1
|
Ahmed Mubarak M, Mohamed R, Ahmed Rizk S, Samir Darwish A, Abuzalat O, Eid M. Ali M. Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:101013. [DOI: 10.1016/j.enmm.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
2
|
Bi F, Wei J, Gao B, Ma S, Liu N, Xu J, Liu B, Huang Y, Zhang X. How the Most Neglected Residual Species in MOF-Based Catalysts Involved in Catalytic Reactions to Form Toxic Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19797-19806. [PMID: 39433472 DOI: 10.1021/acs.est.4c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In recent years, multifarious new materials have been developed for environmental governance. Thereinto, metal organic framework (MOF)-based catalysts have been widely employed for heterogeneous catalysis because of their high porosity to confine noble metal particles faraway from aggregation. However, the potential reactions between residual species from the material synthesis process and target pollutants, which could form highly toxic byproducts, are often neglected. Herein, we took the widely used Zr-MOF, UiO-66, with highly thermal stability supported Pd catalysts as the example to investigate how the residual species in catalysts are involved in aromatic volatile organic compounds (VOCs) degradation reaction. The results showed that residual Cl species originated from the ZrCl4 metal precursor participated in the VOC degradation reaction, leading to the production of various chlorine-containing byproducts, even the hypertoxicity dioxin precursor, dichlorobenzene. Meanwhile, the chlorination mechanism for the formation of chlorine-containing byproducts was revealed by density functional theory calculation. Furthermore, the highly efficient residual Cl removal approaches are proposed. Importantly, the migration and transformation of residual Cl during the degradation of five benzene series VOCs are comprehensively studied and elucidated. We anticipate that these findings will raise alarm about the neglected issue of residual species in MOF-based catalysts for heterogeneous catalysis, especially environmentally friendly catalysis.
Collapse
Affiliation(s)
- Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiafeng Wei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bin Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Ma
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ning Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuandong Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| |
Collapse
|
3
|
Kong XJ, He T, Bezrukov AA, Darwish S, Si GR, Zhang YZ, Wu W, Wang Y, Li X, Kumar N, Li JR, Zaworotko MJ. Reversible Co(II)-Co(III) Transformation in a Family of Metal-Dipyrazolate Frameworks. J Am Chem Soc 2024; 146. [PMID: 39376039 PMCID: PMC11487582 DOI: 10.1021/jacs.4c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Transformation between oxidation states is widespread in transition metal coordination chemistry and biochemistry, typically occurring in solution. However, air-induced oxidation in porous crystalline solids with retention of crystallinity is rare due to the dearth of materials with high structural stability that are inherently redox active. Herein, we report a new family of such materials, four isostructural cobalt-pyrazolate frameworks of face-centered cubic, fcu, topology, fcu-L-Co, that are sustained by Co8 molecular building blocks (MBBs) and dipyrazolate ligands, L. fcu-L-Co were observed to spontaneously transform from Co(II)8 to Co(III)8 MBBs in air with retention of crystallinity, marking the first such instance in metal-organic frameworks (MOFs). This transformation can also be achieved through water vapor sorption cycling, heating, or chemical oxidation. The reverse reactions were conducted by exposure of fcu-L-Co(III) to aqueous hydrazine. fcu-L-Co(II) exhibited high gravimetric water vapor uptakes of 0.55-0.68 g g-1 at 30% relative humidity (RH), while in fcu-L-Co(III) the inflection point shifted to lower RH and framework stability improved. Insight into the transformation between fcu-L-Co(II) and fcu-L-Co(III) was gained from single crystal X-ray diffraction and in situ spectroscopy. Overall, the crystal engineering approach we adopted has afforded a new family of MOFs that exhibit cobalt redox chemistry in a confined space coupled with high porosity.
Collapse
Affiliation(s)
- Xiang-Jing Kong
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Tao He
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Andrey A. Bezrukov
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shaza Darwish
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guang-Rui Si
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yong-Zheng Zhang
- Shandong
Provincial Key Laboratory of Monocrystalline Silicon Semiconductor
Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Wei Wu
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yingjie Wang
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xia Li
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Naveen Kumar
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Jian-Rong Li
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Michael J. Zaworotko
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
4
|
Xiao Y, Gates BC, Yang D. Chemistry of Formate and Water Ligands on Metal Oxide Cluster Nodes of Metal-Organic Framework hcp Hf-UiO-66: Keys to Understanding Reactivity of Paired μ 2-OH and Defect Sites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52445-52454. [PMID: 39292754 DOI: 10.1021/acsami.4c11541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Many metal-organic frameworks (MOFs) incorporate nodes that are metal oxide clusters, and ligands that have been observed on these nodes include formates, acetates, water, hydroxyl groups, and others, all of which are potentially important in affecting reactivities for applications in separations, catalysis, and sensing. Formate is a common node ligand, arising from formic acid used as a modulator and from N,N-dimethylformamide used as a solvent in MOF syntheses. Yet only little work has been reported characterizing the reactivities of node formate ligands. Infrared spectra reported here show that formate bonds to two types of sites on the paired Hf6O8 nodes of hcp UiO-66, namely, defect and μ2-OH sites. Quantifying the number of formate ligands by 1H NMR spectroscopy of digested samples showed an almost equal number of formate ligands on the two sites, indicating the likelihood that they neighbor each other. These formate ligands interact with water molecules, reversibly switching their bonding from bidentate to monodentate. The formates on μ2-OH sites of hcp Hf-UiO-66 interact much more strongly with water than those on defect sites of the same node, and both interact more strongly than isolated defect sites of Hf-UiO-66. Correspondingly, the catalytic activities of hcp UiO-66 determined as turnover frequencies on each site are approximately twofold higher than those on UiO-66, bolstering the inference that methanol dehydration is catalyzed by a node defect site and a neighboring node μ2-OH site. The results show how MOFs, with their well-defined node structures, provide unprecedented opportunities to understand details of reactivities and catalysis on metal oxide clusters, in contrast to bulk metal oxide surfaces.
