1
|
Li J, Jiang J, Zhang Y, Lin Z, Pang Z, Guan J, Liu Z, Ren Y, Li S, Lin R, Wu J, Wang J, Zhang Z, Dong H, Chen Z, Wang Y, Yang Y, Tan H, Zhu J, Lu Z, Deng Y. Freeze Metal Halide Perovskite for Dramatic Laser Tuning: Direct Observation via In Situ Cryo-Electron Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402338. [PMID: 38924259 DOI: 10.1002/smll.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.
Collapse
Affiliation(s)
- Jiayi Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jing Jiang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yuchen Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhenhui Lin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhentao Pang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jie Guan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyu Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yifeng Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shiheng Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Renxing Lin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jie Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Jian Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ziyou Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Zhiqiang Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhenda Lu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Prabhakaran A, Dang Z, Dhall R, Camerin F, Marín-Aguilar S, Dhanabalan B, Castelli A, Brescia R, Manna L, Dijkstra M, Arciniegas MP. Real-Time In Situ Observation of CsPbBr 3 Perovskite Nanoplatelets Transforming into Nanosheets. ACS NANO 2023. [PMID: 37406164 PMCID: PMC10373526 DOI: 10.1021/acsnano.3c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The manipulation of nano-objects through heating is an effective strategy for inducing structural modifications and therefore changing the optoelectronic properties of semiconducting materials. Despite its potential, the underlying mechanism of the structural transformations remains elusive, largely due to the challenges associated with their in situ observations. To address these issues, we synthesize temperature-sensitive CsPbBr3 perovskite nanoplatelets and investigate their structural evolution at the nanoscale using in situ heating transmission electron microscopy. We observe the morphological changes that start from the self-assembly of the nanoplatelets into ribbons on a substrate. We identify several paths of merging nanoplates within ribbons that ultimately lead to the formation of nanosheets dispersed randomly on the substrate. These observations are supported by molecular dynamics simulations. We correlate the various paths for merging to the random orientation of the initial ribbons along with the ligand mobility (especially from the edges of the nanoplatelets). This leads to the preferential growth of individual nanosheets and the merging of neighboring ones. These processes enable the creation of structures with tunable emission, ranging from blue to green, all from a single material. Our real-time observations of the transformation of perovskite 2D nanocrystals reveal a route to achieve large-area nanosheets by controlling the initial orientation of the self-assembled objects with potential for large-scale applications.
Collapse
Affiliation(s)
- Aarya Prabhakaran
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Zhiya Dang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Rohan Dhall
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fabrizio Camerin
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Susana Marín-Aguilar
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | | | - Andrea Castelli
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Liberato Manna
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Garai A, Vishnu EK, Banerjee S, Nair AAK, Bera S, Thomas KG, Pradhan N. Vertex-Oriented Cube-Connected Pattern in CsPbBr 3 Perovskite Nanorods and Their Optical Properties: An Ensemble to Single-Particle Study. J Am Chem Soc 2023. [PMID: 37317943 DOI: 10.1021/jacs.3c03759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of cube-connected nanorods is accomplished by connecting seed nanocrystals of a defined shape in a particular orientation or by etching selective facets of preformed nanorods. In lead halide perovskite nanostructures, which retain mostly a hexahedron cube shape, such patterned nanorods can be designed with the anisotropic direction along the edge, vertex, or facet of seed cubes. Combining the Cs-sublattice platform for transforming metal halides to halide perovskites with facet-specific ligand binding chemistry, herein, vertex-oriented patterning of nanocubes in one-dimensional (1D) rod structures is reported. By tuning the length of host metal halides, their lengths could also be tuned from 100 nm to nearly 1000 nm. The symmetry of the hexagonal phase of host halide CsCdBr3 and product orthorhombic CsPbBr3 helped in maintaining the vertex [201] as the anisotropic direction. Neutral exciton recombination rates, extracted from photoluminescence blinking traces, showed a systematic increase from isolated cubes to cube-connected nanorods of various lengths. Efficient coupling of wave functions in vertex-oriented cube assemblies permits exciton delocalization. Our findings on carrier delocalization in cube-connected nanorods along their vertex direction having minimum interfacial contacts provide valuable insights into the fundamental chemistry of assembling anisotropic halide perovskite nanostructures as conducting wires.
