1
|
Guo H, Loh CCJ. Noncovalent interactions: An emerging focal point in stereoselective catalytic carbohydrate synthesis. Carbohydr Res 2025; 552:109458. [PMID: 40132292 DOI: 10.1016/j.carres.2025.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The incorporation of frontier synthetic concepts into stereoselective carbohydrate synthesis is gaining significant traction. In the last five years, there are increasing reports documenting that the consideration of weak non-covalent interactions (NCIs) constitutes a vital factor in steering the anomeric and site-selectivity, as well as in activating difficult glycosylations. In light of blossoming developments on this front, we present a brief overview of recent case studies that involve the harnessing of hydrogen bonding (HB), halogen bonding (XB), chalcogen bonding (ChB) and π-interactions. These NCIs represent a considerable palette of classical/non-classical weak interactions that is of current interest to the broad synthesis community. Significantly, a close mechanistic analysis often revealed that NCIs were instrumental in dictating the final stereoselectivity outcome of many glycosylation pathways. We are optimistic that by expanding the focal point from purely glycosyl substrate modifications towards tweaking catalytic NCIs at the supramolecular level of chemical glycosylations, this emerging concept offers new levers of stereoselectivity control beyond classical stereoelectronic and steric considerations.
Collapse
Affiliation(s)
- Hao Guo
- College of Chemistry and Materials Science, And Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Charles C J Loh
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Tiwari A, Khanam A, Mandal PK. Organocatalyzed O-glycosylation of glycosyl trichloroacetimidates donors: l-prolinethioamide as brønsted acid catalyst. Carbohydr Res 2025; 552:109470. [PMID: 40174324 DOI: 10.1016/j.carres.2025.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
In this study, we present the utilization of l-proline-derived thioamide small organic molecules as an effective organocatalyst for the O-glycosylation of various glycosyl trichloroacetimidate donors, eliminating the need for any cocatalysts or additives. The catalytic process achieves high yields with a wide array of alcohol and sugar nucleophiles, demonstrating a broad substrate scope and operational simplicity under mild reaction conditions. Preliminary mechanistic investigations indicate that l-prolinethioamide facilitates the glycosylation reaction via Brønsted acid/base catalysis, involving the formation of a catalyst-acceptor adduct.
Collapse
Affiliation(s)
- Ashwani Tiwari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Lal M, Gangwar H, Gaurav A, Khanam A, Tiwari A, Mandal PK. Hydrogen-Bond-Mediated Glycosylation Reactions with Glycosyl Picolinates. Org Lett 2025; 27:4238-4243. [PMID: 40214270 DOI: 10.1021/acs.orglett.5c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Herein, we report a generally applicable hydrogen-bond-mediated glycosylation protocol of glycosyl picolinate donors with a charged (thio)urea hydrogen-bond-donor catalyst. A variety of nucleophiles, including complex natural products, glycosides, amino acids, and less nucleophilic phenolic acceptors were also glycosylated successfully. Hydrogen-bond-mediated glycosylation systems combined with different strategies were also explored to achieve stereoselective glycosylation. A mechanistic study revealed that catalysts form the donor-catalyst noncovalent complex through hydrogen bonds and then produce the oxocarbenium species.
Collapse
Affiliation(s)
- Mohan Lal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Himanshu Gangwar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Anand Gaurav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ariza Khanam
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ashwani Tiwari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
4
|
Dwivedi S, Thakur S, Sau A. Thiourea-catalyzed glycosylation: a breakthrough in stereoselective synthesis of oligosaccharides. Chem Commun (Camb) 2025; 61:4429-4446. [PMID: 40034032 DOI: 10.1039/d5cc00564g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Oligosaccharides are vital biomolecules that play an essential role in various biological functions. For studying biochemical processes, it is essential to have access to pure as well as structurally well-defined oligosaccharides. However, achieving high yields with excellent anomeric stereoselectivity through chemical glycosylation remains a challenging task for chemists. In the last few years, thiourea-catalyzed glycosylation has offered promising progress in carbohydrate chemistry due to its ability to catalytically activate glycosyl donors through non-covalent interactions, particularly hydrogen bonding. These thiourea catalysts have emerged as powerful organocatalysts, gaining popularity for facilitating highly stereoselective glycosylation reactions. This review highlights recent developments in thiourea-catalyzed glycosylation, a field still in its early stages but showing significant potential.
Collapse
Affiliation(s)
- Shubhi Dwivedi
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India.
| | - Swati Thakur
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India.
| | - Abhijit Sau
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India.
| |
Collapse
|
5
|
Zhu Q, Tian X, He G. Insertion of Glycosylidene Carbenes into Phenolic O-H Bonds for the Synthesis of O-Aryl Glycosides. J Org Chem 2025; 90:3087-3092. [PMID: 39965089 DOI: 10.1021/acs.joc.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
We present a new strategy for the synthesis of O-aryl glycosides through the formal insertion of glycosylidene carbenes into the O-H bond of phenols. The key glycosylidene carbene intermediates were generated in situ by copper-catalyzed oxidation of bench-stable glycosylidene diaziridine precursors. This method enables the glycosylation of a variety of phenols with good yields, excellent diastereoselectivity, and chemoselectivity, providing a highly practical method for the late-stage glycosylation of complex natural products and bioactive agents.
Collapse
Affiliation(s)
- Qibin Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinyu Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Zhang X, Chen XX, Li ZH, Lin GQ, He ZT. Stereoselective P(III)-Glycosylation for the Preparation of Phosphinated Sugars. Angew Chem Int Ed Engl 2025; 64:e202420355. [PMID: 39639578 DOI: 10.1002/anie.202420355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Most of the reported work focus on the development of O-, N-, C- and S-glycosylation methods. However, no study explores P(III)-glycosylation reaction. Herein we describe a convenient protocol to realize P(III)-glycosylation process. A simple β-phosphino ester is adopted as P(III)-transfer reagent for this new type of glycosylation via a nucleophilic substitution and release strategy. Diverse phosphine units are introduced to the anomeric center of various sugars efficiently and with excellent stereoselectivity. The value of this method is showcased by the prepared P(III)-sugars as novel linkers in bioactive molecule conjugation, new chiral ligands in metal-catalyzed asymmetric allylic substitutions and organocatalysts. Preliminary mechanistic studies corroborated the designed P(III)-transfer process.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xian-Xiao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zi-Han Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guo-Qiang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
7
|
Černáková L, Haluz P, Mastihuba V, Košťálová Z, Karnišová Potocká E, Mastihubová M. Enzymatic β-Mannosylation of Phenylethanoid Alcohols. Molecules 2025; 30:414. [PMID: 39860283 PMCID: PMC11767590 DOI: 10.3390/molecules30020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide. Several studies suggest an important role of the saccharidic fragment in the biological activities of PhGs, provoking demand for new glycovariants of natural PhGs. This study presents the preparation of β-mannosylated analogs of tyrosol β-D-glucopyranoside (salidroside) and hydroxytyrosol β-D-glucopyranoside (hydroxysalidroside). While the chemical synthesis of β-D-mannopyranosides is rather challenging, they can be prepared by enzymatic catalysis. We found that Novozym 188, an industrial β-glucosidase, also contains β-mannosidase and used this enzyme in the preparation of tyrosol β-D-mannopyranoside and hydroxytyrosol β-D-mannopyranoside in 12 and 16% chemical yields, respectively, by transglycosylation from β-D-mannopyranosyl-(1→4)-D-mannose. The mannosylation was chemoselective and occurred exclusively on the primary hydroxyls of tyrosol and hydroxytyrosol, and the glycosylation of phenolic moieties of the aglycons was observed.