Collapse
Affiliation(s)
- Yue Xiao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Dong Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| |
Collapse
|
5
|
Xie Z, Wang Q, Yang H, Feng J, Chen J, Song S, Meng C, Wang K, Tong Y. Surface Facets Reconstruction in Copper-Based Materials for Enhanced Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401530. [PMID: 38751307 DOI: 10.1002/smll.202401530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Indexed: 10/01/2024]
Abstract
The unavoidable and unpredictable surface reconstruction of metallic copper (Cu) during the electrocatalytic carbon dioxide (CO2) reduction process is a double-edged sword affecting the production of high-value-added hydrocarbon products. It is crucial to control the surface facet reconstruction and regulate the targeted facets/facet interfaces, and further understand the mechanism between activity/selectivity and the reconstructed structure of Cu for CO2 reduction. Based on the current catalyst design methods, a facile strategy combining chemical reduction and electro-reduction is proposed to achieve specified Cu(111) facets and the Cu(110)/(111) interfaces in reconstructed Cu derived from cuprous oxide (Cu2O). The surface facet reconstruction significantly boosted the electrocatalytic conversion of CO2 into multi-carbon (C2+) products comparing to the unmodified catalyst. Theoretical and experimental analyses show that the Cu(110)/(111)s interface between Cu(110) and a small amount of Cu(111) can tailor the reaction routes and lower the reaction energy barrier of C-C coupling to ethylene (C2H4). The work will guide the surface facets reconstruction strategy for Cu-based CO2 electrocatalysts, providing a promising paradigm to understand the structural variation in catalysts.
Collapse
Affiliation(s)
- Zezhong Xie
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Qiushi Wang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, P. R. China
| | - Hao Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jin Feng
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jian Chen
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shuqin Song
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Changgong Meng
- School of Chemistry, Dalian University, Dalian, 116024, P. R. China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kun Wang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yexiang Tong
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
6
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
7
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Rojas-Buzo S, Salusso D, Le THT, Ortuño MA, Lomachenko KA, Bordiga S. Unveiling the Role and Stabilization Mechanism of Cu + into Defective Ce-MOF Clusters during CO Oxidation. J Phys Chem Lett 2024; 15:3962-3967. [PMID: 38569092 PMCID: PMC11017307 DOI: 10.1021/acs.jpclett.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Copper single-site catalysts supported on Zr-based metal-organic frameworks (MOFs) are well-known systems in which the nature of the active sites has been deeply investigated. Conversely, the redox chemistry of the Ce-counterparts is more limited, because of the often-unclear Cu2+/Cu+ and Ce4+/Ce3+ pairs behavior. Herein, we studied a novel Cu2+ single-site catalyst supported on a defective Ce-MOF, Cu/UiO-67(Ce), as a catalyst for the CO oxidation reaction. Based on a combination of in situ DRIFT and operando XAS spectroscopies, we established that Cu+ sites generated during catalysis play a pivotal role. Moreover, the oxygen vacancies associated with Ce3+ sites and presented in the defective Cu/UiO-67(Ce) material are able to activate the O2 molecules, closing the catalytic cycle. The results presented in this work open a new route for the design of active and stable single-site catalysts supported on defective Ce-MOFs.
Collapse
Affiliation(s)
- Sergio Rojas-Buzo
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Davide Salusso
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Thanh-Hiep Thi Le
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel A. Ortuño
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, 10125 Turin, Italy
| |
Collapse
|
9
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
10
|
Shan T, Chen L, Xiao D, Xiao X, Wang J, Chen X, Guo QH, Li G, Stoddart JF, Huang F. Adaptisorption of Nonporous Polymer Crystals. Angew Chem Int Ed Engl 2024; 63:e202317947. [PMID: 38298087 DOI: 10.1002/anie.202317947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Although our knowledge and understanding of adsorptions in natural and artificial systems has increased dramatically during the past century, adsorption associated with nonporous polymers remains something of a mystery, hampering applications. Here we demonstrate a model system for adaptisorption of nonporous polymers, wherein dative B-N bonds and host-guest binding units act as the kinetic and thermodynamic components, respectively. The coupling of these two components enables nonporous polymer crystals to adsorb molecules from solution and undergo recrystallization as thermodynamically favored crystals. Adaptisorption of nonporous polymer crystals not only extends the types of adsorption in which the sorbate molecules are integrated in a precise and orderly manner in the sorbent systems, but also provides a facile and accurate approach to the construction of polymeric materials with precise architectures and integrated functions.
Collapse
Affiliation(s)
- Tianyu Shan
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Liya Chen
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Ding Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuedong Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiao Wang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuan Chen
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Qing-Hui Guo
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Guangfeng Li
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - J Fraser Stoddart
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
- Chong Yuet Ming Chemistry Building, The University of Hong Kong, Hong Kong SAR, P. R. China
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East superior Street, Chicago, IL 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feihe Huang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
11
|
Sikma RE, Butler KS, Vogel DJ, Harvey JA, Sava Gallis DF. Quest for Multifunctionality: Current Progress in the Characterization of Heterometallic Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5715-5734. [PMID: 38364319 DOI: 10.1021/jacs.3c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships. However, determination of short- and long-range metal distributions is nontrivial and requires the use of specialized characterization techniques. Advancements in the characterization of metal distributions and interactions at these length scales is key to rapid advancement and rational design of functional heterometallic MOFs. This perspective summarizes the state-of-the-art in the characterization of heterometallic MOFs, with a focus on techniques that allow metal distributions to be better understood. Using complementary analyses, in conjunction with computational methods, is critical as this field moves toward increasingly complex, multifunctional systems.
Collapse
Affiliation(s)
- R Eric Sikma
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Computational Materials & Data Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob A Harvey
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
12
|
Yousefi M, Farzadkia M, Mahvi AH, Kermani M, Gholami M, Esrafili A. Photocatalytic degradation of ciprofloxacin using a novel carbohydrate-based nanocomposite from aqueous solutions. CHEMOSPHERE 2024; 349:140972. [PMID: 38114023 DOI: 10.1016/j.chemosphere.2023.140972] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Pharmaceutical substances in the ecosystem pose a notable hazard to human and aquatic organism well-being. The occurrence of ciprofloxacin (CIP) within water sources or the food chain can perturb plant biochemical processes and induce drug resistance in both humans and animals. Therefore, effective removal is imperative prior to environmental discharge. This study introduces a Novel Carbohydrate-Based Nanocomposite (Fe3O4/MOF/AmCs-Alg) as a proficient photocatalytic agent for degrading CIP in aqueous solutions. The fabricated nanocomposite underwent characterization using FTIR, XRD, FESEM, DRS, and VSM techniques. The analyses conducted verified the successful synthesis of the Fe3O4/MOF/AmCs-Alg nanocomposite. Utilizing the optimized parameters (pH = 5, nanocomposite dose = 0.4 g/L, CIP concentration = 10 mg/L, light intensity = 75 mW/cm2, and a duration of 45min), the Fe3O4/MOF/AmCs-Alg/Vis nanocomposite demonstrated an impressive CIP degradation efficiency of 95.85%. Under optimal experiment conditions, CIP removal efficiency in tap water and treated wastewater samples was 91.27% and 76.78%, respectively. Furthermore, the total organic carbon (TOC) analysis indicated a mineralization rate of 51.21% for CIP. Trapping studies demonstrated that the superoxide radical (O2°-) had a notable contribution to the breakdown of CIP. In summary, the Fe3O4/MOF/AmCs-Alg/Vis system offers numerous benefits, encompassing effective degradation capabilities, effortless catalyst retrieval, and remarkable nanocomposite reusability.