Collapse
Affiliation(s)
- Arghyadeep Garai
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - E Krishnan Vishnu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Souvik Banerjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Anoop Ajaya Kumar Nair
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
4
|
Petrovai I, Todor-Boer O, David L, Botiz I. Growth of Hybrid Perovskite Crystals from CH 3NH 3PbI 3-xCl x Solutions Subjected to Constant Solvent Evaporation Rates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2625. [PMID: 37048919 PMCID: PMC10096007 DOI: 10.3390/ma16072625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
In this work, we subjected hybrid lead-mixed halide perovskite (CH3NH3PbI3-xClx) precursor inks to different solvent evaporation rates in order to facilitate the nucleation and growth of perovskite crystals. By controlling the temperature of perovskite solutions placed within open-air rings in precise volumes, we established control over the rate of solvent evaporation and, thus, over both the growth rate and the shape of perovskite crystals. Direct utilization of diluted lead-mixed halide perovskites solutions allowed us to control the nucleation and to favor the growth of only a low number of perovskite crystals. Such crystals exhibited a clear sixfold symmetry. While crystals formed at a lower range of temperatures (40-60 °C) exhibited a more compact dendritic shape, the crystals grown at a higher temperature range (80-110 °C) displayed a fractal dendritic morphology.
Collapse
Affiliation(s)
- Ioan Petrovai
- Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania; (I.P.); (L.D.)
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania
| | - Otto Todor-Boer
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Donath Street 67, 400293 Cluj-Napoca, Romania;
| | - Leontin David
- Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania; (I.P.); (L.D.)
| | - Ioan Botiz
- Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania; (I.P.); (L.D.)
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Huang CY, Li H, Wu Y, Lin CH, Guan X, Hu L, Kim J, Zhu X, Zeng H, Wu T. Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. NANO-MICRO LETTERS 2022; 15:16. [PMID: 36580150 PMCID: PMC9800676 DOI: 10.1007/s40820-022-00983-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 05/19/2023]
Abstract
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance. Among these, inorganic perovskite quantum dots (QDs) stand out for their prominent merits, such as quantum confinement effects, high photoluminescence quantum yield, and defect-tolerant structures. Additionally, ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices. This review presents the state-of-the-art research progress on inorganic perovskite QDs, emphasizing their electronic applications. In detail, the physical properties of inorganic perovskite QDs will be introduced first, followed by a discussion of synthesis methods and growth control. Afterwards, the emerging applications of inorganic perovskite QDs in electronics, including transistors and memories, will be presented. Finally, this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Hanchen Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ye Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xiaoming Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
6
|
Cherniukh I, Sekh TV, Rainò G, Ashton OJ, Burian M, Travesset A, Athanasiou M, Manoli A, John RA, Svyrydenko M, Morad V, Shynkarenko Y, Montanarella F, Naumenko D, Amenitsch H, Itskos G, Mahrt RF, Stöferle T, Erni R, Kovalenko MV, Bodnarchuk MI. Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes. ACS NANO 2022; 16:7210-7232. [PMID: 35385663 PMCID: PMC9134504 DOI: 10.1021/acsnano.1c10702] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs) comprising highly luminescent cubic CsPbBr3 NCs (and FAPbBr3 NCs) coassembled with the spherical, truncated cuboid, and disk-shaped NC building blocks. CsPbBr3 nanocubes combined with Fe3O4 or NaGdF4 spheres and truncated cuboid PbS NCs form binary SLs of six structure types with high packing density; namely, AB2, quasi-ternary ABO3, and ABO6 types as well as previously known NaCl, AlB2, and CuAu types. In these structures, nanocubes preserve orientational coherence. Combining nanocubes with large and thick NaGdF4 nanodisks results in the orthorhombic SL resembling CaC2 structure with pairs of CsPbBr3 NCs on one lattice site. Also, we implement two substrate-free methods of SL formation. Oil-in-oil templated assembly results in the formation of binary supraparticles. Self-assembly at the liquid-air interface from the drying solution cast over the glyceryl triacetate as subphase yields extended thin films of SLs. Collective electronic states arise at low temperatures from the dense, periodic packing of NCs, observed as sharp red-shifted bands at 6 K in the photoluminescence and absorption spectra and persisting up to 200 K.
