1
|
Tenorio M, Lozano M, Cerna L, Martínez García M, Urbani M, Lauwaet K, Biswas K, Soler-Polo D, Mathialagan SK, Parreiras SO, Gallego JM, Miranda R, Urgel JI, Torres T, Jelínek P, Bottari G, Écija D. Coordinative Self-assembly of π-Electron Magnetic Porphyrins. Angew Chem Int Ed Engl 2025; 64:e202420572. [PMID: 39642287 DOI: 10.1002/anie.202420572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
π-Electron magnetic compounds on surfaces have emerged as a powerful platform to interrogate spin interactions at the atomic scale, with great potential in spintronics and quantum technologies. A key challenge is organizing these compounds over large length scales, while elucidating their resulting magnetic properties. Herein, we offer a relevant contribution toward this objective, which consists of using on-surface synthesis coupled with coordination chemistry to promote the self-assembly of π-electron magnetic porphyrin species. A porphyrin precursor equipped with carbonitrile moieties in a trans arrangement was prepared by solution synthesis and deposited on Au(111)/mica. Depending on the specific growth protocol, surface-promoted reactions led to the transformation of the precursor into non-magnetic Au-CN coordinated porphyrin monomers, covalent porphyrin dimers, and one-dimensional porphyrin polymers (based on porphyrin monomers or covalent porphyrin dimers), as revealed by scanning probe microscopy studies combined with theoretical calculations. Interestingly, the scanning tunneling microscopy tip could convert such closed-shell porphyrin units into open-shell species by the removal of some peripheral hydrogen atoms. The magnetic features (i.e., singlet or triplet ground state) of the porphyrin units comprising the polymers were investigated for polymers of different lengths. No magnetic exchange coupling between adjacent units was observed, suggesting protection of the magnetic entities.
Collapse
Affiliation(s)
- María Tenorio
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - Marco Lozano
- Institute of Physics, Academy of Sciences of the Czech Republic, CZ 16200, Prague, Czech Republic
| | - Lenka Cerna
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - Miguel Martínez García
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Maxence Urbani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - Koen Lauwaet
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - Kalyan Biswas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - Diego Soler-Polo
- Institute of Physics, Academy of Sciences of the Czech Republic, CZ 16200, Prague, Czech Republic
| | | | - Sofía O Parreiras
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
- Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José Ignacio Urgel
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - Tomás Torres
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pavel Jelínek
- Institute of Physics, Academy of Sciences of the Czech Republic, CZ 16200, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, 78371, Czech Republic
| | - Giovanni Bottari
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Écija
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| |
Collapse
|
2
|
Bao J, Li Z, Wang D, Wang J, Huang G, Qian J, Yang X, Duan PC, Zhang S, Bai F, Zhong Y. Controllable Self-Assembly of V═O Metalloradical Complex with Intramolecular Charge Transfer for Enhanced NIR-II Fluorescence Imaging-Guided Photothermal Therapy. Adv Healthc Mater 2025; 14:e2404262. [PMID: 39692175 DOI: 10.1002/adhm.202404262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Near-infrared second region (NIR-II) fluorescence imaging provides enhanced tissue penetration, achieving efficient NIR-II fluorescence and photoacoustic imaging (PA)-guided photothermal therapy (PTT) all in one material remains a challenging yet promising approach in cancer treatment. Herein, open-shell V═O metalloradical complex (VONc) is self-assembled into VONc nanospheres (VONc NPs). VONc NPs exhibit light absorption from 300 to 1400 nm, fluorescence spectra ranging from 900 to 1400 nm, and a distinct fluorescence signal even at 1550 nm. Moreover, VONc NPs exhibit outstanding photostability and a higher photothermal conversion efficiency of 46.6% than that of closed-shell zinc naphthalocyanine nanorods (ZnNc NRs). V═O centered metalloradical serves as transient electron-withdrawing groups to facilitate charge transfer (CT), introducing additional nonradiative energy dissipation pathways and enhancing efficient heat generation. In vitro experiments of VONc NPs indicate that a highly effective photothermal action causes harm to both mitochondria and lysosomes, resulting in the death of tumor cells, closed-shell ZnNc NPs exhibit almost no cell killing as contrast. In vivo anti-tumor therapy results of VONc NPs demonstrate excellent NIR-II fluorescence imaging-guided PTT against tumors with a favorable biosafety profile. "Centered metalloradical boosting CT" toward open-shell metal complexes provides significant insight for developing single-material integrated nanosystems for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Jianshuai Bao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zengyin Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Jiefei Wang
- International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, P. R. China
| | - Guan Huang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jianlei Qian
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaoyan Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Peng-Cheng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Sheng Zhang
- Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
3
|
Li C, Pokorný V, Žonda M, Liu JC, Zhou P, Chahib O, Glatzel T, Häner R, Decurtins S, Liu SX, Pawlak R, Meyer E. Individual Assembly of Radical Molecules on Superconductors: Demonstrating Quantum Spin Behavior and Bistable Charge Rearrangement. ACS NANO 2025; 19:3403-3413. [PMID: 39806870 PMCID: PMC11781030 DOI: 10.1021/acsnano.4c12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced. Due to local screening and charge redistribution, we observe either charged or neutral molecules, which couple in a sophisticated way, showing quantum spin behavior that deviates from the classical spins. Dimers at different separations show multiple Yu-Shiba-Rusinov peaks in tunneling spectroscopy of varying intensity, which are in line with the superconducting two-impurity Anderson model, where singlet (S = 0) and doublet (S = 1/2) ground states are found. The assembly of chains of 3, 4, and 5 molecules shows alternating charge patterns, where the edge molecules always host a charge/spin. The tetramer is observed in two configurations, where the neutral site is moved by one position. We show that these two configurations can be switched by the action of the probing tip in a nondestructive manner, demonstrating that the tetramer is an information unit, based on single-electron charge reorganization.
Collapse
Affiliation(s)
- Chao Li
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Vladislav Pokorný
- Institute
of Physics (FZU), Czech Academy of Sciences, Na Slovance 2, 182 00 Prague 8, Czech Republic
| | - Martin Žonda
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16 Prague 2, Czech
Republic
| | - Jung-Ching Liu
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Ping Zhou
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Outhmane Chahib
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thilo Glatzel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Silvio Decurtins
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Shi-Xia Liu
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rémy Pawlak
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Deyerling J, Berionni Berna B, Biloborodov D, Haag F, Tömekce S, Cuxart MG, Li C, Auwärter W, Bonifazi D. Solution Versus On-Surface Synthesis of Peripherally Oxygen-Annulated Porphyrins through C-O Bond Formation. Angew Chem Int Ed Engl 2025; 64:e202412978. [PMID: 39196673 DOI: 10.1002/anie.202412978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024]
Abstract
This study investigates the synthesis of tetra- and octa-O-fused porphyrinoids employing an oxidative O-annulation approach through C-H activation. Despite encountering challenges such as overoxidation and instability in conventional solution protocols, successful synthesis was achieved on Au(111) surfaces under ultra-high vacuum (UHV) conditions. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and non-contact atomic force microscopy elucidated the preferential formation of pyran moieties via C-O bond formation and subsequent self-assembly driven by C-H⋅⋅⋅O interactions. Furthermore, the O-annulation process was found to reduce the HOMO-LUMO gap by lifting the HOMO energy level, with the effect rising upon increasing the number of embedded O-atoms.
