1
|
Liu S, Chen S, Wang J, Wang G, Duan PC, Zhu R, Jia Y, Bai F, Zhong Y. Morphology-Controlled Long-Range Photogenerated Charge Carrier Transfer Pathway for Enhanced Photocatalytic Hydrogen Production. NANO LETTERS 2025; 25:4596-4604. [PMID: 40048550 DOI: 10.1021/acs.nanolett.5c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Achieving precise control over the construction of efficient charge transport channels through self-assembly engineering represents a highly effective strategy for the synthesis of organic supramolecular photocatalysts. Herein, tetragonal zinc meso-5,10,15,20-tetra(4-pyridyl) porphyrin (ZnTPyP) nanorods (T-ZnTPyPs) and hexagonal ZnTPyP nanowires (H-ZnTPyPs) were synthesized by varying the assembly temperature. H-ZnTPyPs demonstrated a photocatalytic hydrogen production rate (183 mmol/g/h) that was 14.62 times greater than that of T-ZnTPyP (13 mmol/g/h). This significantly enhanced activity is primarily attributed to the distinct and well-defined molecular arrangements of H-ZnTPyPs, which support continuous linear long-range electron transfer pathways through effective π-π stacking. Conversely, the heat manipulation used in the synthesis of T-ZnTPyPs limits the participation of water molecules in the crystalline stacking arrangements, leading to lattice distortions that disrupt the π-π stacking interactions and significantly impede long-range electron transfer pathways. This research presents a novel strategy for modulating π-π stacking to optimize charge transport in supramolecular photocatalysts.
Collapse
Affiliation(s)
- Shuanghong Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Jiefei Wang
- International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Peng-Cheng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Rui Zhu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
2
|
Hamblin RL, Zhang Z, DuBay KH. Characteristic System Time Scales Can Influence the Collective Sequence Development of Nematically Ordered Copolymers. Macromolecules 2024; 57:9984-9998. [PMID: 39552814 PMCID: PMC11562797 DOI: 10.1021/acs.macromol.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024]
Abstract
The sequence of copolymers is of significant importance to their material properties, yet controlling the copolymer sequence remains a challenge. Previously, we have shown that polymer chains with sufficient stiffness and intermolecular attractions can undergo an emergent, polymerization-driven nematic alignment of nascent oligomers during a step-growth polymerization process. Both the extent of alignment and the point in the reaction at which it occurs impact the kinetics and the sequence development of the growing polymer. Of particular interest is the emergence of a characteristic block length in the ensemble of sequences, resulting in unusually peaked block length distributions. Here we explore the emergence of this characteristic block length over time and investigate how changes in activation energy, solution viscosity, and monomer density influence the sequence and block length distributions of stiff copolymers undergoing step-growth polymerization. We find that emergent aggregation and nematic ordering restrict the availability of longer chains to form bonds, thereby altering the propensity of chains to react in a length dependent fashion, which changes as the reaction progresses, and promoting the formation of chains and blocks of a characteristic length. Further, we demonstrate that the characteristic length scale which emerges is sensitive to the relative time scales of reaction kinetics and reactant diffusion, shifting in response to changes in the activation energy of the reaction and the viscosity of the solvent. Our observations suggest the potential for biasing characteristic lengths of sequence repeats in stiff and semiflexible copolymer systems by targeting specific nonbonded interactions and reaction kinetics through the informed adjustment of reaction conditions and the selection or chemical modification of monomer species.