Collapse
Affiliation(s)
- Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Taras V. Sekh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Olivia J. Ashton
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Max Burian
- Swiss
Light
Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Alex Travesset
- Department
of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Modestos Athanasiou
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - Andreas Manoli
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - Rohit Abraham John
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Mariia Svyrydenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Viktoriia Morad
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yevhen Shynkarenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federico Montanarella
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Denys Naumenko
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Grigorios Itskos
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Thilo Stöferle
- IBM
Research Europe−Zurich, CH-8803 Rüschlikon, Switzerland
| | - Rolf Erni
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
7
|
Sujith M, Vishnu EK, Sappati S, Oliyantakath Hassan MS, Vijayan V, Thomas KG. Ligand-Induced Ground- and Excited-State Chirality in Silicon Nanoparticles: Surface Interactions Matter. J Am Chem Soc 2022; 144:5074-5086. [PMID: 35258297 DOI: 10.1021/jacs.1c13698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Silicon-based light-emitting materials have emerged as a favorable substitute to various organic and inorganic systems due to silicon's high natural abundance, low toxicity, and excellent biocompatibility. However, efforts on the design of free-standing silicon nanoparticles with chiral non-racemic absorption and emission attributes are rather scare. Herein, we unravel the structural requirements for ligand-induced chirality in silicon-based nanomaterials by functionalizing with D- and L-isomers of a bifunctional ligand, namely, tryptophan. The structural aspects of these systems are established using high-resolution high-angle annular dark-field imaging in the scanning transmission electron microscopy mode, solid-state nuclear magnetic resonance, Fourier transform infrared, and X-ray photoelectron spectroscopy. Silicon nanoparticles capped with L- and D-isomers of tryptophan displayed positive and negative monosignated circular dichroic signals and circularly polarized luminescence indicating their ground- and excited-state chirality. Various studies supported by density functional theory calculations signify that the functionalization of indole ring nitrogen on the silicon surface plays a decisive role in modifying the chiroptical characteristics by generating emissive charge-transfer states. The chiroptical responses originate from the multipoint interactions of tryptophan with the nanoparticle surface through the indole nitrogen and -CO2- groups that can transmit an enantiomeric structural imprint on the silicon surface. However, chiroptical properties are not observed in phenylalanine- and alanine-capped silicon nanoparticles, which are devoid of Si-N bonds and chiral footprints. Thus, the ground- and excited-state chiroptics in tryptophan-capped silicon nanoparticles originates from the collective effect of ligand-bound emissive charge-transfer states and chiral footprints. Being the first report on the circularly polarized luminescence in silicon nanoparticles, this work will open newer possibilities in the field of chirality.
Collapse
Affiliation(s)
- Meleppatt Sujith
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - E Krishnan Vishnu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Subrahmanyam Sappati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Muhammed Shafeek Oliyantakath Hassan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
8
|
Bian F, Sun L, Chen H, Wang Y, Wang L, Shang L, Zhao Y. Bioinspired Perovskite Nanocrystals-Integrated Photonic Crystal Microsphere Arrays for Information Security. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105278. [PMID: 35048564 PMCID: PMC8948562 DOI: 10.1002/advs.202105278] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/19/2023]
Abstract
Information security occupies an important position in the era of big data. Attempts to improve the security performance tend to impart them with more additional encryption strategies. Herein, inspired by the wettability feature of Stenocara beetle elytra and signal model of traffic light, a novel array of perovskite nanocrystals (PNs)-integrated PhC microsphere for information security is presented. The photoluminescent PNs are encapsulated in angle-independent PhC microspheres to impart them with binary optical signals as coding information. Through the multimask superposition approach, PNs-integrated PhC microspheres with different codes are placed into fluorosilane-treated PDMS substrate to form different arrays. These arrays could converge moisture on PhC microspheres in wet environment, which avoids the ions loss of the PNs and effectively prevented mutual contamination. In addition, the fluorescence of the PNs inside PhC microspheres could reversibly quench or recover in response to the environmental moisture. Based on these features, it is demonstrated that the PNs-integrated PhC microsphere arrays could realize various information encryption modes, which indicate their excellent values in information security fields.
Collapse
Affiliation(s)
- Feika Bian
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Lingyu Sun
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Hanxu Chen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Li Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and TechnologyInstitutes of Biomedical Sciences)Fudan UniversityShanghai200433China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
9
|
Liu J, Zheng X, Mohammed OF, Bakr OM. Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Acc Chem Res 2022; 55:262-274. [PMID: 35037453 PMCID: PMC8811956 DOI: 10.1021/acs.accounts.1c00651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Over the past decade, the impressive development
of metal halide
perovskites (MHPs) has made them leading candidates for applications
in photovoltaics (PVs), X-ray scintillators, and light-emitting diodes
(LEDs). Constructing MHP nanocrystals (NCs) with promising optoelectronic
properties using a low-cost approach is critical to realizing their
commercial potential. Self-assembly and regrowth techniques provide
a simple and powerful “bottom-up” platform for controlling
the structure, shape, and dimensionality of MHP NCs. The soft ionic
nature of MHP NCs, in conjunction with their low formation energy,
rapid anion exchange, and ease of ion migration, enables the rearrangement
of their overall appearance via self-assembly or regrowth. Because
of their low formation energy and highly dynamic surface ligands,
MHP NCs have a higher propensity to regrow than conventional hard-lattice
NCs. Moreover, their self-assembly and regrowth can be achieved simultaneously.
