1
|
Pal S, Mondal S, Guin AK, Paul ND. Zn(II)-Stabilized Radical Ligand Enabled Radical-Type C(sp 3)-H Activation-Cascade Cyclization to Imidazopyridines. Chemistry 2025; 31:e202500359. [PMID: 40052698 DOI: 10.1002/chem.202500359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
A Zn(II)-stabilized radical-ligand enabled tandem cyclization via radical-type C(sp3)-H functionalization of N-benzylpyridin-2-amines with terminal alkynes producing straightforward access to a wide variety of imidazo[1,2-a]pyridines in moderate to good yields is reported. In the presence of KOtBu the Zn(II)-catalyst [ZnIILaCl2] (1 a) (La=2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline) undergoes one-electron reduction to the active catalyst [ZnII(La)•-Cl2] [1 a]- bearing a ligand-centered radical. Upon coordination of N-benzylpyridin-2-amine to [1 a]-, the radical-ligand abstracts a hydrogen atom from the benzylic position, forming a benzylic radical intermediate which, through radical addition with the alkyne generates a vinyl radical intermediate. Subsequent cyclization via intramolecular nucleophilic attack by the pyridine nitrogen produces imidazo[1,2-a]pyridines. Control experiments and spectroscopic investigation confirm the radical-ligand assisted tandem radical-type C(sp3)-H activation, addition, and cyclization steps.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah, 711103
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah, 711103
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah, 711103
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah, 711103
| |
Collapse
|
2
|
Mohammad TS, Jin Y, Raje S, Młodzikowska-Pieńko K, Yu ZX, de Ruiter G. An Experimental and Theoretical Investigation into [2π + 2π] Cycloaddition Reactions Catalyzed by a Cationic Cobalt(I) Complex Containing a Strong-Field PC NHCP Pincer Ligand. J Am Chem Soc 2025; 147:15195-15204. [PMID: 40272278 DOI: 10.1021/jacs.5c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
In the past decade, metal-catalyzed [2π + 2π] cycloaddition reactions have gained significant momentum for the synthesis of substituted cyclobutanes and bicyclo[3.2.0]-heptanes. To date, earth-abundant metals that contain redox non-innocent (radical)-type ligands are most commonly used in these cycloaddition reactions, whereby the redox non-innocent ligand plays a crucial role in stabilizing the oxidation and spin-state of the metal center. Classical π-accepting ligands, however, are inactive for these transformations. Here, we report efficient [2π + 2π] cycloaddition reactions that are catalyzed by a cobalt(I) complex containing a traditional π-accepting but redox innocent PCNHCP pincer ligand. Mechanistic and computational investigations revealed a classical Co(I)-Co(III) redox cycle on the singlet spin manifold, where oxidative cyclization is the rate-limiting step. Overall, the herein developed methodology exhibits a wide substrate scope and low catalyst loadings (<1 mol %) and is compatible with a variety of functional groups while occurring under mild conditions (40-60 °C, N2) with short reaction times.
Collapse
Affiliation(s)
- Tofayel Sheikh Mohammad
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Yi Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sakthi Raje
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Katarzyna Młodzikowska-Pieńko
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
3
|
Cramer HH, Pecoraro MV, Chirik PJ. Pyridine(diimine) Chromium η, 1η 3-Metallacycles as Precatalysts for Alkene-Diene [2 + 2] Cycloaddition. J Am Chem Soc 2025; 147:13688-13698. [PMID: 40215339 DOI: 10.1021/jacs.5c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The synthesis, characterization, and catalytic cycloaddition reactivity of aryl-substituted pyridine(diimine) (PDI) chromium ether complexes and alkene-diene derived metallacycles are described. The reduction of either (PDI)CrCl2 or (PDI)CrCl3 with sodium and catalytic amounts of naphthalene furnished the corresponding chromium THF or diethyl ether complexes. Exposure of the reduced chromium compounds to a mixture of butadiene and ethylene induced rapid oxidative cyclization and yielded isolable, thermally stable chromium η,1η3 trans-metallacycles. In the presence of pure butadiene, oxidative cyclization was also observed, and a η,1η3 diene-diene chromacycloheptane with vinyl substitution was isolated and crystallographically characterized. Reductive C(sp3)-C(sp3) elimination of the resulting vinylcyclobutane products was promoted by either one-electron oxidation or irradiation with visible light in the presence of diene or coordinating solvents such as THF. Under thermal catalytic conditions, the chromacycles converted butadiene and ethylene to a mixture of vinylcyclobutane arising from [2 + 2] cycloaddition and cis-1,4-hexadiene resulting from competitive hydrovinylation. Visible light irradiation at ambient temperature enabled selective catalytic [2 + 2] cycloaddition. Isotopic labeling studies with 13C-labeled ethylene established that the alkene-diene chromacycle is thermodynamically preferred over the diene-diene alternative and that both oxidative cyclization and reductive coupling steps are reversible. Visible light accelerated the reductive coupling step, while subsequent product displacement from the metal center occurs in the presence of excess diene.