Collapse
Affiliation(s)
- Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Khoo RH, Fiankor C, Yang S, Hu W, Yang C, Lu J, Morton MD, Zhang X, Liu Y, Huang J, Zhang J. Postsynthetic Modification of the Nonanuclear Node in a Zirconium Metal-Organic Framework for Photocatalytic Oxidation of Hydrocarbons. J Am Chem Soc 2023; 145:24052-24060. [PMID: 37880201 PMCID: PMC10636760 DOI: 10.1021/jacs.3c07237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysis plays an indispensable role in chemical production and energy conversion. Incorporation of transition metals into metal oxides and zeolites is a common strategy to fine-tune the activity and selectivity of the resulting solid catalysts, as either the active center or promotor. Studying the underlying mechanism is however challenging. Decorating the metal-oxo clusters with transition metals in metal-organic frameworks (MOFs) via postsynthetic modification offers a rational approach to construct well-defined structural models for better understanding of the reaction mechanism. Therefore, it is important to expand the materials scope beyond the currently widely studied zirconium MOFs consisting of Zr6 nodes. In this work, we report the design and synthesis of a new (4,12)-connected Zr-MOF with ith topology that consists of rare Zr9 nodes. FeIII was further incorporated onto the Zr9 nodes of the framework, and the resulting MOF material exhibits significantly enhanced activity and selectivity toward the photocatalytic oxidation of toluene. This work demonstrates a delicate ligand design strategy to control the nuclearity of Zr-oxo clusters, which further dictates the number and binding sites of transition metals and the overall photocatalytic activity toward C-H activation. Our work paves the way for future exploration of the structure-activity study of catalysts using MOFs as the model system.
Collapse
Affiliation(s)
- Rebecca
Shu Hui Khoo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Christian Fiankor
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Wenhui Hu
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Chongqing Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jingzhi Lu
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Martha D. Morton
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Xu Zhang
- Jiangsu
Engineering Laboratory for Environment Functional Materials, Jiangsu
Collaborative Innovation Center of Regional Modern Agriculture &
Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No. 111 West Changjiang Road, Huaian, Jiangsu 223300, China
| | - Yi Liu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jier Huang
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
14
|
Yang Y, Kanchanakungwankul S, Bhaumik S, Ma Q, Ahn S, Truhlar DG, Hupp JT. Bioinspired Cu(II) Defect Sites in ZIF-8 for Selective Methane Oxidation. J Am Chem Soc 2023; 145:22019-22030. [PMID: 37782301 DOI: 10.1021/jacs.3c06981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Activating the C-H bonds of alkanes without further oxidation to more thermodynamically stable products, CO and CO2, is a long-sought goal of catalytic chemistry. Inspired by the monocopper active site of methane monooxygenase, we synthesized a Cu-doped ZIF-8 metal-organic framework with 25% Cu and 75% Zn in the nodes and activated it by heating to 200 °C and dosing in a stepwise fashion with O2, methane, and steam. We found that it does oxidize methane to methanol and formaldehyde. The catalysis persists through at least five cycles, and beyond the third cycle, the selectivity improves to the extent that no CO2 can be detected. Experimental characterization and analysis were carried out by PXRD, DRUV-vis, SEM, and XAS (XANES and EXAFS). The reaction is postulated to proceed at open-coordination copper sites generated by defects, and the mechanism of methanol production was explicated by density functional calculations with the revMO6-L exchange-correlation functional. The calculations reveal a catalytic cycle of oxygen-activated CuI involving the conversion of two molecules of CH4 to two molecules of CH3OH by a sequence of hydrogen atom transfer reactions and rebound steps. For most steps in the cycle, the reaction is more favored by singlet species than by triplets.
Collapse
Affiliation(s)
- Ying Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Siriluk Kanchanakungwankul
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Suman Bhaumik
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Qing Ma
- DND-CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Sol Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Xu W, Cai X, Wu Y, Wen Y, Su R, Zhang Y, Huang Y, Zheng Q, Hu L, Cui X, Zheng L, Zhang S, Gu W, Song W, Guo S, Zhu C. Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection. Nat Commun 2023; 14:6064. [PMID: 37770453 PMCID: PMC10539540 DOI: 10.1038/s41467-023-41765-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al3+ is engineered onto the nodes of metal-organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al3+ Lewis acid sites with a strong polarization effect unite the highly electronegative -OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Xiaoli Cai
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yating Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yu Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yuteng Huang
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Qihui Zheng
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China
| | - Xiaowen Cui
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P.R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China.
| |
Collapse
|
16
|
Guo C, Zhou J, Chen Y, Zhuang H, Li J, Huang J, Zhang Y, Chen Y, Li SL, Lan YQ. Integrated Micro Space Electrostatic Field in Aqueous Zn-Ion Battery: Scalable Electrospray Fabrication of Porous Crystalline Anode Coating. Angew Chem Int Ed Engl 2023; 62:e202300125. [PMID: 36661867 DOI: 10.1002/anie.202300125] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
The inhomogeneous consumption of anions and direct contact between electrolyte and anode during the Zn-deposition process generate Zn-dendrites and side reactions that can aggravate the space-charge effect to hinder the practical implementation of zinc-metal batteries (ZMBs). Herein, electrospray has been applied for the scalable fabrication (>10 000 cm2 in a batch-experiment) of hetero-metallic cluster covalent-organic-frameworks (MCOF-Ti6 Cu3 ) nanosheet-coating (MNC) with integrated micro space electrostatic field for ZMBs anode protection. The MNC@Zn symmetric cell presents ultralow overpotential (≈72.8 mV) over 10 000 cycles at 1 mAh cm-2 with 20 mA cm-2 , which is superior to bare Zn and state-of-the-art porous crystalline materials. Theoretical calculations reveal that MNC with integrated micro space electrostatic field can facilitate the deposition-kinetic and homogenize the electric field of anode to significantly promote the lifespan of ZMBs.