The self-assembly of NCs into close-packed, long-range-ordered mesostructures
provides a platform for modulating their electronic properties (e.g.,
conductivity and carrier mobility). Moreover, assembled MHP NCs exhibit
collective properties (e.g., superfluorescence, renormalized emission,
longer phase coherence times, and long exciton diffusion lengths)
that can translate into dramatic improvements in device performance.
Further regrowth into fused MHP nanostructures with the removal of
ligand barriers between NCs could facilitate charge carrier transport,
eliminate surface point defects, and enhance stability against moisture,
light, and electron-beam irradiation. However, the synthesis strategies,
diversity and complexity of structures, and optoelectronic applications
that emanate from the self-assembly and regrowth of MHPs have not
yet received much attention. Consequently, a comprehensive understanding
of the design principles of self-assembled and fused MHP nanostructures
will fuel further advances in their optoelectronic applications. In this Account, we review the latest developments in the self-assembly
and regrowth of MHP NCs. We begin with a survey of the mechanisms,
driving forces, and techniques for controlling MHP NC self-assembly.
We then explore the phase transition of fused MHP nanostructures at
the atomic level, delving into the mechanisms of facet-directed connections
and the kinetics of their shape-modulation behavior, which have been
elucidated with the aid of high-resolution transmission electron microscopy
(HRTEM) and first-principles density functional theory calculations
of surface energies. We further outline the applications of assembled
and fused nanostructures. Finally, we conclude with a perspective
on current challenges and future directions in the field of MHP NCs.
Collapse
Affiliation(s)
- Jiakai Liu
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaopeng Zheng
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Otero‐Martínez C, García‐Lojo D, Pastoriza‐Santos I, Pérez‐Juste J, Polavarapu L. Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No‐Confinement to 3D and 1D Quantum Confinement. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Clara Otero‐Martínez
- Department of Physical Chemistry CINBIO Universidade de Vigo, Materials Chemistry and Physics Group Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
- Department of Physical Chemistry CINBIO Universidade de Vigo Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
| | - Daniel García‐Lojo
- Department of Physical Chemistry CINBIO Universidade de Vigo Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO Vigo Spain
| | - Isabel Pastoriza‐Santos
- Department of Physical Chemistry CINBIO Universidade de Vigo Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO Vigo Spain
| | - Jorge Pérez‐Juste
- Department of Physical Chemistry CINBIO Universidade de Vigo Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO Vigo Spain
| | - Lakshminarayana Polavarapu
- Department of Physical Chemistry CINBIO Universidade de Vigo, Materials Chemistry and Physics Group Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
| |
Collapse
|
11
|
Otero-Martínez C, García-Lojo D, Pastoriza-Santos I, Pérez-Juste J, Polavarapu L. Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No-Confinement to 3D and 1D Quantum Confinement. Angew Chem Int Ed Engl 2021; 60:26677-26684. [PMID: 34606151 PMCID: PMC9299153 DOI: 10.1002/anie.202109308] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 02/05/2023]
Abstract
This work focuses on the systematic investigation of the shape, size, and composition‐controlled synthesis of perovskite nanocrystals (NCs) under inert gas‐free conditions and using pre‐synthesized precursor stock solutions. In the case of CsPbBr3 NCs, we find that the lowering of reaction temperature from ∼175 to 100 °C initially leads to a change of morphology from bulk‐like 3D nanocubes to 0D nanocubes with 3D‐quantum confinement, while at temperatures below 100 °C the reaction yields 2D nanoplatelets (NPls) with 1D‐quantum confinement. However, to our surprise, at higher temperatures (∼215 °C), the reaction yields CsPbBr3 hexapod NCs, which have been rarely reported. The synthesis is scalable, and their halide composition is tunable by simply using different combinations of precursor solutions. The versatility of the synthesis is demonstrated by applying it to relatively less explored shape‐controlled synthesis of FAPbBr3 NCs. Despite the synthesis carried out in the air, both the inorganic and hybrid perovskite NCs exhibit nearly‐narrow emission without applying any size‐selective separation, and it is precisely tunable by controlling the reaction temperature.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- Department of Physical Chemistry, CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Campus Universitario As Lagoas, Marcosende, 36310, Vigo, Spain.,Department of Physical Chemistry, CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310, Vigo, Spain
| | - Daniel García-Lojo
- Department of Physical Chemistry, CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310, Vigo, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Isabel Pastoriza-Santos
- Department of Physical Chemistry, CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310, Vigo, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jorge Pérez-Juste
