1
|
Kim H, Min SK. An efficient reverse intersystem crossing process exploiting non-bonding states in an inverted singlet-triplet gap system. Phys Chem Chem Phys 2025; 27:8267-8274. [PMID: 40178826 DOI: 10.1039/d5cp00166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Reverse intersystem crossing (rISC) is an essential process in organic light-emitting diodes to populate singlet excited states from non-emissive triplet states. A small or negative singlet-triplet energy gap and a large spin-orbit coupling between low-lying singlet and triplet states are key requirements to enhance the rISC rate. Here, we present a molecular design exploiting the n-π* excited state to maximize the efficacy of the rISC process for efficient light emitters using thermodynamic and kinetic calculations validated with high-level quantum chemical methods. Heptazine-based molecules with carbonyl groups attached are shown to possess a reasonable singlet energy gap for blue-light emission with the energy level of the n-π* triplet state modulated by addition of electron withdrawing or donating groups to achieve the optimal energy level ordering of T(π-π*) > T(n-π*) > S1, leading to enhanced spin-orbit coupling between the lowest triplet and singlet states with an inverted energy gap.
Collapse
Affiliation(s)
- Hwon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea.
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Mageswari GV, Chitose Y, Tsuchiya Y, Lin JH, Adachi C. Rational Molecular Design for Balanced Locally Excited and Charge- Transfer Nature for Two-Photon Absorption Phenomenon and Highly Efficient TADF-Based OLEDs. Angew Chem Int Ed Engl 2025; 64:e202420417. [PMID: 39587453 DOI: 10.1002/anie.202420417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
The pursuit of highly efficient thermally activated delayed fluorescence (TADF) emitters with two-photon absorption (2PA) character is hampered by the concurrent achievement of a small singlet-triplet energy gap (ΔEST) and high photoluminescence quantum yield (ΦPL). Here, by introducing a terephthalonitrile unit into a sterically crowded donor-π-donor structure, inducing a hybrid electronic excitation character, we designed unique TADF emitters possessing 2PA ability. This rational molecular design was achieved through a main π-conjugated donor-acceptor-donor backbone in line with locally excited feature renders a large oscillator strength and transition dipole moment, maintaining a high 2PA cross-section value. The ancillary N-donor-acceptor-donor with charge transfer character highly balances the TADF phenomenon by minimizing ΔEST. A near-unity ΦPL value with a large radiative decay rate over an order of magnitude higher than the intersystem crossing rate and a high horizontal orientation ratio of 0.95 were simultaneously attained for TPCz2NP. The organic light-emitting diodes fabricated with this material exhibit a high maximum external quantum efficiency of 25.4 % with an elevated 2PA cross-section (σ2) value up to 143 GM at 850 nm. These findings offer a venue for designing high-performance TADF emitters with exceptional performance inclusive of 2PA properties, expanding for future functional material design.
Collapse
Affiliation(s)
- Gomathi Vinayakam Mageswari
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Youhei Chitose
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, Advanced Nanophotonics Technology Laboratory, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
3
|
Qin M, Chu Y, Wu Z, Zhao G. Room-temperature phosphorescence and aggregation behavior in chiral heavy-atom-free organic molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125247. [PMID: 39388937 DOI: 10.1016/j.saa.2024.125247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Purely organic room temperature phosphorescence materials (RTP) have attracted much attention recently, but most of them are substituted with heavy atoms to enhance the intersystem crossing (ISC), which requires complicated design and synthesis. Herein, we report four chiral heavy-atom-free small molecules which integrate properties of aggregation and long-lifetime room temperature phosphorescence. The phosphorescence lifetime of synthesized chiral molecules is measured to be 150 ms, and the phosphorescence quantum yield reaches 15 % at room temperature. The twisted chiral conformation of four molecules not only affect aggregation photoluminescence properties but also can synergistically stabilize triplet exciton in the triplet excited states for excellent ISC efficiency. This strategy enriches the application fields of chiral aggregated long-lifetime room temperature phosphorescent materials.
Collapse
Affiliation(s)
- Mengmei Qin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Ya Chu
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Zibo Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
4
|
Pei Y, Sukhanov AA, Chen X, Iagatti A, Doria S, Dong X, Zhao J, Li Y, Chi W, Voronkova VK, Di Donato M, Dick B. The Photophysics of Naphthalimide-Phenoselenazine Electron Donor-Acceptor Dyads: Revisiting the Heavy-Atom Effect in Thermally Activated Delayed Fluorescence. Chemistry 2025; 31:e202403542. [PMID: 39607385 DOI: 10.1002/chem.202403542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 11/29/2024]
Abstract
We prepared thermally activated delayed fluorescence (TADF) emitter dyads, NI-PTZ, NI-PTZ-2Br and NI-PSeZ, with naphthalimide (NI) as electron acceptor and 10H-phenothiazine (PTZ) or 10H-phenoselenazine (PSeZ) as electron donor to study the heavy-atom effect on the intersystem crossing (ISC) and reverse ISC (rISC) in the TADF emitters. The delayed fluorescence lifetimes of the dyads containing heavy atoms (τ D F ${{\tau }_{{\rm D}{\rm F}}}$ =5.9 μs for NI-PSeZ andτ D F ${{\tau }_{{\rm D}{\rm F}}}$ =16.5 μs for NI-PTZ-2Br, respectively) are longer than the heavy atom-free counterpart NI-PTZ (τ D F ${{\tau }_{{\rm D}{\rm F}}}$ =2.0 μs). Nanosecond transient absorption (ns-TA) spectral study and the time-resolved electron paramagnetic resonance (TREPR) spectra show the presence of both 3LE and 3CS states. These findings represent solid experimental evidences for the spin-vibronic coupling mechanism of TADF. Moreover, the ns-TA spectra show that the heavy atoms don't have a significant effect since the lifetime of the triplet transient species (1.3 μs for NI-PTZ) is not shortened in their presence (4.5 μs for NI-PSeZ and 5.3 μs for NI-PTZ-2Br). These results show that the previously claimed heavy-atom effect on rISC and TADF is not a universal principle. The femtosecond transient absorption (fs-TA) spectra of the compounds indicate the occurrence of fast charge separation within 1-2 ps, and the charge recombination is slow (>4 ns).
Collapse
Affiliation(s)
- Yuying Pei
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Alessandro Iagatti
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- INO-CNR Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125, Florence (FI), Italy
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- ICCOM-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Xin Dong
- Ningbo Sunny Automotive Optech Co. Ltd., No. 27-29 Shunke Road, Ning Bo Shi, Yuyao, 315400, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Yanqin Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, No. 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- ICCOM-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D, 93053, Regensburg, Germany
| |
Collapse
|
5
|
Young TW, Cox-Vázquez SJ, Call ED, Shah DC, Jacobson SC, Vázquez RJ. Resistive-Pulse Sensing Coupled with Fluorescence Lifetime Imaging Microscopy for Differentiation of Individual Liposomes. ACS NANO 2025; 19:2162-2170. [PMID: 39741459 PMCID: PMC11811929 DOI: 10.1021/acsnano.4c10813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Characterization of individual biological nanoparticles can be significantly improved by coupling complementary analytical methods. Here, we combine resistive-pulse sensing (RPS) with fluorescence lifetime imaging microscopy (FLIM) to differentiate liposomes at the single-particle level. RPS measures the particle volume, shape, and surface-charge density, and FLIM determines the fluorescence lifetime of the fluorophore associated with the lipid membrane. The RPS devices are fabricated in-plane on a glass substrate to facilitate coupling of RPS with FLIM measurements. For proof-of-concept, we studied liposomes containing various cholesterol concentrations with membrane-intercalated Di-8-ANEPPS, whose fluorescence lifetime is known to be sensitive to cholesterol concentrations in the membrane. RPS-FLIM revealed that increasing cholesterol concentrations in the liposome from 0% to 50% increased the fluorescence lifetimes from 2.1 ± 0.2 to 3.4 ± 0.5 ns, respectively. Moreover, RPS-FLIM discerned liposome populations with the same cholesterol concentration but labeled with dyes that have different fluorescence lifetimes (Di-8-ANEPPS and COE-S6), parsing two particle populations with statistically identical volumes, cholesterol concentration, and lipid composition. Interrogation with RPS-FLIM occurred with individual particles making a single pass through the detection region and overcomes issues with fluorescence spectral overlap that limits traditional methods. We envision RPS-FLIM as a versatile and scalable technique with the potential to differentiate biological particles at the single-particle level to simultaneously inform on particle size, surface-charge density, membrane composition, and identity.