Collapse
Affiliation(s)
- Hanna H Cramer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Baker RT, Mangin LP. What's Next for First Row Fluorometallacycles? Angew Chem Int Ed Engl 2024; 63:e202410307. [PMID: 39039024 DOI: 10.1002/anie.202410307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Hydrocarbon-derived metallacycles have been identified as key intermediates in a host of catalyzed transformations of unsaturated organic substrates. In contrast, our knowledge of analogous reactivity of fluorometallacycles is underdeveloped and largely confined to first row metals. Our summary of recent advances aims to inform young investigators of the exciting challenges offered by this pursuit.
Collapse
Affiliation(s)
- R Tom Baker
- Department of Chemistry and Biomolecular Sciences and CCRI, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
5
|
Cramer HH, Duchemin C, Kovel CB, Kim J, Pecoraro MV, Chirik PJ. Ligand Field Sensitive Spin Acceleration in the Iron-Catalyzed [2 + 2] Cycloaddition of Unactivated Alkenes and Dienes. J Am Chem Soc 2024; 146:9947-9956. [PMID: 38537152 DOI: 10.1021/jacs.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Redox-active pyridine(diimine) (PDI) iron catalysts promote the reversible [2 + 2] cycloaddition of alkenes and dienes to cyclobutane derivatives that have applications ranging from fuels to chemically recyclable polymers. Metallacycles were identified as key intermediates, and spin crossover from the singlet to the triplet surface was calculated to facilitate the reductive coupling step responsible for the formation of the four-membered ring. In this work, a series of sterically and electronically differentiated PDI ligands was studied for the [2 + 2] cycloaddition of ethylene and butadiene to vinylcyclobutane. Kinetic studies revealed that the fastest and slowest turnover were observed with equally electron-deficient supporting ligands that either feature phenyl-substituted imine carbon atoms (MeBPDI) or a pyrazine core (MePZDI). While the oxidative cyclization was comparatively slow for both catalysts, the rate of reductive coupling─determined by stoichiometric 13C2H4 labeling studies─correlated with the turnover frequencies. Two-state density functional theory studies and the distinct electronic structures of related (iPrBPDI) and (iPrPZDI) iron methyl complexes revealed significantly different ligand field strengths due to either diminished ligand σ-donation (MeBPDI) or promoted metal π-backbonding (MePZDI). Spin acceleration, leading to fast reductive coupling and catalytic turnover, was promoted in the case of the weaker ligand field and depends on both the nature and position of the electron-withdrawing group. This study provides strong evidence for the role of two-state reactivity in C(sp3)-C(sp3) bond formation and insights on how ligand design either promotes or inhibits spin acceleration in earth-abundant metal catalysis.
Collapse
Affiliation(s)
- Hanna H Cramer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Coralie Duchemin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Carli B Kovel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Adebar N, Keupp J, Emenike VN, Kühlborn J, Vom Dahl L, Möckel R, Smiatek J. Scientific Deep Machine Learning Concepts for the Prediction of Concentration Profiles and Chemical Reaction Kinetics: Consideration of Reaction Conditions. J Phys Chem A 2024; 128:929-944. [PMID: 38271617 DOI: 10.1021/acs.jpca.3c06265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Emerging concepts from scientific deep machine learning such as physics-informed neural networks (PINNs) enable a data-driven approach for the study of complex kinetic problems. We present an extended framework that combines the advantages of PINNs with the detailed consideration of experimental parameter variations for the simulation and prediction of chemical reaction kinetics. The approach is based on truncated Taylor series expansions for the underlying fundamental equations, whereby the external variations can be interpreted as perturbations of the kinetic parameters. Accordingly, our method allows for an efficient consideration of experimental parameter settings and their influence on the concentration profiles and reaction kinetics. A particular advantage of our approach, in addition to the consideration of univariate and multivariate parameter variations, is the robust model-based exploration of the parameter space to determine optimal reaction conditions in combination with advanced reaction insights. The benefits of this concept are demonstrated for higher-order chemical reactions including catalytic and oscillatory systems in combination with small amounts of training data. All predicted values show a high level of accuracy, demonstrating the broad applicability and flexibility of our approach.
Collapse
Affiliation(s)
- Niklas Adebar
- Development NCE, Chemical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany
| | - Julian Keupp
- Development NCE, Chemical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany
| | - Victor N Emenike
- HP BioP Launch and Innovation, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany
| | - Jonas Kühlborn
- Development NCE, Chemical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany
| | - Lisa Vom Dahl
- Development NCE, Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany
| | - Robert Möckel
- Development NCE, Chemical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
- Development NCE, Strategy NCEs, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach (Riss), Germany
| |
Collapse
|
7
|
Swatiputra AA, Mukherjee D, Dinda S, Roy S, Pramanik K, Ganguly S. Electron transfer catalysis mediated by 3d complexes of redox non-innocent ligands possessing an azo function: a perspective. Dalton Trans 2023; 52:15627-15646. [PMID: 37792473 DOI: 10.1039/d3dt02567e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
It was first reported almost two decades ago that ligands with azo functions are capable of accepting electron(s) upon coordination to produce azo-anion radical complexes, thereby exhibiting redox non-innocence. Over the past two decades, there have been numerous reports of such complexes along with their structures and diverse characteristics. The ability of a coordinated azo function to accept one or more electron(s), thereby acting as an electron reservoir, is currently employed to carry out electron transfer catalysis since they can undergo redox transformation at mild potentials due to the presence of energetically accessible energy levels. The cooperative involvement of redox non-innocent ligand(s) containing an azo group and the coordinated metal centre can adjust and modulate the Lewis acidity of the latter through selective ligand-centred redox events, thereby manipulating the capacity of the metal centre to bind to the substrate. We have summarized the list of first row transition metal complexes of iron, cobalt, nickel, copper and zinc with redox non-innocent ligands incorporating an azo function that have been exploited as electron transfer catalysts to effectuate sustainable synthesis of a wide variety of useful chemicals. These include ketazines, pyrimidines, benzothiazole, benzoxazoles, N-acyl hydrazones, quinazoline-4(3)H-ones, C-3 alkylated indoles, N-alkylated anilines and N-alkylated heteroamines. The reaction pathways, as demonstrated by catalytic loops, reveal that the azo function of a coordinated ligand can act as an electron sink in the initial steps to bring about alcohol oxidation and thereafter, they serve as an electron pool to produce the final products either via HAT or PCET processes.