Collapse
Affiliation(s)
- Joel Deyerling
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Beatrice Berionni Berna
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Dmytro Biloborodov
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Felix Haag
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Sena Tömekce
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Marc G Cuxart
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Conghui Li
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Willi Auwärter
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Davide Bonifazi
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
5
|
Baljozović M, Pijeat J, Campidelli S, Ernst KH. Planar and Curved π-Extended Porphyrins by On-Surface Cyclodehydrogenation. J Am Chem Soc 2024; 146:34600-34608. [PMID: 39629975 DOI: 10.1021/jacs.4c12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Recent advancements in on-surface synthesis have enabled the reliable and predictable preparation of atomically precise low-dimensional materials with remarkable properties, which are often unattainable through traditional wet chemistry. Among these materials, porphyrins stand out as a particularly intriguing class of molecules, extensively studied both in solution and on surfaces. Their appeal lies in the ability to fine-tune their unique chemical and physical properties through central metal exchange or peripheral functionalization. However, the synthesis of π-extended porphyrins featuring unsubstituted anthracenyl groups has remained elusive. Herein, we report an in vacuo temperature-controlled cyclodehydrogenation of bis- and tetraanthracenyl Zn(II) porphyrins on a gold(111) surface. By gradually increasing the temperature, sequential dehydrogenation leads to the formation of fused anthracenyl porphyrin products. Notably, at high molecular coverage, the formation of bowl-shaped porphyrins occurs, along with transmetalation of Zn with Au. These findings open the door to a variety of π-extended anthracenyl-containing porphyrin products via cyclodehydrogenation and transmetalation, offering significant potential in the fields of molecular (photo/electro)catalysis, (opto)electronics, and spintronics.
Collapse
Affiliation(s)
- Miloš Baljozović
- Molecular Surface Science Group, Empa, 8600 Dübendorf, Switzerland
| | - Joffrey Pijeat
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Stéphane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Karl-Heinz Ernst
- Molecular Surface Science Group, Empa, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, 16200 Prague, Czech Republic
| |
Collapse
|
6
|
Zhang Y, Fu B, Li N, Lu J, Cai J. Advancements in π-Magnetism and Precision Engineering of Carbon-Based Nanostructures. Chemistry 2024; 30:e202402765. [PMID: 39302066 DOI: 10.1002/chem.202402765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The emergence of π-magnetism in low-dimensional carbon-based nanostructures, such as nanographenes (NGs), has captured significant attention due to their unique properties and potential applications in spintronics and quantum technologies. Recent advancements in on-surface synthesis under ultra-high vacuum conditions have enabled the atomically precise engineering of these nanostructures, effectively overcoming the challenges posed by their inherent strong chemical reactivity. This review highlights the essential concepts and synthesis methods used in studying NGs. It also outlines the remarkable progress made in understanding and controlling their magnetic properties. Advanced characterization techniques, such as scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM), have been instrumental in visualizing and manipulating these nanostructures, which highlighting their critical role in the field. The review underscores the versatility of carbon-based π-magnetic materials and their potential for integration into next-generation electronic devices. It also outlines future research directions aimed at optimizing their synthesis and exploring applications in cutting-edge technologies.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
- Southwest United Graduate School, Kunming, Yunnan, 650093, China
| | - Boyu Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Nianqiang Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China
- Southwest United Graduate School, Kunming, Yunnan, 650093, China
| |
Collapse
|
7
|
Oleszak C, Schol PR, Ritterhoff CL, Krug M, Martin MM, Bo Y, Meyer B, Clark T, Guldi DM, Jux N. Fused Hexabenzocoronene-Porphyrin Conjugates with Tailorable Excited-State Lifetimes. Angew Chem Int Ed Engl 2024; 63:e202409363. [PMID: 39105244 DOI: 10.1002/anie.202409363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
A new clear-cut strategy for fusing N-heterocyclic and carbon-pure systems is introduced en route to a versatile platform of multi-purpose tetrapyrrolic chromophores. In particular, three novel C-C bond-fused porphyrin-hexabenzocoronene (HBC) conjugates were synthesized under oxidative cyclodehydrogenation conditions, starting from tailor-made nickel porphyrin precursors. The fusion of the individual aromatic systems via 5-membered rings led to highly soluble π-extended porphyrins in excellent yields. The resulting porphyrin-HBC conjugates exhibit absorption cross-sections that are of interdisciplinary interest in the ever-growing field of organic photovoltaics and near-infrared (NIR) dyes. Quantum chemical calculations show that the newly formed 5-membered rings induce biradicaloid character in the porphyrin core, which has a strong impact on excited state lifetimes. This is confirmed by a thorough optoelectronic and time-resolved characterization in order to understand these unique features better. Broadened absorption characteristics go hand-in-hand with short-lived excited states with up to six orders of magnitude faster decay rates.
Collapse
Affiliation(s)
- Christoph Oleszak
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter R Schol
- Profile Center Solar Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Christian L Ritterhoff
- Computer Chemistry Center & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052, Erlangen, Germany
| | - Marcel Krug
- Profile Center Solar Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Max M Martin
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Yifan Bo
- Profile Center Solar Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Bernd Meyer
- Computer Chemistry Center & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052, Erlangen, Germany
| | - Timothy Clark
- Computer Chemistry Center & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052, Erlangen, Germany
| | - Dirk M Guldi
- Profile Center Solar Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Norbert Jux
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
8
|
Oliveira TA, Silva PV, de Vasconcelos FM, Meunier V, Girão EC. Electronic and magnetic properties of porphyrin nanoribbons with chelated metals. Phys Chem Chem Phys 2024; 26:26943-26957. [PMID: 39420674 DOI: 10.1039/d4cp02822h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Advances in surface-assisted synthesis routes now allow for precise control in the preparation and modification of low-dimensional structures. The choice of molecular precursors plays a fundamental role in these processes since the structural details and properties of the resulting nanostructures directly depend on the molecular block used. From this perspective, units based on porphyrins have proven to be promising candidates for the construction of nanosystems with nontrivial geometry. In particular, efforts have been made to synthesize different arrangements of π-conjugated porphyrins. With this motivation, we use computational simulations to investigate the electronic and magnetic properties of nanoribbons constructed from the concatenation of π-extended porphyrins hosting transition metal atoms. We show that the binding energy of these systems and the specific way the electrons populate the d-shells are strongly influenced by the type of the transition metal. Furthermore, it was observed that most systems with chelated metals (except Ni and Zn) feature magnetic properties. The systems considered in this work have analogs in finite structures recently synthesized in the laboratory so the nanomaterials proposed here have a high potential to be produced in the near future.
