1
|
Dong J, Weis P, Wani V, Kappes MM, Wang LS. Observation of Structural Isomers and Isomerization of an Atom-Precise Gold Hydride Nanocluster Using Ion Mobility Spectrometry. J Phys Chem Lett 2025; 16:4975-4981. [PMID: 40354472 DOI: 10.1021/acs.jpclett.5c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Ion mobility spectrometry (IMS) is a powerful technique to determine structures and isomers of gas phase clusters and complex molecules. It is also a valuable tool to investigate ligand-protected atom-precise nanoclusters that cannot be readily crystallized and examined by X-ray diffraction. Here we use IMS to study a diphosphine-protected gold hydride nanocluster, [Au22H3(dppee)7]3+ (dppee = bis(2-diphenylphosphino)ethyl ether), which was synthesized previously and hypothesized to contain two Au11 units with different bridging ligands. Surprisingly, our IMS data revealed the coexistence of two structural isomers in the as-synthesized product with a population of ∼85% for the main isomer and ∼15% for the minor isomer. The two isomers are found to be interconvertible at high activation voltages. Comparison between the IMS data and theoretical calculations confirm that the main and minor isomers consist of one and three bridging ligands, respectively. The isomers and isomerization process uncovered in this work provide opportunities to study the structure-property relationship of atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Jia Dong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Vaibhav Wani
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
2
|
Das AK, Hegde S, Woods TJ, Wani VS, Backlund MP. Direct Observation of Three Chiral Conformers of an Atomically Precise Metal Nanoparticle. NANO LETTERS 2025; 25:7491-7498. [PMID: 40293977 DOI: 10.1021/acs.nanolett.5c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Atomically precise metal nanoclusters (NCs) have attracted a lot of attention owing to their many interesting properties and applications. On the fundamental side, they can provide a testbed for understanding structure-property relationships in nanomaterials. Hence, their isomerism is of intrinsic significance. In this work, we report the atomically precise structure of three Cu14 NC conformers, i.e., NCs with the same chemical formula and atomic connectivity but with varying bond angles and distances, obtained through X-ray crystallography. Interestingly, all three conformers exhibit chirality and cocrystallize in the same lattice structure. Since interconversion of each conformer and its chiral counterpart is possible without breaking and remaking bonds, these NCs constitute a set of atropisomers. The structure of our Cu14 NC highlights the various sources of isomerism one can observe at the nanoscale. These subtle yet identifiable differences represent something like a minimal unit of structural change, facilitating future investigation of structure-property relationships.
Collapse
Affiliation(s)
- Anish Kumar Das
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Swastik Hegde
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Toby J Woods
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vaibhav S Wani
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mikael P Backlund
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Bian G, Chen D, Chen Y, Zhang W, Fang L, You Q, Wang R, Gu W, Zhou Y, Yan N, Zhuang S, Ji S, Zhou M, Wang C, Liao L, Tang Q, Yang J, Wu Z. Remove the innermost atom of a magnetic multi-shell gold nanoparticle for near-unity conversion of CO 2 to CO. SCIENCE ADVANCES 2025; 11:eadu1996. [PMID: 40203115 PMCID: PMC11980848 DOI: 10.1126/sciadv.adu1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Few reports on paramagnetic metal nanoparticles with atomic precision and their difficult tailoring retard the insightful investigation of metal nanoparticle paramagnetism. Herein, we introduced a thiol-iodine mixture ligand-protecting strategy to successfully synthesize multi-shell paramagnetic [Au127I4(TBBT)48 (I: iodine, TBBT: 4-tert-butylphenylthiolate)]. The innermost Au atom was successfully removed via thiol induction without altering the structure framework to produce diamagnetic Au126I4(TBBT)48 with local ligand arrangement changed (butterfly effect), which could be further transformed into paramagnetic [Au126I4(TBBT)48]+ via hydrogen peroxide oxidation. The spin populations of both paramagnetic nanoparticles are more densely distributed on surface iodine than sulfur. Diamagnetic Au126I4(TBBT)48 exhibited a Faradaic efficiency of ~100% at -0.57 volt during the electrocatalytic reduction of carbon dioxide to carbon monoxide, while paramagnetic Au127I4(TBBT)48 and [Au126I4(TBBT)48]+ exhibited the maximum Faradaic efficiency of 87% at -0.67 volt and 90% at -0.57 volt, respectively, indicating the spin-catalytic activity correlation.
Collapse
Affiliation(s)
- Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Shiyu Ji
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chengming Wang
- Instruments’ Center for Physical Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
4
|
Chi M, Wei J, Zhao Z, Liu X, Sun W, Feng Y, Lv H, Yang GY. Structural Isomerism of {Ag 14} 10+ Nanocluster Encapsulated by Bowl-like Polyoxometalates. Angew Chem Int Ed Engl 2025; 64:e202424499. [PMID: 39870586 DOI: 10.1002/anie.202424499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
The structural isomerism of atomically precise nanoclusters provides a preeminent theoretical model to investigate the structure-property relationships. Herein, we synthesized three bowl-like polyoxometalate (POM)-encapsulated Ag nanoclusters (denoted as {Ag14(Sb3W30)2}-1, {Ag14(Sb3W30)2}-1 a, and {Ag14(Sb3W30)2}-2) via a facile one-pot solvothermal approach. Among them, for the first time, an unprecedented isomeric {Ag14}10+ nanoclusters are obtained in polyoxoanions {Ag14(Sb3W30)2}-1 and {Ag14(Sb3W30)2}-2, which should be probably induced by the different distribution of coordinating O atoms in two isomeric bowl-like {Sb3W30} ligands. Clusters {Ag14(Sb3W30)2}-1 and {Ag14(Sb3W30)2}-2 exhibit distinct electronic structures and physicochemical properties due to the different geometric structures of the {Ag14}10+ nanoclusters, but both clusters can effectively catalyze the visible-light-driven hydrogen evolution with over 22,000 turnovers (TONs) after 6-hour photocatalysis.