Collapse
Affiliation(s)
| | | | | | | | | | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.); (Z.K.)
| |
Collapse
|
8
|
Li X, Liu Y, Wang W, Wang Y. A Hexavalent Tellurium-Based Chalcogen Bonding Catalysis Platform: High Catalytic Activity and Controlling of Selectivity. J Am Chem Soc 2025. [PMID: 39804246 DOI: 10.1021/jacs.4c13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity. The advantages of these hexavalent tellurium catalysts were demonstrated by their remarkable catalytic activity in the cyanidation of difluorocyclopropenes through C-F bond activation, which otherwise were low reactive under the catalysis of strong Lewis acids or inaccessible by representative divalent/tetravalent tellurium-based donors. The catalytic activity of the hexavalent tellurium catalyst was further highlighted by its capability to address a previously unresolved reactivity problem associated with the strong Lewis acid approach, upon using some less reactive silyl enol ethers as nucleophiles in the functionalization of difluorocyclopropenes. The generality of this catalysis platform was demonstrated by its versatile application in different reaction systems. The hexavalent tellurium catalyst can differentiate two similar free OH groups in glycosyl acceptors to achieve excellent regio- and stereoselectivity in the synthesis of disaccharides, in which the tetravalent tellurium catalyst gave low reactivity and selectivity. Mechanistic investigation suggests that a catalyst-glycosyl donor-acceptor ternary supramolecular complex is operative.
Collapse
Affiliation(s)
- Xinxin Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Wei Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
9
|
Ghorai J, Almounajed L, Noori S, Nguyen HM. Cooperative Catalysis in Stereoselective O- and N-Glycosylations with Glycosyl Trichloroacetimidates Mediated by Singly Protonated Phenanthrolinium Salt and Trichloroacetamide. J Am Chem Soc 2024; 146:34413-34426. [PMID: 39630085 PMCID: PMC11749421 DOI: 10.1021/jacs.4c10633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The development of small-molecule catalysts that can effectively activate both reacting partners simultaneously represents a pivotal pursuit in advancing the field of stereoselective glycosylation reactions. We report herein the development of the singly protonated form of readily available phenanthroline as an effective cooperative catalyst that facilitates the coupling of a wide variety of aliphatic alcohols, phenols, and aromatic amines with α-glycosyl trichloroacetimidate donors. The glycosylation reaction likely proceeds via an SN2-like mechanism, generating β-selective glycoside products. The developed protocol provides access to O- and N-glycosides in good yields with excellent levels of β-selectivity and enables late-stage functionalization of O- and N-glycosides via cross-coupling reactions. Importantly, this method exhibits excellent β-selectivity that is unattainable through a C2-O-acyl neighboring group participation strategy, especially in the case of glycosyl donors already containing a C2 heteroatom or sugar unit. Kinetic studies demonstrate that the byproduct trichloroacetamide group plays a previously undiscovered pivotal role in influencing the reactivity and selectivity of the reaction. A proposed mechanism involving simultaneous activation of the glycosyl donor and acceptor by the singly protonated phenanthrolinium salt catalyst with the assistance of the trichloroacetamide group is supported by kinetic analysis and preliminary computational studies. This cooperative catalysis process involves four consecutive hydrogen bond interactions. The first interaction occurs between the carbonyl oxygen of the trichloroacetamide group and the hydroxyl group of alcohol nucleophile (C═O···HO). The second involves the trichloroacetamide-NH2 forming a hydrogen bond with the nitrogen atom of the phenanthroline (NH···N). The third involves the donor trichloroacetimidate (═NH) engaging in a hydrogen bond interaction with the phenanthrolinium-NH (NH···N═H). Lastly, the protonated trichloroacetimidate-NH2 forms a hydrogen bond with the fluorine atom of the tetrafluoroborate ion.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Leila Almounajed
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Suendues Noori
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
10
|
Li H, Zhang D, Li C, Yin L, Jiang Z, Luo Y, Xu H. Stereoselective Glycosylation for 1,2- cis-Aminoglycoside Assembly by Cooperative Atom Transfer Catalysis. J Am Chem Soc 2024; 146:33316-33323. [PMID: 39584459 PMCID: PMC12100638 DOI: 10.1021/jacs.4c15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We report here a new catalytic method for exclusively 1,2-cis-α-selective glycosylation that assembles a wide variety of 1,2-cis-aminoglycosidic linkages in complex glycans and glycoconjugates. Mechanistic studies revealed a unique glycosylation mechanism in which the iron catalyst activates a glycosyl acceptor and an oxidant when it facilitates the cooperative atom transfer of both moieties to a glycosyl donor in an exclusively cis-selective manner. This catalytic approach is effective for a broad range of glycosyl donors and acceptors, and it can be operated in a reiterative fashion and scaled up to the multigram scale.
Collapse
Affiliation(s)
- Hongze Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Dakang Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Chong Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Le Yin
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Zixiang Jiang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yunxuan Luo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Hao Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
11
|
Syntrivanis L, Tiefenbacher K. Reactivity Inside Molecular Flasks: Acceleration Modes and Types of Selectivity Obtainable. Angew Chem Int Ed Engl 2024; 63:e202412622. [PMID: 39295476 PMCID: PMC11586709 DOI: 10.1002/anie.202412622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
There is increasing interest in the discovery and application of molecular flasks-supramolecular host structures capable of catalyzing organic reactions. Reminiscent of enzymes due to possessing a host cavity akin to an active site, molecular flasks can exhibit complex catalytic mechanisms and in many cases provide selectivity not achievable in bulk solvent. In this Review, we aim to organize the increasingly diverse examples through a two-part structure. In part one, we provide an overview of the different acceleration modes that operate within molecular flasks, while in part two we showcase, through selected examples, the different types of selectivity that are obtainable through the use of molecular flasks. Particular attention is given to examples that are relevant to current challenges in synthetic organic chemistry. We believe that this structure makes the field more approachable and thus will stimulate the development of novel applications of molecular flasks.