Collapse
Affiliation(s)
- Alok Apan Swatiputra
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Debaarjun Mukherjee
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Soumitra Dinda
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Subhadip Roy
- Department of Chemistry, The ICFAI University Tripura, Tripura 799210, India
| | - Kausikisankar Pramanik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India
| | - Sanjib Ganguly
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| |
Collapse
|
8
|
Gilbert MM, Trenerry MJ, Longley VR, Castro AJ, Berry JF, Weix DJ. Ligand-Metal Cooperation Enables Net Ring-Opening C-C Activation / Difunctionalization of Cyclopropyl Ketones. ACS Catal 2023; 13:11277-11290. [PMID: 39386022 PMCID: PMC11463996 DOI: 10.1021/acscatal.3c02643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Reactions that cleave C-C bonds and enable functionalization at both carbon sites are powerful strategic tools in synthetic chemistry. Stereodefined cyclopropyl ketones have become readily available and would be an ideal source of 3-carbon fragments, but general approaches to net C-C activation / difunctionalization are unknown. Herein we demonstrate the cross-coupling of cyclopropyl ketones with organozinc reagents and chlorotrimethylsilane to form 1,3-difunctionalized, ring-opened products. A combination of experimental and theoretical studies rule out more established mechanisms and shed light on how cooperation between the redox-active terpyridine (tpy) ligand and the nickel atom enables the C-C bond activation step. The reduced (tpy•-)NiI species activates the C-C bond via a concerted asynchronous ring-opening transition state. The resulting alkylnickel(II) intermediate can then be engaged by aryl-, alkenyl-, and alkylzinc reagents to furnish cross-coupled products. This allows quick access to products that are difficult to make by conjugate addition methods, such as β-allylated and β -benzylated enol ethers. The utility of this approach is demonstrated in the synthesis of a key (±)-taiwaniaquinol B intermediate and the total synthesis of prostaglandin D1.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Michael J. Trenerry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Victoria R. Longley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - John F. Berry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| |
Collapse
|
9
|
Duchemin C, Kim J, Chirik PJ. CS-Symmetric Pyridine(diimine) Iron Methyl Complexes for Catalytic [2+2] Cycloaddition and Hydrovinylation: Metallacycle Geometry Determines Selectivity. JACS AU 2023; 3:2007-2024. [PMID: 37502155 PMCID: PMC10369671 DOI: 10.1021/jacsau.3c00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
A series of CS-symmetric (aryl,alkyl)-substituted pyridine(dimine) iron methyl (CyARPDI)FeCH3 complexes have been prepared, characterized, and evaluated as precatalysts for the [2+2]-cycloaddition of butadiene and ethylene. Mixtures of vinylcyclobutane and (Z)-hexa-1,4-diene were observed in each case. By comparison, C2v-symmetric, arylated (PDI) iron catalysts are exclusively selective for reversible [2+2]-cycloaddition to yield vinylcyclobutane. The alteration in the chemoselectivity of the catalytic reaction was investigated through a combination of precatalyst stability studies, identification of catalytic resting state(s), and 2H and 13C isotopic labeling experiments. While replacement of an aryl-imine substituent with an N-alkyl group decreases the stability of the formally iron(0) dinitrogen and butadiene complexes, two diamagnetic metallacycles were identified as catalyst resting states. Deuterium labeling and NOESY/EXSY NMR experiments support 1,4-hexadiene arising from catalytic hydrovinylation involving reversible oxidative cyclization leading to accessible cis-metallacycle. Cyclobutane formation proceeds by irreversible C(sp3)-C(sp3) bond-forming reductive elimination from a trans-metallacycle. These studies provide key mechanistic understanding into the high selectivity of bis(arylated) pyridine(diimine) iron catalysts for [2+2]-cycloaddition, unique, thus far, to this class of iron catalysts.