Collapse
Affiliation(s)
- Manzhou Chi
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Zichen Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyi Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Wanting Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yeqin Feng
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
5
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
6
|
Deng G, Malola S, Ki T, Liu X, Yoo S, Lee K, Bootharaju MS, Häkkinen H, Hyeon T. Structural Isomerism in Bimetallic Ag 20Cu 12 Nanoclusters. J Am Chem Soc 2024; 146:26751-26758. [PMID: 39292876 DOI: 10.1021/jacs.4c06832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Structural isomers of atomically precise metal nanoclusters are highly sought after for investigating structure-property relationships in nanostructured materials. However, they are extremely rare, particularly those of alloys, primarily due to the challenges in their synthesis and structural characterization. Herein, for the first time, a pair of bimetallic isomeric AgCu nanoclusters has been controllably synthesized and structurally characterized. These two isomers share an identical molecular formula, Ag20Cu12(C≡CR)24 (denoted as Ag20Cu12-1 and Ag20Cu12-2; HC≡CR is 3,5-bis(trifluoromethyl)phenylacetylene). Single-crystal X-ray diffraction data analysis revealed that Ag20Cu12-1 possesses an Ag17Cu4 core composed of two interpenetrating hollow Ag11Cu2 structures. This core is stabilized by four different types of surface motifs: eight -C≡CR, one Cu(C≡CR)2, one Ag3Cu3(C≡CR)6, and two Cu2(C≡CR)4 units. Ag20Cu12-2 features a bitetrahedron Ag14 core, which is stabilized by three Ag2Cu4(C≡CR)8 units. Interestingly, Ag20Cu12-2 undergoes spontaneous transformation to Ag20Cu12-1 in the solution-state. Density functional theory calculations explain the electronic and optical properties and confirm the higher relative stability of Ag20Cu12-1 compared to Ag20Cu12-2. The controlled synthesis and structural isomerism of alloy nanoclusters presented in this work will stimulate and broaden research on nanoscale isomerism.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Mazumder A, Li K, Liu Z, Wang Y, Pei Y, Peteanu LA, Jin R. Isomeric Effects of Au 28(S- c-C 6H 11) 20 Nanoclusters on Photoluminescence: Roles of Electron-Vibration Coupling and Higher Triplet State. ACS NANO 2024; 18:21534-21543. [PMID: 39092525 PMCID: PMC11328167 DOI: 10.1021/acsnano.4c06702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The exploration of near-infrared photoluminescence (PL) from atomically precise nanoclusters is currently a prominent area of interest owing to its importance in both fundamental research and diverse applications. In this work, we investigate the near-infrared (NIR) photoluminescence mechanisms of two structural isomers of atomically precise gold nanoclusters of 28 atoms protected by cyclohexanethiolate (CHT) ligands, i.e., Au28i(CHT)20 and Au28ii(CHT)20. Based on their structures, analysis of 3O2 (triplet oxygen) quenching of the nanocluster triplet states, temperature-dependent photophysical studies, and theoretical calculations, we have elucidated the intricate processes governing the photoluminescence of these isomeric nanoclusters. For Au28i(CHT)20, its emission characteristics are identified as phosphorescence plus thermally activated delayed fluorescence (TADF) with a PL quantum yield (PLQY) of 0.3% in dichloromethane under ambient conditions. In contrast, the Au28ii(CHT)20 isomer exhibits exclusive phosphorescence with a PLQY of 3.7% in dichloromethane under ambient conditions. Theoretical simulations reveal a larger singlet (S1)-triplet (T1) gap in Au28ii than that in Au28i, and the higher T2 state plays a critical role in both isomers' photophysical processes. The insights derived from this investigation not only contribute to a more profound comprehension of the fundamental principles underlying the photoluminescence of atomically precise gold nanoclusters but also provide avenues for tailoring their optical properties for diverse applications.
Collapse
Affiliation(s)
- Abhrojyoti Mazumder
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yitong Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Linda A Peteanu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Gu W, Zhou Y, Wang W, You Q, Fan W, Zhao Y, Bian G, Wang R, Fang L, Yan N, Xia N, Liao L, Wu Z. Concomitant Near-Infrared Photothermy and Photoluminescence of Rod-Shaped Au 52(PET) 32 and Au 66(PET) 38 Synthesized Concurrently. Angew Chem Int Ed Engl 2024; 63:e202407518. [PMID: 38752452 DOI: 10.1002/anie.202407518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Gold nanoclusters exhibiting concomitant photothermy (PT) and photoluminescence (PL) under near-infrared (NIR) light irradiation are rarely reported, and some fundamental issues remain unresolved for such materials. Herein, we concurrently synthesized two novel rod-shaped Au nanoclusters, Au52(PET)32 and Au66(PET)38 (PET = 2-phenylethanethiolate), and precisely revealed that their kernels were 4 × 4 × 6 and 5 × 4 × 6 face-centered cubic (fcc) structures, respectively, based on the numbers of Au layers in the [100], [010], and [001] directions. Following the structural growth mode from Au52(PET)32 to Au66(PET)38, we predicted six more novel nanoclusters. The concurrent synthesis provides rational comparison of the two nanoclusters on the stability, absorption, emission and photothermy, and reveals the aspect ratio-related properties. An interesting finding is that the two nanoclusters exhibit concomitant PT and PL under 785 nm light irradiation, and the PT and PL are in balance, which was explained by the qualitative evaluation of the radiative and non-radiative rates. The ligand effects on PT and PL were also investigated.
Collapse
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wenying Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| |
Collapse
|
9
|
Wang M, Xia S, Jiang C, He S, Xia J, Wang Z, Yuan X, Liu L, Chen J. Aggregation Inducing Reversible Conformational Isomerization of Surface Staple in Au 18SR 14 Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311895. [PMID: 38660823 DOI: 10.1002/smll.202311895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The conformation of molecules and materials is crucial in determining their properties and applications. Here, this work explores the reversible transformation between two distinct conformational isomers in metal nanoclusters. This work demonstrates the successful manipulation of a controllable and reversible isomerization of Au18SR14 within an aqueous solution through two distinct methods: ethanol addition and pH adjustment. The initial driver is the alteration of the solution environment, leading to the aggregation of Au18SR14 protected by ligands with smaller steric hindrance. At the atomic level, the folding mode of the unique Au4SR5 staple underpins the observed structural transformation. The reversal of staple conformation leads to color shifting between green and orange-red, and tailors a second emission peak at 725 nm originating from charge transfer from the thiolate to the Au9 core. This work not only deepens the understanding of the surface structure and dual-emission of metal nanoparticles, but also enhances the comprehension of their isomerization.
Collapse
Affiliation(s)
- Meng Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Shan Xia
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, 30 Puzhu South Road, Pukou District, Nanjing, Jiangsu, 210009, P. R. China
| | - Chengjia Jiang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Shuyi He
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
- Qingdao Boting Hydrogen Age Ocean Technol R&D Ctr, Qingdao Boting Technol Co Ltd, Shandong Hydrogen Times Marine Technology Co Ltd, Qingdao, 266100, P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Liren Liu
- Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, 30 Puzhu South Road, Pukou District, Nanjing, Jiangsu, 210009, P. R. China
| | - Jishi Chen
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
- Qingdao Boting Hydrogen Age Ocean Technol R&D Ctr, Qingdao Boting Technol Co Ltd, Shandong Hydrogen Times Marine Technology Co Ltd, Qingdao, 266100, P. R. China
| |
Collapse
|
10
|
Zhang J, Liu Y, Liu M, Wang Z, Qi T, Zhang M, Shi H, Song J. Carboxylic acid isomer-directed synthesis of CdS nanocluster isomers. Chem Sci 2024; 15:10585-10591. [PMID: 38994410 PMCID: PMC11234825 DOI: 10.1039/d4sc01569j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Selective synthesis of nanocluster (NC) isomers with tailored structures holds significant importance for enhancing their applications. Here, we develop an effective strategy for the selective synthesis of CdS NC isomers through the judicious choice of a pair of carboxylic acid isomer additives. Specifically, CdS NC-312 and NC-323 (denoted by their UV-vis absorption peak position) could be selectively produced by introducing a conventional mixture of Cd and S precursors, with the addition of 2-methylbutyric acid (2-MA) and 3-methylbutyric acid (3-MA), respectively. The synthesized NC isomers demonstrated a precise isomeric relationship, sharing both the isomeric inorganic core and organic surface. Alternatively, the as-synthesized NCs were interconvertible by re-adding the acid isomers. The density functional theory calculations further support that 2-MA and 3-MA have specific selectivity for producing CdS NC isomers by interfacial tuning. Finally, the generality of this methodology was also evidenced with applications in other CdS NC synthetic systems. This study unveils the intriguing correlation between additive structures and the configuration of NCs, providing a foundation for the selective synthesis of NC isomers.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Yu Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Zhenzhu Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Mingming Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Hao Shi
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
11
|
He WM, Hu JH, Cui YJ, Li J, Si YB, Wang SB, Zhao YJ, Zhou Z, Ma LF, Zang SQ. Filling the gaps in icosahedral superatomic metal clusters. Natl Sci Rev 2024; 11:nwae174. [PMID: 38887544 PMCID: PMC11182670 DOI: 10.1093/nsr/nwae174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/20/2024] Open
Abstract
Chemically modified superatoms have emerged as promising candidates in the new periodic table, in which Au13 and its doped M n Au13- n have been widely studied. However, their important counterpart, Ag13 artificial element, has not yet been synthesized. In this work, we report the synthesis of Ag13 nanoclusters using strong chelating ability and rigid ligands, that fills the gaps in the icosahedral superatomic metal clusters. After further doping Ag13 template with different degrees of Au atoms, we gained insight into the evolution of their optical properties. Theoretical calculations show that the kernel metal doping can modulate the transition of the excited-state electronic structure, and the electron transfer process changes from local excitation (LE) to charge transfer (CT) to LE. This study not only enriches the families of artificial superatoms, but also contributes to the understanding of the electronic states of superatomic clusters.