Collapse
Affiliation(s)
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselBaselSwitzerland
- Department of Biosystems Science and EngineeringETHZurichBaselSwitzerland
| |
Collapse
|
12
|
Zhou W, Wu R, Li J, Zhu D, Yu B. A Ligand-Controlled Approach Enabling Gold(I)-Catalyzed Stereoinvertive Glycosylation with Primal Glycosyl ortho-Alkynylbenzoate Donors. J Am Chem Soc 2024; 146:27915-27924. [PMID: 39314057 DOI: 10.1021/jacs.4c10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A diarylurea-containing phosphine ligand-modulated stereoinvertive O-glycosylation with primal furanosyl and pyranosyl ortho-alkynylbenzoate (ABz) donors under gold(I) catalysis is disclosed. Both α- and β-configured glycosides could be obtained from the corresponding stereochemically pure β- and α-glycosyl donors with high yields and good to excellent stereoselectivities, respectively. This method accommodates a variety of glycosyl donors and alcoholic acceptors, leading to both 1,2-cis and 1,2-trans glycosidic linkages, and has been applied to the convenient preparation of a series of linear arabinan glycans. Mechanistic investigations reveal that the counteranion could bridge the diarylurea residue on the phosphine ligand with the alcoholic acceptor via hydrogen bond interactions, thereby permitting stereoinvertive displacement at the anomeric position.
Collapse
Affiliation(s)
- Weiping Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renjie Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinchan Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dapeng Zhu
- Center for Chemical Glycobiology, Zhang jiang Institute for Advanced Study, Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
13
|
Beyer PD, Nielsen MM, Picazo E, Jacobsen EN. β-Selective 2-Deoxy- and 2,6-Dideoxyglucosylations Catalyzed by Bis-Thioureas. J Am Chem Soc 2024; 146:27318-27323. [PMID: 39348510 PMCID: PMC11905915 DOI: 10.1021/jacs.4c11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
We present methods for β-selective 2-deoxy- and 2,6-dideoxyglucosylations of natural products, carbohydrates, and amino acids using bis-thiourea hydrogen-bond-donor catalysts. Disarming ester protecting groups were necessary to counter the high reactivity of 2-deoxyglycosyl electrophiles toward non-stereospecific SN1 pathways. Alcohol and phenol nucleophiles with both base- and acid-sensitive functionalities were compatible with the catalytic protocol, enabling access to a wide array of 2-deoxy-β-O-glucosides.
Collapse
Affiliation(s)
- Peyton D Beyer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael M Nielsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elias Picazo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Alom NE, Rani N, Schlegel HB, Nguyen HM. Highly stereoselective synthesis of α-glycosylated carboxylic acids by phenanthroline catalysis. Org Chem Front 2024; 11:5769-5783. [PMID: 39211000 PMCID: PMC11347974 DOI: 10.1039/d4qo00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Carbohydrate molecules with an α-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse α-glycosylated carboxylic acids in good yields with high diastereoselectivity. Although there is no apparent correlation between reaction conversion and pK a of carboxylic acids, we found that carboxylic acids with a pK a of 4-5 provide high selectivity while those of a pK a of 2.5 or lower do not. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the α-face of the more reactive intermediate, resulting in the formation of α-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding.
Collapse
Affiliation(s)
- Nur-E Alom
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | - Neha Rani
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | | | - Hien M Nguyen
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| |
Collapse
|
15
|
Koue AM, Pedersen CM. Influence of remote carbamate protective groups on the β-selectivity in rhamnosylations. Org Biomol Chem 2024; 22:4973-4977. [PMID: 38826109 DOI: 10.1039/d4ob00675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
In this work, we present the synthesis of a series of L-thiorhamnosyl donors containing O-carbamate protective groups and the study of their influence on the selectivity in rhamnosylations. It is found that a carbamate on the C-4 position increased the β selectivity compared with carbamates on the C2 or C3 positions, respectively, and when no carbamate group was installed. In addition it is found that the observed β selectivity was greater when the 4-O carbamate had less electron withdrawing groups on the nitrogen. The influence of using triflic acid catalysis was studied as well and it was found to lower the β-selectivity. In addition a new efficient one step synthesis of selectively 2,4-O-benzylated rhamnosides was established using phase transfer catalysis.
Collapse
Affiliation(s)
- Asger Munk Koue
- Department of Chemistry, University of Copenhagen, Universitetsparken 6, DK-2100 Copenhagen O, Denmark.
| | - Christian Marcus Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 6, DK-2100 Copenhagen O, Denmark.
| |
Collapse
|
16
|
Oeser P, Tobrman T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules 2024; 29:1593. [PMID: 38611872 PMCID: PMC11154425 DOI: 10.3390/molecules29071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review summarizes the applications of organophosphates in organic synthesis. After a brief introduction, it discusses cross-coupling reactions, including both transition-metal-catalyzed and transition-metal-free substitution reactions. Subsequently, oxidation and reduction reactions are described. In addition, this review highlights the applications of organophosphates in the synthesis of natural compounds, demonstrating their versatility and importance in modern synthetic chemistry.
Collapse
Affiliation(s)
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
17
|
Wu L, Chowdhury A, Zhou Z, Chen K, Wang W, Niu J. Precision Cellulose from Living Cationic Polymerization of Glucose 1,2,4-Orthopivalates. J Am Chem Soc 2024; 146:7963-7970. [PMID: 38483110 DOI: 10.1021/jacs.4c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Cellulose serves as a sustainable biomaterial for a wide range of applications in biotechnology and materials science. While chemical and enzymatic glycan assembly methods have been developed to access modest quantities of synthetic cellulose for structure-property studies, chemical polymerization strategies for scalable and well-controlled syntheses of cellulose remain underdeveloped. Here, we report the synthesis of precision cellulose via living cationic ring-opening polymerization (CROP) of glucose 1,2,4-orthopivalates. In the presence of dibutyl phosphate as an initiator and triflic acid as a catalyst, precision cellulose with well-controlled molecular weights, defined chain-end groups, and excellent regio- and stereospecificity was readily prepared. We further demonstrated the utility of this method through the synthesis of precision native d-cellulose and rare precision l-cellulose.