- Department of Physical Chemistry, CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310, Vigo, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Lakshminarayana Polavarapu
- Department of Physical Chemistry, CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Campus Universitario As Lagoas, Marcosende, 36310, Vigo, Spain
| |
Collapse
|
12
|
Zhong K, Lu S, Guo W, Su J, Sun S, Hai J, Wang B. NIR emissive light-harvesting systems through perovskite passivation and sequential energy transfer for third-level fingerprint imaging. Chem Commun (Camb) 2021; 57:9434-9437. [PMID: 34528973 DOI: 10.1039/d1cc03006j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A near-infrared (NIR) emissive artificial light-harvesting system with two-step high-efficiency sequential resonance energy transfers was fabricated based on the in situ growth of MAPbBr3 quantum dots in the supramolecular self-assembly of a Zn(II) carboxyl-functionalized pillar[5]arene coordination polymer and two different fluorescent dyes, eosin Y and Nile blue. This system could realize NIR fluorescent imaging of the sweat pores of latent fingerprints, opening a new avenue to design perovskite-based NIR emitting artificial light-harvesting systems for third-level fingerprint imaging.
Collapse
Affiliation(s)
- Kaipeng Zhong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, China.
| | - Wenting Guo
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.
| | - Junxia Su
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
14
|
Hills‐Kimball K, Yang H, Cai T, Wang J, Chen O. Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100214. [PMID: 34194945 PMCID: PMC8224438 DOI: 10.1002/advs.202100214] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Indexed: 05/09/2023]
Abstract
Lead halide perovskite (LHP) nanocrystals (NCs) have recently garnered enhanced development efforts from research disciplines owing to their superior optical and optoelectronic properties. These materials, however, are unlike conventional quantum dots, because they possess strong ionic character, labile ligand coverage, and overall stability issues. As a result, the system as a whole is highly dynamic and can be affected by slight changes of particle surface environment. Specifically, the surface ligand shell of LHP NCs has proven to play imperative roles throughout the lifetime of a LHP NC. Recent advances in engineering and understanding the roles of surface ligand shells from initial synthesis, through postsynthetic processing and device integration, finally to application performances of colloidal LHP NCs are covered here.
Collapse
Affiliation(s)
| | - Hanjun Yang
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Tong Cai
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Junyu Wang
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Ou Chen
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| |
Collapse
|
15
|
Liu Q, Yin J, Zhang BB, Chen JK, Zhou Y, Zhang LM, Wang LM, Zhao Q, Hou J, Shu J, Song B, Shirahata N, Bakr OM, Mohammed OF, Sun HT. Theory-Guided Synthesis of Highly Luminescent Colloidal Cesium Tin Halide Perovskite Nanocrystals. J Am Chem Soc 2021; 143:5470-5480. [PMID: 33794093 DOI: 10.1021/jacs.1c01049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis of highly luminescent colloidal CsSnX3 (X = halogen) perovskite nanocrystals (NCs) remains a long-standing challenge due to the lack of a fundamental understanding of how to rationally suppress the formation of structural defects that significantly influence the radiative carrier recombination processes. Here, we develop a theory-guided, general synthetic concept for highly luminescent CsSnX3 NCs. Guided by density functional theory calculations and molecular dynamics simulations, we predict that, although there is an opposing trend in the chemical potential-dependent formation energies of various defects, highly luminescent CsSnI3 NCs with narrow emission could be obtained through decreasing the density of tin vacancies. We then develop a colloidal synthesis strategy that allows for rational fine-tuning of the reactant ratio in a wide range but still leads to the formation of CsSnI3 NCs. By judiciously adopting a tin-rich reaction condition, we obtain narrow-band-emissive CsSnI3 NCs with a record emission quantum yield of 18.4%, which is over 50 times larger than those previously reported. Systematic surface-state characterizations reveal that these NCs possess a Cs/I-lean surface and are capped with a low density of organic ligands, making them an excellent candidate for optoelectronic devices without any postsynthesis ligand management. We showcase the generalizability of our concept by further demonstrating the synthesis of highly luminescent CsSnI2.5Br0.5 and CsSnI2.25Br0.75 NCs. Our findings not only highlight the value of computation in guiding the synthesis of high-quality colloidal perovskite NCs but also could stimulate intense efforts on tin-based perovskite NCs and accelerate their potential applications in a range of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jun Yin
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin-Bin Zhang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Jia-Kai Chen
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Yang Zhou
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lu-Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lu-Ming Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qing Zhao
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jie Shu
- Analysis and Testing Center, Soochow University, Jiangsu 215123, China