Collapse
Affiliation(s)
- Ryan L. Hamblin
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Zhongmin Zhang
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Kateri H. DuBay
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
3
|
Milis W, Peeters J, Erkens R, De Winter J, Gerbaux P, Koeckelberghs G. Versatile Strategy to Develop Sequence-Defined Conjugated Macromolecules: A Powerful Tool toward Tunable Optoelectronic Properties. ACS Macro Lett 2024; 13:1293-1303. [PMID: 39284131 DOI: 10.1021/acsmacrolett.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Conjugated sequence-defined polymers represent a cutting-edge area of polymer science, merging the precision of biological macromolecules with the versatility of synthetic polymers and the unique properties of conjugated systems. While early reports focused on activation/deactivation strategies, this Letter presents the first orthogonal approach to developing sequence-defined conjugated macromolecules (CMs), incorporating a new monomer at each reaction step. In CMs, the primary monomer sequence meticulously determines the optoelectronic properties. Step-by-step, features such as structural defects, chain length, dispersity, functional groups, topology, and monomers used in the backbone are carefully considered and controlled, with optical data provided to support the necessity of sequence-defined approaches in CMs. Additionally, a pioneering and repeatable modular approach is introduced, connecting different orthogonally developed sequences. This method enhances efficiency and accelerates the synthesis process, facilitating comprehensive structure-property analyses and paving the way for tunable materials with record-breaking properties.
Collapse
Affiliation(s)
- Wout Milis
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Janine Peeters
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Robin Erkens
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-700 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-700 Mons, Belgium
| | - Guy Koeckelberghs
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|
4
|
Geißler A, Junca H, Kany AM, Daumann LJ, Hirsch AKH, Pieper DH, Sieber SA. Isocyanides inhibit bacterial pathogens by covalent targeting of essential metabolic enzymes. Chem Sci 2024; 15:11946-11955. [PMID: 39092115 PMCID: PMC11290450 DOI: 10.1039/d4sc01940g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/23/2024] [Indexed: 08/04/2024] Open
Abstract
Isonitrile natural products, also known as isocyanides, demonstrate potent antimicrobial activities, yet our understanding of their molecular targets remains limited. Here, we focus on the so far neglected group of monoisonitriles to gain further insights into their antimicrobial mode of action (MoA). Screening a focused monoisonitrile library revealed a potent S. aureus growth inhibitor with a different MoA compared to previously described isonitrile antibiotics. Chemical proteomics via competitive cysteine reactivity profiling, uncovered covalent modifications of two essential metabolic enzymes involved in the fatty acid biosynthetic process (FabF) and the hexosamine pathway (GlmS) at their active site cysteines. In-depth studies with the recombinant enzymes demonstrated concentration-dependent labeling, covalent binding to the catalytic site and corresponding functional inhibition by the isocyanide. Thermal proteome profiling and full proteome studies of compound-treated S. aureus further highlighted the destabilization and dysregulation of proteins related to the targeted pathways. Cytotoxicity and the inhibition of cytochrome P450 enzymes require optimization of the hit molecule prior to therapeutic application. The here described novel, covalent isocyanide MoA highlights the versatility of the functional group, making it a useful tool and out-of-the-box starting point for the development of innovative antibiotics.
Collapse
Affiliation(s)
- Alexandra Geißler
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V. 38124 Braunschweig Germany
| | - Lena J Daumann
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Saarland University, Department of Pharmacy 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V. 38124 Braunschweig Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| |
Collapse
|
5
|
Gorenskaia E, Low PJ. Methods for the analysis, interpretation, and prediction of single-molecule junction conductance behaviour. Chem Sci 2024; 15:9510-9556. [PMID: 38939131 PMCID: PMC11206205 DOI: 10.1039/d4sc00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
This article offers a broad overview of measurement methods in the field of molecular electronics, with a particular focus on the most common single-molecule junction fabrication techniques, the challenges in data analysis and interpretation of single-molecule junction current-distance traces, and a summary of simulations and predictive models aimed at establishing robust structure-property relationships of use in the further development of molecular electronics.