Collapse
Affiliation(s)
- Lianqian Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Arjun Chowdhury
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kuiru Chen
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wenqi Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
18
|
Jiao Q, Guo Z, Zheng M, Lin W, Liao Y, Yan W, Liu T, Xu C. Anion-Bridged Dual Hydrogen Bond Enabled Concerted Addition of Phenol to Glycal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308513. [PMID: 38225720 PMCID: PMC10953558 DOI: 10.1002/advs.202308513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 01/17/2024]
Abstract
A noncovalent organocatalytic concerted addition of phenol to glycal is developed for the stereoselective and regioselective construction of biologically important phenolic 2-deoxyglycosides, featuring wide substrate tolerance. The method relies on an anion-bridged dual hydrogen bond interaction which is experimentally proved by Nuclear Magnetic Resonance (NMR), Ultraviolet and visible (UV-vis), and fluorescence analysis. Experimental evidence including kinetic analysis, Kinetic Isotope Effect (KIE) studies, linear free energy relationship, Hammett plot, and density functional theory (DFT) calculations is provided for a concerted mechanism where a high-energy oxocarbenium ion is not formed. In addition, the potential utility of this method is further demonstrated by the synthesis of biologically active glycosylated flavones. The benchmarking studies demonstrate significant advances in this newly developed method compared to previous approaches.
Collapse
Affiliation(s)
- Qinbo Jiao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Zhenbo Guo
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Mingwen Zheng
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Wentao Lin
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Yujie Liao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Weitao Yan
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Tianfei Liu
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| |
Collapse
|
19
|
Gao Y, Chen W, Zhao J, Yang M, Zhang Y, Chen C, Yao L, Xu J, Wang F, Zhang B, Gu G, Tang B, Cai F. Exploring the Dual Functions of Distal Acyl Group Direction in Various Nucleophilic Environments. J Org Chem 2024; 89:2375-2396. [PMID: 38288704 DOI: 10.1021/acs.joc.3c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A universal glycosylation strategy could significantly simplify glycoside synthesis. One approach to achieving this goal is through acyl group direction for the corresponding 1,2-, 1,3-, 1,4-, or 1,6-trans glycosylation; however, this approach has been challenging for glycosidic bonds that require distal equatorial-acyl group direction. We developed an approach in weakly nucleophilic environments for selective 1,4-trans glycosylation directed by the equatorial-4-O-acyl group. Here, we explored this condition in other distal acyl groups and found that, besides 1,n-trans direction, acyl groups also mediated hydrogen bonding between acyl groups and alcohols. The latter showed a diverse effect and classified the acyl group direction into axial and equatorial categories. Corresponding glycosylation conditions were distinguished as guidance for acyl group direction from either category. Hence, acyl group direction may serve as a general glycosylation strategy.
Collapse
Affiliation(s)
- Yongtao Gao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Wenjie Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Juan Zhao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Min Yang
- Center for Analysis and Characterization, School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd, Shanghai 201210, China
| | - Yongliang Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Changsheng Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Linbin Yao
- Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Jiayuan Xu
- Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Fei Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Bencan Tang
- Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Feng Cai
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Sletten ET, Fittolani G, Hribernik N, Dal Colle MCS, Seeberger PH, Delbianco M. Phosphates as Assisting Groups in Glycan Synthesis. ACS CENTRAL SCIENCE 2024; 10:138-142. [PMID: 38292611 PMCID: PMC10823511 DOI: 10.1021/acscentsci.3c00896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered.
Collapse
Affiliation(s)
- Eric T. Sletten
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nives Hribernik
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Marlene C. S. Dal Colle
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
21
|
Keenan T, Hatton NE, Porter J, Vendeville JB, Wheatley DE, Ghirardello M, Wahart AJC, Ahmadipour S, Walton J, Galan MC, Linclau B, Miller GJ, Fascione MA. Reverse thiophosphorylase activity of a glycoside phosphorylase in the synthesis of an unnatural Manβ1,4GlcNAc library. Chem Sci 2023; 14:11638-11646. [PMID: 37920340 PMCID: PMC10619541 DOI: 10.1039/d3sc04169g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
β-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably, Manβ1,4GlcNAc a constituent of the core N-glycan in eukaryotes was recently identified as an immune activator, highlighting its potential for use in immunotherapy. Despite their biological significance, the synthesis of β-mannosidic linkages remains one of the major challenges in glycoscience. Here we present a chemoenzymatic strategy that affords a series of novel unnatural Manβ1,4GlcNAc analogues using the β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase, BT1033. We show that the presence of fluorine in the GlcNAc acceptor facilitates the formation of longer β-mannan-like glycans. We also pioneer a "reverse thiophosphorylase" enzymatic activity, favouring the synthesis of longer glycans by catalysing the formation of a phosphorolysis-stable thioglycoside linkage, an approach that may be generally applicable to other phosphorylases.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jack Porter
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alice J C Wahart
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Julia Walton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
- Department of Organic and Macromolecular Chemistry, Ghent University Campus Sterre, Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
22
|
Zhang Y, Chen C, Gao Y, Yang M, He Z, Zhang B, Gu G, Tang B, Cai F. β-l-Rhamnosylation and β-d-Mannosylation Mediated by 4- O-Ester Groups in a Weakly Nucleophilic Environment. Org Lett 2023; 25:7120-7125. [PMID: 37738091 DOI: 10.1021/acs.orglett.3c02566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
eq-4-O-Acyl group directed β-rhamnosylation and β-mannosylation are achieved in a carborane or BARF anion formed weakly nucleophilic environment with the assistance of a 2,3-orthocarbonate group. The 4-O-acyl group plays a critical role in directing the β-selectivity, and the weakly coordinating anion is essential to amplify this direction. The orthocarbonate group could be readily removed with 1,3-propanediol in the presence of BF3·Et2O.