Collapse
|
10
|
Kovel CB, Darmon JM, Stieber SCE, Pombar G, Pabst TP, Theis B, Turner ZR, Üngör Ö, Shatruk M, DeBeer S, Chirik PJ. Bimolecular Reductive Elimination of Ethane from Pyridine(diimine) Iron Methyl Complexes: Mechanism, Electronic Structure, and Entry into [2+2] Cycloaddition Catalysis. J Am Chem Soc 2023; 145:5061-5073. [PMID: 36821524 DOI: 10.1021/jacs.2c10547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The application of bimolecular reductive elimination to the activation of iron catalysts for alkene-diene cycloaddition is described. Key to this approach was the synthesis, characterization, electronic structure determination, and ultimately solution stability of a family of pyridine(diimine) iron methyl complexes with diverse steric properties and electronic ground states. Both the aryl-substituted, (MePDI)FeCH3 and (EtPDI)FeCH3 (RPDI = 2,6-(2,6-R2-C6H3N═CMe)2C5H3N), and the alkyl-substituted examples, (CyAPDI)FeCH3 (CyAPDI = 2,6-(C6H11N═CMe)2C5H3N), have molecular structures significantly distorted from planarity and S = 3/2 ground states. The related N-arylated derivative bearing 2,6-di-isopropyl aryl substituents, (iPrPDI)FeCH3, has an idealized planar geometry and exhibits spin crossover behavior from S = 1/2 to S = 3/2 states. At 23 °C under an N2 atmosphere, both (MePDI)FeCH3 and (EtPDI)FeCH3 underwent reductive elimination of ethane to form the iron dinitrogen precatalysts, [(MePDI)Fe(N2)]2(μ-N2) and [(EtPDI)Fe(N2)]2(μ-N2), respectively, while (iPrPDI)FeCH3 proved inert to C-C bond formation. By contrast, addition of butadiene to all three iron methyl complexes induced ethane formation and generated the corresponding iron butadiene complexes, (RPDI)Fe(η4-C4H6) (R = Me, Et, iPr), known precatalysts for the [2+2] cycloaddition of olefins and dienes. Kinetic, crossover experiments, and structural studies were combined with magnetic measurements and Mössbauer spectroscopy to elucidate the electronic and steric features of the iron complexes that enable this unusual reductive elimination and precatalyst activation pathway. Transmetalation of methyl groups between iron centers was fast at ambient temperature and independent of steric environment or spin state, while the intermediate dimer underwent the sterically controlled rate-determining reaction with either N2 or butadiene to access a catalytically active iron compound.
Collapse
Affiliation(s)
- Carli B Kovel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jonathan M Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - S Chantal E Stieber
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gisselle Pombar
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bastian Theis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Zoë R Turner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ökten Üngör
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Organic reaction mechanism classification using machine learning. Nature 2023; 613:689-695. [PMID: 36697863 DOI: 10.1038/s41586-022-05639-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023]
Abstract
A mechanistic understanding of catalytic organic reactions is crucial for the design of new catalysts, modes of reactivity and the development of greener and more sustainable chemical processes1-13. Kinetic analysis lies at the core of mechanistic elucidation by facilitating direct testing of mechanistic hypotheses from experimental data. Traditionally, kinetic analysis has relied on the use of initial rates14, logarithmic plots and, more recently, visual kinetic methods15-18, in combination with mathematical rate law derivations. However, the derivation of rate laws and their interpretation require numerous mathematical approximations and, as a result, they are prone to human error and are limited to reaction networks with only a few steps operating under steady state. Here we show that a deep neural network model can be trained to analyse ordinary kinetic data and automatically elucidate the corresponding mechanism class, without any additional user input. The model identifies a wide variety of classes of mechanism with outstanding accuracy, including mechanisms out of steady state such as those involving catalyst activation and deactivation steps, and performs excellently even when the kinetic data contain substantial error or only a few time points. Our results demonstrate that artificial-intelligence-guided mechanism classification is a powerful new tool that can streamline and automate mechanistic elucidation. We are making this model freely available to the community and we anticipate that this work will lead to further advances in the development of fully automated organic reaction discovery and development.
Collapse
|
12
|
Mansson CMF, Burns NZ. Aqueous Amine-Tolerant [2+2] Photocycloadditions of Unactivated Olefins. J Am Chem Soc 2022; 144:19689-19694. [PMID: 36269089 DOI: 10.1021/jacs.2c08778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Kochi-Salomon reaction is the only photochemical [2+2] cycloaddition capable of combining two electronically unactivated olefins into a cyclobutane. Yet, the reaction has remained largely unexplored and suffers many drawbacks, most notably an intolerance to Lewis/Brønsted basic amines and amides. Since these groups are ubiquitous in biologically active pharmaceuticals, an amine-tolerant Kochi-Salomon reaction would greatly facilitate rapid exploration of novel drug scaffolds. Herein, we disclose a transformation that is run in water with the most widely available Cu(II) salts and mineral acids. Furthermore, we apply this methodology to synthesize a variety of amine-containing cyclobutanes, including known and novel pharmacological analogues.