Collapse
Affiliation(s)
- Thainá Araújo Oliveira
- Departamento de Física, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil.
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, PI, Brazil
| | - Paloma Vieira Silva
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, PI, Brazil
- Coordenação do Curso de Licenciatura em Educação do Campo/Ciências da Natureza, Universidade Federal do Piauí, CEP 64808-605, Floriano, Piauí, Brazil
| | - Fabrício Morais de Vasconcelos
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí - Campus São João do PI, CEP 64760-000, São João do PI, Piauí, Brazil
| | - Vincent Meunier
- Engineering Science and Mechanics Department, The Pennsylvania State University, University Parkl, PA, USA
| | - Eduardo Costa Girão
- Departamento de Física, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil.
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, PI, Brazil
| |
Collapse
|
9
|
Duan JJ, Yang XQ, Li R, Li X, Chen T, Wang D. N-Heterocyclic Carbene-Derived 1,3,5-Trimethylenebenzene: On-Surface Synthesis and Electronic Structure. J Am Chem Soc 2024; 146:13025-13033. [PMID: 38693826 DOI: 10.1021/jacs.3c14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
1,3,5-Trimethylenebenzene (1,3,5-TMB), a 3-fold-symmetric triradical with a high-spin ground state, is an attractive platform for investigating the unique spin properties of π-conjugated triangular triradicals. Here, we report the on-surface synthesis of N-heterocyclic carbene (NHC)-derived 1,3,5-TMB (N-TMB) via surface-assisted C-C and C-N coupling reactions on Au(111). The chemical and electronic structures of N-TMB on the Au(111) surface are revealed with atomic precision using scanning tunneling microscopy and noncontact atomic force microscopy, combined with density functional theory (DFT) calculations. It is demonstrated that there is substantial charge transfer between N-TMB and the substrate, resulting in a positively charged N-TMB on Au(111). DFT calculations at the UB3LYP/def2-TZVP level of theory and multireference method, e.g., CASSCF/NEVPT2, indicate that N-TMB possesses a doublet ground state with reduced Cs symmetry in the gas phase, contrasting the quartet ground state of 1,3,5-TMB with D3h symmetry, and exhibits a doublet-quartet energy gap of -0.80 eV. The incorporation of NHC structures and the extended π-conjugation promote the spin-orbital overlaps in N-TMB, leading to Jahn-Teller distortion and the formation of a robust doublet state. Our results not only demonstrate the fabrication of polyradicals based on NHC but also shed light on the effect of NHC and π-conjugation on the electronic structure and spin coupling, which opens up new possibilities for precisely regulating the spin-spin exchange coupling of organic polyradicals.
Collapse
Affiliation(s)
- Jun-Jie Duan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Qing Yang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruoning Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Scholz AS, Bolte M, Virovets A, Peresypkina E, Lerner HW, Anstöter CS, Wagner M. Tetramerization of BEB-Doped Phenalenyls to Obtain (BE) 8-[16]Annulenes (E = N, O). J Am Chem Soc 2024; 146:12100-12112. [PMID: 38635878 DOI: 10.1021/jacs.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two (BE)8-[16]annulenes were prepared and fully characterized by experimental and quantum-chemical means (1, E = N; 2, E = O). The 1,8-naphthalenediyl-bridged diborane(6) 3 served as their common starting material, which was treated with [Al(NH3)6]Cl3 to form 1 (91% yield) or with 1,8-naphthalenediboronic acid anhydride to form 2 (93% yield). As a result, the heteroannulenes 1 and 2 are supported by four aromatic "clamps" and may also be viewed as NH- or O-bridged cyclic tetramers of BNB- or BOB-doped phenalenyls. X-ray crystallography on mono-, di-, and tetraadducts 2·thf, 2·py2, and 2·py4 showed that 2 is an oligotopic Lewis acid (thf/py: tetrahydrofuran/pyridine donor). The applicability of 2 also as a Lewis basic ligand in coordination chemistry was demonstrated by the synthesis of the mononuclear Ag+ complex [Ag(py)2(2·py4)]+ and the dinuclear Pb2+ complex 6. During the assembly of 6, the rearrangement of 2 led to the formation of two (BO)9-macrocycles linked by two BOB-phenalenyls to form a nanometer-sized cage with four negatively charged, tetracoordinated B atoms. Both 1 and 2 show several redox waves in the cathodic regions of the cyclic voltammograms. An in-depth assessment of the consequences of electron injection on the aromaticity of 1 and 2 was achieved by electronic structure calculations. 1 and 2 are proposed to exhibit aromatic switching capabilities in the [16]annulene motif.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Eugenia Peresypkina
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Cate S Anstöter
- EaStCHEM School of Chemistry, University of Edinburgh, EH8 9YLEdinburgh,U.K
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Lin Y, Li J, Liang X, Hu T, Huang Z, Zhu Z, Diao M, Zhao X, Peng Z, Wang Y, Chen Q, Liu J, Wu K. Steering Electron-Induced Surface Reaction via a Molecular Assembly Approach. J Am Chem Soc 2024; 146:10150-10158. [PMID: 38557061 DOI: 10.1021/jacs.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Electrons not only serve as a "reactant" in redox reactions but also play a role in "catalyzing" some chemical processes. Despite the significance and ubiquitousness of electron-induced chemistry, many related scientific issues still await further exploration, among which is the impact of molecular assembly. In this work, microscopic insights into the vital role of molecular assembly in tweaking the electron-induced surface chemistry are unfolded by combined scanning tunneling microscopy and density functional theory studies. It is shown that the selective dissociation of a C-Cl bond in 4,4″-dichloro-1,1':3',1''-terphenyl (DCTP) on Cu(111) can be efficiently triggered by an electron injection via the STM tip into the unoccupied molecular orbital. The DCTP molecules are embedded in different assembly structures, including its self-assembly and coassemblies with Br adatoms. The energy threshold for the C-Cl bond cleavage increases as more Br adatoms stay close to the molecule, indicative of the sensitive response of the electron-induced surface reactivity of the C-Cl bond to the subtle change in the molecular assembly. Such a phenomenon is rationalized by the energy shift of the involved unoccupied molecular orbital of DCTP that is embedded in different assemblies. These findings shed new light on the tuning effect of molecular assembly on electron-induced reactions and introduce an efficient approach to precisely steer surface chemistry.