Collapse
Affiliation(s)
- Tanner W Young
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Sarah J Cox-Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Ethan D Call
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Dhari C Shah
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Ricardo J Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
6
|
Ye K, Sukhanov AA, Pang Y, Mambetov A, Li M, Cao L, Zhao J, Voronkova VK, Peng Q, Wan Y. Time-resolved transient optical and electron paramagnetic resonance spectroscopic studies of electron donor-acceptor thermally activated delayed fluorescence emitters based on naphthalimide-phenothiazine dyads. Phys Chem Chem Phys 2025; 27:813-823. [PMID: 39660403 DOI: 10.1039/d4cp03629h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The photophysics of naphthalimide (NI)-phenothiazine (PTZ) dyads were investigated as electron donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) emitters. Femtosecond transient absorption (fs-TA) spectra show that the photophysical processes in non-polar solvents are in singlet localized state (1LE, τ = 0.8 ps) → Franck-Condon singlet charge separation state (1CS, τ = 7.8 ps) → 1CS state (τ = 2.2 ns) → triplet state (3LE, τ = 16 μs). The 3LE state is formed via the spin-orbit charge transfer-intersystem crossing (SOCT-ISC) mechanism rather than the spin-orbit (SO)-ISC mechanism. In a polar solvent, the CS state has a much lower energy than the 3LE state; thus, the 3LE state is absent from the photophysical processes and no TADF was observed. Moreover, we found that the delayed fluorescence lifetime is related to the low-lying triplet state (3LE or 3CS states). When the 3CS state is the low-lying triplet state, the TADF lifetime is shorter than that of the 3LE state as the low-lying triplet state. In the time-resolved electron paramagnetic resonance (TREPR) spectra, both 3LE (zero field splitting parameter D = 2250 MHz, E = -150 MHz) and 3CS (D = 430 MHz, E = 0 MHz) states were observed. It is noteworthy that the electron spin polarization (ESP) phase pattern of the 3CS state was inverted at longer delay times as a consequence of the selective transition between the 3LE and 3CS states and a faster decay of one sublevel of the 3CS state. These results are strong and direct experimental evidence for the spin-vibronic coupling mechanism of TADF.
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Yu Pang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Aidar Mambetov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Minjie Li
- College of Chemistry Beijing Normal University, Beijing 100875, P. R. China.
| | - Liyuan Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Yan Wan
- College of Chemistry Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
7
|
Farokhi A, Lipinski S, Cavinato LM, Shahroosvand H, Pashaei B, Karimi S, Bellani S, Bonaccorso F, Costa RD. Metal complex-based TADF: design, characterization, and lighting devices. Chem Soc Rev 2025; 54:266-340. [PMID: 39565044 DOI: 10.1039/d3cs01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The development of novel, efficient and cost-effective emitters for solid-state lighting devices (SSLDs) is ubiquitous to meet the increasingly demanding needs of advanced lighting technologies. In this context, the emergence of thermally activated delayed fluorescence (TADF) materials has stunned the photonics community. In particular, inorganic TADF material-based compounds can be ad hoc engineered by chemical modification of the coordinated ligands and the type of metal centre, allowing control of their ultimate photo-/electroluminescence properties, while providing a viable emitter platform for enhancing the efficiency of state-of-the-art organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs). By presenting an overview of the state of the art of all metal complex-based TADF compounds, this review aims to provide a comprehensive, authoritative and critical reference for their design, characterization and device application, highlighting the advantages and drawbacks for the chemical, photonic and optoelectronic communities involved in this interdisciplinary research field.
Collapse
Affiliation(s)
- Afsaneh Farokhi
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Sophia Lipinski
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| | - Luca M Cavinato
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| | - Hashem Shahroosvand
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Babak Pashaei
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Soheila Karimi
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- BeDimensional Spa., 16163 Genova, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- BeDimensional Spa., 16163 Genova, Italy
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| |
Collapse
|
8
|
Cox-Vázquez S, Shakir B, Medrano O, Shah D, Bortey K, Biswas B, Tran A, Tran C, Vázquez RJ. Advancements and Applications of Conjugated Polyelectrolytes and Conjugated Oligoelectrolytes in Bioanalytical and Electrochemical Contexts. JACS AU 2024; 4:4592-4611. [PMID: 39735924 PMCID: PMC11672130 DOI: 10.1021/jacsau.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 12/31/2024]
Abstract
In the past decade, conjugated oligoelectrolytes (COEs) and conjugated polyelectrolytes (CPEs) have emerged at the forefront of active materials in bioanalytical and electrochemical settings due to their unique electronic and ionic properties. These materials possess π-conjugated backbones with ionic functionalities at the ends of their side chains, granting them water solubility and facilitating their processability, exploration, and applications in aqueous environments. In this perspective, the basis for evaluating their figures of merit in selected bioanalytical and electrochemical contexts will be provided and contextualized. We will primarily discuss their roles in biosensing, bioimaging, bioelectrosynthesis, and electrochemical contexts, such as organic electrochemical transistors (OECTs), microbial fuel cells (MFCs), and their use as charge-storing materials. Emphasis will be placed on their role in improving efficiency and utility within these applications. We will also explore the fundamental mechanisms that govern their behavior and highlight innovative strategies and perspectives for developing the next generation of CPEs and COEs for bioanalytical and electrochemical applications and their integration into practical devices.
Collapse
Affiliation(s)
- Sarah
J. Cox-Vázquez
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Batul Shakir
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Oscar Medrano
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Dhari Shah
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kingsley Bortey
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Bidisha Biswas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Austin Tran
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Crystal Tran
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | |
Collapse
|
9
|
Miao X, Wu C, Xia Y, Yu S, Li F, Zhang M. Ratiometric fluorescence probes for visible detection and accurate identification of MPEA vapor. Nat Commun 2024; 15:10641. [PMID: 39643618 PMCID: PMC11624257 DOI: 10.1038/s41467-024-55011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
Methamphetamine (MA), as one kind of overflowed synthetic illicit drugs, has posed severe threats to health and social security. However, the on-site and visible fluorescence detection to MA remains limited. Herein, through covalently coupling diphenylacridine (DPA) and dimethylacridine (DMA) with pyridine, two ratiometric fluorescence probes (PyDPA and PyDMA) are constructed, which present rapid response, bathochromic-shifts over 100 nm and visible fluorescence color changes from blue to cyan upon the exposure to methylphenethylamine (MPEA, a simulant of MA). And the similar responses are observed for MA in confiscated samples. Further, a smartphone-based quantitative detected system is established to provide the on-site trace detection of MPEA as ppb level. Specially, PyDPA or PyDMA can identify MPEA from its interferences according to the unique ratiometric response based on their dual-emission-enhancement. Here, we show two ratiometric fluorescence probes to MA and MPEA with high potential for on-site application.