Collapse
Affiliation(s)
- Carl M F Mansson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Tomita Y, Haraguchi N, Kiyota S, Komine N, Hirano M. Cobalt-Catalyzed Divergent Cycloadditions of Alkynes with Conjugated Dienes Yielding 3-Vinylcyclobutenes, Bicyclo[3.1.0]hexenes, and Cyclohexa-1,4-dienes. Org Lett 2022; 24:7774-7778. [PMID: 36250622 DOI: 10.1021/acs.orglett.2c03108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A traditional cobalt catalyst system still contains undiscovered reactivity. Depending on the tertiary phosphines and substrates used, the catalytic system using CoBr2/tertiary phosphine/Zn/ZnI2 catalyzes divergent cycloadditions of internal alkynes with conjugated dienes, yielding 3-alkenylcyclobut-1-enes, bicyclo[3.1.0]hexenes, and cyclohexa-1,4-dienes. A [CoBr2(PPh3)2]/Zn/ZnI2-catalyzed reaction of 3-hexyne (1a) with 1-(4-methoxyphenyl)butadiene (2a) at room temperature in CH2Cl2 exclusively produces a [2 + 2] cycloaddition product (E)-2-(2,3-diethylcyclobut-2-ene-1-yl)vinyl-4-methoxybenzene (3aa). When [CoBr2(dppp)]/Zn/ZnI2 is used as a catalyst, a bicyclic compound 6-(4-methoxyphenyl)-2,3-diethylbicyclo[3.1.0]hex-2-ene (4aa) is dominantly formed in a 77% yield. The CoBr2/dppe/Zn/ZnI2 system can undergo a [2 + 4] cycloaddition to yield 3-(4-anisyl)-1,2-diethylcyclohexa-1,4-diene (5aa) as the dominant product in 38% yield. The bite angles of the ligands used contribute significantly to this catalytic diversity.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Naoto Haraguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Sayori Kiyota
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
14
|
Isomerization of cyclobutane ligands in the solid state and solution. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Guin AK, Mondal R, Chakraborty G, Pal S, Paul ND. Ruthenium-Catalyzed Dehydrogenative Functionalization of Alcohols to Pyrroles: A Comparison between Metal-Ligand Cooperative and Non-cooperative Approaches. J Org Chem 2022; 87:7106-7123. [PMID: 35583483 DOI: 10.1021/acs.joc.2c00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein, we report the synthesis and characterization of two ruthenium-based pincer-type catalysts, [1]X (X = Cl, PF6) and 2, containing two different tridentate pincer ligands, 2-pyrazolyl-(1,10-phenanthroline) (L1) and 2-arylazo-(1,10-phenanthroline) (L2a/2b, L2a = 2-(phenyldiazenyl)-1,10-phenanthroline; L2b = 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline), and their application in the synthesis of substituted pyrroles via dehydrogenative alcohol functionalization reactions. In catalyst [1]X (X = Cl, PF6), the tridentate scaffold 2-pyrazolyl-(1,10-phenanthroline) (L1) is apparently redox innocent, and all the redox events occur at the metal center, and the coordinated ligands remain as spectators. In contrast, in catalysts 2a and 2b, the coordinated azo-aromatic scaffolds are highly redox-active and known to participate actively during the dehydrogenation of alcohols. A comparison between the catalytic activities of these two catalysts was made, starting from the simple dehydrogenation of alcohols to further dehydrogenative functionalization of alcohols to various substituted pyrroles to understand the advantages/disadvantages of the metal-ligand cooperative approach. Various substituted pyrroles were prepared via dehydrogenative coupling of secondary alcohols and amino alcohols, and the N-substituted pyrroles were synthesized via dehydrogenative coupling of aromatic amines with cis-2-butene-1,4-diol and 2-butyne-1,4-diol, respectively. Several control reactions and spectroscopic experiments were performed to characterize the catalysts and establish the reaction mechanism.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
16
|
Das S, Mondal R, Guin AK, Paul ND. Ligand centered redox enabled sustainable synthesis of triazines and pyrimidines using a zinc-stabilized azo-anion radical catalyst. Org Biomol Chem 2022; 20:3105-3117. [PMID: 35088804 DOI: 10.1039/d1ob02428k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report ligand-centered redox controlled Zn(II)-catalyzed multicomponent approaches for synthesizing pyrimidines and triazines. Taking advantage of the ligand-centered redox events and using a well-defined Zn(II)-catalyst (1a) bearing (E)-2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) as the redox-active ligand, a wide variety of substituted pyrimidines and triazines were prepared via dehydrogenative alcohol functionalization reactions. Pyrimidines were prepared via two pathways: (i) dehydrogenative coupling of primary and secondary alcohols with amidines and (ii) dehydrogenative coupling of primary alcohols with alkynes and amidines. Triazines were prepared via dehydrogenative coupling of alcohols and amidines. Catalyst 1a is well tolerant to a wide range of substrates yielding the desired pyrimidines and triazines in moderate to good isolated yields. A series of control reactions were performed to predict the plausible mechanism, suggesting that the active participation of the ligand-centered redox events enables the Zn(II)-complex 1a to act as an efficient catalyst for synthesizing these N-heterocycles. Electron transfer processes occur at the azo-aromatic ligand throughout the catalytic reaction, and the Zn(II)-center serves only as a template.