Collapse
Affiliation(s)
- Elena Gorenskaia
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| |
Collapse
|
6
|
Szatko M, Forysiak W, Kozub S, Andruniów T, Szweda R. Revealing the Effect of Stereocontrol on Intermolecular Interactions between Abiotic, Sequence-Defined Polyurethanes and a Ligand. ACS Biomater Sci Eng 2024; 10:3727-3738. [PMID: 38804015 PMCID: PMC11167595 DOI: 10.1021/acsbiomaterials.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
The development of precision polymer synthesis has facilitated access to a diverse library of abiotic structures wherein chiral monomers are positioned at specific locations within macromolecular chains. These structures are anticipated to exhibit folding characteristics similar to those of biotic macromolecules and possess comparable functionalities. However, the extensive sequence space and numerous variables make selecting a sequence with the desired function challenging. Therefore, revealing sequence-function dependencies and developing practical tools are necessary to analyze their conformations and molecular interactions. In this study, we investigate the effect of stereochemistry, which dictates the spatial location of backbone and pendant groups, on the interaction between sequence-defined oligourethanes and bisphenol A ligands. Various methods are explored to analyze the receptor-like properties of model oligomers and the ligand. The accuracy of molecular dynamics simulations and experimental techniques is assessed to uncover the impact of discrete changes in stereochemical arrangements on the structures of the resulting complexes and their binding strengths. Detailed computational investigations providing atomistic details show that the formed complexes demonstrate significant structural diversity depending on the sequence of stereocenters, thus affecting the oligomer-ligand binding strength. Among the tested techniques, the fluorescence spectroscopy data, fitted to the Stern-Volmer equation, are consistently aligned with the calculations, thus validating the developed simulation methodology. The developed methodology opens a way to engineer the structure of sequence-defined oligomers with receptor-like functionality to explore their practical applications, e.g., as sensory materials.
Collapse
Affiliation(s)
- Maksymilian Szatko
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Weronika Forysiak
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Sara Kozub
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
| | - Tadeusz Andruniów
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Roza Szweda
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Center
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
7
|
Mills HA, Rahman S, Zigelstein R, Xu H, Varju BR, Bender TP, Wilson MWB, Seferos DS. Sequence-Defined Conjugated Oligomers in Donor-Acceptor Dyads. J Am Chem Soc 2023; 145:23519-23526. [PMID: 37862238 DOI: 10.1021/jacs.3c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Conjugated macromolecules have a rich history in chemistry, owing to their chemical arrangements that intertwine physical and electronic properties. The continuing study and application of these systems, however, necessitates the development of atomically precise models that bridge the gap between molecules, polymers, and/or their blends. One class of conjugated polymers that have facilitated the advancement of structure-property relationships is discrete, precision oligomers that have remained an outstanding synthetic challenge with only a handful of reported examples. Here we show the first synthesis of molecular dyads featuring sequence-defined oligothiophene donors covalently linked a to small-molecule acceptor. These dyads serve as a platform for probing complex photophysical interactions involving sequence-defined oligomers. This assessment is facilitated through the unprecedented control of oligothiophene length- and sequence-dependent arrangement relative to the acceptor unit, made possible by the incorporation of hydroxyl-containing side chains at precise positions along the backbone through sequence-defined oligomerizations. We show that both the oligothiophene sequence and length play complementary roles in determining the transfer efficiency of photoexcited states. Overall, the work highlights the importance of the spatial arrangement of donor-acceptor systems that are commonly studied for a range of uses, including light harvesting and photocatalysis.
Collapse
Affiliation(s)
- Harrison A Mills
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Samihat Rahman
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rachel Zigelstein
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Hao Xu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Bryton R Varju
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Timothy P Bender
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Mark W B Wilson
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
8
|
Yin J, Choi S, Pyle D, Guest JR, Dong G. Backbone Engineering of Monodisperse Conjugated Polymers via Integrated Iterative Binomial Synthesis. J Am Chem Soc 2023; 145:19120-19128. [PMID: 37603817 PMCID: PMC10472507 DOI: 10.1021/jacs.3c08143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Synthesis of sequence-defined monodisperse π-conjugated polymers with versatile backbones remains a substantial challenge. Here we report the development of an integrated iterative binomial synthesis (IIBS) strategy to enable backbone engineering of conjugated polymers with precisely controlled lengths and sequences as well as high molecular weights. The IIBS strategy capitalizes on the use of phenol as a surrogate for aryl bromide and represents the merge between protecting-group-aided iterative synthesis (PAIS) and iterative binomial synthesis (IBS). Long and monodisperse conjugated polymers with diverse irregular backbones, which are inaccessible by conventional polymerizations, can be efficiently prepared by IIBS. In addition, topology-dependent and chain-length-dependent properties have been investigated.