Collapse
Affiliation(s)
- Yuxuan Lin
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Xiaoyang Liang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ting Hu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhichao Huang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Zhu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengxiao Diao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinwei Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhantao Peng
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Qiwei Chen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Dettmann D, Sheverdyaeva PM, Hamzehpoor E, Franchi S, Galeotti G, Moras P, Ceccarelli C, Perepichka DF, Rosei F, Contini G. Electronic Band Engineering of Two-Dimensional Kagomé Polymers. ACS NANO 2024; 18:849-857. [PMID: 38147033 DOI: 10.1021/acsnano.3c09476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Two-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states. However, measuring these properties experimentally is challenging and requires long-range-ordered polymers, preferably with an epitaxial relationship with the substrate. Here, we investigate the electronic properties of a mesoscale-ordered carbonyl-bridged triphenylamine 2DCP (P2TANGO) and demonstrate the presence of a Dirac cone by combining angle-resolved photoemission spectroscopy (ARPES) with density functional theory (DFT) calculations. Moreover, we measure the absolute energy position of the Dirac cone with respect to the vacuum level. We show that the bridging functionality of the triangulene (ether vs carbonyl) does not significantly perturb the band structure but strongly affects the positioning of the bands with respect to the Au(111) states and allows control of the ionization energy of the polymer. Our results provide proof of the controllable electronic properties of 2DCPs and bring us closer to their use in practical applications.
Collapse
Affiliation(s)
- Dominik Dettmann
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, J3X 1P7, Varennes, Québec, Canada
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Polina M Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 0B8, Montreal, Quebec, Canada
| | - Stefano Franchi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Gianluca Galeotti
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, J3X 1P7, Varennes, Québec, Canada
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Chiara Ceccarelli
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 0B8, Montreal, Quebec, Canada
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, J3X 1P7, Varennes, Québec, Canada
| | - Giorgio Contini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Department of Physics, University Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
13
|
Zhang H, Lu J, Zhao XJ, Li B, Zhou H, Zhang Y, Niu G, Fu B, Gao L, Tan YZ, Cai J. Length-Dependent Magnetic Evolution of Anthenes on Au(111). Angew Chem Int Ed Engl 2023; 62:e202315216. [PMID: 37933811 DOI: 10.1002/anie.202315216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Nanographenes with zigzag edges, for example, anthenes, exhibit a unique nonbonding π-electron state, which can be described as a spin-polarized edge state that yields specific magnetic ground state. However, prior researches on the magnetism of anthenes with varying lengths on a surface is lacking. This study systematically fabricated anthenes with inherent zigzag carbon atoms of different lengths ranging from bisanthene to hexanthene. Their magnetic evolution on the Au(111) surface was analyzed through bond-resolved scanning probe techniques and density functional theory calculations. The analyses revealed a transition in magnetic properties associated with the length of the anthenes, arising from the imbalance between hybridization energy and the Coulomb repulsion between valence electrons. With the increasing length of the anthenes, the ground state transforms gradually from a closed-shell to an antiferromagnetic open-shell singlet, exhibiting a weak exchange coupling of 4 meV and a charge transfer-induced doublet. Therefore, this study formulated a chemically tunable platform to explore size-dependent π magnetism at the atomic scale, providing a framework for research in organic spintronics.
Collapse
Affiliation(s)
- Hui Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xin-Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Baijin Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Hangjing Zhou
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Gefei Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Boyu Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Southwest United Graduate School, Kunming, 650093, China
| |
Collapse
|
14
|
Anaya-Plaza E, Özdemir Z, Wimmer Z, Kostiainen MA. Hierarchical peroxiredoxin assembly through orthogonal pH-response and electrostatic interactions. J Mater Chem B 2023; 11:11544-11551. [PMID: 37990925 DOI: 10.1039/d3tb00369h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Morpheeins are proteins that adapt their morphology and function to the environment. Therefore, their use in nanotechnology opens up the bottom-up preparation of anisotropic metamaterials, based on the sequential use of different stimuli. A prominent member of this family of proteins is peroxiredoxins (Prx), with dual peroxidase and chaperone function, depending on the pH of the media. At high pH, they show a toroidal morphology that turns into tubular stacks upon acidification. While the toroidal conformers have been explored as building blocks to yield 1D and 2D structures, the obtention of higher ordered materials remain unexplored. In this research, the morpheein behaviour of Prx is exploited to yield columnar aggregates, that are subsequently self-assembled into 3D anisotropic bundles. This is achieved by electrostatic recognition between the negatively charged protein rim and a positively charged porphyrin acting as molecular glue. The subsequent and orthogonal input lead to the alignment of the monodimensional stacks side-by-side, leading to the precise assembly of this anisotropic materials.
Collapse
Affiliation(s)
- Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Finland.
| | - Zulal Özdemir
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Finland.
| |
Collapse
|
15
|
Calupitan JP, Berdonces-Layunta A, Aguilar-Galindo F, Vilas-Varela M, Peña D, Casanova D, Corso M, de Oteyza DG, Wang T. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. NANO LETTERS 2023; 23:9832-9840. [PMID: 37870305 PMCID: PMC10722538 DOI: 10.1021/acs.nanolett.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
On-surface synthesis has paved the way toward the fabrication and characterization of conjugated carbon-based molecular materials that exhibit π-magnetism such as triangulenes. Aza-triangulene, a nitrogen-substituted derivative, was recently shown to display rich on-surface chemistry, offering an ideal platform to investigate structure-property relations regarding spin-selective charge transfer and magnetic fingerprints. Herein, we study electronic changes upon fusion of single molecules into larger dimeric derivatives. We show that the closed-shell structure of aza-triangulene on Ag(111) leads to closed-shell dimers covalently coupled through sterically accessible carbon atoms. Meanwhile, its open-shell structure on Au(111) leads to coupling via atoms displaying a high spin density, resulting in symmetric or asymmetric products. Interestingly, whereas all dimers on Au(111) exhibit similar charge transfer properties, only asymmetric ones show magnetic fingerprints due to spin-selective charge transfer. These results expose clear relationships among molecular symmetry, charge transfer, and spin states of π-conjugated carbon-based nanostructures.