Collapse
Affiliation(s)
- Xin Miao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chunxiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuanxing Xia
- Department of Fundamental Study of Public Security, Criminal Investigation Police University of China, Shenyang, 110854, P. R. China
| | - Shilong Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
10
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
11
|
Mandal H, Giri SK, Jovanovski S, Varnavski O, Zagorska M, Ganczarczyk R, Chiang TM, Schatz GC, Goodson T. Impact of Classical and Quantum Light on Donor-Acceptor-Donor Molecules. J Phys Chem Lett 2024; 15:9493-9501. [PMID: 39255459 DOI: 10.1021/acs.jpclett.4c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Investigations of entangled and classical two-photon absorption have been carried out for six donor (D)-acceptor (A)-donor (D) compounds containing the dithieno pyrrole (DTP) unit as donor and acceptors with systematically varied electronic properties. Comparing ETPA (quantum) and TPA (classical) results reveals that the ETPA cross section decreases with increasing TPA cross section for molecules with highly off-resonant excited states for single-photon excitation. Theory (TDDFT) results are in semiquantitative agreement with this anticorrelated behavior due to the dependence of the ETPA cross section but not TPA on the two-photon excited state lifetime. The largest cross section is found for a DTP derivative that has a single photon excitation energy closest to resonance with half the two-photon excitation energy. These results are important for the possible use of quantum light for low-intensity energy-conversion applications.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sajal Kumar Giri
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sara Jovanovski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Malgorzata Zagorska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Roman Ganczarczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Tse-Min Chiang
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Bhowmik S, Dutta A, Sen P. Ultrafast Intersystem Crossing in Benzanthrone: Effect of Hydrogen Bonding and Viscosity. J Phys Chem A 2024; 128:6864-6878. [PMID: 39129382 DOI: 10.1021/acs.jpca.4c03224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Understanding the intricate factors governing intersystem crossing (ISC) in aromatic carbonyl compounds remains a long-standing interest among researchers. This study unveils the crucial roles of vibration in influencing the ISC of a typical aromatic carbonyl chromophore, benzanthrone, and how hydrogen bonding and solvent viscosity affect these vibrations and, thus, the associated ISC kinetics. We demonstrate that for benzanthrone, the ISC is exceedingly facile in an aprotic solvent, while in protic solvents, the ISC is significantly suppressed through the formation of the hydrogen-bonded state. Moreover, in a high-viscosity medium, ISC is further retarded due to restrictions of volume-changing motions, which may assist ISC. Theoretical calculations revealed that the C═O bond vibration and specific out-of-plane vibrations accompanying a volume change could be the probable coordinates for ISC. These findings provide valuable insights for tailoring the excited-state behavior of carbonyl-functionalized materials for diverse applications in photocatalysis, organic electronics, and biomedicine.
Collapse
Affiliation(s)
- Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Abhijit Dutta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| |
Collapse
|
13
|
Li P, Lai SL, Chen Z, Tang WK, Leung MY, Ng M, Kwok WK, Chan MY, Yam VWW. Achieving efficient and stable blue thermally activated delayed fluorescence organic light-emitting diodes based on four-coordinate fluoroboron emitters by simple substitution molecular engineering. Chem Sci 2024; 15:12606-12615. [PMID: 39118634 PMCID: PMC11304800 DOI: 10.1039/d3sc06989c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
Achieving both high efficiency and high stability in blue thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs) is challenging for practical displays and lighting. Here, we have successfully developed a series of sky-blue to pure-blue emitting donor-acceptor (D-A) type TADF materials featuring a four-coordinated boron with 2,2'-(pyridine-2,6-diyl)diphenolate (dppy) ligands, i.e.1-8. Synergistic engineering of substituents on the phenyl bridge as well as the electronic properties and the attached positions of heteroatom N-donors not only enables fine-tuning of the emission colors, but also modulates the nature and energies of their triplet excited states that are important for the reverse intersystem crossing (RISC). Particularly for the compound with two methyl substituents on the phenyl bridge (compound 8), RISC is significantly facilitated through the vibronic coupling of the energetically close-lying triplet charge transfer (3CT) and the triplet local excited (3LE) states, when compared to analogue 7. Efficient sky-blue to pure-blue OLEDs with electroluminescence peaks (λ EL) at 460-492 nm have been obtained, in which ca. five-fold higher external quantum efficiencies (EQEs) of 18.9% have been demonstrated by 8 than that by 7. Moreover, ca. thirty times longer device operational half-lifetimes (LT50) of 9113 hours for 8 than that for 7 as well as satisfactory LT50 reaching 26 643 hours for 6 at an initial luminance of 100 cd m-2 have also been demonstrated. To the best of our knowledge, these results represent one of the best high-performance blue OLEDs based on tetracoordinated boron TADF emitters. Moreover, the design strategy presented here has provided an attractive strategy for enhancing the device performance of blue TADF-OLEDs.
Collapse
Affiliation(s)
- Panpan Li
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Hong Kong Quantum AI Lab Limited 17 Science Park West Avenue Pak Shek Kok Hong Kong P. R. China
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ziyong Chen
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Wai Kit Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Hong Kong Quantum AI Lab Limited 17 Science Park West Avenue Pak Shek Kok Hong Kong P. R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Wing-Kei Kwok
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Hong Kong Quantum AI Lab Limited 17 Science Park West Avenue Pak Shek Kok Hong Kong P. R. China
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Hong Kong Quantum AI Lab Limited 17 Science Park West Avenue Pak Shek Kok Hong Kong P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Hong Kong Quantum AI Lab Limited 17 Science Park West Avenue Pak Shek Kok Hong Kong P. R. China
| |
Collapse
|
14
|
Biswas B, Shah D, Cox-Vázquez SJ, Vázquez RJ. Sensing cholesterol-induced rigidity in model membranes with time-resolved fluorescence spectroscopy and microscopy. J Mater Chem B 2024; 12:6570-6576. [PMID: 38899544 DOI: 10.1039/d4tb00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Here, we report the characterization of cholesterol levels on membrane fluidity with a twisted intramolecular charge transfer (TICT) membrane dye, namely DI-8-ANEPPS, using fluorescence lifetime techniques such as time-correlated single photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM). The characterized liposomes comprised a 3 : 1 ratio of POPC and POPG, respectively, 1% DI-8-ANEPPS, and increasing cholesterol levels from 0% to 50%. Fluorescence lifetime characterization revealed that increasing the cholesterol levels from 0% to 50% increases the fluorescence lifetime of DI-8-ANEPPS from 2.36 ns to 3.65 ns, a 55% increment. Such lengthening in the fluorescence lifetime is concomitant with reduced Stokes shifts and higher quantum yield, revealing that localized excitation (LE) dominates over TICT states with increased cholesterol levels. Fluorescence anisotropy measurements revealed a less isotropic environment in the membrane upon increasing cholesterol levels, suggesting a shift from liquid-disorder (Lα) to liquid-order (LO) upon adding cholesterol. Local electrostatic and dipole characterization experiments revealed that changes in the zeta-potential (ζ-potential) and transmembrane dipole potential (Ψd) induced by changes in cholesterol levels or the POPC : POPG ratio play a minimal role in the fluorescence lifetime outcome of DI-8-ANEPPS. Instead, these results indicate that the cholesterol's effect in restricting the degree of movement of DI-8-ANEPPS dominates its photophysics over the cholesterol effect on the local dipole strength. We envision that time-resolved spectroscopy and microscopy, coupled with TICT dyes, could be a convenient tool in exploring the complex interplay between membrane lipids, sterols, and proteins and provide novel insights into membrane fluidity, organization, and function.
Collapse
Affiliation(s)
- Bidisha Biswas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Dhari Shah
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Sarah J Cox-Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
15
|
Zhu Z, Wei X, Liang W. A theoretical investigation of benzothiadiazole derivatives for high efficiency OLEDs. J Comput Chem 2024; 45:1603-1613. [PMID: 38520729 DOI: 10.1002/jcc.27352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
It is of great importance and worthy of efforts to give a clear structure-property relationship and microscopic mechanism of fluorescence emitters with high quantum yield. In this work, we perform a detailed computational investigation to give an explanation to the high efficiency of a fluorescence emitter XBTD-NPh based TADF sensitized fluorescence (TSF) OLEDs, and construct a symmetry structure DSBNA-BTD. Theoretical calculations show that XBTD-NPh is a long-time phosphorescent material at 77 K and TADF is attributed to the RISC of T1 to S1 state. For DSBNA-BTD, excitons arrived at T1 state comes to a large rate of nonradiatively path to the ground state, meaning it is may not be an efficient TADF molecule. For both molecules, the fast IC between T2 and T1 state results in that the hot exciton channel T1-Tn-S1 makes no contribution to the TADF.