Collapse
Affiliation(s)
- Wei-Miao He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Jia Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Science, Xuchang University, Xuchang 461000, China
| | - Yu-Bing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai-Bo Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Jing Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Lu-Fang Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Lu C, Meng C, Li Y, Yuan J, Ren X, Gao L, Su D, Cao K, Cui M, Yuan Q, Gao X. A probe for NIR-II imaging and multimodal analysis of early Alzheimer's disease by targeting CTGF. Nat Commun 2024; 15:5000. [PMID: 38866763 PMCID: PMC11169542 DOI: 10.1038/s41467-024-49409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
To date, earlier diagnosis of Alzheimer's disease (AD) is still challenging. Recent studies revealed the elevated expression of connective tissue growth factor (CTGF) in AD brain is an upstream regulator of amyloid-beta (Aβ) plaque, thus CTGF could be an earlier diagnostic biomarker of AD than Aβ plaque. Herein, we develop a peptide-coated gold nanocluster that specifically targets CTGF with high affinity (KD ~ 21.9 nM). The probe can well penetrate the blood-brain-barrier (BBB) of APP/PS1 transgenic mice at early-stage (earlier than 3-month-old) in vivo, allowing non-invasive NIR-II imaging of CTGF when there is no appearance of Aβ plaque deposition. Notably, this probe can also be applied to measuring CTGF on postmortem brain sections by multimodal analysis, including fluorescence imaging, peroxidase-like chromogenic imaging, and ICP-MS quantitation, which enables distinguishment between the brains of AD patients and healthy people. This probe possesses great potential for precise diagnosis of earlier AD before Aβ plaque formation.
Collapse
Affiliation(s)
- Cao Lu
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Cong Meng
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jinling Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xiaojun Ren
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Liang Gao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kai Cao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China.
| |
Collapse
|
13
|
Zhou H, Yang T, Deng H, Yun Y, Jin S, Xiong L, Zhu M. An insight, at the atomic level, into the structure and catalytic properties of the isomers of the Cu 22 cluster. NANOSCALE 2024; 16:10318-10324. [PMID: 38738311 DOI: 10.1039/d4nr00973h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The study of structural isomerism in copper nanoclusters has been relatively limited compared to that in gold and silver nanoclusters. In this work, we present the controlled synthesis and structures of two isomeric copper nanoclusters, denoted as Cu22-1 and Cu22-2, whose compositions were determined to be Cu22(SePh)10(Se)6(P(Ph-4F)3)8 through single-crystal X-ray diffraction (SCXRD). The structural isomerism of Cu22-1 and Cu22-2 arises from the different arrangements of a few Cu(SeR)(PR3) motifs on the surface structure. These subtle changes in the surface structure also influence the distortion of the core and the spatial arrangement of the clusters, and affect the electronic structure. Furthermore, due to their distinct structures, Cu22-1 and Cu22-2 exhibit different catalytic properties in the copper-catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC). Notably, Cu22-1 demonstrates efficient catalytic activity for photoinduced AAC, achieving a yield of 90% within 1 hour. This research contributes to the understanding of structural isomerism in copper nanoclusters and offers insights into the structure-function relationship in these systems.
Collapse
Affiliation(s)
- Huimin Zhou
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Tao Yang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Huijuan Deng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yapei Yun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China.
| | - Manzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
14
|
Wang Y, Gianopoulos CG, Liu Z, Kirschbaum K, Alfonso D, Kauffman DR, Jin R. Au 36(SR) 22 Nanocluster and a Periodic Pattern from Six to Fourteen Free Electrons in Core Size Evolution. JACS AU 2024; 4:1928-1934. [PMID: 38818069 PMCID: PMC11134389 DOI: 10.1021/jacsau.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
An Au36(S-tBu)22 nanocluster (NC) is synthesized using the bulky tert-butyl thiol as the ligand. Single-crystal X-ray crystallography reveals that it has an Au25 core which evolves from the Au22 core in the previously reported Au30(S-tBu)18, and the Au25 core is protected by longer staple-like surface motifs. The new Au36 NC extends the members of the face-centered cubic structural evolution by adding an Au3 triangle and an Au4 tetrahedron unit. Additionally, it is found that Au36 emits near-infrared photoluminescence at 863 nm with a quantum yield (QY) of 4.3%, which is five times larger than that of Au30(S-tBu)18-the closest neighbor in the structural evolution pattern. The higher QY of Au36 is attributed to a larger radiative relaxation (kr), resulting from the structural effect. Finally, we find that the longer staple motifs lead to enhanced stability of Au36(S-tBu)22 relative to Au30(S-tBu)18.
Collapse
Affiliation(s)
- Yitong Wang
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Zhongyu Liu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kristin Kirschbaum
- Department
of Chemistry and Biochemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Dominic Alfonso
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Douglas R. Kauffman
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Rongchao Jin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Si WD, Zhang C, Zhou M, Wang Z, Feng L, Tung CH, Sun D. Arylgold nanoclusters: Phenyl-stabilized Au 44 with thermal-controlled NIR single/dual-channel phosphorescence. SCIENCE ADVANCES 2024; 10:eadm6928. [PMID: 38354237 PMCID: PMC10866543 DOI: 10.1126/sciadv.adm6928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Arylation of gold holds paramount importance in the domain of organometallic chemistry; however, the exploration of arylgold nanoclusters remains in its infancy primarily due to the synthetic challenge. Here, we present a facile and effective arylation strategy to directly synthesize two arylgold nanoclusters (Au44a and Au44b), by using tetraarylborates, capable of transferring aryl fragments to metal centers. X-ray crystallography reveals that both Au44 nanoclusters contain an Au44 kernel co-protected by six aryl groups, two tetrahydrothiophene, and 16 alkynyl-ether ligands, the latter is generated in situ through Williamson ether reaction during the assembly processes. Notably, Au44 nanoclusters exhibit near-infrared (NIR) phosphorescence (λmax = 958 nm) and microsecond radiative relaxation at ambient condition, which is a thermal-controlled single/dual-channel phosphorescent emission revealed by temperature-dependent NIR, time-resolved emission, and femtosecond/nanosecond transition absorption spectra. This work represents a breakthrough in using aryl as protective ligands for the construction of gold nanoclusters, which is poised to have a transformative impact on organometallic nanoclusters.
