: see text] The total synthesis of the antibacterial and antimycotic alkaloid hapalindole Q has been achieved in eight steps and 12.4% overall yield. The key step involves a regio- and diastereoselective Diels-Alder reaction to afford a bicyclo[2.2.2]oct-2-ene. This cycloadduct was subsequently dihydroxylated, cleaved, and converted to the natural product.
Collapse
Affiliation(s)
- A C Kinsman
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | |
Collapse
|
50
|
Guo JX, Gmeiner WH. Molecular dynamics simulation of the human U2B" protein complex with U2 snRNA hairpin IV in aqueous solution. Biophys J 2001; 81:630-42. [PMID: 11463612 PMCID: PMC1301540 DOI: 10.1016/s0006-3495(01)75728-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A 2200-ps molecular dynamics (MD) simulation of the U2 snRNA hairpin IV/U2B" complex was performed in aqueous solution using the particle mesh Ewald method to consider long-range electrostatic interactions. To investigate the interaction and recognition process between the RNA and protein, the free energy contributions resulting from individual amino acids of the protein component of the RNA/protein complex were calculated using the recently developed glycine-scanning method. The results revealed that the loop region of the U2 snRNA hairpin IV interacted mainly with three regions of the U2B" protein: 1) beta 1-helix A, 2) beta 2-beta 3, and 3) beta 4-helix C. U2 snRNA hairpin IV bound U2B" in a similar orientation as that previously described for U1 snRNA with the U1A' protein; however, the details of the interaction differed in several aspects. In particular, beta 1-helix A and beta 4-helix C in U2B" were not observed to interact with RNA in the U1A' protein complex. Most of the polar and charged residues in the interacting regions had larger mutant free energies than the nonpolar residues, indicating that electrostatic interactions were important for stabilizing the RNA/protein complex. The interaction was further stabilized by a network of hydrogen bonds and salt bridges formed between RNA and protein that was maintained throughout the MD trajectory. In addition to the direct interactions between RNA and the protein, solvent-mediated interactions also contributed significantly to complex stability. A detailed analysis of the ordered water molecules in the hydration of the RNA/protein complex revealed that bridged water molecules reside at the interface of RNA and protein as long as 2100 ps in the 2200-ps trajectory. At least 20 bridged water molecules, on average, contributed to the instantaneous stability of the RNA/protein complex. The stabilizing interaction energy due to bridging water molecules was obtained from ab initio Hartree-Fock and density functional theory calculations.
Collapse
Affiliation(s)
- J X Guo
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6805 USA
| | | |
Collapse
|