Collapse
Affiliation(s)
- Zhiye Zhu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, People's Republic of China
| | - Xiaoqing Wei
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, People's Republic of China
| | - Wanzhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
16
|
Munthasir ATM, Rani P, Dhanalakshmi P, Pradhan S, Thilagar P. Polymorphism Dependent Cytotoxicity, Cellular Uptake, and Live Cell Imaging Studies on Napthalimide-Vinyl-Phenothiazine Conjugate. Chemistry 2024:e202400868. [PMID: 38576402 DOI: 10.1002/chem.202400868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Polymorphism-dependent cytotoxicity and cellular uptake of drug molecules have been studied for the past two decades. However, the visualization of polymorph-dependent cellular uptake and cytotoxicity using microscopy imaging techniques has not yet been reported. The luminescent polymorph is an ideal candidate to validate the above hypothesis. Herein, we report the polymorph-dependent cellular uptake, cytotoxicity, and bio-imaging functions of polymorphs 1Y and 1R of a naphthalimide-phenothiazine dyad. These polymorphs show different luminescence colors in the solid state and exhibit aggregation-induced enhanced emission (AIEE) in the DMSO-Water mixture. Bioimaging, cytotoxicity assay, and fluorescence-activated cell sorting (FACS) studies revealed that these polymorphs show different levels of cytotoxicity, cellular uptake, localization, and imaging potential. Detailed photophysical, morphological, and biological studies revealed that the difference in molecular conformation in these polymorphs enables them to form aggregates of different sizes and morphology, which leads to the differential uptake of these into the cells and consequently shows different cytotoxicity and imaging potentials.
Collapse
Affiliation(s)
| | - Poonam Rani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Bengaluru, India -, 560012
| | - Pandi Dhanalakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Bengaluru, India -, 560012
| | - Sambit Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Bengaluru, India -, 560012
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Bengaluru, India -, 560012
| |
Collapse
|
17
|
Guo Y, Zhao Z, Hua L, Liu Y, Xu B, Zhang Y, Yan S, Ren Z. Adjusting the Electron-Withdrawing Ability of Acceptors in Thermally Activated Delayed Fluorescence Conjugated Polymers for High-Performance OLEDs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1225-1233. [PMID: 38112452 DOI: 10.1021/acsami.3c15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Constructing high-performance solution-processed organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) conjugated polymers remains a challenging issue. The electron-withdrawing ability of acceptors in TADF units significantly affects the TADF properties of the conjugated polymers. Herein, we have designed three TADF conjugated polymers, in which phenoxazine donors and anthracen-9(10H)-one acceptors are incorporated into the polymeric backbones and side chains, respectively, and the carbazole derivative is copolymerized as the host. By incorporating different heteroatoms, such as nitrogen, oxygen, or sulfur, with slightly different electronegativities into anthracen-9(10H)-one, the effect of the electron-withdrawing ability of the acceptor on the performance of conjugated TADF polymer-based OLEDs is thus systematically studied. It is found that the introduction of a nitrogen atom can enhance the spin-orbital coupling and RISC process due to the modulated energy levels and nature of the excited states. As a result, the solution-processed OLEDs based on the prepared polymer p-PXZ-XN display an excellent comprehensive performance with an EQEmax of 17.6%, a low turn-on voltage of 2.8 V, and a maximum brightness of 14750 cd m-2. Notably, the efficiency roll-off is quite low, maintaining 15.1% at 1000 cd m-2, 12.1% at 3000 cd m-2, and 6.1% at 10000 cd m-2, which ranks in the first tier among the reported TADF conjugated polymers. This work provides a guideline for constructing high-efficiency TADF polymers.
Collapse
Affiliation(s)
- Yumeng Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Hua
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzhuo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Liu F, Cao G, Feng Z, Cheng Z, Yan Y, Xu Y, Jiang Y, Chang Y, Lv Y, Lu P. Triphenylene-Based Emitters with Hybridized Local and Charge-Transfer Characteristics for Efficient Nondoped Blue OLEDs with a Narrowband Emission and a Small Efficiency Roll-Off. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47307-47316. [PMID: 37750758 DOI: 10.1021/acsami.3c09433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Developing high-efficiency nondoped blue organic light-emitting diodes (OLEDs) with high color purity and low-efficiency roll-off is vital for display and lighting applications. Herein, we developed two asymmetric D-π-A blue emitters, PIAnTP and PyIAnTP, in which triphenylene is first utilized as a functional acceptor. The relatively weak charge transfer (CT) properties, rigid molecular structures, and multiple supramolecular interactions in PIAnTP and PyIAnTP can significantly enhance the fluorescence efficiency and suppress the structural relaxations to obtain a narrowband blue emission. The photophysical experiments and theoretical simulations reveal that they both exhibit a typical hybridized local and charge-transfer (HLCT) excited state and achieve high external quantum efficiency (EQE) via a "hot exciton" channel. As a result, PIAnTP- and PyIAnTP-based nondoped devices realize blue emission at 456 and 464 nm, corresponding to CIE coordinates of (0.16, 0.14) and (0.16, 0.19), narrow full width at half-maximums of 52 and 60 nm, and the high EQEs of 8.36 and 8.69%, respectively. More importantly, the PIAnTP- and PyIAnTP-based nondoped devices show small EQE roll-offs of only 5.9 and 2.4% at 1000 cd m-2, respectively. These results signify an advance in designing a highly efficient blue emitter for nondoped OLEDs.
Collapse
Affiliation(s)
- Futong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Gongyi Cao
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zijun Feng
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhuang Cheng
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yan Yan
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yangze Xu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yixuan Jiang
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Ying Lv
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
19
|
Zhang T, Xiao Y, Wang H, Kong S, Huang R, Ka-Man Au V, Yu T, Huang W. Highly Twisted Thermally Activated Delayed Fluorescence (TADF) Molecules and Their Applications in Organic Light-Emitting Diodes (OLEDs). Angew Chem Int Ed Engl 2023; 62:e202301896. [PMID: 37288654 DOI: 10.1002/anie.202301896] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials have attracted great potential in the field of organic light-emitting diodes (OLEDs). Among thousands of TADF materials, highly twisted TADF emitters have become a hotspot in recent years. Compared with traditional TADF materials, highly twisted TADF emitters tend to show multi-channel charge-transfer characters and form rigid molecular structures. This is advantageous for TADF materials, as non-radiative decay processes can be suppressed to facilitate efficient exciton utilization. Accordingly, OLEDs with excellent device performances have also been reported. In this Review, we have summarized recent progress in highly twisted TADF materials and related devices, and give an overview of the molecular design strategies, photophysical studies, and the performances of OLED devices. In addition, the challenges and perspectives of highly twisted TADF molecules and the related OLEDs are also discussed.
Collapse
Affiliation(s)
- Tiantian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Shuting Kong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Rongjuan Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, 315103, Ningbo, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
- State Key Laboratory of Organic Electronics and Information Displays &, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, China
| |
Collapse
|
20
|
Peng QC, Si YB, Wang ZY, Dai SH, Chen QS, Li K, Zang SQ. Thermally Activated Delayed Fluorescence Coinage Metal Cluster Scintillator. ACS CENTRAL SCIENCE 2023; 9:1419-1426. [PMID: 37521783 PMCID: PMC10375876 DOI: 10.1021/acscentsci.3c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 08/01/2023]
Abstract
X-ray scintillators are widely used in medical imaging, industrial flaw detection, security inspection, and space exploration. However, traditional commercial scintillators are usually associated with a high use cost because of their substantial toxicity and easy deliquescence. In this work, an atomically precise Au-Cu cluster scintillator (1) with a thermally activated delayed fluorescence (TADF) property was facilely synthesized, which is environmentally friendly and highly stable to water and oxygen. The TADF property of 1 endows it with an ultrahigh exciton utilization rate. Combined with the effective absorption of X-ray caused by the heavy-atom effect and a limited nonradiative transition caused by close packing in the crystal state, 1 exhibits an excellent radioluminescence property. Moreover, 1 has good processability for fabricating a large, flexible thin-film device (10 cm × 10 cm) for high-resolution X-ray imaging, which can reach 40 μm (12.5 LP mm-1). The properties mentioned earlier make the coinage metal cluster promising for use as a substitute for traditional commercial scintillators.