Collapse
Affiliation(s)
- Yongliang Zhang
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Changsheng Chen
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Yongtao Gao
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Min Yang
- Center for Analysis and Characterization, School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd, Shanghai 201210, China
| | - Zehuan He
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
| | - Bencan Tang
- Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Feng Cai
- National Glycoengineering Research Center and Shandong Key laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd Qingdao 266237, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Ma X, Zhang Y, Zhu X, Wei Y, Zhang L. Directed S N2 Glycosylation Employing an Amide-Functionalized 1-Naphthoate Platform Featuring a Selectivity-Safeguarding Mechanism. J Am Chem Soc 2023; 145:11921-11926. [PMID: 37229760 PMCID: PMC10319707 DOI: 10.1021/jacs.3c02792] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work implements a catalytic SN2 glycosylation by employing an amide-functionalized 1-naphthoate platform as a latent glycosyl leaving group. Upon gold-catalyzed activation, the amide group enables the SN2 process by directing the attack of the glycosyl acceptor via H-bonding interaction, which results in stereoinversion at the anomeric center. Unique in this approach is that the amide group also enables a novel safeguarding mechanism by trapping oxocarbenium intermediates and, hence, minimizing stereorandom SN1 processes. The strategy is applicable to the synthesis of a broad range of glycosides with high to excellent levels of stereoinversion from anomerically pure/enriched glycosyl donors. These reactions are generally high-yielding, and their applications in the synthesis of challenging 1,2-cis-linkage-rich oligosaccharides are demonstrated.
Collapse
Affiliation(s)
- Xu Ma
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yongliang Zhang
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xijun Zhu
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yongliang Wei
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Haisha S, Nguyen HM, Schlegel HB. Stereoselective glycosylation reactions with 2-deoxyglucose: a computational study of some catalysts. COMPUT THEOR CHEM 2023; 1224:114122. [PMID: 37214423 PMCID: PMC10195097 DOI: 10.1016/j.comptc.2023.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
2-Deoxy glycosides are important components of many oligosaccharides with antibiotic and anti-cancer activity, but their synthesis can be very challenging. Phenanthrolines and substituted pyridines promote stereoselective glycosylation of 1-bromo sugars via a double SN2 mechanism. Pyridine reacting with α-bromo, 2-deoxyglucose was chosen to model this reaction. The first step involves displacement of bromide by pyridine which can be rate limiting because bromide ion is poorly solvated in the non-polar solvents used for these reactions. We examined a series of small molecules to bind bromide and stabilize this transition state. Geometry optimization and vibrational frequencies were calculated using M06-2X/6-31+G(d,p) and SMD implicit solvation for diethyl ether. More accurate energies were obtained with M06-2X/aug-cc-pVTZ and implicit solvation. Urea, thiourea, guanidine and cyanoguanidine bind bromide more strongly than alkylamines, (NH2CH2CH2)nNH3-n. Compared to the uncatalyzed reaction, urea, thiourea and cyanoguanidine lower the free energy of the transition state by 3 kcal/mol while guanidine lowers the barrier by 2 kcal/mol.
Collapse
Affiliation(s)
- Spencer Haisha
- Department of Biology, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
25
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Ishiwata A, Tanaka K, Ao J, Ding F, Ito Y. Recent advances in stereoselective 1,2- cis- O-glycosylations. Front Chem 2022; 10:972429. [PMID: 36059876 PMCID: PMC9437320 DOI: 10.3389/fchem.2022.972429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, β-mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Liu X, Lin Y, Peng W, Zhang Z, Gao L, Zhou Y, Song Z, Wang Y, Xu P, Yu B, Sun H, Xie W, Li W. Direct Synthesis of 2,6-Dideoxy-β-glycosides and β-Rhamnosides with a Stereodirecting 2-(Diphenylphosphinoyl)acetyl Group. Angew Chem Int Ed Engl 2022; 61:e202206128. [PMID: 35695834 DOI: 10.1002/anie.202206128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Anomeric stereocontrol is usually one of the major issues in the synthesis of complex carbohydrates, particularly those involving β-configured 2,6-dideoxyglycoside and d/l-rhamnoside moieties. Herein, we report that 2-(diphenylphosphinoyl)acetyl is highly effective as a remote stereodirecting group in the direct synthesis of these challenging β-glycosides under mild conditions. A deoxy-trisaccharide as a mimic of the sugar chain of landomycin E was prepared stereospecifically in high yield. The synthetic potential was also highlighted in the synthesis of Citrobacter freundii O-antigens composed of a [→4)-α-d-Manp-(1→3)-β-d-Rhap(1→4)-β-d-Rhap-(1→] repeating unit, wherein the convergent assembly up to a nonasaccharide was realized with a strongly β-directing trisaccharide donor. Variable-temperature NMR studies indicate the presence of intermolecular H-bonding between the donor and the bulky acceptor as direct spectral evidence in support of the concept of hydrogen-bond-mediated aglycone delivery.
Collapse
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wenyi Peng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhaolun Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Longwei Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhe Song
- Instrumental Analysis Center, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, China
| | - Yingjie Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
28
|
Li KJ, Bennett CS. New chemical processes to streamline carbohydrate synthesis. Curr Opin Chem Biol 2022; 70:102184. [PMID: 35863085 DOI: 10.1016/j.cbpa.2022.102184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Carbohydrates hold potential for the future of therapeutic development due to their important role in essential biological processes. However, it is still challenging to produce homogenous materials, especially for non-mammalian sugars that are considered rare. Recent developments in this field have focused on catalytic methods, including organometallic and organocatalytic approaches to regioselective functionalization. Many approaches to glycosylations also utilize catalysts, increasingly in combination with photoredox conditions, to achieve stereoselectivity. Additionally, there have been significant advancements in the automation of glycosylation to synthesize oligosaccharides in less time and with fewer manually conducted steps by the user.
Collapse
Affiliation(s)
- Karen J Li
- Department of Chemistry, Tufts University, 62 Talbot Ave. Medford, MA 02155, USA
| | - Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Ave. Medford, MA 02155, USA.
| |
Collapse
|
29
|
Zhang Y, Hu Y, Liu S, He H, Sun R, Lu G, Xiao G. Total synthesis of Lentinus giganteus glycans with antitumor activities via stereoselective α-glycosylation and orthogonal one-pot glycosylation strategies. Chem Sci 2022; 13:7755-7764. [PMID: 35865907 PMCID: PMC9258330 DOI: 10.1039/d2sc02176e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yanlei Hu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Shanshan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
30
|
Site-selective, stereocontrolled glycosylation of minimally protected sugars. Nature 2022; 608:74-79. [PMID: 35709829 PMCID: PMC9427130 DOI: 10.1038/s41586-022-04958-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022]
Abstract
The identification of general and efficient methods for the construction of oligosaccharides stands as one of the great challenges for the field of synthetic chemistry1,2. Selective glycosylation of unprotected sugars and other polyhydroxylated nucleophiles is a particularly significant goal, requiring not only control over the stereochemistry of the forming bond but also differentiation between similarly reactive nucleophilic sites in stereochemically complex contexts3,4. Chemists have generally relied on multi-step protecting-group strategies to achieve site control in glycosylations, but practical inefficiencies arise directly from the application of such approaches5-7. We describe here a new strategy for small-molecule-catalyst-controlled, highly stereo- and site-selective glycosylations of unprotected or minimally protected mono- and disaccharides using precisely designed bis-thiourea small-molecule catalysts. Stereo- and site-selective galactosylations and mannosylations of a wide assortment of polyfunctional nucleophiles is thereby achieved. Kinetic and computational studies provide evidence that site selectivity arises from stabilizing C-H/π interactions between the catalyst and the nucleophile, analogous to those documented in sugar-binding proteins. This work demonstrates that highly selective glycosylation reactions can be achieved through control of stabilizing noncovalent interactions, a potentially general strategy for selective functionalization of carbohydrates.