Collapse
Affiliation(s)
- Jan Patrick Calupitan
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Fernando Aguilar-Galindo
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Vilas-Varela
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Peña
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - David Casanova
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Tao Wang
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| |
Collapse
|
16
|
Li C, Robles R, Lorente N, Mahatha SK, Rohlf S, Rossnagel K, Barla A, Sorokin BV, Rusponi S, Ohresser P, Realista S, Martinho PN, Jasper-Toennies T, Weismann A, Berndt R, Gruber M. Large Orbital Moment of Two Coupled Spin-Half Co Ions in a Complex on Gold. ACS NANO 2023; 17:10608-10616. [PMID: 37224165 PMCID: PMC10278185 DOI: 10.1021/acsnano.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The magnetic properties of transition-metal ions are generally described by the atomic spins of the ions and their exchange coupling. The orbital moment, usually largely quenched due the ligand field, is then seen as a perturbation. In such a scheme, S = 1/2 ions are predicted to be isotropic. We investigate a Co(II) complex with two antiferromagnetically coupled 1/2 spins on Au(111) using low-temperature scanning tunneling microscopy, X-ray magnetic circular dichroism, and density functional theory. We find that each of the Co ions has an orbital moment comparable to that of the spin, leading to magnetic anisotropy, with the spins preferentially oriented along the Co-Co axis. The orbital moment and the associated magnetic anisotropy is tuned by varying the electronic coupling of the molecule to the substrate and the microscope tip. These findings show the need to consider the orbital moment even in systems with strong ligand fields. As a consequence, the description of S = 1/2 ions becomes strongly modified, which have important consequences for these prototypical systems for quantum operations.
Collapse
Affiliation(s)
- Chao Li
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Roberto Robles
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San
Sebastián, Spain
| | - Nicolas Lorente
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San
Sebastián, Spain
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastian, Spain
| | - Sanjoy Kr Mahatha
- Ruprecht
Haensel Laboratory, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | - Sebastian Rohlf
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Kai Rossnagel
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Ruprecht
Haensel Laboratory, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | - Alessandro Barla
- Istituto
di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche
(CNR), 34149 Trieste, Italy
| | - Boris V. Sorokin
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Station 3, 1015 Lausanne, Switzerland
| | - Stefano Rusponi
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Station 3, 1015 Lausanne, Switzerland
| | | | - Sara Realista
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paulo N. Martinho
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Torben Jasper-Toennies
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Richard Berndt
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Manuel Gruber
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
17
|
Labella J, Durán-Sampedro G, Krishna S, Martínez-Díaz MV, Guldi DM, Torres T. Anthracene-Fused Oligo-BODIPYs: A New Class of π-Extended NIR-Absorbing Materials. Angew Chem Int Ed Engl 2023; 62:e202214543. [PMID: 36350769 PMCID: PMC10107270 DOI: 10.1002/anie.202214543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Large π-conjugated systems are key in the area of molecular materials. Herein, we prepare via AuI -catalyzed cyclization a series of fully π-conjugated anthracene-fused oligo-BODIPYs. Their structural and optoelectronic properties were studied by several techniques, ranging from X-ray, UV/Vis, and cyclic voltammetry to transient absorption spectroscopy. As a complement, their electronic structures were explored by means of Density Functional Theory (DFT) calculations. Depending on the size and shape of the π-conjugated skeleton, unique features-such as face-to-face supramolecular organization, NIR absorption and fluorescence as well as strong electron accepting character-were noted. All in all, the aforementioned features render them valuable for technological applications.
Collapse
Affiliation(s)
- Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Gonzalo Durán-Sampedro
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Swathi Krishna
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - M Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.,IMDEA-Nanociencia, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
18
|
Rascon EC, Riss A, Matěj A, Wiengarten A, Mutombo P, Soler D, Jelinek P, Auwärter W. On-Surface Synthesis of Square-Type Porphyrin Tetramers with Central Antiaromatic Cyclooctatetraene Moiety. J Am Chem Soc 2023; 145:967-977. [PMID: 36580274 DOI: 10.1021/jacs.2c10088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of two-dimensionally extended polycyclic heteroatomic molecules keeps attracting considerable attention. In particular, frameworks bearing planar cyclooctatetraenes (COT) moieties can display intriguing properties, including antiaromaticity. Here, we present an on-surface chemistry route to square-type porphyrin tetramers with a central COT ring, coexisting with other oligomers. This approach employing temperature-induced dehydrogenative porphyrin homocoupling in an ultrahigh vacuum environment provides access to surface-supported, unsubstituted porphyrin tetramers that are not easily achievable by conventional synthesis means. Specifically, monomeric free-base (2H-P) and Zn-metalated (Zn-P) porphines (P) were employed to form square-type free-base and Zn-functionalized tetramers on Ag(100). An atomic-level characterization by bond-resolved atomic force microscopy and scanning tunneling microscopy and spectroscopy is provided, identifying the molecular structures. Complemented by density functional theory modeling, the electronic structure is elucidated, indeed revealing antiaromaticity induced by the COT moiety. The present study thus gives access, and insights, to a porphyrin oligomer, representing both a model system for directly fused porphyrins and a potential building block for conjugated, extended two-dimensional porphyrin sheets.
Collapse
Affiliation(s)
- Eduardo Corral Rascon
- Physics Department E20, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| | - Alexander Riss
- Physics Department E20, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| | - Adam Matěj
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University in Olomouc, 779 00 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alissa Wiengarten
- Physics Department E20, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| | - Pingo Mutombo
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Diego Soler
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Pavel Jelinek
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Willi Auwärter
- Physics Department E20, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| |
Collapse
|
19
|
Quantum nanomagnets in on-surface metal-free porphyrin chains. Nat Chem 2023; 15:53-60. [PMID: 36280765 DOI: 10.1038/s41557-022-01061-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2022] [Indexed: 01/14/2023]
Abstract
Unlike classic spins, quantum magnets are spin systems that interact via the exchange interaction and exhibit collective quantum behaviours, such as fractional excitations. Molecular magnetism often stems from d/f-transition metals, but their spin-orbit coupling and crystal field induce a significant magnetic anisotropy, breaking the rotation symmetry of quantum spins. Thus, it is of great importance to build quantum nanomagnets in metal-free systems. Here we have synthesized individual quantum nanomagnets based on metal-free multi-porphyrin systems. Covalent chains of two to five porphyrins were first prepared on Au(111) under ultrahigh vacuum, and hydrogen atoms were then removed from selected carbons using the tip of a scanning tunnelling microscope. The conversion of specific porphyrin units to their radical or biradical state enabled the tuning of intra- and inter-porphyrin magnetic coupling. Characterization of the collective magnetic properties of the resulting chains showed that the constructed S = 1/2 antiferromagnets display a gapped excitation, whereas the S = 1 antiferromagnets exhibit distinct end states between even- and odd-numbered spin chains, consistent with Heisenberg model calculations.