Collapse
Affiliation(s)
- Qiu-Chen Peng
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Bing Si
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Heng Dai
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
State Key Laboratory of Photocatalysis on Energy and Environment,
College of Chemistry, Fuzhou University, Fuzhou 350100, China
| | - Qiu-Shui Chen
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
State Key Laboratory of Photocatalysis on Energy and Environment,
College of Chemistry, Fuzhou University, Fuzhou 350100, China
| | - Kai Li
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Cao L, Liu X, Zhang X, Zhao J, Yu F, Wan Y. The effect of dark states on the intersystem crossing and thermally activated delayed fluorescence of naphthalimide-phenothiazine dyads. Beilstein J Org Chem 2023; 19:1028-1046. [PMID: 37497052 PMCID: PMC10366440 DOI: 10.3762/bjoc.19.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
A series of 1,8-naphthalimide (NI)-phenothiazine (PTZ) electron donor-acceptor dyads were prepared to study the thermally activated delayed fluorescence (TADF) properties of the dyads, from a point of view of detection of the various transient species. The photophysical properties of the dyads were tuned by changing the electron-donating and the electron-withdrawing capability of the PTZ and NI moieties, respectively, by oxidation of the PTZ unit, or by using different aryl substituents attached to the NI unit. This tuning effect was manifested in the UV-vis absorption and fluorescence emission spectra, e.g., in the change of the charge transfer absorption bands. TADF was observed for the dyads containing the native PTZ unit, and the prompt and delayed fluorescence lifetimes changed with different aryl substituents on the imide part. In polar solvents, no TADF was observed. For the dyads with the PTZ unit oxidized, no TADF was observed as well. Femtosecond transient absorption spectra showed that the charge separation takes ca. 0.6 ps, and admixtures of locally excited (3LE) state and charge separated (1CS/3CS) states formed (in n-hexane). The subsequent charge recombination from the 1CS state takes ca. 7.92 ns. Upon oxidation of the PTZ unit, the beginning of charge separation is at 178 fs and formation of 3LE state takes 4.53 ns. Nanosecond transient absorption (ns-TA) spectra showed that both 3CS and 3LE states were observed for the dyads showing TADF, whereas only 3LE or 3CS states were observed for the systems lacking TADF. This is a rare but unambiguous experimental evidence that the spin-vibronic coupling of 3CS/3LE states is crucial for TADF. Without the mediating effect of the 3LE state, no TADF is resulted, even if the long-lived 3CS state is populated (lifetime τCS ≈ 140 ns). This experimental result confirms the 3CS → 1CS reverse intersystem crossing (rISC) is slow, without coupling with an approximate 3LE state. These studies are useful for an in-depth understanding of the photophysical mechanisms of the TADF emitters, as well as for molecular structure design of new electron donor-acceptor TADF emitters.
Collapse
Affiliation(s)
- Liyuan Cao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xi Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
22
|
Zhang X, Zhao X, Ye K, Zhao J. Detection of the Dark States in Thermally Activated Delayed Fluorescence (TADF) Process of Electron Donor-Acceptor Dyads: Insights from Optical Transient Absorption Spectroscopy. Chemistry 2023; 29:e202203737. [PMID: 36468907 DOI: 10.1002/chem.202203737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The photophysical processes involved in the electron donor-acceptor thermally activated delayed fluorescence (TADF) emitters are complicated and controversial. The recent consensus is that at least three states are involved, i. e. the singlet charge transfer state (1 CT), the triplet localized excited state (3 LE) and the triplet CT state (3 CT). It is clear the very often used steady state and time-resolved luminescence spectroscopic methods are unable to present direct evidence for the dark states, i. e. the 3 LE and 3 CT states, as well as the interconversion of these states. Concerning this aspect, the femtosecond-nanosecond transient absorption spectroscopic methods are in particular interests. Both the emissive state and the dark state can be detected in these spectra, and interconversion of the states involved in TADF process can be also revealed. This review article focuses on the recent development of using the transient absorption spectra to study the photophysics of the TADF emitters.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xiaoyu Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
| | - Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
| |
Collapse
|
23
|
Shizu K, Ren Y, Kaji H. Promoting Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence via the Heavy-Atom Effect. J Phys Chem A 2023; 127:439-449. [PMID: 36602533 DOI: 10.1021/acs.jpca.2c06287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thermally activated delayed fluorescence (TADF) molecules are promising for realizing durable organic light-emitting diodes in all color regions. Fast reverse intersystem crossing (RISC) is a way of improving the device lifetime of TADF-based organic light-emitting diodes. To date, RISC rate constants (kRISC) of 108 s-1 have been reported for metal-free TADF molecules. Here, we report the heavy-atom effect on TADF and a molecular design for further promoting RISC. First, we reproduced all the relevant rate constants of a sulfur-containing TADF molecule (with kRISC of 108 s-1) via density functional theory. The role of the heavy-atom effect on the rapid RISC process was clarified. Our calculations also predicted that much larger kRISC (>1010 s-1) will be obtained for selenium- and tellurium-containing TADF molecules. However, a polonium-containing molecule promotes phosphorescence without exhibiting TADF, indicating that a too strong heavy-atom effect is unfavorable for achieving both rapid RISC and efficient TADF.
Collapse
Affiliation(s)
- Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| | - Yongxia Ren
- Institute for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| |
Collapse
|
24
|
Arumugam S, Bhattacharya M, Gorantla SMNVT, Mondal KC. Redox Active cAAC-Fluorene/Indene Systems Displaying Solvatochromism, Green Luminescence and pH Sensing: Functionalization of Fluorenyl/Indenyl Rings with Radical Carbene. Chem Asian J 2023; 18:e202201041. [PMID: 36420907 DOI: 10.1002/asia.202201041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Two new series of air stable compounds of cAACX = fluorene/indene (X = Me2 , Et2 , Cy) [cAAC = cyclic (alkyl) amino carbene] have been isolated and well characterized by X-ray single crystal diffraction, photoluminescence, cyclic voltammogram (CV) and electron paramagnetic resonance (EPR) studies. Fluorescence studies reveals green light emission of cAAC bonded fluorene, whereas free fluorene generally displays a violet emission. Interestingly, the sterically crowded cAAC-fluorene analogue display solvatochromism and CF3 CO2 H sensing in solution. CV of the these compounds show a quasi-reversible electron transfer process, indicating the functionalization of fluorene/indene with radical anionic form of carbene, confirmed by CV/EPR measurements. DFT/TDDFT calculations and energy decomposition analysis coupled with natural orbital for chemical valence (EDA-NOCV) have been carried out to study different aspects of bonding and electronic transitions. Such a class of redox active and thermally stable organic molecules may be suitable for molecule based spin memory devices in future.
Collapse
Affiliation(s)
- Selvakumar Arumugam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Madhuri Bhattacharya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | | | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
25
|
Han P, Xia E, Qin A, Tang BZ. Adjustable and smart AIEgens for nondoped blue and deep blue organic light-emitting diodes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Zhao X, Zhu L, Li Q, Yin H, Shi Y. The Interplay between ESIPT and TADF for the 2,2'-Bipyridine-3,3'-diol: A Theoretical Reconsideration. Int J Mol Sci 2022; 23:ijms232213969. [PMID: 36430447 PMCID: PMC9696045 DOI: 10.3390/ijms232213969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Organic molecules with excited-state intramolecular proton transfer (ESIPT) and thermally activated delayed fluorescence (TADF) properties have great potential for realizing efficient organic light-emitting diodes (OLEDs). Furthermore, 2,2'-bipyridine-3,3'-diol (BP(OH)2) is a typical molecule with ESIPT and TADF properties. Previously, the double ESIPT state was proved to be a luminescent state, and the T2 state plays a dominant role in TADF for the molecule. Nevertheless, whether BP(OH)2 undergoes a double or single ESIPT process is controversial. Since different ESIPT channels will bring different TADF mechanisms, the previously proposed TADF mechanism based on the double ESIPT structure for BP(OH)2 needs to be reconsidered. Herein, reduced density gradient, potential energy surface, IR spectra and exited-state hydrogen-bond dynamics computations confirm that BP(OH)2 undergoes the barrierless single ESIPT process rather than the double ESIPT process with a barrier. Moreover, based on the single ESIPT structure, we calculated spin-orbit coupling matrix elements, nonradiative rates and electron-hole distributions. These results disclose that the T3 state plays a predominant role in TADF. Our investigation provides a better understanding on the TADF mechanism in hydrogen-bonded molecular systems and the interaction between ESIPT and TADF, which further provides a reference for developing efficient OLEDs.