Collapse
Affiliation(s)
- Can Guo
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Jie Zhou
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Yuting Chen
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Huifen Zhuang
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Jie Li
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Jianlin Huang
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Yuluan Zhang
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| |
Collapse
|
17
|
McCullough K, King DS, Chheda SP, Ferrandon MS, Goetjen TA, Syed ZH, Graham TR, Washton NM, Farha OK, Gagliardi L, Delferro M. High-Throughput Experimentation, Theoretical Modeling, and Human Intuition: Lessons Learned in Metal-Organic-Framework-Supported Catalyst Design. ACS CENTRAL SCIENCE 2023; 9:266-276. [PMID: 36844483 PMCID: PMC9951283 DOI: 10.1021/acscentsci.2c01422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/18/2023]
Abstract
We have screened an array of 23 metals deposited onto the metal-organic framework (MOF) NU-1000 for propyne dimerization to hexadienes. By a first-of-its-kind study utilizing data-driven algorithms and high-throughput experimentation (HTE) in MOF catalysis, yields on Cu-deposited NU-1000 were improved from 0.4 to 24.4%. Characterization of the best-performing catalysts reveal conversion to hexadiene to be due to the formation of large Cu nanoparticles, which is further supported by reaction mechanisms calculated with density functional theory (DFT). Our results demonstrate both the strengths and weaknesses of the HTE approach. As a strength, HTE excels at being able to find interesting and novel catalytic activity; any a priori theoretical approach would be hard-pressed to find success, as high-performing catalysts required highly specific operating conditions difficult to model theoretically, and initial simple single-atom models of the active site did not prove representative of the nanoparticle catalysts responsible for conversion to hexadiene. As a weakness, our results show how the HTE approach must be designed and monitored carefully to find success; in our initial campaign, only minor catalytic performances (up to 4.2% yield) were achieved, which were only improved following a complete overhaul of our HTE approach and questioning our initial assumptions.
Collapse
Affiliation(s)
- Katherine
E. McCullough
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
| | - Daniel S. King
- Department
of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Saumil P. Chheda
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Magali S. Ferrandon
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
| | - Timothy A. Goetjen
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Zoha H. Syed
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Trent R. Graham
- Pacific
Northwest National Laboratory, Richland, Washington99354, United States
| | - Nancy M. Washton
- Pacific
Northwest National Laboratory, Richland, Washington99354, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Laura Gagliardi
- Department
of Chemistry, University of Chicago, Chicago, Illinois60637, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois60637, United
States
- James
Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Massimiliano Delferro
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois60637, United
States
| |
Collapse
|
18
|
Chen Z, Stroscio GD, Liu J, Lu Z, Hupp JT, Gagliardi L, Chapman KW. Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal-Organic Frameworks. J Am Chem Soc 2023; 145:268-276. [PMID: 36538759 DOI: 10.1021/jacs.2c09877] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemically functionalized series of metal-organic frameworks (MOFs), with subtle differences in local structure but divergent properties, provide a valuable opportunity to explore how local chemistry can be coupled to long-range structure and functionality. Using in situ synchrotron X-ray total scattering, with powder diffraction and pair distribution function (PDF) analysis, we investigate the temperature dependence of the local- and long-range structure of MOFs based on NU-1000, in which Zr6O8 nodes are coordinated by different capping ligands (H2O/OH, Cl- ions, formate, acetylacetonate, and hexafluoroacetylacetonate). We show that the local distortion of the Zr6 nodes depends on the lability of the ligand and contributes to a negative thermal expansion (NTE) of the extended framework. Using multivariate data analyses, involving non-negative matrix factorization (NMF), we demonstrate a new mechanism for NTE: progressive increase in the population of a smaller, distorted node state with increasing temperature leads to global contraction of the framework. The transformation between discrete node states is noncooperative and not ordered within the lattice, i.e., a solid solution of regular and distorted nodes. Density functional theory calculations show that removal of ligands from the node can lead to distortions consistent with the Zr···Zr distances observed in the experiment PDF data. Control of the node distortion imparted by the nonlinker ligand in turn controls the NTE behavior. These results reveal a mechanism to control the dynamic structure of MOFs based on local chemistry.
Collapse
Affiliation(s)
- Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Gautam D Stroscio
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
19
|
MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Zhou H, Dai R, Wang T, Wang Z. Enhancing Stability of Tannic Acid-Fe III Nanofiltration Membrane for Water Treatment: Intercoordination by Metal-Organic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17266-17277. [PMID: 36399419 DOI: 10.1021/acs.est.2c05048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tannic acid (TA)-FeIII nanofiltration (NF) membrane has been demonstrated to possess more favorable removal of trace organic contaminants (TrOCs) over the conventional polyamide NF membrane. However, the drawback of acid instability severely hinders the practical application of TA-FeIII NF membrane in the treatment of (weak) acidic wastewater containing TrOCs (e.g., pharmaceutical wastewater, surface water, and drinking water). Herein, we introduced the MIL-101(Cr) nanoparticle, a kind of metal-organic framework (MOF), into the TA-FeIII selective layer to enhance the membrane acid stability. The acid-tolerance parameter of MIL-101(Cr)-stabilized TA-FeIII membrane (TA-FeIII-MOF membrane, 12,000 ppm/s-1) was two orders of magnitude larger than that of the TA-FeIII membrane (50 ppm/s-1), and the TA-FeIII-MOF membrane can withstand acid treatment at pH = 4 for more than 30 days. Meanwhile, the TA-FeIII-MOF membrane displayed increased water permeance from 9.5 to 12.7 L/(m2·h·bar) after the MOF addition, without compromising the selectivity. The enhanced acid stability for the TA-FeIII-MOF membrane was ascribed to an intercoordination mechanism, where FeIII centers (from TA-FeIII complex) coordinated with -COOH groups (from terephthalic acid of MOF) and CrIII centers (from MOF) coordinated with -OH groups (from TA of TA-FeIII complex), which was verified by the density functional theory calculation. This study highlights a new approach for the development of a TA-FeIII-based NF membrane with markedly enhanced acid stability, which is important for its real application in wastewater treatment and water reuse.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| |
Collapse
|
21
|
Ashitani H, Kawaguchi S, Furukawa H, Ishibashi H, Otake K, Kitagawa S, Kubota Y. Time-resolved in-situ X-ray diffraction and crystal structure analysis of porous coordination polymer CPL-1 in CO2 adsorption. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Gibbons B, Cai M, Morris AJ. A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays. J Am Chem Soc 2022; 144:17723-17736. [PMID: 36126182 PMCID: PMC9545145 DOI: 10.1021/jacs.2c04144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Metal organic frameworks (MOFs), a class of coordination polymers, gained popularity in the late 1990s with the efforts of Omar Yaghi, Richard Robson, Susumu Kitagawa, and others. The intrinsic porosity of MOFs made them a clear platform for gas storage and separation. Indeed, these applications have dominated the vast literature in MOF synthesis, characterization, and applications. However, even in those early years, there were hints to more advanced applications in light-MOF interactions and catalysis. This perspective focuses on the combination of both light-MOF interactions and catalysis: MOF artificial photosynthetic assemblies. Light absorption, charge transport, H2O oxidation, and CO2 reduction have all been previously observed in MOFs; however, work toward a fully MOF-based approach to artificial photosynthesis remains out of reach. Discussed here are the current limitations with MOF-based approaches: diffusion through the framework, selectivity toward high value products, lack of integrated studies, and stability. These topics provide a roadmap for the future development of fully integrated MOF-based assemblies for artificial photosynthesis.