Collapse
Affiliation(s)
- Jiangliang Yin
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shinyoung Choi
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey R. Guest
- Center
for Nanoscale Materials, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Guangbin Dong
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Tan Y, Li J, Li S, Yang H, Chi T, Shiring SB, Liu K, Savoie BM, Boudouris BW, Schroeder CM. Enhanced Electron Transport in Nonconjugated Radical Oligomers Occurs by Tunneling. NANO LETTERS 2023. [PMID: 37384632 DOI: 10.1021/acs.nanolett.3c00978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Incorporating temperature- and air-stable organic radical species into molecular designs is a potentially advantageous means of controlling the properties of electronic materials. However, we still lack a complete understanding of the structure-property relationships of organic radical species at the molecular level. In this work, the charge transport properties of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) radical-containing nonconjugated molecules are studied using single-molecule charge transport experiments and molecular modeling. Importantly, the TEMPO pendant groups promote temperature-independent molecular charge transport in the tunneling region relative to the quenched and closed-shell phenyl pendant groups. Results from molecular modeling show that the TEMPO radicals interact with the gold metal electrodes near the interface to facilitate a high-conductance conformation. Overall, the large enhancement of charge transport by incorporation of open-shell species into a single nonconjugated molecular component opens exciting avenues for implementing molecular engineering in the development of next-generation electronic devices based on novel nonconjugated radical materials.
Collapse
Affiliation(s)
- Ying Tan
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jialing Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Songsong Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teng Chi
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Stephen B Shiring
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Kangying Liu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Bryan W Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Mang A, Rotthowe N, Beltako K, Linseis M, Pauly F, Winter RF. Single-molecule conductance studies on quasi- and metallaaromatic dibenzoylmethane coordination compounds and their aromatic analogs. NANOSCALE 2023; 15:5305-5316. [PMID: 36811332 DOI: 10.1039/d2nr05670d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to predict the conductive behaviour of molecules, connected to macroscopic electrodes, represents a crucial prerequisite for the design of nanoscale electronic devices. In this work, we investigate whether the notion of a negative relation between conductance and aromaticity (the so-called NRCA rule) also pertains to quasi-aromatic and metallaaromatic chelates derived from dibenzoylmethane (DBM) and Lewis acids (LAs) that either do or do not contribute two extra dπ electrons to the central resonance-stabilised β-ketoenolate binding pocket. We therefore synthesised a family of methylthio-functionalised DBM coordination compounds and subjected them, along with their truly aromatic terphenyl and 4,6-diphenylpyrimidine congeners, to scanning tunneling microscope break-junction (STM-BJ) experiments on gold nanoelectrodes. All molecules share the common motif of three π-conjugated, six-membered, planar rings with a meta-configuration at the central ring. According to our results, their molecular conductances fall within a factor of ca. 9 in an ordering aromatic < metallaaromatic < quasi-aromatic. The experimental trends are rationalised by quantum transport calculations based on density functional theory (DFT).