| | - Bo Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan.,Department of Physics, Chuo University, Tokyo 112-8551, Japan
| | - Osman M Bakr
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hong-Tao Sun
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| |
Collapse
|
16
|
Pradhan N. Alkylammonium Halides for Facet Reconstruction and Shape Modulation in Lead Halide Perovskite Nanocrystals. Acc Chem Res 2021; 54:1200-1208. [PMID: 33586428 DOI: 10.1021/acs.accounts.0c00708] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ConspectusThe interactions of halides and ammonium ions with lead halide perovskite nanocrystals have been extensively studied for improving their phase stability, controlling size, and enhancing their photoluminescence quantum yields. However, all these nanocrystals, which showed intense and color tunable emissions, mostly retained the six faceted cube or platelet shapes. Shape tuning needs the creation of new facets, and instead of composition variations by foreign ions interactions/substitutions, these require facet stabilizations with suitable ligands. Among most of the reported cases of lead halide perovskites, alkyl ammonium ions are used as a capping agent, which substituted in the surface Cs(I) sites of these nanocrystals. Hence, new surface ligands having a specific binding ability with different facets other than those in cube/platelet shapes are required for bringing stability to new facets and, hence, for tuning their shapes.In this Account, interactions of alkyl ammonium ions on the surface of perovskite nanocrystals and their impact on surface reconstructions are reviewed. Emphasizing the most widely studied CsPbBr3 nanocrystals, the usefulness and impact of alkyl ammonium ions on the phase stability, high-temperature annealing, enhancement of the brightness and doping in these nanocrystals are first discussed. Then, nanocrystals formed under limited primary alkyl ammonium ions and also with specific tertiary ammonium ions having new facets are elaborated. Further, the treatment of excess alkyl ammonium halides to these newly formed multifaceted polyhedron nanocrystals under different conditions, which led to armed and step-armed structures, are discussed. The change in optical properties during these shape transformations is also presented. Finally, the shape-change mechanism with alkyl ammonium halide-induced dissolutions of {200} and {112} facets and formation of {110} and {002} facets are discussed. Further, in summary, future prospects of new ligand designing for stabilizing new facets of perovskite nanocrystals and obtaining new shapes and properties are proposed.
Collapse
Affiliation(s)
- Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
17
|
Mandal A, Ghosh A, Senanayak SP, Friend RH, Bhattacharyya S. Thickness-Attuned CsPbBr 3 Nanosheets with Enhanced p-Type Field Effect Mobility. J Phys Chem Lett 2021; 12:1560-1566. [PMID: 33534600 DOI: 10.1021/acs.jpclett.0c03815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Since the invention of field effect transistors (FETs) in the mid-20th century, nanosheet (NS) transistors have been considered the future toward fulfilling Moore's law of scaling. Moving beyond conventional semiconductors, thickness tunable orthorhombic CsPbBr3 NSs are achieved by a perfect control in which the lateral dimension can be extended close to 1 μm. While 18-carbon-chain ligands produce ∼4.5 nm thick NSs, the strongly adsorbed less dynamic 8-carbon-chain ligands result in ∼9.2 nm NSs. Equipped with a minimum trap state density, a lower effective mass of charge carriers, and better carrier transport, the NSs enable an order of magnitude increase in the field effect mobility as compared to that of CsPbBr3 nanocubes, thus revealing the efficacy of designing the two-dimensional morphology. The p-type field effect mobility (μFET) of the photoexcited NSs reaches 10-5 cm2 V-1 s-1 at 200 K upon mitigation of the challenges of ionic screening and constrained tunneling probability across organic ligands.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Anima Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Satyaprasad P Senanayak
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Richard H Friend
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| |
Collapse
|
18
|
Baranov D, Fieramosca A, Yang RX, Polimeno L, Lerario G, Toso S, Giansante C, Giorgi MD, Tan LZ, Sanvitto D, Manna L. Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer. ACS NANO 2021; 15:650-664. [PMID: 33350811 DOI: 10.1021/acsnano.0c06595] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excitonic coupling, electronic coupling, and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a red-shifted collective emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by studying CsPbBr3 nanocrystal superlattices over time with room-temperature and cryogenic micro-photoluminescence spectroscopy, X-ray diffraction, and electron microscopy. It is shown that a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days of keeping such structures under vacuum. As a result, a narrow, low-energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low-energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays. Overall, the aging of CsPbBr3 nanocrystal assemblies dramatically alters their emission properties and that should not be overlooked when studying collective optoelectronic phenomena nor confused with superfluorescence effects.