Collapse
Affiliation(s)
- Bradley Gibbons
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Meng Cai
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
23
|
Zhang XN, Chen BC, Zhang JL, Zhang JL, Liu SJ, Wen HR. Anionic lanthanide metal-organic frameworks with magnetic, fluorescence, and proton conductivity properties and selective adsorption of a cationic dye. Dalton Trans 2022; 51:15762-15770. [PMID: 36178291 DOI: 10.1039/d2dt02347d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel microporous anionic lanthanide metal-organic frameworks (Ln-MOFs), namely {[(CH3)2NH2][Ln(bptc)]·2H2O}n (Ln = Gd (1) and Dy (2), H4bptc = biphenyl-3,3',5,5'-tetracarboxylic acid) with a new 4,8-connected topology have been synthesized and structurally characterized. Ln-MOF 1 shows a significant magnetocaloric effect with -ΔSmaxm = 26.37 J kg-1 K-1 at 2 K for ΔH = 7 T, and a high proton conductivity of 1.02 × 10-4 S cm-1 at 323 K and 90% RH. Moreover, Ln-MOF 1 shows specific selective adsorption of the cationic dye Rhodamine B. Ln-MOF 2 exhibits field-induced slow magnetic relaxation with an energy barrier (Ueff) of 48.19 K, characteristic emission of Dy3+, and selective adsorption of Rhodamine B. Therefore, 2 is a multifunctional Ln-MOF with magnetic, fluorescence and selective adsorption properties.
Collapse
Affiliation(s)
- Xiao-Nuan Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Bo-Chen Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Jia-Li Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Jia-Lin Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
24
|
Wang Q, Xiao LP, Lv YH, Yin WZ, Hou CJ, Sun RC. Metal–Organic-Framework-Derived Copper Catalysts for the Hydrogenolysis of Lignin into Monomeric Phenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wen-Zheng Yin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan-Jin Hou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
25
|
Song D, Hu C, Gao Z, Yang B, Li Q, Zhan X, Tong X, Tian J. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5837. [PMID: 36079218 PMCID: PMC9457521 DOI: 10.3390/ma15175837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
It is necessary to develop new energy technologies because of serious environmental problems. As one of the most promising electrochemical energy conversion and storage devices, the Zn-air battery has attracted extensive research in recent years due to the advantages of abundant resources, low price, high energy density, and high reduction potential. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) of Zn-air battery during discharge and charge have complicated multi-electron transfer processes with slow reaction kinetics. It is important to develop efficient and stable oxygen electrocatalysts. At present, single-function catalysts such as Pt/C, RuO2, and IrO2 are regarded as the benchmark catalysts for ORR and OER, respectively. However, the large-scale application of Zn-air battery is limited by the few sources of the precious metal catalysts, as well as their high costs, and poor long-term stability. Therefore, designing bifunctional electrocatalysts with excellent activity and stability using resource-rich non-noble metals is the key to improving ORR/OER reaction kinetics and promoting the commercial application of the Zn-air battery. Metal-organic framework (MOF) is a kind of porous crystal material composed of metal ions/clusters connected by organic ligands, which has the characteristics of adjustable porosity, highly ordered pore structure, low crystal density, and large specific surface area. MOFs and their derivatives show remarkable performance in promoting oxygen reaction, and are a promising candidate material for oxygen electrocatalysts. Herein, this review summarizes the latest progress in advanced MOF-derived materials such as oxygen electrocatalysts in a Zn-air battery. Firstly, the composition and working principle of the Zn-air battery are introduced. Then, the related reaction mechanism of ORR/OER is briefly described. After that, the latest developments in ORR/OER electrocatalysts for Zn-air batteries are introduced in detail from two aspects: (i) non-precious metal catalysts (NPMC) derived from MOF materials, including single transition metals and bimetallic catalysts with Co, Fe, Mn, Cu, etc.; (ii) metal-free catalysts derived from MOF materials, including heteroatom-doped MOF materials and MOF/graphene oxide (GO) composite materials. At the end of the paper, we also put forward the challenges and prospects of designing bifunctional oxygen electrocatalysts with high activity and stability derived from MOF materials for Zn-air battery.
Collapse
Affiliation(s)
- Dongmei Song
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Changgang Hu
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Zijian Gao
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Bo Yang
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Qingxia Li
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
| | - Xinxing Zhan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Xin Tong
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| | - Juan Tian
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
- Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
| |
Collapse
|
26
|
Zhou J, Li J, Kan L, Zhang L, Huang Q, Yan Y, Chen Y, Liu J, Li SL, Lan YQ. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO 2 reduction with H 2O. Nat Commun 2022; 13:4681. [PMID: 35948601 PMCID: PMC9365760 DOI: 10.1038/s41467-022-32449-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022] Open
Abstract
Mimicking natural photosynthesis to convert CO2 with H2O into value-added fuels achieving overall reaction is a promising way to reduce the atmospheric CO2 level. Casting the catalyst of two or more catalytic sites with rapid electron transfer and interaction may be an effective strategy for coupling photocatalytic CO2 reduction and H2O oxidation. Herein, based on the MOF ∪ COF collaboration, we have carefully designed and synthesized a crystalline hetero-metallic cluster catalyst denoted MCOF-Ti6Cu3 with spatial separation and functional cooperation between oxidative and reductive clusters. It utilizes dynamic covalent bonds between clusters to promote photo-induced charge separation and transfer efficiency, to drive both the photocatalytic oxidative and reductive reactions. MCOF-Ti6Cu3 exhibits fine activity in the conversion of CO2 with water into HCOOH (169.8 μmol g−1h−1). Remarkably, experiments and theoretical calculations reveal that photo-excited electrons are transferred from Ti to Cu, indicating that the Cu cluster is the catalytic reduction center. A crystalline hetero-metallic cluster catalyst based on a covalent organic framework strategy is reported. The catalyst can facilitate both photocatalytic oxidative and reductive reactions leading to efficient production of HCOOH from CO2 and H2O.