Collapse
|
20
|
Ranieri D, Santanni F, Privitera A, Albino A, Salvadori E, Chiesa M, Totti F, Sorace L, Sessoli R. An exchange coupled meso- meso linked vanadyl porphyrin dimer for quantum information processing. Chem Sci 2022; 14:61-69. [PMID: 36605752 PMCID: PMC9769127 DOI: 10.1039/d2sc04969d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/30/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
We report here the synthesis of a new meso-meso (m-m) singly linked vanadyl-porphyrin dimer that crystallizes in two different pseudo-polymorphs. The single crystal continuous-wave electron paramagnetic resonance investigation evidences a small but crucial isotropic exchange interaction, J, between the two tilted, and thus distinguishable, spin centers of the order of 10-2 cm-1. The experimental and DFT studies evidence a correlation between J values and porphyrin plane tilting angle and distortion. Pulsed EPR analysis shows that the two vanadyl dimers maintain the coherence time of the monomer. With the obtained spin Hamiltonian parameters, we identify suitable transitions that could be used as computational basis states. Our results, coupled with the evaporability of porphyrin systems, establish this class of dimers as extremely promising for quantum information processing applications.
Collapse
Affiliation(s)
- Davide Ranieri
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Fabio Santanni
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Alberto Privitera
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Andrea Albino
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Enrico Salvadori
- Department of Chemistry, NIS, University of TurinVia P. Giuria 7I10125 TorinoItaly
| | - Mario Chiesa
- Department of Chemistry, NIS, University of TurinVia P. Giuria 7I10125 TorinoItaly
| | - Federico Totti
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Lorenzo Sorace
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Roberta Sessoli
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| |
Collapse
|
21
|
Zhu YC, Xue FH, Kang LX, Liu JW, Wang Y, Li DY, Liu PN. Synthesis of Dendronized Polymers on the Au(111) Surface. J Phys Chem Lett 2022; 13:10589-10596. [PMID: 36346870 DOI: 10.1021/acs.jpclett.2c02810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dendronized polymers (DPs) consist of a linear polymeric backbone with dendritic side chains. Fine-tuning of the functional groups in the side chains enriches the structural versatility of the DPs and imparts a variety of novel physical properties. Herein, the first on-surface synthesis of DPs is achieved via the postfunctionalization of polymers on Au(111), in which the surface-confinement-induced planar conformation and chiral configurations were unambiguously characterized. While the dendronized monomer was synthesized in situ on Au(111), the subsequent polymerization afforded only short, cross-linked DP chains owing to multiple side reactions. The postfunctionalization approach selectively produced brominated polyphenylene backbone moieties by the deiodination polymerization of 4-bromo-4″-iodo-5'-(4-iodophenyl)-1,1':3',1″-terphenyl on Au(111), which smoothly underwent divergent cross-coupling reactions with two different isocyanides to form two types of DPs as individual long chains.
Collapse
Affiliation(s)
- Ya-Cheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fu-Hua Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Wei Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
22
|
de Oteyza DG, Frederiksen T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:443001. [PMID: 35977474 DOI: 10.1088/1361-648x/ac8a7f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emergence ofπ-magnetism in open-shell nanographenes has been theoretically predicted decades ago but their experimental characterization was elusive due to the strong chemical reactivity that makes their synthesis and stabilization difficult. In recent years, on-surface synthesis under vacuum conditions has provided unprecedented opportunities for atomically precise engineering of nanographenes, which in combination with scanning probe techniques have led to a substantial progress in our capabilities to realize localized electron spin states and to control electron spin interactions at the atomic scale. Here we review the essential concepts and the remarkable advances in the last few years, and outline the versatility of carbon-basedπ-magnetic materials as an interesting platform for applications in spintronics and quantum technologies.
Collapse
Affiliation(s)
- Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, E-33940 El Entrego, Spain
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
23
|
Yang XQ, Duan JJ, Su J, Peng X, Yi ZY, Li RN, Lu J, Wang SF, Chen T, Wang D. Aromatic Ring Fusion to Benzoporphyrin via γ- ortho Cyclodehydrogenation on a Ag(111) Surface. ACS NANO 2022; 16:13092-13100. [PMID: 35913404 DOI: 10.1021/acsnano.2c05819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aromatic ring fusion to porphyrins and their derivatives represents an attractive route to tune the molecular conjugation and thus expand their functionalities. Here, we report the expansion of the aromatic π-system of palladium tetraphenyltetrabenzoporphyrins (Pd-TPTBP) via surface-assisted γ-ortho cyclodehydrogenation on Ag(111). The chemical transformation of Pd-TPTBP into different products at an elevated temperature of 600 K was revealed at the single-molecule level using bond-resolved scanning tunneling microscopy with a CO-functionalized tip. We captured a series of γ-ortho cyclodehydrogenation products, wherein the maximum extent to which the reaction can progress is associated with 7-fold C-C formation to afford nearly planar γ-ortho fused porphyrins with 66 conjugated π-electrons. In addition, a small number of molecules undergo C-C bond dissociation of meso-phenyl at elevated temperature, producing fully planar γ-ortho fused products lacking one or two phenyl moieties. Scanning tunneling spectroscopy measurements and DFT calculations suggest the electronic gap of the γ-ortho fused porphyrin decreases compared to that of the precursor. The HOMO and LUMO of the planar γ-ortho fused products are localized on the partially fused benzo moieties and the meso-position, respectively.
Collapse
Affiliation(s)
- Xue-Qing Yang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
| | - Jun-Jie Duan
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhen-Yu Yi
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruo-Ning Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Sheng-Fu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
24
|
Biswas K, Urbani M, Sánchez-Grande A, Soler-Polo D, Lauwaet K, Matěj A, Mutombo P, Veis L, Brabec J, Pernal K, Gallego JM, Miranda R, Écija D, Jelínek P, Torres T, Urgel JI. Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers. J Am Chem Soc 2022; 144:12725-12731. [PMID: 35817408 PMCID: PMC9305978 DOI: 10.1021/jacs.2c02700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111). Scanning tunneling microscopy and noncontact atomic force microscopy describe the thermal-activated intra- and intermolecular oxidative ring closure reactions as well as the controlled tip-induced hydrogen dissociation from the porphyrinoid units. In addition, scanning tunneling spectroscopy measurements, complemented by computational investigations, reveal the open-shell character, that is, the antiferromagnetic singlet ground state (S = 0) of the formed polymers, characterized by singlet-triplet inelastic excitations observed between spins of adjacent porphyrinoid units. Our approach sheds light on the crucial relevance of the π-conjugation in the correlations between spins, while expanding the on-surface synthesis toolbox and opening avenues toward the synthesis of innovative functional nanomaterials with prospects in carbon-based spintronics.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Maxence Urbani
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Diego Soler-Polo
- Institute of Physics of the Czech Academy of Science, Praha 162 00, Czech Republic
| | - Koen Lauwaet
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Adam Matěj
- Institute of Physics of the Czech Academy of Science, Praha 162 00, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Science, Praha 162 00, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 00, Czech Republic
| | - Jiri Brabec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 00, Czech Republic
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, Lodz 90-924, Poland
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid 28049, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain.,Departamento de Física de La Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - David Écija
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, Praha 162 00, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tomás Torres
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain.,Departamento de Química Orgánica and Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - José I Urgel
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
25
|
Sun Q, Mateo LM, Robles R, Ruffieux P, Bottari G, Torres T, Fasel R, Lorente N. Magnetic Interplay between π-Electrons of Open-Shell Porphyrins and d-Electrons of Their Central Transition Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105906. [PMID: 35302718 PMCID: PMC9259720 DOI: 10.1002/advs.202105906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Magnetism is typically associated with d- or f-block elements, but can also appear in organic molecules with unpaired π-electrons. This has considerably boosted the interest in such organic materials with large potential for spintronics and quantum applications. While several materials showing either d/f or π-electron magnetism have been synthesized, the combination of both features within the same structure has only scarcely been reported. Open-shell porphyrins (Pors) incorporating d-block transition metal ions represent an ideal platform for the realization of such architectures. Herein, the preparation of a series of open-shell, π-extended Pors that contain magnetically active metal ions (i.e., CuII , CoII , and FeII ) through a combination of in-solution and on-surface synthesis is reported. A detailed study of the magnetic interplay between π- and d-electrons in these metalloPors has been performed by scanning probe methods and density functional theory calculations. For the Cu and FePors, ferromagnetically coupled π-electrons are determined to be delocalized over the Por edges. For the CoPor, the authors find a Kondo resonance resulting from the singly occupied CoII dz 2 orbital to dominate the magnetic fingerprint. The Fe derivative exhibits the highest magnetization of 3.67 μB (S≈2) and an exchange coupling of 16 meV between the π-electrons and the Fe d-states.