Collapse
Affiliation(s)
- André Mang
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Nils Rotthowe
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Katawoura Beltako
- Physics Department, University of Lomé, 1515 Lomé, Togo
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Michael Linseis
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Fabian Pauly
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Rainer F Winter
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
11
|
Boyer C, Kamigaito M, Satoh K, Moad G. Radical-Promoted Single-unit Monomer Insertion (SUMI) [aka. Reversible-Deactivation Radical Addition (RDRA)]. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Xu H, Ye S, Zhao R, Seferos DS. Homogeneous Synthesis of Monodisperse Sequence‐Defined Conjugated Oligomers by Temperature Cycling. Angew Chem Int Ed Engl 2022; 61:e202210340. [DOI: 10.1002/anie.202210340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Hao Xu
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Shuyang Ye
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Ruyan Zhao
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Dwight S. Seferos
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
13
|
Xu H, Ye S, Zhao R, Seferos DS. Homogeneous Synthesis of Monodisperse Sequence‐Defined Conjugated Oligomers by Temperature Cycling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Xu
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Shuyang Ye
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Ruyan Zhao
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | - Dwight S. Seferos
- University of Toronto Chemistry 80 St. George Street M5S 3H6 Toronto CANADA
| |
Collapse
|
14
|
Using automated synthesis to understand the role of side chains on molecular charge transport. Nat Commun 2022; 13:2102. [PMID: 35440635 PMCID: PMC9019014 DOI: 10.1038/s41467-022-29796-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
The development of next-generation organic electronic materials critically relies on understanding structure-function relationships in conjugated polymers. However, unlocking the full potential of organic materials requires access to their vast chemical space while efficiently managing the large synthetic workload to survey new materials. In this work, we use automated synthesis to prepare a library of conjugated oligomers with systematically varied side chain composition followed by single-molecule characterization of charge transport. Our results show that molecular junctions with long alkyl side chains exhibit a concentration-dependent bimodal conductance with an unexpectedly high conductance state that arises due to surface adsorption and backbone planarization, which is supported by a series of control experiments using asymmetric, planarized, and sterically hindered molecules. Density functional theory simulations and experiments using different anchors and alkoxy side chains highlight the role of side chain chemistry on charge transport. Overall, this work opens new avenues for using automated synthesis for the development and understanding of organic electronic materials. Development of organic electronic materials relies on understanding structure-function relationships in conjugated polymers but the synthetic workload to make large numbers of new compounds presents a practical barrier to properly survey conjugated organic derivatives. Here, the authors use automated synthesis to prepare a library of conjugated oligomers with systematically varied side chain composition followed by single-molecule characterization of charge transport.
Collapse
|
15
|
Yu H, Li J, Li S, Liu Y, Jackson NE, Moore JS, Schroeder CM. Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. J Am Chem Soc 2022; 144:3162-3173. [PMID: 35148096 DOI: 10.1021/jacs.1c12741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intermolecular charge transport through π-conjugated molecules plays an essential role in biochemical redox processes and energy storage applications. In this work, we observe highly efficient intermolecular charge transport upon dimerization of pyridinium molecules in the cavity of a synthetic host (cucurbit[8]uril, CB[8]). Stable, homoternary complexes are formed between pyridinium molecules and CB[8] with high binding affinity, resulting in an offset stacked geometry of two pyridiniums inside the host cavity. The charge transport properties of free and dimerized pyridiniums are characterized using a scanning tunneling microscope-break junction (STM-BJ) technique. Our results show that π-stacked pyridinium dimers exhibit comparable molecular conductance to isolated, single pyridinium molecules, despite a longer transport pathway and a switch from intra- to intermolecular charge transport. Control experiments using a CB[8] homologue (cucurbit[7]uril, CB[7]) show that the synthetic host primarily serves to facilitate dimer formation and plays a minimal role on molecular conductance. Molecular modeling using density functional theory (DFT) reveals that pyridinium molecules are planarized upon dimerization inside the host cavity, which facilitates charge transport. In addition, the π-stacked pyridinium dimers possess large intermolecular LUMO-LUMO couplings, leading to enhanced intermolecular charge transport. Overall, this work demonstrates that supramolecular assembly can be used to control intermolecular charge transport in π-stacked molecules.