Collapse
Affiliation(s)
- Jie Zhou
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Jie Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Liang Kan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Qing Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Yong Yan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
27
|
Si T, Lu X, Zhang H, Wang S, Liang X, Guo Y. Two-dimensional MOF Cu-BDC nanosheets/ILs@silica core-shell composites as mixed-mode stationary phase for high performance liquid chromatography. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Li K, Liu YF, Lin XL, Yang GP. Copper-Containing Polyoxometalate-Based Metal-Organic Frameworks as Heterogeneous Catalysts for the Synthesis of N-Heterocycles. Inorg Chem 2022; 61:6934-6942. [PMID: 35483004 DOI: 10.1021/acs.inorgchem.2c00287] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new polyoxometalate-based metal-organic frameworks (POMOFs) [Cu4(μ3-OH)2(tba)3(H2O)5(SiW12O40)0.5](H2SiW12O40)0.5·2.5H2O (CuSiW), [Cu3(μ3-OH)(tba)3(Htba)(H2O)2(HPMo12O40)]·7H2O (CuPMo), and [Cu4(μ3-OH)2(tba)3(H2O)3(PW12O40)0.5]2(PW12O40)·0.5H2O (CuPW) were constructed using multinuclear copper clusters, 3-(4H-1,2,4-triazol-4-yl)benzoic acid (Htba), and Keggin polyoxometalates (POMs). Different POMs regulate the formation of different multinuclear copper clusters ("boat" tetranuclear clusters in CuSiW, trinuclear clusters in CuPMo, and "chair" tetranuclear clusters in CuPW) and different topological structures of CuSiW, CuPMo, and CuPW (3-connected two-dimensional (2D) network for CuSiW, 4-connected 2D network for CuPMo, and (4,6)-connected three-dimensional network for CuPW). CuSiW, CuPMo, and CuPW as heterogeneous catalysts combine the high stability of MOFs in polar solvents and excellent catalytic activity of POMs and could be used for the synthesis of nitrogen-heterocycle compounds. The condensation cyclization reactions of 2-aminophenols/benzenesulfonyl hydrazines with 1,3-diketones produce benzoazoles and pyrazoles in good to excellent yields under the catalysis of CuPMo. Moreover, the catalyst could be reused at least for 7 runs, and this protocol was suitable for gram-scale reactions.
Collapse
Affiliation(s)
- Ke Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yu-Feng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Xiao-Ling Lin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Guo-Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| |
Collapse
|
29
|
Si T, Wang L, Zhang H, Lu X, Liang X, Wang S, Guo Y. Core-shell MOFs-based composites of defect-functionalized for mixed-mode chromatographic separation. J Chromatogr A 2022; 1671:463011. [DOI: 10.1016/j.chroma.2022.463011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
30
|
Three novel Co(II)-MOFs with a conjugated tetrabenzoic acid supported noble metal nanoparticles for efficient catalytic reduction of 4-nitrophenol. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Chen Y, Ahn S, Mian MR, Wang X, Ma Q, Son FA, Yang L, Ma K, Zhang X, Notestein JM, Farha OK. Modulating Chemical Environments of Metal-Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure-Activity Relationship in Cyclohexene Epoxidation. J Am Chem Soc 2022; 144:3554-3563. [PMID: 35179900 DOI: 10.1021/jacs.1c12421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.
Collapse
Affiliation(s)
- Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.,Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sol Ahn
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Florencia A Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lifeng Yang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M Notestein
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Martin CR, Park KC, Leith GA, Yu J, Mathur A, Wilson GR, Gange GB, Barth EL, Ly RT, Manley OM, Forrester KL, Karakalos SG, Smith MD, Makris TM, Vannucci AK, Peryshkov DV, Shustova NB. Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. J Am Chem Soc 2022; 144:4457-4468. [PMID: 35138840 DOI: 10.1021/jacs.1c11984] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuning metal oxidation states in metal-organic framework (MOF) nodes by switching between two discrete linker photoisomers via an external stimulus was probed for the first time. On the examples of three novel photochromic copper-based frameworks, we demonstrated the capability of switching between +2 and +1 oxidation states, on demand. In addition to crystallographic methods used for material characterization, the role of the photochromic moieties for tuning the oxidation state was probed via conductivity measurements, cyclic voltammetry, and electron paramagnetic resonance, X-ray photoelectron, and diffuse reflectance spectroscopies. We confirmed the reversible photoswitching activity including photoisomerization rate determination of spiropyran- and diarylethene-containing linkers in extended frameworks, resulting in changes in metal oxidation states as a function of alternating excitation wavelengths. To elucidate the switching process between two states, the photoisomerization quantum yield of photochromic MOFs was determined for the first time. Overall, the introduced noninvasive concept of metal oxidation state modulation on the examples of stimuli-responsive MOFs foreshadows a new pathway for alternation of material properties toward targeted applications.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jierui Yu
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gayathri B Gange
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Richard T Ly
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Olivia M Manley
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Stavros G Karakalos
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Thomas M Makris
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
33
|
Li J, Yu B, Fan L, Wang L, Zhao Y, Sun C, Li W, Chang Z. A novel multifunctional Tb-MOF fluorescent probe displaying excellent abilities for highly selective detection of Fe3+, Cr2O72− and acetylacetone. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Wang Q, Pengmei Z, Pandharkar R, Gagliardi L, Hupp JT, Notestein JM. Investigating the Effect of Metal Nuclearity on Activity for Ethylene Hydrogenation by Metal-Organic-Framework-Supported oxy-Ni(II) Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
36
|
Ma X, Chen F, Zhang X, Wang T, Yuan S, Wang X, Li T, Gao J. Hierarchical Co@C-N synthesized by the confined pyrolysis of ionic liquid@metal–organic frameworks for the aerobic oxidation of alcohols. NEW J CHEM 2022. [DOI: 10.1039/d2nj00594h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co@C-N with hierarchical pores and highly active sites is synthesized by the pyrolysis of an ionic liquid@metal–organic framework.