Collapse
Affiliation(s)
- Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, People’s Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| |
Collapse
|
16
|
Liu Z, Luo L, Jin R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309073. [PMID: 37922431 DOI: 10.1002/adma.202309073] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
17
|
Wang Y, Liu Z, Mazumder A, Gianopoulos CG, Kirschbaum K, Peteanu LA, Jin R. Tailoring Carbon Tails of Ligands on Au 52(SR) 32 Nanoclusters Enhances the Near-Infrared Photoluminescence Quantum Yield from 3.8 to 18.3. J Am Chem Soc 2023; 145:26328-26338. [PMID: 37982713 DOI: 10.1021/jacs.3c09846] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
One of the important factors that determine the photoluminescence (PL) properties of gold nanoclusters pertain to the surface. In this study, four Au52(SR)32 nanoclusters that feature a series of aromatic thiolate ligands (-SR) with different bulkiness at the para-position are synthesized and investigated. The near-infrared (NIR) photoluminescence (peaks at 900-940 nm) quantum yield (QY) is largely enhanced with a decrease in the ligand's para-bulkiness. Specifically, the Au52(SR)32 capped with the least bulky p-methylbenzenethiolate (p-MBT) exhibits the highest PLQY (18.3% at room temperature in non-degassed dichloromethane), while Au52 with the bulkiest tert-butylbenzenethiolate (TBBT) only gives 3.8%. The large enhancement of QY with fewer methyl groups on the ligands implies a nonradiative decay via the multiphonon process mediated by C-H bonds. Furthermore, single-crystal X-ray diffraction (SCXRD) comparison of Au52(p-MBT)32 and Au52(TBBT)32 reveals that fewer methyl groups at the para-position lead to a stronger interligand π···π stacking on the Au52 core, thus restricting ligand vibrations and rotations. The emission nature is identified to be phosphorescence and thermally activated delayed fluorescence (TADF) based on the PL lifetime, 3O2 quenching, and temperature-dependent PL and absorption studies. The 1O2 generation efficiencies for the four Au52(SR)32 NCs follow the same trend as the observed PL performance. Overall, the highly NIR-luminescent Au52(p-MBT)32 nanocluster and the revealed mechanisms are expected to find future applications.
Collapse
Affiliation(s)
- Yitong Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Abhrojyoti Mazumder
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Kristin Kirschbaum
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Linda A Peteanu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
18
|
Xu Z, Dong H, Gu W, He Z, Jin F, Wang C, You Q, Li J, Deng H, Liao L, Chen D, Yang J, Wu Z. Lattice Compression Revealed at the ≈1 nm Scale. Angew Chem Int Ed Engl 2023; 62:e202308441. [PMID: 37428452 DOI: 10.1002/anie.202308441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Lattice tuning at the ≈1 nm scale is fascinating and challenging; for instance, lattice compression at such a minuscule scale has not been observed. The lattice compression might also bring about some unusual properties, which waits to be verified. Through ligand induction, we herein achieve the lattice compression in a ≈1 nm gold nanocluster for the first time, as detected by the single-crystal X-ray crystallography. In a freshly synthesized Au52 (CHT)28 (CHT=S-c-C6 H11 ) nanocluster, the lattice distance of the (110) facet is found to be compressed from 4.51 to 3.58 Å at the near end. However, the lattice distances of the (111) and (100) facets show no change in different positions. The lattice-compressed nanocluster exhibits superior electrocatalytic activity for the CO2 reduction reaction (CO2 RR) compared to that exhibited by the same-sized Au52 (TBBT)32 (TBBT=4-tert-butyl-benzenethiolate) nanocluster and larger Au nanocrystals without lattice variation, indicating that lattice tuning is an efficient method for tailoring the properties of metal nanoclusters. Further theoretical calculations explain the high CO2 RR performance of the lattice-compressed Au52 (CHT)28 and provide a correlation between its structure and catalytic activity.
Collapse
Grants
- 21829501, 21925303, 21771186, 22075290, 22075291, 22272179, 21222301, 21171170, and 21528303 Natural Science Foundation of China
- BJPY2019A02 CASHIPS Director's Fund
- MPCS-2021-A-05 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences
- 2020HSC-CIP005, 2022HSC-CIP018 the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- CAS/SAFEA International Partnership Program for Creative Research Teams
Collapse
Affiliation(s)
- Ziwei Xu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongwei Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong and Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), Hong Kong, 999077, P. R. China
| | - Fengming Jin
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Chengming Wang
- Instruments' Center for Physical Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Dong Chen
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
19
|
Fang L, Fan W, Bian G, Wang R, You Q, Gu W, Xia N, Liao L, Li J, Deng H, Yan N, Wu Z. Sandwich-Kernelled AgCu Nanoclusters with Golden Ratio Geometry and Promising Photothermal Efficiency. Angew Chem Int Ed Engl 2023; 62:e202305604. [PMID: 37208858 DOI: 10.1002/anie.202305604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
Metal nanoclusters have recently attracted extensive interest from the scientific community. However, unlike carbon-based materials and metal nanocrystals, they rarely exhibit a sheet kernel structure, probably owing to the instability caused by the high exposure of metal atoms (particularly in the relatively less noble Ag or Cu nanoclusters) in such a structure. Herein, we synthesized a novel AgCu nanocluster with a sandwich-like kernel (diameter≈0.9 nm and length≈0.25 nm) by introducing the furfuryl mercaptan ligand (FUR) and the alloying strategy. Interestingly, the kernel consists of a centered silver atom and two planar Ag10 pentacle units with completely mirrored symmetry after a rotation of 36 degrees. The two Ag10 pentacles and some extended structures show an unreported golden ratio geometry, and the two inner five-membered rings and the centered Ag atom form an unanticipated full-metal ferrocene-like structure. The featured kernel structure causes the dominant radial direction transition of excitation electrons, as determined via time-dependent density functional theory calculations, which affords the protruding absorption at 612 nm and contributes to the promising photothermal conversion efficiency of 67.6 % of the as-obtained nanocluster, having important implications for structure-property correlation and the development of nanocluser-based photothermal materials.
Collapse
Grants
- 21925303, 21829501, 22171267, 22171268, 21701179, 21771186, 21501181, 21222301, 21171170, and 21528303 National Natural Science Foundation of China
- 2008085MB31, 2108085MB56 Anhui Provincial Natural Science Foundation
- YZJJ202102 and YZJJ202306-TS Special Foundation of President of HFIPS
- 2020HSC-CIP005, 2022HSC-CIP018 Collaborative Innovation Program of Hefei Science Center, CAS
- 2023468 Youth Innovation Promotion Association CAS
Collapse
Affiliation(s)
- Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
20
|
Chen S, Liu Y, Kuang K, Yin B, Wang X, Jiang L, Wang P, Pei Y, Zhu M. Impact of the metal core on the electrochemiluminescence of a pair of atomically precise Au 20 nanocluster isomers. Commun Chem 2023; 6:105. [PMID: 37258698 DOI: 10.1038/s42004-023-00907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Although the electrochemiluminescence (ECL) of metal nanoclusters has been reported, revealing the correlation between structure and ECL at an atomic level is highly challenging. Here, we reported the impact of the metal core of Au20(SAdm)12(CHT)4 (Au20-AC for short; SAdm = 1-adamantanethiolate; CHT= cyclohexanethiol) and its isomer Au20(TBBT)16 (TBBT = 4-tert-butylthiophenol) on their solution-state and solid-state electrochemiluminescence. In self-annihilation ECL experiments, Au20-AC showed a strong cathodic ECL but a weak anodic ECL, while the ECL signal of Au20(TBBT)16 was weak and barely detectable. Density functional theory (DFT) calculations showed that the Au7 kernel of [Au20-AC]- is metastable, weakening its anodic ECL. Au20-AC in solution-state displayed an intense co-reactant ECL in the near-infrared region, which is 7 times higher than that of standard Ru(bpy)32+. The strongest solid-state ECL emissions of Au20-AC and Au20(TBBT)16 were at 860 and 770 nm, respectively - 15 nm red-shifted for Au20-AC and 20 nm blue-shifted for Au20(TBBT)16, compared to their corresponding solid-state photoluminescence (PL) emissions. This work shows that ECL is significantly affected by the subtle differences of the metal core, and offers a potential basis for sensing and immunoassay platforms based on atomically precise emissive metal nanoclusters.