Collapse
Affiliation(s)
- Qiang Sun
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Luis M. Mateo
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
| | - Pascal Ruffieux
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Giovanni Bottari
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Tomás Torres
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Roman Fasel
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
- Donostia International Physics Center (DIPC)Donostia‐San Sebastián20018Spain
| |
Collapse
|
26
|
Ishizuka T, Kojima T. Recent Development of π-Expanded Porphyrin Derivatives by Peripheral Ring Fusion. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
27
|
Zhang H, Lu J, Zhang Y, Gao L, Zhao XJ, Tan YZ, Cai J. Magnetism engineering of nanographene: an enrichment strategy by co-depositing diverse precursors on Au(111). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Wang T, Berdonces-Layunta A, Friedrich N, Vilas-Varela M, Calupitan JP, Pascual JI, Peña D, Casanova D, Corso M, de Oteyza DG. Aza-Triangulene: On-Surface Synthesis and Electronic and Magnetic Properties. J Am Chem Soc 2022; 144:4522-4529. [PMID: 35254059 PMCID: PMC8931755 DOI: 10.1021/jacs.1c12618] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Nitrogen
heteroatom doping into a triangulene molecule allows tuning
its magnetic state. However, the synthesis of the nitrogen-doped triangulene
(aza-triangulene) has been challenging. Herein, we report the successful
synthesis of aza-triangulene on the Au(111) and Ag(111) surfaces,
along with their characterizations by scanning tunneling microscopy
and spectroscopy in combination with density functional theory (DFT)
calculations. Aza-triangulenes were obtained by reducing ketone-substituted
precursors. Exposure to atomic hydrogen followed by thermal annealing
and, when necessary, manipulations with the scanning probe afforded
the target product. We demonstrate that on Au(111), aza-triangulene
donates an electron to the substrate and exhibits an open-shell triplet
ground state. This is derived from the different Kondo resonances
of the final aza-triangulene product and a series of intermediates
on Au(111). Experimentally mapped molecular orbitals match with DFT-calculated
counterparts for a positively charged aza-triangulene. In contrast,
aza-triangulene on Ag(111) receives an extra electron from the substrate
and displays a closed-shell character. Our study reveals the electronic
properties of aza-triangulene on different metal surfaces and offers
an approach for the fabrication of new hydrocarbon structures, including
reactive open-shell molecules.
Collapse
Affiliation(s)
- Tao Wang
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | | | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Jose Ignacio Pascual
- CIC NanoGUNE BRTA, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Casanova
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA; 33940 El Entrego, Spain
| |
Collapse
|
29
|
Di Giovannantonio M, Fasel R. On‐surface synthesis and atomic scale characterization of unprotected indenofluorene polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory Dübendorf Switzerland
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory Dübendorf Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| |
Collapse
|
30
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
31
|
Wang T, Sanz S, Castro-Esteban J, Lawrence J, Berdonces-Layunta A, Mohammed MSG, Vilas-Varela M, Corso M, Peña D, Frederiksen T, de Oteyza DG. Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons. NANO LETTERS 2022; 22:164-171. [PMID: 34936370 DOI: 10.1021/acs.nanolett.1c03578] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.
Collapse
Affiliation(s)
- Tao Wang
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Sofia Sanz
- Donostia International Physics Center, 20018 San Sebastián, Spain
| | - Jesús Castro-Esteban
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - James Lawrence
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martina Corso
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
32
|
Pijeat J, Chaussy L, Simoës R, Isopi J, Lauret J, Paolucci F, Marcaccio M, Campidelli S. Thermally Induced Synthesis of Anthracene-, Pyrene- and Naphthalene-Fused Porphyrins. ChemistryOpen 2021; 10:997-1003. [PMID: 34617692 PMCID: PMC8495684 DOI: 10.1002/open.202100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
The synthesis of π-extended porphyrins containing anthracenyl moieties still represents an important challenge. Here, we report on the synthesis of a series of unsubstituted naphthyl-, pyrenyl- and anthracenyl-fused zinc porphyrin derivatives. To this aim, meso-substitued porphyrins are synthesized and the fusion of the PAHs (Polycyclic Aromatic Hydrocarbon) on the β-positions are performed through thermally induced dehydro-aromatization. The fused zinc-porphyrin derivatives are fully characterized and their optical absorption and photoluminescence properties are reported. We also demonstrate that zinc can be removed from the porphyrin core, giving rise to pure C, H, N materials. This work constitutes the first step towards the synthesis of the fully-fused tetra-anthracenylporphyrin.