Collapse
Affiliation(s)
- Xiaomin Ma
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Zhang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tingting Wang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengrong Yuan
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xusheng Wang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tianjin Li
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
37
|
Goetjen TA, Knapp JG, Syed ZH, Hackler RA, Zhang X, Delferro M, Hupp JT, Farha OK. Ethylene polymerization with a crystallographically well-defined metal–organic framework supported catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01990b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Crystallographic characterization of a heterogeneous ethylene polymerization catalyst elucidates a chromium–carbon bond after alkyl aluminum activation and provides mechanistic insights.
Collapse
Affiliation(s)
- Timothy A. Goetjen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, USA 60439
| | - Julia G. Knapp
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
| | - Zoha H. Syed
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, USA 60439
| | - Ryan A. Hackler
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, USA 60439
| | - Xuan Zhang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, USA 60439
| | - Joseph T. Hupp
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
| |
Collapse
|
38
|
Shi Q, Liu B, Li J, Wang X, Wang L. Catalysis in Single Crystalline Materials: From Discrete Molecules to Metal-Organic Frameworks. Chem Asian J 2021; 16:3544-3557. [PMID: 34545994 DOI: 10.1002/asia.202100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Indexed: 11/11/2022]
Abstract
Catalysis is one of the key techniques for people's modern life. It has created numerous essential chemicals such as biomedicines, agricultural chemicals and unique materials. Heterogeneous catalysis is the new emerging method with reusable catalysts. Among heterogenous catalysis patterns developed so far, single crystalline catalysis has become the promising one owing to its high catalytic density and selectivity resulted by the inherent porosity, orderliness of the lattices and permeability. These crystalline catalysts could be used in various reactions such as photo-dimerization, Diels-Alder reaction, CO2 transformation and so on. In this review, we highlighted the reported works about the single crystalline catalysts. Both discrete small molecules and metal-organic frameworks (MOFs) have been used to prepare single crystals for catalysis. For discrete molecules based crystalline catalysts, coordinated and covalent molecules have been used. There were more catalytic modes in crystalline MOF catalysts. Three patterns were identified in this review: single crystalline MOFs i) without catalytic sites, ii) with inherent catalytic features and iii) with introducing catalytic units by post synthetic modification. Based on these examples, this review committed to provide the inspirations for the further design and application of single crystalline materials.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
39
|
Si T, Wang S, Zhang H, Lu X, Wang L, Liang X, Guo Y. An alternative strategy to construct uniform MOFs-Grafted silica core-shell composites as mixed-mode stationary phase for chromatography separation. Anal Chim Acta 2021; 1183:338942. [PMID: 34627530 DOI: 10.1016/j.aca.2021.338942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/25/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
The preparation of the metal-organic frameworks (MOFs)@silica core-shell microspheres as the stationary phases mainly relied on the method of electrostatic interaction between the metal ions of MOFs and the silanol groups. Herein, the ligands of MOFs were preferentially modified to the surface of silica as connection points and seed crystals to connect or form the MOFs. In this way, the evenness of the MOFs particles on the silica surface was effectively improved, and the prepared composites possessed excellent reproducibility and stability, including acid-base stability. The relative standard deviation of the retention time for repeatability ranged from 0.1% to 0.26% and for stability retention time from 0.3% to 0.6%. Compared with commercial columns, the prepared stationary phase showed enhanced separation selectivity for separation of both hydrophilic and hydrophobic compounds containing alkaloids, nucleosides, antibiotics and alkylbenzenes, etc. The obtained column was used as a matrix for fast separation and analysis of antibiotics in actual samples. In short, the composites showed superior reproducibility, stability and satisfactory separation performance towards a variety of compounds in the studied conditions. It also provided another way to improve the evenness of MOFs particles on the surface of silica and enhance the stability of them under polar conditions.
Collapse
Affiliation(s)
- Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
40
|
Yang H, Du J, Wang CL, Xie ZH, Zhan SZ. Synthesis, structure, magnetic and electrocatalytic properties of a dinuclear triazendio-copper(II) complex. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1992433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hao Yang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Juan Du
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chun-Li Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Ze-Hao Xie
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Zhong Zhan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
41
|
Si T, Lu X, Zhang H, Liang X, Wang S, Guo Y. Fabrication of two-dimensional metal-organic framework nanosheets/PDA composites as mixed-mode stationary phase for chromatographic separation. Mikrochim Acta 2021; 188:360. [PMID: 34599383 DOI: 10.1007/s00604-021-05023-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The synthesis of two-dimensional metal-organic frameworks (2D MOFs)/polymer core-shell composites is reported which were composed of polydopamine modified 2D Zr-1,3,5-(4-carboxylphenyl)-benzene (2D Zr-BTB) nanosheets and silica microspheres via a double-solvent approach. In this way, the composites were obtained under the condition of two solvents with different polarities to avoid agglomeration and uneven modification of most MOFs particles on the surface of the silica, existing inevitably in the one-pot method. Compared with the reported MOFs@silica composites adopting one-pot solvent method, the prepared composites exhibited significantly enhanced separation performance for sulfonamides, antibiotics, nucleosides, and polycyclic aromatic hydrocarbons compounds. Furthermore, the retention mechanisms were demonstrated by studying the relationships of chromatographic retention factors of tested analytes versus a variety of parameters under RPLC and HILIC modes, respectively. The superior chromatographic repeatability and stability were validated through the relative standard deviations of the retention time and/or column efficiency, which were found to be less than 0.8% and 0.9%, respectively. The material showed efficient separation ability for several types of compounds and provided another selectivity for preparing composites based on 2D MOFs nanosheets and other functional molecules.