Collapse
Affiliation(s)
- Shuang Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China.
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China.
| | - Ying Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Kaiyang Kuang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Bing Yin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Xiaojian Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Lirong Jiang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Pu Wang
- Department of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, PR China.
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, PR China.
| | - Yong Pei
- Department of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, PR China.
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, PR China.
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
- Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, PR China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, PR China.
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
21
|
Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. J Am Chem Soc 2023. [PMID: 37200506 DOI: 10.1021/jacs.3c02880] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall coinage metal nanoclusters (NCs, <3 nm) have emerged as a novel class of theranostic probes due to their atomically precise size and engineered physicochemical properties. The rapid advances in the design and applications of metal NC-based theranostic probes are made possible by the atomic-level engineering of metal NCs. This Perspective article examines (i) how the functions of metal NCs are engineered for theranostic applications, (ii) how a metal NC-based theranostic probe is designed and how its physicochemical properties affect the theranostic performance, and (iii) how metal NCs are used to diagnose and treat various diseases. We first summarize the tailored properties of metal NCs for theranostic applications in terms of biocompatibility and tumor targeting. We focus our discussion on the theranostic applications of metal NCs in bioimaging-directed disease diagnosis, photoinduced disease therapy, nanomedicine, drug delivery, and optical urinalysis. Lastly, an outlook on the challenges and opportunities in the future development of metal NCs for theranostic applications is provided.
Collapse
Affiliation(s)
- Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, P. R. China
| | - Fanglin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
22
|
Zhang F, Gao Y, Lu P, Zhong Y, Liu Y, Bao X, Xu Z, Lu M, Wu Y, Chen P, Hu J, Zhang Y, Wu Z, Song H, Bai X. Engineering of Hole Transporting Interface by Incorporating the Atomic-Precision Ag 6 Nanoclusters for High-Efficiency Blue Perovskite Light-Emitting Diodes. NANO LETTERS 2023; 23:1582-1590. [PMID: 36763855 DOI: 10.1021/acs.nanolett.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Properties of the underlying hole transport layer (HTL) play a crucial role in determining the optoelectronic performance of perovskite light-emitting devices (PeLEDs). However, endowing the current HTL system with a deep highest occupied molecular orbital (HOMO) level concurrent with high hole mobility is still a big challenge, in particular being an open constraint toward high-efficiency blue PeLEDs. In this regard, employing the poly(9-vinylcarbazole) as a model, we perform efficient incorporation of the atomic-precision metal nanoclusters (NCs), [Ag6PL6, PL = (S)-4-phenylthiazolidine-2-thione], to achieve significant tailoring in both HOMO energy level and hole mobility. As a result, the as-modified PeLEDs exhibit an external quantum efficiency (EQE) of 14.29% at 488 nm. The presented study exemplifies the success of metal NC involved HTL engineering and offers a simple yet effective additive strategy to settle the blue PeLED HTL dilemma, which paves the way for the fabrication of highly efficient blue PeLEDs.
Collapse
Affiliation(s)
- Fujun Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Yanbo Gao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Yue Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Xinyu Bao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Zehua Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Yanjie Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Ping Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Junhua Hu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450051, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street, Changchun 130012, China
| |
Collapse
|
23
|
Zhong Y, Zhang J, Li T, Xu W, Yao Q, Lu M, Bai X, Wu Z, Xie J, Zhang Y. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nat Commun 2023; 14:658. [PMID: 36746958 PMCID: PMC9902523 DOI: 10.1038/s41467-023-36387-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The restriction of structural vibration has assumed great importance in attaining bright emission of luminescent metal nanoclusters (NCs), where tremendous efforts are devoted to manipulating the surface landscape yet remain challenges for modulation of the structural vibration of the metal kernel. Here, we report efficient suppression of kernel vibration achieving enhancement in emission intensity, by rigidifying the surface of metal NCs and propagating as-developed strains into the metal core. Specifically, a layer-by-layer triple-ligands surface engineering is deployed to allow the solution-phase Au NCs with strong metal core-dictated fluorescence, up to the high absolute quantum yields of 90.3 ± 3.5%. The as-rigidified surface imposed by synergistic supramolecular interactions greatly influences the low-frequency acoustic vibration of the metal kernel, resulting in a subtle change in vibration frequency but a reduction in amplitude of oscillation. This scenario therewith impedes the non-radiative relaxation of electron dynamics, rendering the Au NCs with strong emission. The presented study exemplifies the linkage between surface chemistry and core-state emission of metal NCs, and proposes a strategy for brighter emitting metal NCs by regulating their interior metal core-involved motion.
Collapse
Affiliation(s)
- Yuan Zhong
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Jiangwei Zhang
- grid.411643.50000 0004 1761 0411Innovation Center of Energy Material and Chemistry; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
| | - Tingting Li
- grid.443314.50000 0001 0225 0773College of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130012 P. R. China
| | - Wenwu Xu
- grid.203507.30000 0000 8950 5267Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211 P. R. China
| | - Qiaofeng Yao
- grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 P. R. China
| | - Min Lu
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Xue Bai
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
24
|
Photoluminescence of the Au 38(SR) 26 nanocluster comprises three radiative processes. Commun Chem 2023; 6:22. [PMID: 36732442 PMCID: PMC9894927 DOI: 10.1038/s42004-023-00819-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Photoluminescence of ultrasmall, atomically precise gold nanoclusters constitutes an area of significant interest in recent years for both fundamental research and biological applications. However, the exploration of near-infrared photoluminescence of gold nanoclusters is still in its infancy due to the limitations of synthetic methods and characterization techniques. Herein, the photoluminescence properties of an Au38(PET)26 (PET = 2-phenylethanethiolate) nanocluster are investigated in detail. The Au38(PET)26 exhibits an emission peak at 865 nm, which is revealed to be a mix of fluorescence, thermally activated delayed fluorescence, and phosphorescence via the combined analyses of time-resolved and temperature-dependent photoluminescence measurements. The quantum yield of Au38(PET)26 is determined to be 1.8% at room temperature under ambient conditions, which increases to above 90% by suppressing the non-radiative relaxation pathway at a cryogenic temperature (80 K). Overall, the results of this work discover the coexistence of three radiative processes in thiolate-protected Au nanoclusters and will pave the way for understanding the intriguing photoluminescence properties of gold nanoclusters in future studies.