Collapse
Affiliation(s)
| | - Jialing Li
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | | | | | | | - Jeffrey S Moore
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Charles M Schroeder
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Yu H, Gray DL, Woods TJ, Moore JS. Trioxazolo[23]metacyclophane: synthesis, structural analysis, and optical properties. Acta Crystallogr C 2022; 78:81-87. [DOI: 10.1107/s2053229622000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/08/2022] [Indexed: 05/31/2023] Open
Abstract
The synthesis and characterization of the conjugated macrocycle trioxazolo[23]metacyclophane, C27H15N3O3 (M), is reported. The macrocycle was synthesized in three steps by the multicomponent van Leusen reaction and consists of meta-linked phenylenes connected through positions 4 and 5 of an oxazole heterocyclic ring. The molecular structure was investigated by NMR spectroscopy, mass spectrometry, gel permeation chromatography (GPC), and single-crystal X-ray crystallography. X-ray diffraction (XRD) analysis shows that M possesses a twisted saddle-like shape and interacts with nearby molecules by various π–π interactions. Absorption and emission spectroscopy and density functional theory (DFT) calculations were further used to study the electronic properties of M.
Collapse
|
17
|
Kong J, Zhang W, Shao JY, Huo D, Niu X, Wan Y, Song D, Zhong YW, Xia A. Bridge-Length- and Solvent-Dependent Charge Separation and Recombination Processes in Donor-Bridge-Acceptor Molecules. J Phys Chem B 2021; 125:13279-13290. [PMID: 34814686 DOI: 10.1021/acs.jpcb.1c08308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The photoinduced intramolecular charge separation (CS) and charge recombination (CR) phenomena in a series of donor-bridge-acceptor (D-B-A) molecules are intensively investigated as a means of understanding electron transport through the π-B. Pyrene (Pyr) and triarylamine (TAA) moieties connected via phenylene Bs of various lengths are studied because their CS and CR behaviors can be readily monitored in real time by femtosecond transient absorption (fs-TA) spectroscopy. By combining the steady-state and fs-TA spectroscopic measurements in a variety of solvents together with chemical calculations, the parameters that govern the CS behaviors of these dyads were obtained, such as the solvent effects on free energy and the B-length-dependent electronic coupling (VDA) between D and A. We observed the sharp switch of the CS behavior with the increase of the solvent polarity and B-linker lengths. Furthermore, in the case of the shortest distance between D and A when the electron coupling is sufficiently large, we observed that the CS phenomenon occurs even in low-polar solvents. Upon increasing the length of B, CS occurs only in strong polar solvents. The distance-dependent decay constant of the CS rate is determined as ∼0.53 Å-1, indicating that CS is governed by superexchange tunneling interactions. The CS rate constants are also approximately estimated using Marcus electron transfer theory, and the results imply that the VDA value is the key factor dominating the CS rate, while the facile rotation of the phenylene B is important for modulating the lifetime of the charge-separated state in these D-B-A dyads. These results shed light on the practical strategy for obtaining a high CS efficiency with a long-lived CS state in TAA-B-Pyr derivatives.
Collapse
Affiliation(s)
- Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xinmiao Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| |
Collapse
|
18
|
Li S, Yu H, Li J, Angello N, Jira ER, Li B, Burke MD, Moore JS, Schroeder CM. Transition between Nonresonant and Resonant Charge Transport in Molecular Junctions. NANO LETTERS 2021; 21:8340-8347. [PMID: 34529446 DOI: 10.1021/acs.nanolett.1c02915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient long-range charge transport is required for high-performance molecular electronic devices. Resonant transport is thought to occur in single molecule junctions when molecular frontier orbital energy levels align with electrode Fermi levels, thereby enabling efficient transport without molecular or environmental relaxation. Despite recent progress, we lack a systematic understanding of the transition between nonresonant and resonant transport for molecular junctions with different chemical compositions. In this work, we show that molecular junctions undergo a reversible transition from nonresonant tunneling to resonant transport as a function of applied bias. Transient bias-switching experiments show that the nonresonant to resonant transition is reversible with the applied bias. We determine a general quantitative relationship that describes the transition voltage as a function of the molecular frontier orbital energies and electrode Fermi levels. Overall, this work highlights the importance of frontier orbital energy alignment in achieving efficient charge transport in molecular devices.