Collapse
Affiliation(s)
- Dmitry Baranov
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| | - Antonio Fieramosca
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Ruo Xi Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Laura Polimeno
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
- Dipartimento di Matematica e Fisica "E. de Giorgi", Università Del Salento, Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Giovanni Lerario
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Stefano Toso
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
- International Doctoral Program in Science, Università Cattolica del Sacro Cuore, Brescia 25121, Italy
| | - Carlo Giansante
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Milena De Giorgi
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniele Sanvitto
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Liberato Manna
- Nanochemistry Department, Italian Institute of Technology, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
19
|
Pramanik A, Patibandla S, Gao Y, Gates K, Ray PC. Water Triggered Synthesis of Highly Stable and Biocompatible 1D Nanowire, 2D Nanoplatelet, and 3D Nanocube CsPbBr 3 Perovskites for Multicolor Two-Photon Cell Imaging. JACS AU 2021; 1:53-65. [PMID: 33554214 PMCID: PMC7851952 DOI: 10.1021/jacsau.0c00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 05/31/2023]
Abstract
Two-photon imaging in the near-infrared window holds huge promise for real life biological imaging due to the increased penetration depth. All-inorganic CsPbX3 nanocrystals with bright luminescence and broad spectral tunability are excellent smart probes for two-photon bioimaging. But, the poor stability in water is a well-documented issue for limiting their practical use. Herein, we present the development of specific antibody attached water-resistant one-dimensional (1D) CsPbBr3 nanowires, two-dimensional (2D) CsPbBr3 nanoplatelets, and three-dimensional (3D) CsPbBr3 nanocubes which can be used for selective and simultaneous two-photon imaging of heterogeneous breast cancer cells in the near IR biological window. The current manuscript reports the design of excellent photoluminescence quantum yield (PLQY), biocompatible and photostable 1D CsPbBr3 nanowires, 2D CsPbBr3 nanoplatelets, and 3D CsPbBr3 nanocubes through an interfacial conversion from zero-dimensional (0D) Cs4PbBr6 nanocrystals via a water triggered strategy. Reported data show that just by varying the amount of water, one can control the dimension of CsPbBr3 perovskite crystals. Time-dependent transition electron microscopy and emission spectra have been reported to find the possible pathway for the formation of 1D, 2D, and 3D CsPbBr3 nanocrystals from 0D Cs4PbBr6 nanocrystals. Biocompatible 1D, 2D, and 3D CsPbBr3 nanocrystals were developed by coating with amine-poly(ethylene glycol)-propionic acid. Experimental data show the water-driven design of 1D, 2D, and 3D CsPbBr3 nanocrystals exhibits strong single-photon PLQY of ∼66-88% as well as excellent two-photon absorption properties (σ2) of ∼8.3 × 105-7.1 × 104 GM. Furthermore, reported data show more than 86% of PL intensity remains for 1D, 2D, and 3D CsPbBr3 nanocrystals after 35 days under water, and they exhibit excellent photostability of keeping 99% PL intensity after 3 h under UV light. The current report demonstrates for the first time that antibody attached 1D and 2D perovskites have capability for simultaneous two-photon imaging of triple negative breast cancer cells and human epidermal growth factor receptor 2 positive breast cancer cells. CsPbBr3 nanocrystals exhibit very high two-photon absorption cross-section and good photostability in water, which are superior to those of commonly used organic probes (σ2 = 11 GM for fluorescein), and therefore, they have capability to be a better probe for bioimaging applications.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Shamily Patibandla
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Ye Gao
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paresh Chandra Ray
- Department of Chemistry and
Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
20
|
Görke M, Garnweitner G. Crystal engineering of nanomaterials: current insights and prospects. CrystEngComm 2021. [DOI: 10.1039/d1ce00601k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanocrystal engineering has evolved into a dynamic research area over the past few decades but is not properly defined. Here, we present select examples to highlight the diverse aspects of crystal engineering applied on inorganic nanomaterials.