Collapse
|
27
|
Cha Y, Li S, Feng Z, Zhu R, Fu H, Yu Z. Organic Phosphorescence Lasing Based on a Thermally Activated Delayed Fluorescence Emitter. J Phys Chem Lett 2022; 13:10424-10431. [PMID: 36326286 DOI: 10.1021/acs.jpclett.2c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organic phosphorescence materials provide an opportunity to use triplets for lasing. However, population inversion based on phosphorescence is hard to establish, owing to low luminescent quantum efficiency and intensive optical loss. By comparison, thermally activated delayed fluorescence emitters exhibit excellent optical gain with the aid of the reverse intersystem crossing (RISC) process. In this work, we designed a multifunctional gain material, not only serving as a thermally activated delayed fluorescence (TADF) emitter with excellent optical gain but also working as a phosphorescence source with high utilization of triplets. The lone pair of electrons in oxygen substitutions promotes a fast spin-flip and high delayed fluorescence quantum yield (ΦDF = 55%), enabling TADF amplified spontaneous emissions (ASE) of CH2Cl2 solution. Single-crystalline nanowires of H-aggregates effectively lower triplet energy levels with high phosphorescence quantum yield (ΦP = 27%), demonstrating Fabry-Perot mode phosphorescence lasing at 630 nm.
Collapse
Affiliation(s)
- Yongyu Cha
- Department of Chemistry, School of Science, Tianjin University, Tianjin300354, People's Republic of China
| | - Shuai Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin300354, People's Republic of China
| | - Zuofang Feng
- Department of Chemistry, School of Science, Tianjin University, Tianjin300354, People's Republic of China
| | - Rongjiao Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin300354, People's Republic of China
| | - Hongbing Fu
- Department of Chemistry, School of Science, Tianjin University, Tianjin300354, People's Republic of China
- Department of Chemistry, Capital Normal University, Beijing100048, People's Republic of China
| | - Zhenyi Yu
- Department of Chemistry, School of Science, Tianjin University, Tianjin300354, People's Republic of China
| |
Collapse
|
28
|
Zhao X, Zhao J. Long-lived charge separated state and thermally activated delayed fluorescence in anthraquinone-phenoxazine electron donor-acceptor dyads. Chem Commun (Camb) 2022; 58:7666-7669. [PMID: 35726708 DOI: 10.1039/d2cc01958b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long-lived charge separated (CS) triplet state (2.6 μs) and thermally activated delayed fluorescence (TADF) [τ = 282 ns (90.4%)/2.4 μs (9.6%)] were observed in an anthraquinone-phenoxazine electron donor-acceptor dyad via the electron spin control method, and emissive 1CS and non-emissive 3CS states were discriminated via nanosecond transient absorption spectroscopy and global analysis.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China. .,State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China. .,State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
29
|
Liu F, Cheng Z, Jiang Y, Gao L, Liu H, Liu H, Feng Z, Lu P, Yang W. Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8 % and Extremely Low Efficiency Roll-Off. Angew Chem Int Ed Engl 2022; 61:e202116927. [PMID: 35104385 DOI: 10.1002/anie.202116927] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 01/01/2023]
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show great potentials for high color purity organic light-emitting diodes (OLEDs). However, the simultaneous realization of high photoluminescence quantum yield (PLQY) and high reverse intersystem crossing rate (kRISC ) is still a formidable challenge. Herein, a novel asymmetric MR-TADF emitter (2Cz-PTZ-BN) is designed that fully inherits the high PLQY and large kRISC values of the properly selected parent molecules. The resonating extended π-skeleton with peripheral protection can achieve a high PLQY of 96 % and a fast kRISC of above 1.0×105 s-1 , and boost the performance of corresponding pure green devices with an outstanding external quantum efficiency (EQE) of up to 32.8 % without utilizing any sensitizing hosts. Remarkably, the device sufficiently maintains a high EQE exceeding 23 % at a high luminance of 1000 cd m-2 , representing the highest value for reported green MR-TADF materials at the same luminescence.
Collapse
Affiliation(s)
- Futong Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Zhuang Cheng
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Yixuan Jiang
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Lei Gao
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Hanxuan Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Hui Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Zijun Feng
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Ping Lu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
30
|
Liu F, Cheng Z, Jiang Y, Gao L, Liu H, Liu H, Feng Z, Lu P, Yang W. Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8 % and Extremely Low Efficiency Roll‐Off. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Futong Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Zhuang Cheng
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Yixuan Jiang
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Lei Gao
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Hanxuan Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Hui Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Zijun Feng
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Ping Lu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
31
|
Malakar P, Borin V, Bedi A, Schapiro I, Gidron O, Ruhman S. The impact of twisting on the intersystem crossing in acenes: an experimental and computational study. Phys Chem Chem Phys 2022; 24:2357-2362. [PMID: 35018908 DOI: 10.1039/d1cp05728f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to their unique excited state dynamics, acenes play a dominant role in optoelectronic and light-harvesting applications. Their optical and electronic properties are typically tailored by side-group engineering, which often result in distortion of the acene core from planarity. However, the effect of such distortion on their excited state dynamics is not clear. In this work, we investigate the effect of twisting on the photophysics of acenes, which are helically locked to a defined twist angle by tethers of different lengths. Ultrafast transient absorption and time resolved fluorescence show a clear dependence of the rate of intersystem crossing with twisting. This trend is explained using quantum chemical calculations, showing an increase of spin-orbit coupling (SOC). At much earlier times, structural reorganization in S1, including coherent vibrational wave packet motions, is reflected in transient spectral changes. As predicted by theory, decreasing the length of diagonal tether induces enhanced activity and frequency blue-shifting of a normal vibration consisting of anthracene twisting against restraint of the tethering chain. Overall, these results serve as design principles for tuning photophysical properties of acenes via controlled twisting of their aromatic core.
Collapse
Affiliation(s)
- Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Veniamin Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Anjan Bedi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
32
|
Wang X, Li Y, Wu Y, Qin K, Xu D, Wang D, Ma H, Ning S, Wu Z. A 2-phenylfuro[2,3- b]quinoxaline-triphenylamine-based emitter: photophysical properties and application in TADF-sensitized fluorescence OLEDs. NEW J CHEM 2022. [DOI: 10.1039/d2nj03508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have demonstrated that the T1-state energy of a fluorescence dopant (FD) is close to that of the thermally activated delayed fluorescence (TADF)-type exciplex co-host, and the energy loss caused by the T1 states of the FD could be suppressed in TADF-sensitized fluorescence (TSF) OLEDs.
Collapse
Affiliation(s)
- XinYe Wang
- School of Chemistry, Xi’an JiaoTong University, Xi’an 710049, P. R. China
| | - YiXiang Li
- School of Chemistry, Xi’an JiaoTong University, Xi’an 710049, P. R. China
| | - Yuan Wu
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology Xi’an, Shaanxi, 710021, P. R. China
| | - Ke Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - DeFei Xu
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - DongDong Wang
- School of Chemistry, Xi’an JiaoTong University, Xi’an 710049, P. R. China
| | - HuiLi Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - ShuYa Ning
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology Xi’an, Shaanxi, 710021, P. R. China
| | - ZhaoXin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
33
|
Wei Z, Zuo T, Jiang S, Qi F, Yang M, Meng L, Lu CZ. Theoretically elucidating high photoluminescence performance of dimethylacridan-based blue-color thermally activated delayed fluorescent materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj05251a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on first-principles methods, we comprehensively quantify the luminous quantum efficiencies and related photophysical process rates of dimethylacridan-based blue-color TADF emitters.
Collapse
Affiliation(s)
- Zhuangzhuang Wei
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Tao Zuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shanshan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Fangfang Qi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Mingxue Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Lingyi Meng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Can-Zhong Lu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Tsuchiya Y, Diesing S, Bencheikh F, Wada Y, Dos Santos PL, Kaji H, Zysman-Colman E, Samuel IDW, Adachi C. Exact Solution of Kinetic Analysis for Thermally Activated Delayed Fluorescence Materials. J Phys Chem A 2021; 125:8074-8089. [PMID: 34473511 DOI: 10.1021/acs.jpca.1c04056] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photophysical analysis of thermally activated delayed fluorescence (TADF) materials has become instrumental for providing insights into their stability and performance, which is not only relevant for organic light-emitting diodes but also for other applications such as sensing, imaging, and photocatalysis. Thus, a deeper understanding of the photophysics underpinning the TADF mechanism is required to push materials design further. Previously reported analyses in the literature of the kinetics of the various processes occurring in a TADF material rely on several a priori assumptions to estimate the rate constants for forward and reverse intersystem crossing. In this report, we demonstrate a method to determine these rate constants using a three-state model together with a steady-state approximation and, importantly, no additional assumptions. Further, we derive the exact rate equations, greatly facilitating a comparison of the TADF properties of structurally diverse emitters and providing a comprehensive understanding of the photophysics of these systems.