Collapse
Affiliation(s)
- Joffrey Pijeat
- Université Paris-SaclayCEA, CNRS, NIMBE, LICSEN91191Gif-sur-YvetteFrance
| | - Léo Chaussy
- Université Paris-SaclayCEA, CNRS, NIMBE, LICSEN91191Gif-sur-YvetteFrance
| | - Roxanne Simoës
- Université Paris-SaclayCEA, CNRS, NIMBE, LICSEN91191Gif-sur-YvetteFrance
| | - Jacopo Isopi
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Jean‐Sébastien Lauret
- Université Paris SaclayENS Paris-SaclayCentrale Supelec, CNRS, LUMIN91405Orsay CedexFrance
| | - Francesco Paolucci
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Massimo Marcaccio
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | | |
Collapse
|
33
|
Bottom‐up Fabrication and Atomic‐Scale Characterization of Triply Linked, Laterally π‐Extended Porphyrin Nanotapes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Sun Q, Mateo LM, Robles R, Lorente N, Ruffieux P, Bottari G, Torres T, Fasel R. Bottom-up Fabrication and Atomic-Scale Characterization of Triply Linked, Laterally π-Extended Porphyrin Nanotapes*. Angew Chem Int Ed Engl 2021; 60:16208-16214. [PMID: 33960097 PMCID: PMC8361936 DOI: 10.1002/anie.202105350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Porphyrin nanotapes (Por NTs) are promising structures for their use as molecular wires thanks to a high degree of π‐conjugation, low HOMO—LUMO gaps, and exceptional conductance. Such structures have been prepared in solution, but their on‐surface synthesis remains unreported. Here, meso–meso triply fused Por NTs have been prepared through a two‐step synthesis on Au(111). The diradical character of the on‐surface formed building block PorA2, a phenalenyl π‐extended ZnIIPor, facilitates intermolecular homocoupling and allows for the formation of laterally π‐extended tapes. The structural and electronic properties of individual Por NTs are addressed, both on Au(111) and on a thin insulating NaCl layer, by high‐resolution scanning probe microscopy/spectroscopy complemented by DFT calculations. These Por NTs carry one unpaired electron at each end, which leads to magnetic end states. Our study provides a versatile route towards Por NTs and the atomic‐scale characterization of such tapes.
Collapse
Affiliation(s)
- Qiang Sun
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.,Materials Genome Institute, Shanghai University, 200444, Shanghai, China
| | - Luis M Mateo
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo de Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | - Nicolas Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo de Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - Pascal Ruffieux
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Giovanni Bottari
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.,Department of Chemistry and Biochemistry, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
35
|
Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J. On-surface synthesis of graphene nanostructures with π-magnetism. Chem Soc Rev 2021; 50:3238-3262. [PMID: 33481981 DOI: 10.1039/d0cs01060j] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Graphene nanostructures (GNs) including graphene nanoribbons and nanoflakes have attracted tremendous interest in the field of chemistry and materials science due to their fascinating electronic, optical and magnetic properties. Among them, zigzag-edged GNs (ZGNs) with precisely-tunable π-magnetism hold great potential for applications in spintronics and quantum devices. To improve the stability and processability of ZGNs, substitutional groups are often introduced to protect the reactive edges in organic synthesis, which renders the study of their intrinsic properties difficult. In contrast to the conventional wet-chemistry method, on-surface bottom-up synthesis presents a promising approach for the fabrication of both unsubstituted ZGNs and functionalized ZGNs with atomic precision via surface-catalyzed transformation of rationally-designed precursors. The structural and spin-polarized electronic properties of these ZGNs can then be characterized with sub-molecular resolution by means of scanning probe microscopy techniques. This review aims to highlight recent advances in the on-surface synthesis and characterization of a diversity of ZGNs with π-magnetism. We also discuss the important role of precursor design and reaction stimuli in the on-surface synthesis of ZGNs and their π-magnetism origin. Finally, we will highlight the existing challenges and future perspective surrounding the synthesis of novel open-shell ZGNs towards next-generation quantum technology.
Collapse
Affiliation(s)
- Shaotang Song
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen, 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Manipulation of Molecular Spin State on Surfaces Studied by Scanning Tunneling Microscopy. NANOMATERIALS 2020; 10:nano10122393. [PMID: 33266045 PMCID: PMC7761235 DOI: 10.3390/nano10122393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
The adsorbed magnetic molecules with tunable spin states have drawn wide attention for their immense potential in the emerging fields of molecular spintronics and quantum computing. One of the key issues toward their application is the efficient controlling of their spin state. This review briefly summarizes the recent progress in the field of molecular spin state manipulation on surfaces. We focus on the molecular spins originated from the unpaired electrons of which the Kondo effect and spin excitation can be detected by scanning tunneling microscopy and spectroscopy (STM and STS). Studies of the molecular spin-carriers in three categories are overviewed, i.e., the ones solely composed of main group elements, the ones comprising 3d-metals, and the ones comprising 4f-metals. Several frequently used strategies for tuning molecular spin state are exemplified, including chemical reactions, reversible atomic/molecular chemisorption, and STM-tip manipulations. The summary of the successful case studies of molecular spin state manipulation may not only facilitate the fundamental understanding of molecular magnetism and spintronics but also inspire the design of the molecule-based spintronic devices and materials.
Collapse
|
37
|
Mateo LM, Sun Q, Eimre K, Pignedoli CA, Torres T, Fasel R, Bottari G. On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chem Sci 2020; 12:247-252. [PMID: 34163593 PMCID: PMC8178705 DOI: 10.1039/d0sc04316h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
On-surface synthesis has emerged as a powerful tool for the construction of large, planar, π-conjugated structures that are not accessible through standard solution chemistry. Among such solid-supported architectures, graphene nanoribbons (GNRs) hold a prime position for their implementation in nanoelectronics due to their manifold outstanding properties. Moreover, using appropriately designed molecular precursors, this approach allows the synthesis of functionalized GNRs, leading to nanostructured hybrids with superior physicochemical properties. Among the potential “partners” for GNRs, porphyrins (Pors) outstand due to their rich chemistry, robustness, and electronic richness, among others. However, the use of such π-conjugated macrocycles for the construction of GNR hybrids is challenging and examples are scarce. Herein, singly and doubly Por-capped GNR segments presenting a commensurate and triply-fused GNR–Por heterojunction are reported. The study of the electronic properties of such hybrid structures by high-resolution scanning tunneling microscopy, scanning tunneling spectroscopy, and DFT calculations reveals a weak hybridization of the electronic states of the GNR segment and the Por moieties despite their high degree of conjugation. Singly and doubly porphyrin-capped graphene nanoribbon segments are reported and their electronic properties are studied by high-resolution scanning tunneling microscopy and spectroscopy, and DFT calculations.![]()
Collapse
Affiliation(s)
- Luis M Mateo
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain .,IMDEA-Nanociencia Campus de Cantoblanco 28049 Madrid Spain
| | - Qiang Sun
- Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland .,Materials Genome Institute, Shanghai University 200444 Shanghai China
| | - Kristjan Eimre
- Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Carlo A Pignedoli
- Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Tomas Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain .,IMDEA-Nanociencia Campus de Cantoblanco 28049 Madrid Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Roman Fasel
- Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland .,Department of Chemistry and Biochemistry, University of Bern 3012 Bern Switzerland
| | - Giovanni Bottari
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain .,IMDEA-Nanociencia Campus de Cantoblanco 28049 Madrid Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|