Collapse
|
31
|
Mukherjee MM, Ghosh R, Hanover JA. Recent Advances in Stereoselective Chemical O-Glycosylation Reactions. Front Mol Biosci 2022; 9:896187. [PMID: 35775080 PMCID: PMC9237389 DOI: 10.3389/fmolb.2022.896187] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Carbohydrates involving glycoconjugates play a pivotal role in many life processes. Better understanding toward glycobiological events including the structure–function relationship of these biomolecules and for diagnostic and therapeutic purposes including tailor-made vaccine development and synthesis of structurally well-defined oligosaccharides (OS) become important. Efficient chemical glycosylation in high yield and stereoselectivity is however challenging and depends on the fine tuning of a protection profile to get matching glycosyl donor–acceptor reactivity along with proper use of other important external factors like catalyst, solvent, temperature, activator, and additive. So far, many glycosylation methods have been reported including several reviews also. In the present review, we will concentrate our discussion on the recent trend on α- and β-selective glycosylation reactions reported during the past decade.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, India
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| |
Collapse
|
32
|
Liu X, Lin Y, Peng W, Zhang Z, Gao L, Zhou Y, Song Z, Wang Y, Xu P, Yu B, Sun H, Xie W, Li W. Direct Synthesis of 2,6‐Dideoxy‐β‐glycosides and β‐Rhamnosides with a Stereodirecting 2‐(Diphenylphosphinoyl)acetyl Group. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xianglai Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yetong Lin
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Wenyi Peng
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Zhaolun Zhang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Longwei Gao
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yueer Zhou
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Zhe Song
- China Pharmaceutical University Instrumental Analysis Center CHINA
| | - Yingjie Wang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Peng Xu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Biao Yu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Haopeng Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Weijia Xie
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Wei Li
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry 639 Longmian Avenue 211198 Nanjing CHINA
| |
Collapse
|
33
|
McMillan TF, Crich D. Influence of 3-Thio Substituents on Benzylidene-Directed Mannosylation. Isolation of a Bridged Pyridinium Ion and Effects of 3- O-Picolyl and 3- S-Picolyl Esters. European J Org Chem 2022; 2022:e202200320. [PMID: 36340645 PMCID: PMC9632450 DOI: 10.1002/ejoc.202200320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 08/08/2023]
Abstract
The influence on glycosyl selectivity of substituting oxygen for sulfur at the 3-position of 4,6-O-benzylidene-protected mannopyranosyl thioglycosides is reported and varies considerably according to the protecting group employed at the 3-position. The substitution of a thioether at the 3-position for the more usual 3-O-benzyl ether results in a significant loss of selectivity. The installation of a 3-S-picolinyl thioether results in a complex reaction mixture, from which a stable seven-membered bridged bicyclic pyridinium ion is isolated, while the corresponding 3-O-picolinyl ether affords a highly α-selective coupling reaction. A 3-O-picolyl ester provides excellent β-selectivity, while the analogous 3-S-picolyl thioester gives a highly α-selective reaction. The best β-selectivity is seen with a 3-deoxy-3-(2-pyridinyldisulfanyl) system. These observations are discussed in terms of the influence of the various substituents on the central glycosyl triflate - ion pair equilibrium.
Collapse
Affiliation(s)
- Timothy F McMillan
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
- Department of Pharmaceutical and Biomedical Sciences, 250 West Green Street, Athens, GA 30602, USA
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
- Department of Pharmaceutical and Biomedical Sciences, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 1001 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
34
|
Zhang C, Zuo H, Lee GY, Zou Y, Dang QD, Houk KN, Niu D. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat Chem 2022; 14:686-694. [DOI: 10.1038/s41557-022-00918-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
35
|
Xiao K, Hu Y, Wan Y, Li X, Nie Q, Yan H, Wang L, Liao J, Liu D, Tu Y, Sun J, Codée JDC, Zhang Q. Hydrogen bond activated glycosylation under mild conditions. Chem Sci 2022; 13:1600-1607. [PMID: 35282639 PMCID: PMC8826775 DOI: 10.1039/d1sc05772c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The glycosylation protocol features broad substrate scope, controllable stereoselectivity, good to excellent yields and exceptionally mild catalysis conditions. Benefitting from the mild reaction conditions, this new hydrogen bond-mediated glycosylation system in combination with a hydrogen bond-mediated aglycon delivery system provides a reliable method for the synthesis of challenging phenolic glycosides. In addition, a chemoselective glycosylation procedure was developed using different imidate donors (trichloroacetimidates, N-phenyl trifluoroacetimidates, N-4-nitrophenyl trifluoroacetimidates, benzoxazolyl imidates and 6-nitro-benzothiazolyl imidates) and it was applied for a trisaccharide synthesis through a novel one-pot single catalyst strategy. A mild glycosylation system was developed using glycosyl imidate donors and a charge-enhanced thiourea H-bond donor catalyst. The method can be used for the effective synthesis of O-, C-, S- and N-glycosides and chemoselective one-pot glycosylation.![]()
Collapse
Affiliation(s)
- Ke Xiao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - XinXin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jinxi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Deyong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jiansong Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China .,Key Laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
36
|
Zhao WC, Li RP, Ma C, Liao QY, Wang M, He ZT. Stereoselective gem-C,B-Glycosylation via 1,2-Boronate Migration. J Am Chem Soc 2022; 144:2460-2467. [PMID: 35112837 DOI: 10.1021/jacs.1c11842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel protocol is established for the long-standing challenge of stereoselective geminal bisglycosylations of saccharides. The merger of PPh3 as a traceless glycosidic leaving group and 1,2-boronate migration enables the simultaneous introduction of C-C and C-B bonds at the anomeric stereogenic center of furanoses and pyranoses. The power of this method is showcased by a set of site-selective modifications of glycosylation products for the construction of bioactive conjugates and skeletons. A scarce metal-free 1,1-difunctionalization process of alkenes is also concomitantly demonstrated.