Collapse
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| |
Collapse
|
17
|
Zhang WS, Ji DW, Li Y, Zhang XX, Zhao CY, Hu YC, Chen QA. Regio- and Stereoselective Diarylation of 1,3-Dienes via Ni/Cr Cocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Ying Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiang-Xin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Chao-Yang Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
18
|
Xu H, Tan Y, Hou Z, Fu C, Lin LR. Insights into the Effect of Trans-to-Cis Photoisomerization of a Co-coordinated Stilbene Derivative on the Luminescence of Di-β-diketonate Lanthanide Complexes. ACS OMEGA 2022; 7:947-958. [PMID: 35036758 PMCID: PMC8757447 DOI: 10.1021/acsomega.1c05557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Five lanthanide complexes constructed from a stilbene derivative, (E)-N',N'-bis(pyridin-2-ylmethyl)-4-styrylbenzoyl hydrazide (HL), and two β-diketonates (2-thenoyltrifluoroacetonate, tta), with or without a trifluoroacetate anion (CF3CO2 -), namely, [Ln(tta)2(HL) (CF3CO2)] [LnC45H32F9N4O7S2, Ln = La (1), Nd (2), Eu (3), or Gd (4)] and [Yb(tta)2(L)] (YbC43H31F6N4O5S2 (5), L = deprotonated HL), were synthesized and characterized. Crystals of these five complexes were obtained and analyzed by single-crystal X-ray diffraction. These complexes all belonged to the monoclinic P21/c space group. For La3+, Nd3+, Eu3+, and Gd3+, the central lanthanide ion was nine-coordinate with a monocapped twisted square antiprism polyhedron geometry. The central Yb3+ ion of complex 5 was eight-coordinate with a distorted double-capped triangular prism polyhedron geometry. Among the five complexes, trans-to-cis photoisomerization of the stilbene group in gadolinium complex 4 showed the largest quantum yield. Complexes 2, 3, and 4 showed dual luminescence and photoisomerization functions. The luminescence change of complex 3 was reversible upon the trans-to-cis photoisomerization process. The sensitization efficiencies of luminescent europium complex 3 in acetonitrile solutions and in the solid state were 49.9 and 42.6%, respectively. These medium sensitization efficiencies led to the observation of simultaneous photoisomerization and luminescence, which further confirmed our previous report that photoisomerization of the stilbene group within complexes was related to the lanthanide ion energy level and whether a ligand-to-metal center or ligand-to-ligand charge-transfer process was present. In complexes 1-5, in addition to the intramolecular absorption transition of the ligand itself (IL, πHL-πHL * and πtta-πtta*), the presence of a ligand-to-ligand charge-transfer transition between tta and HL (LLCT, πtta-πHL * or πHL-πtta *) indicated whether the triplet-state energy of HL was able to transfer to the excited energy level of the lanthanide ions, leading to different extents of HL photoisomerization. These results provide an important route for the design of new dual-function lanthanide-based optical switching materials.
Collapse
|
19
|
Petit J, Magna L, Mézailles N. Alkene oligomerization via metallacycles: Recent advances and mechanistic insights. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Dale HJA, Leach AG, Lloyd-Jones GC. Heavy-Atom Kinetic Isotope Effects: Primary Interest or Zero Point? J Am Chem Soc 2021; 143:21079-21099. [PMID: 34870970 DOI: 10.1021/jacs.1c07351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemists have many options for elucidating reaction mechanisms. Global kinetic analysis and classic transition-state probes (e.g., LFERs, Eyring) inevitably form the cornerstone of any strategy, yet their application to increasingly sophisticated synthetic methodologies often leads to a wide range of indistinguishable mechanistic proposals. Computational chemistry provides powerful tools for narrowing the field in such cases, yet wholly simulated mechanisms must be interpreted with great caution. Heavy-atom kinetic isotope effects (KIEs) offer an exquisite but underutilized method for reconciling the two approaches, anchoring the theoretician in the world of calculable observables and providing the experimentalist with atomistic insights. This Perspective provides a personal outlook on this synergy. It surveys the computation of heavy-atom KIEs and their measurement by NMR spectroscopy, discusses recent case studies, highlights the intellectual reward that lies in alignment of experiment and theory, and reflects on the changes required in chemical education in the area.
Collapse
Affiliation(s)
- Harvey J A Dale
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G Leach
- School of Health Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
21
|
Doll JS, Regenauer NI, Bothe VP, Wadepohl H, Roşca DA. Redox Activity of Iron Diazine-Diimine Carbonyl and Dinitrogen Complexes: A Comparative Study of the Influence of the Heterocyclic Ring. Inorg Chem 2021; 61:520-532. [PMID: 34913670 DOI: 10.1021/acs.inorgchem.1c03212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed investigation of the electronic structure of diazinediimine iron complexes and their comparison with the pyridine analogues reveals subtle but important differences, imparted by the supporting heterocycle. In the case of LFe(CO)2 complexes (L = pyrazine- and pyrimidinediimine), the characterization of three available redox states confirmed that whereas the nature of the electron-transfer processes is similar, the differences in π-acidity of the supporting heterocycle significantly affect the redox potentials. The reduction of LFe(CO)2 can yield either a ligand-centered radical (for L = pyrimidine) or a C-C-bonded dimer (for L = pyrazine), supported by a dearomatized core. In the latter case, the C-C bond can be reversibly cleaved oxidatively. Compared to the carbonyl analogues, employing weak-field N2 ligands triggers changes in electronic structure for the neutral and reduced LFe(N2) complexes (L = pyrimidinediimine). En route to the synthesis of the nitrogen complexes, the square-planar LFeCl (L = pyrimidinediimine) was isolated. The monoradical character of the supporting chelate triggers the asymmetric distribution of electron density around the heterocycle.