Collapse
|
25
|
Bevilacqua M, Roverso M, Bogialli S, Graiff C, Biffis A. From Au 11 to Au 13: Tailored Synthesis of Superatomic Di-NHC/PPh 3-Stabilized Molecular Gold Nanoclusters. Inorg Chem 2023; 62:1383-1393. [PMID: 36638827 PMCID: PMC9890486 DOI: 10.1021/acs.inorgchem.2c03331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, we report a new method to synthesize molecular gold nanoclusters (AuNCs) stabilized by phosphine (PR3) and di-N-heterocyclic carbene (di-NHC) ligands. The interaction of di-NHC gold(I) complexes, with the general formula [(di-NHC)Au2Cl2] with well-known [Au11(PPh3)8Cl2]Cl clusters provides three new classes of AuNCs through a controllable reaction sequence. The synthesis involves an initial ligand metathesis reaction to produce [Au11(di-NHC)(PPh3)6Cl2]+ (type 1 clusters), followed by a thermally induced rearrangement/metal complex addition with the formation of Au13 clusters [Au13(di-NHC)2(PPh3)4Cl4]+ (type 2 clusters). Finally, an additional metathesis process yields [Au13(di-NHC)3(PPh3)3Cl3]2+ (type 3 clusters). The electronic and steric properties of the employed di-NHC ligand affect the product distribution, leading to the isolation and full characterization of different clusters as the main product. A type 3 cluster has been also structurally characterized and was preliminarily found to be strongly emissive in solution.
Collapse
Affiliation(s)
- Matteo Bevilacqua
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via F. Marzolo 1, 35131Padova, Italy,Consorzio
per le Reattività Chimiche e la Catalisi (CIRCC), c/o Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via
F. Marzolo 1, 35131Padova, Italy
| | - Marco Roverso
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via F. Marzolo 1, 35131Padova, Italy
| | - Sara Bogialli
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via F. Marzolo 1, 35131Padova, Italy
| | - Claudia Graiff
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124Parma, Italy
| | - Andrea Biffis
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via F. Marzolo 1, 35131Padova, Italy,Consorzio
per le Reattività Chimiche e la Catalisi (CIRCC), c/o Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via
F. Marzolo 1, 35131Padova, Italy,
| |
Collapse
|
26
|
Li H, Kang X, Zhu M. Controlling the Nature of Photoluminescence of Emissive Metal Nanoclusters. Chemphyschem 2022; 23:e202200484. [PMID: 35948864 DOI: 10.1002/cphc.202200484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Indexed: 01/05/2023]
Abstract
Photoluminescence (PL) serves as one of the most attractive chemical-physical properties of metal nanoclusters. However, the control over the PL nature of metal nanoclusters as fluorescence or phosphorescence remains challenging. Basically, the PL nature control concerns the transition regulation of excited electrons in nanoclusters from their excited state to the ground state. Up to the present, some cases have been reported on adjusting the PL nature of emissive nanoclusters via different means, including the composition regulation, the isomerization, the aggregation, and the temperature variation. At the same time, theoretical calculations have been performed to thoroughly understand the PL nature transformation of these emissive nanoclusters in terms of their electronic structures and transition pathways. This Concept highlights and reviews the recent progress in controlling the PL nature of emissive nanoclusters as fluorescence or phosphorescence, which hopefully paves the way for fabricating novel nanoclusters or cluster-based nanomaterials with customized PL properties.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/, Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/, Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/, Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
27
|
Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models. Nat Commun 2022; 13:5613. [PMID: 36153336 PMCID: PMC9509333 DOI: 10.1038/s41467-022-33341-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
Sentinel lymph node imaging and biopsy is important to clinical assessment of cancer metastasis, and novel non-radioactive lymphographic tracers have been actively pursued over the years. Here, we develop gold molecular clusters (Au25) functionalized by phosphorylcholine (PC) ligands for NIR-II (1000–3000 nm) fluorescence imaging of draining lymph nodes in 4T1 murine breast cancer and CT26 colon cancer tumor mouse models. The Au-phosphorylcholine (Au-PC) probes exhibit ‘super-stealth’ behavior with little interactions with serum proteins, cells and tissues in vivo, which differs from the indocyanine green (ICG) dye. Subcutaneous injection of Au-PC allows lymph node mapping by NIR-II fluorescence imaging at an optimal time of ~ 0.5 − 1 hour postinjection followed by rapid renal clearance. Preclinical NIR-II fluorescence LN imaging with Au-PC affords high signal to background ratios and high safety and biocompatibility, promising for future clinical translation. Fluorescent tracers facilitate the identification and subsequent collection of tumour draining lymph node biopsies, enabling important clinical assessment. Here, the authors present a molecular gold nanocluster NIR-II fluorescent imaging probe and demonstrate its utility to visualise draining lymph nodes in breast and colon cancer mouse models.
Collapse
|
28
|
Klementyeva SV, Schrenk C, Schnepf A. Oxidation of [Ge 9{Si(SiMe 3) 3} 3] − with LnI 3 (Ln = Eu, Sm, Yb): Isomerism of Metalloid Germanium Clusters. Inorg Chem 2022; 61:11787-11795. [DOI: 10.1021/acs.inorgchem.2c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Claudio Schrenk
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen Germany
| | - Andreas Schnepf
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen Germany
| |
Collapse
|
29
|
Zhang C, Wang Z, Si WD, Wang L, Dou JM, Gao ZY, Tung CH, Sun D. Solvent-Induced Isomeric Cu 13 Nanoclusters: Chlorine to Copper Charge Transfer Boosting Molecular Oxygen Activation in Sulfide Selective Oxidation. ACS NANO 2022; 16:9598-9607. [PMID: 35700320 DOI: 10.1021/acsnano.2c02885] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Isomers with minimal structural dissimilarities are promising research objects to obtain a comprehensive understanding of structure-property relationships; however, comparability of isomeric structures is a prerequisite. Herein, two quasi-structurally isomeric 13-nuclei copper nanoclusters (Cu NCs) (Cu13a and Cu13b) containing highly similar Cu13 kernels and different arrangements of peripheral ligands were obtained using a solvent-induced strategy. The exotic chloride ion is shown to play a prominent role in inducing the selective formation of two quasi-isomers, where the comparative study to establish a structure-property relationship was realized. Due to the charge transition from chlorine to the copper core (X(Cl)M(Cu)CT), the molecular oxygen activation of Cu13a showed higher singlet oxygen (1O2) and lower superoxide radical (O2•-) yields compared to those of Cu13b, which gives it better catalytic selectivity for the 1O2 involved selective oxidation of sulfides. The present work not only offers a controllable strategy for the rational design and synthesis of quasi-structurally isomeric Cu NCs but also provides a pathway to boost catalytic selectivity by a halogen to metal core charge transition.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Liuyi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
30
|
Partial Phosphorization: A Strategy to Improve Some Performance(s) of Thiolated Metal Nanoclusters Without Notable Reduction of Stability. Chemistry 2022; 28:e202200212. [DOI: 10.1002/chem.202200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/07/2022]
|
31
|