Collapse
Affiliation(s)
- Songsong Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jialing Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nicholas Angello
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Edward R Jira
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Xu C, He C, Li N, Yang S, Du Y, Matyjaszewski K, Pan X. Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy. Nat Commun 2021; 12:5853. [PMID: 34615871 PMCID: PMC8494804 DOI: 10.1038/s41467-021-26186-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
The regulation of polymer topology and the precise control over the monomer sequence is crucial and challenging in polymer science. Herein, we report an efficient solution-phase synthetic strategy to prepare regio- and sequence-controlled conjugated polymers with topological variations via the usage of methyliminodiacetic acid (MIDA) boronates. Based on the solubility of MIDA boronates and their unusual binary affinity for silica gel, the synthesized regio- and sequence-defined conjugated oligomers can be rapidly purified via precipitation or automatic liquid chromatography. These synthesized discrete oligomers can be used for iterative exponential and sequential growth to obtain linear and dendrimer-like star polymers. Moreover, different topological sequence-controlled conjugated polymers are conveniently prepared from these discrete oligomers via condensation polymerization. By investigating the structure-property relationship of these polymers, we find that the optical properties are strongly influenced by the regiochemistry, which may give inspiration to the design of optoelectronic polymeric materials.
Collapse
Affiliation(s)
- Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yuxuan Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
20
|
Chaudhry S, Wu Y, Cao Z, Li S, Canada JL, Gu X, Risko C, Mei J. Evolution of Chain Dynamics and Oxidation States with Increasing Chain Length for a Donor–Acceptor-Conjugated Oligomer Series. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saadia Chaudhry
- Department of Chemistry, Purdue University West Lafayette, Indiana 47907, United States
| | - Yukun Wu
- Department of Chemistry, Purdue University West Lafayette, Indiana 47907, United States
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Shi Li
- Department of Chemistry & Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jodie L. Canada
- Department of Chemistry & Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Affiliation(s)
- J. Charlie Maier
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, Illinois 61801, United States
| | - Nicholas E. Jackson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Yang C, Wu KB, Deng Y, Yuan J, Niu J. Geared Toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Lett 2021; 10:243-257. [PMID: 34336395 PMCID: PMC8320758 DOI: 10.1021/acsmacrolett.0c00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequence-controlled polymers are an emerging class of synthetic polymers with a regulated sequence of monomers. In the past decade, tremendous progress has been made in the synthesis of polymers with the sophisticated sequence control approaching the level manifested in biopolymers. In contrast, the exploration of novel functions that can be achieved by controlling synthetic polymer sequences represents an emerging focus in polymer science. This Viewpoint will survey recent advances in the functional applications of sequence-controlled polymers and provide a perspective on the challenges and outlook for pursuing future applications of this fascinating class of macromolecules.
Collapse
Affiliation(s)
- Cangjie Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kevin B. Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yu Deng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingsong Yuan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
23
|
Liu H, Zhang X, Wang L, Chen Y, Ye D, Chen L, Wen H, Liu S. One‐Pot
Synthesis of 3‐ to
15‐Mer π‐Conjugated
Discrete Oligomers with Widely Tunable Optical Properties. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Xiao‐Feng Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Li‐Hong Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Yan Chen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Dong‐Nai Ye
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Long Chen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - He‐Rui Wen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Shi‐Yong Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| |
Collapse
|
24
|
Mai DJ, Schroeder CM. 100th Anniversary of Macromolecular Science Viewpoint: Single-Molecule Studies of Synthetic Polymers. ACS Macro Lett 2020; 9:1332-1341. [PMID: 35638639 DOI: 10.1021/acsmacrolett.0c00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single polymer studies have revealed unexpected and heterogeneous dynamics among identical or seemingly similar macromolecules. In recent years, direct observation of single polymers has uncovered broad distributions in molecular behavior that play a key role in determining bulk properties. Early single polymer experiments focused primarily on biological macromolecules such as DNA, but recent advances in synthesis, imaging, and force spectroscopy have enabled broad exploration of chemically diverse polymer systems. In this Viewpoint, we discuss the recent study of synthetic polymers using single-molecule methods. In terms of polymer synthesis, direct observation of single chain polymerization has revealed heterogeneity in monomer insertion events at catalytic centers and decoupling of local and global growth kinetics. In terms of single polymer visualization, recent advances in super-resolution imaging, atomic force microscopy (AFM), and liquid-cell transmission electron microscopy (LC-TEM) can resolve structure and dynamics in single synthetic chains. Moreover, single synthetic polymers can be probed in the context of bulk material environments, including hydrogels, nanostructured polymers, and crystalline polymers. In each area, we highlight key challenges and exciting opportunities in using single polymer techniques to enhance our understanding of polymer science. Overall, the expanding versatility of single polymer methods will enable the molecular-scale design and fundamental understanding of a broad range of chemically diverse and functional polymeric materials.