Collapse
Affiliation(s)
- Julianna S Doll
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Nicolas I Regenauer
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Viktoria P Bothe
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Dragoş-Adrian Roşca
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Harper JL, Felten S, Stolley RM, Hegg AS, Cheong PHY, Louie J. Origins of Regio- and Chemoselectivity in Iron-PDAI-Catalyzed [2+2+2] Cycloaddition Syntheses of 4,6-Disubstituted 2-Aminopyridines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jordan L. Harper
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Stephanie Felten
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ryan M. Stolley
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Alexander S. Hegg
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Paul H.-Y. Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Janis Louie
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
23
|
Farmer ME, Ehehalt LE, Pabst TP, Tudge MT, Chirik PJ. Well-Defined Cationic Cobalt(I) Precatalyst for Olefin-Alkyne [2 + 2] Cycloaddition and Olefin-Diene Hydrovinylation Reactions: Experimental Evidence for Metallacycle Intermediates. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marcus E. Farmer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- GlaxoSmithKline Medicinal Chemistry, 1250 South Collegeville Road, P.O. Box 5089, Collegeville, Pennsylvania 19426, United States
| | - Lauren E. Ehehalt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew T. Tudge
- GlaxoSmithKline Medicinal Chemistry, 1250 South Collegeville Road, P.O. Box 5089, Collegeville, Pennsylvania 19426, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Beromi MM, Younker JM, Zhong H, Pabst TP, Chirik PJ. Catalyst Design Principles Enabling Intermolecular Alkene-Diene [2+2] Cycloaddition and Depolymerization Reactions. J Am Chem Soc 2021; 143:17793-17805. [PMID: 34652908 DOI: 10.1021/jacs.1c08912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aryl-substituted pyridine(diimine) iron complexes promote the catalytic [2 + 2] cycloadditions of alkenes and dienes to form vinylcyclobutanes as well as the oligomerization of butadiene to generate divinyl(oligocyclobutane), a microstructure of poly(butadiene) that is chemically recyclable. A systematic study on a series of iron butadiene complexes as well as their ruthenium congeners has provided insights into the essential features of the catalyst that promotes these cycloaddition reactions. Structural and computational studies on iron butadiene complexes identified that the structural rigidity of the tridentate pincer enables rare s-trans diene coordination. This geometry, in turn, promotes dissociation of one of the alkene arms of the diene, opening a coordination site for the incoming substrate to engage in oxidative cyclization. Studies on ruthenium congeners established that this step occurs without redox involvement of the pyridine(diimine) chelate. Cyclobutane formation occurs from a metallacyclic intermediate by reversible C(sp3)-C(sp3) reductive coupling. A series of labeling experiments with pyridine(diimine) iron and ruthenium complexes support the favorability of accessing the +3 oxidation state to trigger C(sp3)-C(sp3) reductive elimination, involving spin crossover from S = 0 to S = 1. The high density of states of iron and the redox-active pyridine(diimine) ligand facilitate this reactivity under thermal conditions. For the ruthenium congener, the pyridine(diimine) remains redox innocent and irradiation with blue light was required to promote the analogous reactivity. These structure-activity relationships highlight important design principles for the development of next generation catalysts for these cycloaddition reactions as well as the promotion of chemical recycling of cycloaddition polymers.
Collapse
Affiliation(s)
- Megan Mohadjer Beromi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jarod M Younker
- ExxonMobil Chemical Company, Baytown, Texas 77520, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Jesse KA, Chang MC, Filatov AS, Anderson JS. Iron(II) Complexes Featuring a Redox-Active Dihydrazonopyrrole Ligand. Z Anorg Allg Chem 2021; 647:1415-1420. [PMID: 36059917 PMCID: PMC9435867 DOI: 10.1002/zaac.202100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 09/04/2024]
Abstract
Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal-ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox-state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe-DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox-chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5-coordinate species with an open coordination site offering the possibility of enhanced reactivity.
Collapse
Affiliation(s)
- Kate A Jesse
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| | - Mu-Chieh Chang
- National Taiwan University Department of Chemistry, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City, Taiwan 10
| | - Alexander S Filatov
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| | - John S Anderson
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| |
Collapse
|
26
|
Das S, Mondal R, Chakraborty G, Guin AK, Das A, Paul ND. Zinc Stabilized Azo-anion Radical in Dehydrogenative Synthesis of N-Heterocycles. An Exclusively Ligand Centered Redox Controlled Approach. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
27
|
Doll JS, Eichelmann R, Hertwig LE, Bender T, Kohler VJ, Bill E, Wadepohl H, Roşca DA. Iron-Catalyzed Trimerization of Terminal Alkynes Enabled by Pyrimidinediimine Ligands: A Regioselective Method for the Synthesis of 1,3,5-Substituted Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00978] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Julianna S. Doll
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg 69120, Germany
| | - Robert Eichelmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg 69120, Germany
| | - Leif E. Hertwig
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg 69120, Germany
| | - Thilo Bender
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg 69120, Germany
| | - Vincenz J. Kohler
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg 69120, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 24-36, Mülheim/Ruhr 45470, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg 69120, Germany
| | - Dragoş-Adrian Roşca
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg 69120, Germany
| |
Collapse
|
28
|
Zhu CF, Chen LQ, Hao WJ, Cui CC, Tu SJ, Jiang B. Diastereoselective Synthesis of 1,2-Dihydrobenzofuro[3,2- b]pyridines via a Carbon-Carbon Double-Bond Cleavage/Rearrangement Cascade. Org Lett 2021; 23:2654-2658. [PMID: 33728923 DOI: 10.1021/acs.orglett.1c00564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new Lewis acid-catalyzed [2 + 2] cycloaddition/retroelectrocyclization (CA-RE)/1,6-addition relay of aurone-derived 1-azadienes and 1-alkynylnaphthalen-2-ols has been reported, leading to the regio- and diastereoselective synthesis of 1,2-dihydrobenzofuro[3,2-b]pyridine with a chiral carbon center and an axial chirality in good yields. This protocol enables the C-C double-bond scission/recombination to rapidly construct aza-heterocyclic architectures and features 100% atom utilization, a wide substrate scope, good compatibility with substituents, and excellent diastereoselectivity.