Li J, Wang P, Pei Y. Ligand Shell Isomerization Induces Different Fluorescence Origins of Two Au 28 Nanoclusters. J Phys Chem Lett 2022; 13:3718-3725. [PMID: 35442683 DOI: 10.1021/acs.jpclett.2c00539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the origin of the photoluminescence (PL) phenomenon in ligand-protected metal nanoclusters is of paramount importance in both fundamental science and practical applications. In this study, we have studied the origin of fluorescence emission of two thiolate-ligand-protected Au28 clusters (Au28(CHT)20 and Au28(TBBT)20) by means of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Theoretical calculation results show that the ligand shell isomerization induces different ligand motif-to-metal core charge transfers (LMCT) of Au28(TBBT)20 and Au28(CHT)20. Moreover, in Au28(CHT)20, the emission process of S2 → S0 can compete favorably with the internal conversion of S2 → S1. Furthermore, the high quantum yield of Au28(CHT)20 is attributed to its high symmetric structure, which leads to less energy dissipation during the structural relaxation process.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| |
Collapse
|
32
|
Zhou J, Li T, Li Q, Zheng P, Yang S, Chai J, Zhu M. Insight into the Effects of Chiral Diphosphine Ligands on the Structure and Optical Properties of the Au 24Cd 2 Nanocluster. Inorg Chem 2022; 61:6493-6499. [PMID: 35436089 DOI: 10.1021/acs.inorgchem.2c00246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction of chiral ligands has been regarded as an effective strategy to obtain nanoclusters with optical purity. However, how the chiral ligands work is still unclear due to the lack of structural comparison between racemic nanoclusters and the corresponding optically active ones. In this work, three structurally related Au24Cd2 nanoclusters, including one racemic and two homochiral nanoclusters, were synthesized, and their crystal structures were characterized using single-crystal X-ray crystallography (SC-XRD). Based on their crystal structures, the origin of the chirality in Au24Cd2 was found to be the twist of the kernel and the chiral arrangement of the metal-ligand surface. Au24Cd2 protected with chiral ligands exhibits a more twisted kernel than the racemic one. Therefore, the chirality of chiral diphosphine was found to transfer from the ligands to the metal-ligand interface and then to the metal core, inducing its distortion to produce enhanced chirality. In addition, the optical properties including optical absorption and circular dichroism of these structurally related Au24Cd2 nanoclusters were compared.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Tianrong Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Peisen Zheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
33
|
Qian S, Wang Z, Zuo Z, Wang X, Wang Q, Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214268] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Hesari M, Ding Z. Identifying Highly Photoelectrochemical Active Sites of Two Au 21 Nanocluster Isomers toward Bright Near-Infrared Electrochemiluminescence. J Am Chem Soc 2021; 143:19474-19485. [PMID: 34775763 DOI: 10.1021/jacs.1c08877] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thus far, no correlation between nanocluster structures and their electrochemiluminescence (ECL) has been identified. Herein, we report how face-centered-cubic and hexagonal close-packed structures of two Au21(SR)15 nanocluster isomers determine their chemical reactivity. The relationships were explored by means of ECL and photoluminescence spectroscopy. Both isomers reveal unprecedented ECL efficiencies in the near-infrared region, which are >10- and 270-fold higher than that of standard Ru(bpy)32+, respectively. Photoelectrochemical reactivity as well as ECL mechanisms were elucidated based on electrochemistry, spooling photoluminescence, and ECL spectroscopy, unfolding the three emission enhancement origins: (i) effectively exposed reactive facets available to undergo electron transfer reactions; (ii) individual excited-state regeneration loops; (iii) cascade generations of various exited states. Indeed, these discoveries will have immediate impacts on various applications including but not limited to single molecular detection as well as photochemistry and electrocatalysis toward clean photon-electron conversion processes such as light-harvesting and light-emitting technologies.
Collapse
Affiliation(s)
- Mahdi Hesari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
35
|
Li Y, Zhou M, Jin R. Programmable Metal Nanoclusters with Atomic Precision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006591. [PMID: 33984169 DOI: 10.1002/adma.202006591] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1-3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X-ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum-confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold-thiolate nanoclusters (Aun (SR)m ) are revealed to contain an inner kernel, Au-S interface (motifs), and surface ligand (-R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg ) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smaller Eg . Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
36
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
37
|
Li Q, Zeman CJ, Schatz GC, Gu XW. Source of Bright Near-Infrared Luminescence in Gold Nanoclusters. ACS NANO 2021; 15:16095-16105. [PMID: 34613697 DOI: 10.1021/acsnano.1c04759] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoclusters with near-infrared (NIR) photoluminescence (PL) have great potential as sensing and imaging materials in biomedical and bioimaging applications. In this work, Au21(S-Adm)15 and Au38S2(S-Adm)20 are used to unravel the underlying mechanisms for the improved quantum yields (QY), large Stokes shifts, and long PL lifetimes in gold nanoclusters. Both nanoclusters show decent PL QY. In particular, the Au38S2(S-Adm)20 nanocluster shows a bright NIR PL at 900 nm with QY up to 15% in normal solvents (such as toluene) at ambient conditions. The relatively lower QY for Au21(S-Adm)15 (4%) compared to that of Au38S2(S-Adm)20 is attributed to the lowest-lying excited state being symmetry-disallowed, as evidenced by the pressure-dependent antispectral shift of the absorption spectra compared to PL, yet Au21(S-Adm)15 maintains some emissive properties due to a nearby symmetry-allowed excited state. Furthermore, our results show that suppression of nonradiative decay due to the surface "lock rings", which encircle the Au kernel and the surface "lock atoms" which bridge the fundamental Au kernel units (e.g., tetrahedra, icosahedra, etc.), is the key to obtaining high QYs in gold nanoclusters. The complicated excited-state processes and the small absorption coefficient of the band-edge transition lead to the large Stokes shifts and the long PL lifetimes that are widely observed in gold nanoclusters.
Collapse
Affiliation(s)
- Qi Li
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Charles J Zeman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - X Wendy Gu
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Cao Y, Malola S, Matus MF, Chen T, Yao Q, Shi R, Häkkinen H, Xie J. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Engineering reversible isomerization at the nanoscale via intermolecular interactions. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Dong J, Gan Z, Gu W, You Q, Zhao Y, Zha J, Li J, Deng H, Yan N, Wu Z. Synthesizing Photoluminescent Au 28 (SCH 2 Ph- t Bu) 22 Nanoclusters with Structural Features by Using a Combined Method. Angew Chem Int Ed Engl 2021; 60:17932-17936. [PMID: 34060691 DOI: 10.1002/anie.202105530] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/24/2022]
Abstract
We present a method for atomically precise nanocluster synthesis. As an illustration, we introduced the reducing-ligand induction combined method and synthesized a novel nanocluster, which was determined to be Au28 (SCH2 Ph-t Bu)22 with the same number of gold atoms as existing Au28 (SR)20 nanoclusters but different ligands (hetero-composition-homo-size). Compared with the latter, the former has distinct properties and structures. In particular, a novel kernel evolution pattern is reported, i.e., the quasi-linear growth of Au4 -tetrahedron by sharing one vertex and structural features, including a tritetrahedron kernel with two bridging thiolates and two Au6 (SCH2 Ph-t Bu)6 hexamer chair-like rings on the kernel surface were also first reported, which endow Au28 (SCH2 Ph-t Bu)22 with the best photoluminescence quantum yield among hydrophobic thiolated gold nanoclusters so far, probably due to the enhanced charge transfer from the bi-ring to the kernel via Au-Au bonds.