Collapse
Affiliation(s)
- Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, St Andrews KY16 9ST, U.K.,Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, Fife, St Andrews KY16 9ST, U.K
| | - Fatima Bencheikh
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimasa Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Paloma L Dos Santos
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, Fife, St Andrews KY16 9ST, U.K
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, Fife, St Andrews KY16 9ST, U.K
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, Fife, St Andrews KY16 9ST, U.K
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
35
|
Balijapalli U, Lee Y, Karunathilaka BSB, Tumen‐Ulzii G, Auffray M, Tsuchiya Y, Nakanotani H, Adachi C. Tetrabenzo[
a
,
c
]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Yi‐Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Buddhika S. B. Karunathilaka
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Ganbaatar Tumen‐Ulzii
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research, (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research, (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
36
|
Nagata M, Min H, Watanabe E, Fukumoto H, Mizuhata Y, Tokitoh N, Agou T, Yasuda T. Fused‐Nonacyclic Multi‐Resonance Delayed Fluorescence Emitter Based on Ladder‐Thiaborin Exhibiting Narrowband Sky‐Blue Emission with Accelerated Reverse Intersystem Crossing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108283] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Masakazu Nagata
- Department of Quantum Beam Science Graduate School of Science and Engineering Ibaraki University 4-12-1 Naka-narusawa, Hitachi Ibaraki 316-8511 Japan
| | - Hyukgi Min
- INAMORI Frontier Research Center (IFRC) and Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Erika Watanabe
- Department of Quantum Beam Science Graduate School of Science and Engineering Ibaraki University 4-12-1 Naka-narusawa, Hitachi Ibaraki 316-8511 Japan
| | - Hiroki Fukumoto
- Department of Quantum Beam Science Graduate School of Science and Engineering Ibaraki University 4-12-1 Naka-narusawa, Hitachi Ibaraki 316-8511 Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Tomohiro Agou
- Department of Quantum Beam Science Graduate School of Science and Engineering Ibaraki University 4-12-1 Naka-narusawa, Hitachi Ibaraki 316-8511 Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC) and Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
37
|
Nagata M, Min H, Watanabe E, Fukumoto H, Mizuhata Y, Tokitoh N, Agou T, Yasuda T. Fused-Nonacyclic Multi-Resonance Delayed Fluorescence Emitter Based on Ladder-Thiaborin Exhibiting Narrowband Sky-Blue Emission with Accelerated Reverse Intersystem Crossing. Angew Chem Int Ed Engl 2021; 60:20280-20285. [PMID: 34268850 DOI: 10.1002/anie.202108283] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 01/28/2023]
Abstract
Developing organic luminophores with unique capability of strong narrowband emission is both crucial and challenging for the further advancement of organic light-emitting diodes (OLEDs). Herein, a nanographitic fused-nonacyclic π-system (BSBS-N1), which was strategically embedded with multiple boron, nitrogen, and sulfur atoms, was developed as a new multi-resonance thermally activated delayed fluorescence (MR-TADF) emitter. Narrowband sky-blue emission with a peak at 478 nm, full width at half maximum of 24 nm, and photoluminescence quantum yield of 89 % was obtained with BSBS-N1. Additionally, the spin-orbit coupling was enhanced by incorporating two sulfur atoms, thereby facilitating the spin-flipping process between the excited triplet and singlet states. OLEDs based on BSBS-N1 as a sky-blue MR-TADF emitter achieved a high maximum external electroluminescence quantum efficiency of 21.0 %, with improved efficiency roll-off.
Collapse
Affiliation(s)
- Masakazu Nagata
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Hyukgi Min
- INAMORI Frontier Research Center (IFRC) and Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Erika Watanabe
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Hiroki Fukumoto
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tomohiro Agou
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC) and Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
38
|
Kim I, Cho KH, Jeon SO, Son WJ, Kim D, Rhee YM, Jang I, Choi H, Kim DS. Three States Involving Vibronic Resonance is a Key to Enhancing Reverse Intersystem Crossing Dynamics of an Organoboron-Based Ultrapure Blue Emitter. JACS AU 2021; 1:987-997. [PMID: 34467345 PMCID: PMC8395647 DOI: 10.1021/jacsau.1c00179] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 05/26/2023]
Abstract
The recently developed narrow-band blue-emitting organoboron chromophores based on the multiple-resonance (MR) effect have now become one of the most important components for constructing efficient organic light emitting diodes (OLEDs). While they basically emit through fluorescence, they are also known for showing substantial thermally activated delayed fluorescence (TADF) even with a relatively large singlet-triplet gap (ΔE ST). Indeed, understanding the reverse intersystem crossing (RISC) dynamics behind this peculiar TADF will allow judicious molecular designs toward achieving better performing OLEDs. Explaining the underlying nonadiabatic spin-flip mechanism, however, has often been equivocal, and how the sufficiently fast RISC takes place even with the sizable ΔE ST and vanishingly small spin-orbit coupling is not well understood. Here, we show that a vibronic resonance, namely the frequency matching condition between the vibration and the electronic energy gap, orchestrates three electronic states together and this effect plays a major role in enhancing RISC in a typical organoboron emitter. Interestingly, the mediating upper electronic state is quite high in energy to an extent that its thermal population is vanishingly small. Through semiclassical quantum dynamics simulations, we further show that the geometry dependent non-Condon coupling to the upper triplet state that oscillates with the frequency ΔE ST/ℏ is the main driving force behind the peculiar resonance enhancement. The existence of an array of vibrational modes with strong vibronic rate enhancements provides the ability to sustain efficient RISC over a range of ΔE ST in defiance of the energy gap law, which can render the MR-emitters peculiar in comparison with more conventional donor-acceptor type emitters. Our investigation may provide a new guide for future blue emitting molecule developments.
Collapse
Affiliation(s)
- Inkoo Kim
- Data
and Information Technology Center, Samsung
Electronics, Hwaseong 18448, Republic of Korea
| | - Kwang Hyun Cho
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic
of Korea
| | - Soon Ok Jeon
- Samsung
Advanced Institute of Technology, Samsung
Electronics, Suwon 16678, Republic of Korea
| | - Won-Joon Son
- Data
and Information Technology Center, Samsung
Electronics, Hwaseong 18448, Republic of Korea
| | - Dongwook Kim
- Department
of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea
| | - Young Min Rhee
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic
of Korea
| | - Inkook Jang
- Data
and Information Technology Center, Samsung
Electronics, Hwaseong 18448, Republic of Korea
| | - Hyeonho Choi
- Samsung
Advanced Institute of Technology, Samsung
Electronics, Suwon 16678, Republic of Korea
| | - Dae Sin Kim
- Data
and Information Technology Center, Samsung
Electronics, Hwaseong 18448, Republic of Korea
| |
Collapse
|
39
|
Balijapalli U, Lee YT, Karunathilaka BSB, Tumen-Ulzii G, Auffray M, Tsuchiya Y, Nakanotani H, Adachi C. Tetrabenzo[a,c]phenazine Backbone for Highly Efficient Orange-Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angew Chem Int Ed Engl 2021; 60:19364-19373. [PMID: 34155775 DOI: 10.1002/anie.202106570] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 11/09/2022]
Abstract
Three thermally activated delayed fluorescence (TADF) molecules, namely PQ1, PQ2, and PQ3, are composed of electron-accepting (A) tetrabenzo[a,c]phenazine (TBPZ) and electron-donating (D) phenoxazine (PXZ) units are designed and characterized. The combined effects of planar acceptor manipulation and high steric hindrance between D and A units endow high molecular rigidity that suppresses nonradiative decay of the excitons with improved photoluminescence quantum yields (PLQYs). Particularly, the well-aligned excited states involving a singlet and a triplet charge-transfer excited states and a localized excited triplet state in PQ3 enhances the reverse intersystem crossing rate constant (kRISC ) with a short delay lifetime (τd ). The orange-red OLED based on PQ3 displays a maximum external EL quantum efficiency (EQE) of 27.4 % with a well-suppressed EL efficiency roll-off owing to a completely horizontal orientation of the transition dipole moment in the film state.