Collapse
Affiliation(s)
- Wei-Cheng Zhao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Rui-Peng Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao Ma
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi-Ying Liao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
37
|
Nielsen MM, Holmstrøm T, Pedersen CM. Stereoselective
O
‐Glycosylations by Pyrylium Salt Organocatalysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Martin Nielsen
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen O Denmark
| | - Thomas Holmstrøm
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen O Denmark
| | | |
Collapse
|
38
|
Liu X, Lin Y, Liu A, Sun Q, Sun H, Xu P, Li G, Song Y, Xie W, Sun H, Yu B, Li W. 2‐Diphenylphosphinonyl
‐acetyl as a Remote Directing Group for the Highly Stereoselective Synthesis of
β‐Glycosides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yetong Lin
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Ao Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Qianhui Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Huiyong Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Guolong Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yingying Song
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Weijia Xie
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Haopeng Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| |
Collapse
|
39
|
Gallier F, E Miranda LSDM. Organocatalysis applied to carbohydrates: from roots to current developments. Org Biomol Chem 2021; 20:919-933. [PMID: 34931627 DOI: 10.1039/d1ob01919h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organocatalysis emerged in the last decade as a powerful tool for the synthesis of complex molecules. In the field of carbohydrates, it found widespread use in the synthesis of rare and non-natural carbohydrate derivatives. Additionally, it has also found important application in the stereoselective functionalization of the anomeric carbon in glycosylation reactions. These efforts culminated in the development of different types of catalysts operating through distinct activation modes that allow the selective synthesis of α- or β-glycosides even on daunting substrates. All these advances starting from its first examples in carbohydrate synthesis to the current developments in glycosylation reactions are reviewed.
Collapse
Affiliation(s)
- Florian Gallier
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France. .,Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Leandro Soter de Mariz E Miranda
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy-Pontoise, France. .,Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.,Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Av Athos da Silveira Ramos 149, Centro de Tecnologia, Bl A, 21941909 Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Nielsen MM, Holmstrøm T, Pedersen CM. Stereoselective O-Glycosylations by Pyrylium Salt Organocatalysis. Angew Chem Int Ed Engl 2021; 61:e202115394. [PMID: 34847269 DOI: 10.1002/anie.202115394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 01/06/2023]
Abstract
Despite many years of invention, the field of carbohydrate chemistry remains rather inaccessible to non-specialists, which limits the scientific impact and reach of the discoveries made in the field. Aiming to increase the availability of stereoselective glycosylation chemistry for non-specialists, we have discovered that several commercially available pyrylium salts catalyze stereoselective O-glycosylations of a wide range of phenols and alkyl alcohols. This catalytic reaction utilizes trichloroacetimidates, an easily accessible and synthetically proven electrophile, takes place under air and only initiates when all three reagents are mixed, which should provide better reproducibility by non-specialists. The reaction exhibits varying degrees of stereospecificity, resulting in β-selective glycosylations from α-trichloroacetimidates, whilst an α-selective glycosylation proceeds from β-trichloroacetimidates. A mechanistic study revealed that the reaction likely proceeds via an SN 2-like substitution on the protonated electrophile.
Collapse
Affiliation(s)
- Michael Martin Nielsen
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| | - Thomas Holmstrøm
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| | - Christian Marcus Pedersen
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, 2100, Copenhagen O, Denmark
| |
Collapse
|
41
|
Abstract
Carbohydrate recognition is crucial for biological processes ranging from development to immune system function to host-pathogen interactions. The proteins that bind glycans are faced with a daunting task: to coax these hydrophilic species out of water and into a binding site. Here, we examine the forces underlying glycan recognition by proteins. Our previous bioinformatic study of glycan-binding sites indicated that the most overrepresented side chains are electron-rich aromatic residues, including tyrosine and tryptophan. These findings point to the importance of CH-π interactions for glycan binding. Studies of CH-π interactions show a strong dependence on the presence of an electron-rich π system, and the data indicate binding is enhanced by complementary electronic interactions between the electron-rich aromatic ring and the partial positive charge of the carbohydrate C-H protons. This electronic dependence means that carbohydrate residues with multiple aligned highly polarized C-H bonds, such as β-galactose, form strong CH-π interactions, whereas less polarized residues such as α-mannose do not. This information can guide the design of proteins to recognize sugars and the generation of ligands for proteins, small molecules, or catalysts that bind sugars.
Collapse
Affiliation(s)
- Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Roger C. Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
43
|
Shao L, Huo Z, Lei N, Yang M, He Z, Zhang Y, Wei Q, Chen C, Xiao M, Wang F, Gu G, Cai F. Reinvestigation of N, N-Diacetylimido-Protected 2-Aminothioglycosides in O-Glycosylation: Intermolecular Hydrogen Bonds Contributing to 1,2-Orthoamide Formation. J Org Chem 2021; 86:13212-13230. [PMID: 34533021 DOI: 10.1021/acs.joc.1c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N,N-Diacetylimido protection of 2-aminoglycosides is an elegant strategy but has had limited applications due to unexpected side reactions in glycosylation. We found that high acid concentrations could diminish the side reactions. We observed intermolecular hydrogen bonding among alcohols and acids could disrupt. Assuming that intermolecular hydrogen bonding accelerates the formation of 1,2-orthoamides and disrupting intermolecular hydrogen bonds could turn to the desired glycosylation, we successfully employed sulfenyl triflate pre-activation in the glycosylation of a broad scope of alcohol acceptors, as well as in a one-pot synthesis of a protected human milk oligosaccharide, lacto-N-neotetraose.