Collapse
Affiliation(s)
- Chi-Fan Zhu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ling-Qi Chen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Chen-Chang Cui
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
29
|
Chen N, Zhou T, Zhang H, Zhu Y, Lang M, Wang J, Peng S. Copper-Catalyzed Tandem Cross-Coupling/Thermally Promoted [2 + 2] Cycloaddition of 1,6-Enynes and Diazo Compounds To Assemble Methylenecyclobutane-Fused Ring System. J Org Chem 2021; 86:4714-4732. [PMID: 33667091 DOI: 10.1021/acs.joc.1c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented copper-catalyzed tandem reaction of 1,6-enynes with diazo compounds via a cross-coupling/[2 + 2] cycloaddition sequence was reported. A library of methylenecyclobutane-fused ring systems including cyclobuta[b]indolines, cyclobuta[b]benzofuran, benzo[b]cyclobuta[d]thiophene, and bicyclo[3.2.0] structures were obtained in moderate to excellent yields under very mild reaction conditions. The reaction exhibited high proximal-regioselectivity and diastereoselectivity. Moreover, 1,6-allenene has proven to be the key intermediate and proceeds via a thermally promoted [2 + 2] cycloaddition in the absence of copper catalyst.
Collapse
Affiliation(s)
- Nuan Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Ting Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Hong Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Yuqi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China.,School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| |
Collapse
|
30
|
Zhu S, Li H, Fu R, Hao W, Wang S, Tu S, Jiang B. Regio‐ and Stereoselective Synthesis of Rotationally Hindered C
12
‐Naphthylated Tribenzo[
a,c,j
]xanthenes through Catalytic Tricyclization of Yne‐Allenones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shan‐Shan Zhu
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Heng Li
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Rong Fu
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Wen‐Juan Hao
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shu‐Liang Wang
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shu‐Jiang Tu
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Bo Jiang
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| |
Collapse
|
31
|
Kennedy CR, Joannou MV, Steves JE, Hoyt JM, Kovel CB, Chirik PJ. Iron-Catalyzed Vinylsilane Dimerization and Cross-Cycloadditions with 1,3-Dienes: Probing the Origins of Chemo- and Regioselectivity. ACS Catal 2021; 11:1368-1379. [PMID: 34336370 PMCID: PMC8317497 DOI: 10.1021/acscatal.0c04608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The selective, intermolecular, homodimerization and cross-cycloaddition of vinylsilanes with unbiased 1,3-dienes, catalyzed by a pyridine-2,6-diimine (PDI) iron complex is described. In the absence of a diene coupling partner, vinylsilane hydroalkenylation products were obtained chemoselectively with unusual head-to-head regioselectivity (up to >98% purity, 98:2 E/Z). In the presence of a 4- or 2-substituted diene coupling partner, under otherwise identical reaction conditions, formation of value-added [2+2]- and [4+2]-cycloadducts, respectively, was observed. The chemoselectivity profile was distinct from that observed for analogous α-olefin dimerization and cross-reactions with 1,3-dienes. Mechanistic studies conducted with well-defined, single-component precatalysts (MePDI)Fe(L2) (where MePDI = 2,6-(2,6-Me2-C6H3N═CMe)2C5H3N; L2 = butadiene or 2(N2)) provided insights into the kinetic and thermodynamic factors contributing to the substrate-controlled regioselectivity for both the homodimerization and cross cycloadditions. Diamagnetic iron diene and paramagnetic iron olefin complexes were identified as catalyst resting states, were characterized by in situ NMR and Mössbauer spectroscopic studies, and were corroborated with DFT calculations. Stoichiometric reactions and computational models provided evidence for a common mechanistic regime where competing steric and orbital-symmetry requirements dictate the regioselectivity of oxidative cyclization. Although distinct chemoselectivity profiles were observed in cross-cycloadditions with the vinylsilane congeners of α-olefins, these products arose from metallacycles with the same connectivity. The silyl substituents ultimately governed the relative rates of β-H elimination and C-C reductive elimination to dictate final product formation.
Collapse
Affiliation(s)
| | | | | | - Jordan M. Hoyt
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Carli B. Kovel
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
32
|
Wang Y, Lin X, Zhang P, Shen M, Xu H, Xu D. Design and Synthesis of Pyridine and 1,3,5-Triazine PNP Pincer Ligands and Their Application in Cobalt Catalyzed Semihydrogenation of Terminal Alkynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Elsby MR, Baker RT. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem Soc Rev 2020; 49:8933-8987. [DOI: 10.1039/d0cs00509f] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of metal–ligand cooperation (MLC) by transition metal bifunctional catalysts has emerged at the forefront of homogeneous catalysis science.
Collapse
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
34
|
van der Vlugt JI. Redox-Active Pincer Ligands. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|