Collapse
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Buddhika S B Karunathilaka
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Ganbaatar Tumen-Ulzii
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
40
|
Muthike AK, Carlotti B, Madu IK, Jiang H, Kim H, Wu Q, Yu L, Zimmerman PM, Goodson T. The Role of the Core Attachment Positioning in Triggering Intramolecular Singlet Exciton Fission in Perylene Diimide Tetramers. J Phys Chem B 2021; 125:5114-5131. [PMID: 33961426 DOI: 10.1021/acs.jpcb.1c02534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have proposed that the presence of a flexible π-bridge linker is crucial in activating intramolecular singlet exciton fission (iSEF) in multichromophoric systems. In this study, we report the photophysical properties of three analogous perylene diimide (PDI) dendritic tetramers showing flexible/twisted π-bridged structures with α- and β-substitutions and a rigid/planar structure with a β-fused ring (βC) connection to a benzodithiophene-thiophene (BDT-Th) core. The rigidity and enhanced planarity of βC lead to significant intramolecular charge transfer and triplet formation via an intersystem crossing pathway. Steady-state spectroscopic measurements reveal similar absorption and emission spectra for the α-tetramer and the parent PDI monomer. However, their fluorescence quantum yield is significantly different. The negligible fluorescence yield of the α-tetramer (0.04%) is associated with a competitive nonradiative decay pathway. Indeed, for this twisted compound in a high polar environment, a fast and efficient iSEF with a triplet quantum yield of 124% is observed. Our results show that the α-single-bond connections in the α compound are capable of interrupting the coupling among the PDI units, favoring iSEF. We propose that the formation of the double triplet (1[TT]) state is through a superposition of singlet states known as [S1S0][TT]CT, which has been suggested previously for pentacene derivatives. Using steady-state and time-resolved spectroscopic experiments, we demonstrate that the conformational flexibility of the linker itself is necessary but not sufficient to allow iSEF. For the case of the other twisted tetramer, β, the strong π-π co-facial interactions between the adjacent PDI units in its structure lead to excimer formation. These excimer states trap the singlet excitons preventing the formation of the 1[TT] state, thus inhibiting iSEF.
Collapse
Affiliation(s)
- Angelar K Muthike
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benedetta Carlotti
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto n.8, 06123 Perugia, Italy
| | - Ifeanyi K Madu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hyungjun Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
| | - Qinghe Wu
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Luping Yu
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
41
|
Wu P, Xie FM, Wei HX, Li YQ, Dai GL, Wang Y, Tang JX, Zhao X. Thermally activated delayed fluorescent emitters based on 3-(phenylsulfonyl)pyridine. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Rodriguez-Serrano A, Dinkelbach F, Marian CM. Intersystem crossing processes in the 2CzPN emitter: a DFT/MRCI study including vibrational spin-orbit interactions. Phys Chem Chem Phys 2021; 23:3668-3678. [PMID: 33527934 DOI: 10.1039/d0cp06011a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multireference quantum chemical calculations were performed in order to investigate the (reverse) intersystem crossing ((R)ISC) mechanisms of 4,5-di(9H-carbazol-9-yl)-phthalonitrile (2CzPN). A combination of density funcional theory (DFT) and multireference configuration interaction methods (MRCI) was used. The excellent agreement of the computed absorption spectrum with available experimental absorption spectra lends confidence to the chosen computational protocol. Vertically, two triplet excited states (T1 and T2) are found below the S1 state. At the excited state minima, the calculated adiabatic energies locate only the T1 state below the S1 state. The enhanced charge transfer (CT) character of the geometrically relaxed excited states causes their mutual (direct) spin-orbit coupling (SOC) interaction to be low. Contributions of vibronic SOC to the (R)ISC probability, evaluated by a Herzberg-Teller-like procedure for a temperature of 300 K, are small but not negligible. For ISC, the S1→ T1 channel is the fastest (8 × 106 s-1), while the S1→ T2 channel is found to be thermally activated (9 × 104 s-1) and less efficient when proceeding from the adiabatic S1 state. Our calculations also reveal, however, a barrierless S1→ T2 ISC pathway near the Franck-Condon region. RISC is found to essentially proceed via the T1→ S1 channel, with a rate constant of (3 × 104 s-1) if our adiabatic singlet-triplet energy gap in vacuum (ΔEST = 0.12 eV) is employed. Shifting the potentials to match two experimentally reported singlet-triplet energy gaps in toluene (ΔEST = 0.21 and 0.31 eV, respectively) leads to a drastic reduction of the computed rate constant by up to 4 orders of magnitude. The T2 state is not expected to play a major role in mediating triplet-singlet transitions in 2CzPN unless it is directly populated by hot excitons. No indication for a strong vibronic coupling of the T2 and T1 potentials is found, which could help overcome the negative exponential dependence of the RISC rate constant on the magnitude of the energy gap.
Collapse
Affiliation(s)
- Angela Rodriguez-Serrano
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
43
|
Woo SJ, Kim JJ. TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix. J Phys Chem A 2021; 125:1234-1242. [PMID: 33517658 DOI: 10.1021/acs.jpca.0c11322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reverse intersystem crossing (RISC) rate of a thermally activated delayed fluorescence (TADF) molecule is sensitive to the energy alignment of the singlet charge-transfer state (1CT), triplet charge-transfer state (3CT), and locally excited triplet state (3LE). However, the energy distribution of the charge-transfer states originating from the conformational distribution of TADF molecules in a solid matrix inevitably generated during the preparation of a solid sample due to the rotatable donor-acceptor linkage is rarely considered. Moreover, the investigation of the energy distribution of the 3CT state is both theoretically and experimentally difficult due to the triplet instabilities of time-dependent density functional (TD-DFT) calculations and difficulties in phosphorescence measurements, respectively. As a result, the relationships between conformational distribution, configurations of excited state transition orbitals, and excited state energies/dynamics have not been clearly explained. In this work, we determined the energy distribution of CT states of the TADF emitter TPSA in frozen toluene at 77 K by the measurement of time-resolved spectra in the full time range (1 ns to 30 s) of emission including prompt fluorescence, TADF, 3CT phosphorescence, and 3LE phosphorescence. We obtained the energy band of CT states where 1CT and 3CT states are distributed in the range of 2.85-3.00 and 2.64-2.96 eV, respectively. We tested various global hybrid and long-range corrected functionals for the TD-DFT calculation of 3CT energy of TPSA and found that only the M11 functional shows consistent results without triplet instability. We performed TD-DFT with the M11* functional optimized for a robust dihedral angle scan of 3CT states without triplet instability and reproduced the energy band structure obtained from the experiment. Through TD-DFT and experimental investigations, it is estimated that the dihedral angles of donor-acceptor (θD-A) and acceptor-linker (θA) of TPSA in frozen toluene lie within the range 70° ≤ θD-A ≤ 90° and 0° ≤ θA ≤ 30° respectively. Our results show that the dihedral angle distribution must be considered for further investigation of the photophysics of TADF molecules and the development of stable and efficient TADF emitters.
Collapse
Affiliation(s)
- Seung-Je Woo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Joo Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
44
|
Structural Controls of Tetraphenylbenzene-based AIEgens for Non-doped Deep Blue Organic Light-emitting Diodes. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0403-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Chen L, Zhang SF, Chen Z, Zhen Q, Xiong W, Shao Y, Ge JY, Lv N, Chen J. Ni-catalyzed cascade coupling reactions: synthesis and thermally-activated delayed fluorescence characterization of quinazolinone derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02871e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A nickel-catalyzed cascade coupling of 2-(2-(arylcarbonyl)-4-oxoquinazolin-3(4H)-yl)acetonitrile and arylboronic acid for the synthesis of pyrazino-fused quinazolinones has been developed. The TADF effect of 3a in the solid-state was investigated.
Collapse
Affiliation(s)
- Lepeng Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Shou-Feng Zhang
- Department of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545616, P. R. China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Qianqian Zhen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wenzhang Xiong
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|