Collapse
Affiliation(s)
- Liming Shao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Zhenni Huo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Na Lei
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Min Yang
- Center for Analysis and Characterization, School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd., Shanghai 201210, China
| | - Zehuan He
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yongliang Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Qinlong Wei
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Changsheng Chen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Mei Xiao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Fei Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Feng Cai
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
44
|
Li J, Nguyen HM. A Mechanistic Probe into 1,2- cis Glycoside Formation Catalyzed by Phenanthroline and Further Expansion of Scope. Adv Synth Catal 2021; 363:4054-4066. [PMID: 35431716 PMCID: PMC9009828 DOI: 10.1002/adsc.202100639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Phenanthroline, a rigid and planar compound with two fused pyridine rings, has been used as a powerful ligand for metals and a binding agent for DNA/RNA. We discovered that phenanthroline could be used as a nucleophilic catalyst to efficiently access high yielding and diastereoselective α-1,2-cis glycosides through the coupling of hydroxyl acceptors with α-glycosyl bromide donors. We have conducted an extensive investigation into the reaction mechanism, wherein the two glycosyl phenanthrolinium ion intermediates, a 4C1 chair-liked β-conformer and a B2,5 boat-like α-conformer, have been detected in a ratio of 2:1 (β:α) using variable temperature NMR experiments. Furthermore, NMR studies illustrate that a hydrogen bonding is formed between the second nitrogen atom of phenanthroline and the C1-anomeric hydrogen of sugar moiety to stabilize the phenanthrolinium ion intermediates. To obtain high α-1,2-cis stereoselectivity, a Curtin-Hammett scenario was proposed wherein interconversion of the 4C1 chair-like β-conformer and B2,5 boat-like α-conformer is more rapid than nucleophilic addition. Hydroxyl attack takes place from the α-face of the more reactive 4C1 β-phenanthrolinium intermediate to give an α-anomeric product. The utility of the phenanthroline catalysis is expanded to sterically hindered hydroxyl nucleophiles and chemoselective coupling of an alkyl hydroxyl group in the presence of a free C1-hemiacetal. In addition, the phenanthroline-based catalyst has a pronounced effect on site-selective couplings of triol motifs and orthogonally activates the anomeric bromide leaving group over the anomeric fluoride and sulfide counterparts.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, United States
| |
Collapse
|
45
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
46
|
Fang G, Wang H, Zheng C, Pan L, Zhao G. Enantioselectivity switch in asymmetric Michael addition reactions using phosphonium salts. Org Biomol Chem 2021; 19:6334-6340. [PMID: 34231639 DOI: 10.1039/d1ob01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient access to two enantiomers of one chiral compound is critical for the discovery of drugs. However, it is still a challenging problem owing to the difficulty in obtaining two enantiomers of one chiral catalyst. Here, we report a general method to obtain both enantiomeric products via fine tuning the hydrogen-bonding interactions of phosphonium salts. Amino acid derived phosphonium salts and dipeptide derived phosphonium salts exhibited different properties for controlling the transition state, which could efficiently promote the Michael addition reaction to give opposite configurations of products with high yields and enantioselectivities. Preliminary investigations on the mechanism of the reaction and applications of the products were also performed.
Collapse
Affiliation(s)
- Guosheng Fang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Hongyu Wang
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Changwu Zheng
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Lu Pan
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Gang Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China. and Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| |
Collapse
|
47
|
Pongener I, Pepe DA, Ruddy JJ, McGarrigle EM. Stereoselective β-mannosylations and β-rhamnosylations from glycosyl hemiacetals mediated by lithium iodide. Chem Sci 2021; 12:10070-10075. [PMID: 34377400 PMCID: PMC8317664 DOI: 10.1039/d1sc01300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Stereoselective β-mannosylation is one of the most challenging problems in the synthesis of oligosaccharides. Herein, a highly selective synthesis of β-mannosides and β-rhamnosides from glycosyl hemi-acetals is reported, following a one-pot chlorination, iodination, glycosylation sequence employing cheap oxalyl chloride, phosphine oxide and LiI. The present protocol works excellently with a wide range of glycosyl acceptors and with armed glycosyl donors. The method doesn't require conformationally restricted donors or directing groups; it is proposed that the high β-selectivities observed are achieved via an SN2-type reaction of α-glycosyl iodide promoted by lithium iodide.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Dionissia A Pepe
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Joseph J Ruddy
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
48
|
Zhao G, Yao W, Kevlishvili I, Mauro JN, Liu P, Ngai MY. Nickel-Catalyzed Radical Migratory Coupling Enables C-2 Arylation of Carbohydrates. J Am Chem Soc 2021; 143:8590-8596. [PMID: 34086440 DOI: 10.1021/jacs.1c03563] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nickel catalysis offers exciting opportunities to address unmet challenges in organic synthesis. Herein we report the first nickel-catalyzed radical migratory cross-coupling reaction for the direct preparation of 2-aryl-2-deoxyglycosides from readily available 1-bromosugars and arylboronic acids. The reaction features a broad substrate scope and tolerates a wide range of functional groups and complex molecular architectures. Preliminary experimental and computational studies suggest a concerted 1,2-acyloxy rearrangement via a cyclic five-membered-ring transition state followed by nickel-catalyzed carbon-carbon bond formation. The novel reactivity provides an efficient route to valuable C-2-arylated carbohydrate mimics and building blocks, allows for new strategic bond disconnections, and expands the reactivity profile of nickel catalysis.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Wang Yao
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Ilia Kevlishvili
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jaclyn N Mauro
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States.,Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
49
|
Abstract
![]()
Polysaccharides are
Nature’s most abundant biomaterials
essential for plant cell wall construction and energy storage. Seemingly
minor structural differences result in entirely different functions:
cellulose, a β (1–4) linked glucose polymer, forms fibrils
that can support large trees, while amylose, an α (1–4)
linked glucose polymer forms soft hollow fibers used for energy storage.
A detailed understanding of polysaccharide structures requires pure
materials that cannot be isolated from natural sources. Automated
Glycan Assembly provides quick access to trans-linked
glycans analogues of cellulose, but the stereoselective installation
of multiple cis-glycosidic linkages present in amylose
has not been possible to date. Here, we identify thioglycoside building
blocks with different protecting group patterns that, in concert with
temperature and solvent control, achieve excellent stereoselectivity
during the synthesis of linear and branched α-glucan polymers
with up to 20 cis-glycosidic linkages. The molecules
prepared with the new method will serve as probes to understand the
biosynthesis and the structure of α-glucans.
Collapse
Affiliation(s)
- Yuntao Zhu
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
50
|
Man Y, Zhou C, Fu S, Liu B. Synthetic Study Aiming at the Tricyclic Core of 12- epi-JBIR-23/24. Org Lett 2021; 23:3151-3156. [PMID: 33826342 DOI: 10.1021/acs.orglett.1c00853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthetic study toward highly enantio- and diastereoselective synthesis of the tricyclic framework of 12-epi-JBIR-23/24, a natural product analogue showing inhibitory activity against four malignant pleural mesothelioma cell lines, is presented herein. In this synthesis, a rhodium-catalyzed asymmetric three-component Michael/aldol reaction introduces three consecutive tertiary carbon centers, while the unique epoxyquinol core motif is successfully forged via [3,3]-sigmatropic rearrangement of an allylic xanthate, vinylogous Pummerer rearrangement, and a selective mesylation/epoxidation cascade of a triol.
Collapse
Affiliation(s)
- Yi Man
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengying Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|