Collapse
Affiliation(s)
- Danielle J. Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Charles M. Schroeder
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Elacqua E, Koehler SJ, Hu J. Electronically Governed ROMP: Expanding Sequence Control for Donor–Acceptor Conjugated Polymers. Synlett 2020. [DOI: 10.1055/s-0040-1707180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Controlling the primary sequence of synthetic polymers remains a grand challenge in chemistry. A variety of methods that exert control over monomer sequence have been realized wherein differential reactivity, pre-organization, and stimuli-response have been key factors in programming sequence. Whereas much has been established in nonconjugated systems, π-extended frameworks remain systems wherein subtle structural changes influence bulk properties. The recent introduction of electronically biased ring-opening metathesis polymerization (ROMP) extends the repertoire of feasible approaches to prescribe donor–acceptor sequences in conjugated polymers, by enabling a system to achieve both low dispersity and controlled polymer sequences. Herein, we discuss recent advances in obtaining well-defined (i.e., low dispersity) polymers featuring donor–acceptor sequence control, and present our design of an electronically ambiguous (4-methoxy-1-(2-ethylhexyloxy) and benzothiadiazole-(donor–acceptor-)based [2.2]paracyclophanediene monomer that undergoes electronically dictated ROMP. The resultant donor–acceptor polymers were well-defined (Đ = 1.2, Mn > 20 k) and exhibited lower energy excitation and emission in comparison to ‘sequence-ill-defined’ polymers. Electronically driven ROMP expands on prior synthetic methods to attain sequence control, while providing a promising platform for further interrogation of polymer sequence and resultant properties.1 Introduction to Sequence Control2 Sequence Control in Polymers3 Multistep-Synthesis-Driven Sequence Control4 Catalyst-Dictated Sequence Control5 Electronically Governed Sequence Control6 Conclusions
Collapse
|
26
|
Li S, Yu H, Chen X, Gewirth AA, Moore JS, Schroeder CM. Covalent Ag-C Bonding Contacts from Unprotected Terminal Acetylenes for Molecular Junctions. NANO LETTERS 2020; 20:5490-5495. [PMID: 32511930 DOI: 10.1021/acs.nanolett.0c02015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Robust molecule-metal linkages are essential for developing high-performance and air-stable devices for molecular and organic electronics. In this work, we report a facile method for forming robust and covalent bonding contacts between unprotected terminal acetylenes and metal (Ag) interfaces. Using this approach, we study the charge transport properties of conjugated oligophenylenes with covalent metal-carbon contacts to silver electrodes formed from unprotected terminal acetylene anchors. We performed single molecule charge transport experiments and molecular simulations on a series of arylacetylenes using gold and silver electrodes. Our results show that molecular junctions on silver electrodes spontaneously form silver-carbynyl carbon (Ag-C) contacts, resulting in a nearly 10-fold increase in conductance compared to the same molecules on gold electrodes. Overall, this work presents a simple, new electrode-anchor pair that reliably forms molecular junctions with stable and robust contacts for molecular electronics.
Collapse
Affiliation(s)
- Songsong Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xinyi Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0385, Japan
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0385, Japan
| | - Jeffrey S Moore
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|