Collapse
Affiliation(s)
- Marion Görke
- Technische Universität Braunschweig, Institute for Particle Technology and Laboratory for Emerging Nanometrology, 38104 Braunschweig, Germany
| | - Georg Garnweitner
- Technische Universität Braunschweig, Institute for Particle Technology and Laboratory for Emerging Nanometrology, 38104 Braunschweig, Germany
| |
Collapse
|
21
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
22
|
Patra B, Agrawal H, Zheng JY, Zha X, Travesset A, Garnett EC. Close-Packed Ultrasmooth Self-assembled Monolayer of CsPbBr 3 Perovskite Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31764-31769. [PMID: 32545949 PMCID: PMC7430943 DOI: 10.1021/acsami.0c05945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 05/25/2023]
Abstract
The use of colloidal self-assembly to form the complex multiscale patterns in many optoelectronic devices has been a long-standing dream of the nanoscience community. While great progress has been made using charged colloids in polar solvents, controlled assembly from nonpolar solvents is much more challenging. The major challenge is colloidal clustering caused by strong van der Waals (vdW) attraction between long-chain surface capping ligands passivating the surface of nanocrystals. Such clustering degrades ordering in packing during the self-assembly process. While ligand exchange to provide colloidal stability in polar phases is often an option, this is not the case for the exciting new class of halide perovskites due to the material's solubility in essentially all polar solvents. Here, we report surface-functionalized self-assembly of luminescent CsPbBr3 perovskite nanocubes by partially replacing long-chain oleyl groups (18 carbon chain) with short-chain thiocyanate (SCN-). This enables the fabrication of ultrasmooth monolayer thin films of nanocubes with a root-mean-square (RMS) roughness of around 4 Å. This ultrasmooth large area self-assembled layer could act as high-efficiency optoelectronic devices like solar cells, light-emitting diodes (LEDs), transistors, etc. We correlate our experimental results with simulations, providing detailed predictions for lattice constants with chain conformations showing reduced free energy for cubes grafted with short-chain thiocyanate compared to long-chain oleyl groups, thus facilitating better self-assembly.
Collapse
Affiliation(s)
- Biplab
K. Patra
- Center
for Nanophotonics, AMOLF, 1098XG Amsterdam, The Netherlands
- Materials
Chemistry Department, CSIR—Institute
of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Harshal Agrawal
- Center
for Nanophotonics, AMOLF, 1098XG Amsterdam, The Netherlands
| | - Jian-Yao Zheng
- Center
for Nanophotonics, AMOLF, 1098XG Amsterdam, The Netherlands
| | - Xun Zha
- Department
of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Alex Travesset
- Department
of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
- Ames
Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Erik C. Garnett
- Center
for Nanophotonics, AMOLF, 1098XG Amsterdam, The Netherlands
| |
Collapse
|
23
|
Shyamal S, Dutta SK, Das T, Sen S, Chakraborty S, Pradhan N. Facets and Defects in Perovskite Nanocrystals for Photocatalytic CO 2 Reduction. J Phys Chem Lett 2020; 11:3608-3614. [PMID: 32311260 DOI: 10.1021/acs.jpclett.0c01088] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-emitting lead halide perovskite nanocrystals are typically obtained in a six-faceted cube shape. However, for applications such as catalysis, more active facets for the adsorption/desorption of reactants/products and the suppression of carrier recombination are essentially required. To meet these challenges, herein CsPbBr3 perovskite nanocrystals in cube and faceted noncube shapes were explored for photocatalytic reductions of CO2. Importantly, halide-deficient dim multifaceted noncube emitters having less than 1% photoluminescence quantum yields showed superior catalytic activity compared to that of bright halide-rich cube nanocrystals. Beyond these, hexapod-shaped nanocrystals were also explored, and these remained in an intermediate state. With the support of density functional theory, the adsorption and desorption probabilities of reactants/products on different facets were also calculated and correlated with experimental findings. These results indicated that facets and defects of perovskite nanocrystals are equally important for carrying out catalytic reactions.
Collapse
Affiliation(s)
- Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sumit Kumar Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tisita Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Suvodeep Sen
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sudip Chakraborty
- Discipline of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|