Collapse
Affiliation(s)
- Jingwu Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
41
|
Dong J, Gan Z, Gu W, You Q, Zhao Y, Zha J, Li J, Deng H, Yan N, Wu Z. Synthesizing Photoluminescent Au
28
(SCH
2
Ph‐
t
Bu)
22
Nanoclusters with Structural Features by Using a Combined Method. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jingwu Dong
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Qing You
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
42
|
Solvent-driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9952-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Bai Y, He S, Lv Y, Zhu M, Yu H. Redox-Induced Interconversion of Two Au 8 Nanoclusters: the Mechanism and the Structure-Bond Dissociation Activity Correlations. Inorg Chem 2021; 60:5724-5733. [PMID: 33779145 DOI: 10.1021/acs.inorgchem.0c03828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interconversion of atomically precise nanoclusters represents an excellent platform to understand the structural correlations of nanomaterials at the atomic level. Herein, density functional theory calculations were performed to elucidate the mechanism of the redox-induced interconversion of [Au8(dppp)4]2+ and [Au8(dppp)4Cl2]2+ (dppp is short for 1,3-bis(diphenylphosphino)propane) nanoclusters. Reduction is the driving force for the conversion of [Au8(dppp)4Cl2]2+ to [Au8(dppp)4]2+, while the Au-Au and first Au-Cl bond dissociations occur asynchronously on the two different corner Au atoms to avoid the formation of an electron-deficient Au atom. By contrast, the reduced electron density of [Au8(dppp)4]2+ by oxidation with O2 weakens the outmost Au-Au bond therein and facilitates the coordination of the electron-rich chloride(s). The reduction- and oxidation-induced activations, respectively, of Au-Cl and Au-Au bonds and the elucidated principles on the structure-activity correlations might also be generalized to other size conversions upon redox treatment.
Collapse
Affiliation(s)
- Yuyuan Bai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shuping He
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
44
|
Zhou Y, Liao L, Zhuang S, Zhao Y, Gan Z, Gu W, Li J, Deng H, Xia N, Wu Z. Traceless Removal of Two Kernel Atoms in a Gold Nanocluster and Its Impact on Photoluminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yue Zhou
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| |
Collapse
|
45
|
Zhou Y, Liao L, Zhuang S, Zhao Y, Gan Z, Gu W, Li J, Deng H, Xia N, Wu Z. Traceless Removal of Two Kernel Atoms in a Gold Nanocluster and Its Impact on Photoluminescence. Angew Chem Int Ed Engl 2021; 60:8668-8672. [DOI: 10.1002/anie.202016692] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Yue Zhou
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China
| |
Collapse
|
46
|
He W, Zhou Z, Han Z, Li S, Zhou Z, Ma L, Zang S. Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei‐Miao He
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhe Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Si Li
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhan Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Lu‐Fang Ma
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Shuang‐Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
47
|
He W, Zhou Z, Han Z, Li S, Zhou Z, Ma L, Zang S. Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angew Chem Int Ed Engl 2021; 60:8505-8509. [DOI: 10.1002/anie.202100006] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Wei‐Miao He
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhe Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Si Li
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhan Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Lu‐Fang Ma
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Shuang‐Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
48
|
Kenzler S, Schnepf A. Metalloid gold clusters - past, current and future aspects. Chem Sci 2021; 12:3116-3129. [PMID: 34164079 PMCID: PMC8179421 DOI: 10.1039/d0sc05797e] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Gold chemistry and the synthesis of colloidal gold have always caught the attention of scientists. While Faraday was investigating the physical properties of colloidal gold in 1857 without probably knowing anything about the exact structure of the molecules, 150 years later the working group of Kornberg synthesized the first structurally characterized multi-shell metalloid gold cluster with more than 100 Au atoms, Au102(SR)44. After this ground-breaking result, many smaller and bigger metalloid gold clusters have been discovered to gain a better understanding of the formation process and the physical properties. In this review, first of all, a general overview of past investigations is given, leading to metalloid gold clusters with staple motifs in the ligand shell, highlighting structural differences in the cores of these clusters. Afterwards, the influence of the synthetic procedure on the outcome of the reactions is discussed, focusing on recent results from our group. Thereby, newly found structural motifs are taken into account and compared to the existing ones. Finally, a short outlook on possible subsequent reactions of these metalloid gold clusters is given.
Collapse
Affiliation(s)
- Sebastian Kenzler
- Institute of Inorganic Chemistry, Universität Tübingen Auf der Morgenstelle 18 D-72076 Tübingen Germany +49-7071-28-2436 +49-7071-29-76635
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, Universität Tübingen Auf der Morgenstelle 18 D-72076 Tübingen Germany +49-7071-28-2436 +49-7071-29-76635
| |
Collapse
|
49
|
Xia N, Wu Z. Controlling ultrasmall gold nanoparticles with atomic precision. Chem Sci 2020; 12:2368-2380. [PMID: 34164001 PMCID: PMC8179260 DOI: 10.1039/d0sc05363e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Gold nanoparticles are probably the nanoparticles that have been best studied for the longest time due to their stability, physicochemical properties and applications. Controlling gold nanoparticles with atomic precision is of significance for subsequent research on their structures, properties and applications, which is a dream that has been pursued for many years since ruby gold was first obtained by Faraday in 1857. Fortunately, this dream has recently been partially realized for some ultrasmall gold nanoparticles (nanoclusters). However, rationally designing and synthesizing gold nanoparticles with atomic precision are still distant goals, and this challenge might rely primarily on rich atomically precise gold nanoparticle libraries and the in-depth understanding of metal nanoparticle chemistry. Herein, we review general synthesis strategies and some facile synthesis methods, with an emphasis on the controlling parameters determined from well-documented results, which might have important implications for future nanoparticle synthesis with atomic precision and facilitate related research and applications.
Collapse
Affiliation(s)
- Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
50
|
Li Q, Yang S, Chen T, Jin S, Chai J, Zhang H, Zhu M. Structure determination of a metastable Au 22(SAdm) 16 nanocluster and its spontaneous transformation into Au 21(SAdm) 15. NANOSCALE 2020; 12:23694-23699. [PMID: 33226059 DOI: 10.1039/d0nr07124b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is of great interest to investigate the evolution pattern of gold nanoclusters (Au NCs) due to its significance in understanding the growth mechanism and origin of Au NCs. Capture of metastable cluster intermediates is an effective way to meet this demand since they provide valuable information for understanding the conversion pathway of Au NCs. However, it is still challenging to obtain metastable Au NCs, especially thiol-protected Au NCs, and solve their structures. In this work, a metastable thiol-protected gold nanocluster, Au22(SAdm)16 (Au22), was synthesized and its structure was determined by single crystal X-ray diffraction. Au22 shows a close structure-evolution correlation with Au21(SAdm)15 (Au21). The symmetric Au10 kernel of Au21 is twisted by the insertion of an additional Au-SR unit on the motif during its structure evolution into Au22. The distortion in structures results in significantly distinguishing absorption and emission spectra between Au22 and Au21. Noteworthily, the structure correlation between Au22 and Au21 was also found experimentally that Au22 can spontaneously transform into Au21 due to the metastability of Au22 in solution. This size conversion process was monitored by time-dependent UV-vis spectroscopy and ESI-MS. Furthermore, the solvent effect on the size conversion process was also investigated. This transformation from Au22 to Au21 provides a unique platform for studies on the evolution pattern of gold nanoclusters at the single atom level.
Collapse
Affiliation(s)
- Qinzhen Li
- School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|