Collapse
Affiliation(s)
- Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
42
|
Doan VD, Huynh BA, Pham HAL, Vasseghian Y, Le VT. Cu 2O/Fe 3O 4/MIL-101(Fe) nanocomposite as a highly efficient and recyclable visible-light-driven catalyst for degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2021; 201:111593. [PMID: 34175287 DOI: 10.1016/j.envres.2021.111593] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, the widespread production and use of antibiotics have increased their presence in wastewater systems, posing a potential threat to the environment and human health. The development of advanced materials for treating antibiotics in wastewater has always received special attention. This study aimed to synthesize a novel Cu2O/Fe3O4/MIL-101(Fe) nanocomposite and use it to degrade ciprofloxacin (CIP) antibiotics in an aqueous solution under visible light irradiation. The optical, structural, and morphological attributes of the developed nanocomposite were analyzed by XRD, FTIR, FE-SEM, TGA, DRS, BET, VSM, and UV-Vis techniques. Optimum circumstances for CIP photocatalytic degradation were acquired in 0.5 g L-1 of catalyst dosage, pH of 7, and CIP concentration of 20 mg L-1. The degradation efficiency was achieved 99.2% after 105 min of irradiation in optimum circumstances. The chemical trapping experiments confirmed that hydroxyl and superoxide radicals significantly contributed to the CIP degradation process. The results of this study indicated that Cu2O/Fe3O4/MIL-101(Fe) nanocomposite was a highly stable photocatalyst that could effectively remove antibiotics from aqueous solutions. The CIP degradation efficiency only decreased by 6% after five cycles, indicating the excellent recyclability of Cu2O/Fe3O4/MIL-101(Fe) nanocomposites.
Collapse
Affiliation(s)
- Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Bao-An Huynh
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Hoang Ai Le Pham
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, 70000, Viet Nam
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, 03 Quang Trung, Danang, 550000, Viet Nam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam.
| |
Collapse
|
43
|
Zhang X, Xiong D, Fu P, Yun M, Yang Q, Jia M, Dong X. Metal–organic frameworks based on a benzimidazole flexible tetracarboxylic acid: Selective luminescence sensing Fe
3+
, magnetic behaviors, DFT calculations, and Hirshfeld surface analyses. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiaoyu Zhang
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Dingqi Xiong
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Pengkun Fu
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Meng Yun
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Qinglin Yang
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Mei‐Mei Jia
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| | - Xiuyan Dong
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
44
|
Yang Y, Noh H, Ma Q, Wang R, Chen Z, Schweitzer NM, Liu J, Chapman KW, Hupp JT. Engineering Dendrimer-Templated, Metal-Organic Framework-Confined Zero-Valent, Transition-Metal Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36232-36239. [PMID: 34308623 DOI: 10.1021/acsami.1c11541] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We describe and experimentally illustrate a strategy for synthesizing reactant-accessible, supported arrays of well-confined, sub-nanometer to 2 nm, metal(0) clusters and particles-here, copper, palladium, and platinum. The synthesis entails (a) solution-phase binding of metal ions by a generation-2 poly(amidoamine) (PAMAM) dendrimer, (b) electrostatic uptake of metalated, solution-dissolved, and positively charged dendrimers by the negatively charged pores of a zirconium-based metal-organic framework (MOF), NU-1000, and (c) chemical reduction of the incorporated metal ions. The pH of the unbuffered solution is known to control the overall charges of both the dendrimer guests and the hierarchically porous MOF. The combined results of electron microscopy, X-ray spectroscopy, and other measurements indicate the formation and microscopically uniform spatial distributions of zero-valent, monometallic Cu, Pd, and Pt species, with sizes depending strongly on the conditions and methods used for reduction of incorporated metal ions. Access to sub-nanometer clusters is ascribed to the stabilization effects imposed by the two templates (i.e., NU-1000 and dendrimer), which significantly limit the extent to which the metal atoms aggregate; as the thermal input increases, the dendrimer template gradually decomposes, allowing a further aggregation of metal clusters inside the hexagonal mesoporous channel of the MOF template, which ultimately self-limits at 3 nm (i.e., the mesopore width of NU-1000). Using CO oxidation and n-hexene hydrogenation as model reactions in the gas and condensed phases, we show that the dual-templated metal species can act as stable, efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hyunho Noh
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11764, United States
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11764, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
45
|
Yang H, Du J, Wang CL, Zhan SZ. Synthesis, structure, characterization and catalytic behavior of a bis(thiosemicarbazonato)-nickel complex. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1943742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hao Yang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Juan Du
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chun-Li Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Zhong Zhan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
46
|
Huang B, Tan Z. High Loading of Air-Sensitive Guest Molecules into Polycrystalline Metal-Organic Framework Hosts. Inorg Chem 2021; 60:10830-10836. [PMID: 34170683 DOI: 10.1021/acs.inorgchem.1c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Loading air-sensitive guest molecules inside polycrystalline metal-organic framework (MOF) hosts is currently a challenging process. In this study, the air-sensitive guest molecule magnesocene (MgCp2) was loaded into two porous MOF hosts, polycrystalline Ni-MOF-74 and NH2-MIL-101(Al), using a gas-phase infiltration process. X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning transmission electron microscopy, and scanning transmission electron microscopy-energy-dispersive X-ray mapping measurements demonstrated that MgCp2 was successfully loaded inside the three-dimensional pores of NH2-MIL-101(Al) with a maximum loading of 43.1 wt %. MgCp2 was found to cover the outside of Ni-MOF-74 owing to the small one-dimensional channels.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, Innovation Harbour, Xi-xian New District, Xi'an 712000, China
| | - Zhe Tan
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, Innovation Harbour, Xi-xian New District, Xi'an 712000, China
| |
Collapse
|
47
|
Zhu Y, Yue K, Xia C, Zaman S, Yang H, Wang X, Yan Y, Xia BY. Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries. NANO-MICRO LETTERS 2021; 13:137. [PMID: 34138394 PMCID: PMC8184897 DOI: 10.1007/s40820-021-00669-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 05/20/2023]
Abstract
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries (ZABs). Owing to the high specific surface area, controllable pore size and unsaturated metal active sites, metal-organic frameworks (MOFs) derivatives have been widely studied as oxygen electrocatalysts in ZABs. To date, many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs. In this review, the latest progress of the MOF-derived non-noble metal-oxygen electrocatalysts in ZABs is reviewed. The performance of these MOF-derived catalysts toward oxygen reduction, and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials, single-atom catalysts, metal cluster/carbon composites and metal compound/carbon composites. Moreover, we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal-oxygen electrocatalysts and their structure-performance relationship. Finally, the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs.
Collapse
Affiliation(s)
- Yuting Zhu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, People's Republic of China
| | - Kaihang Yue
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, People's Republic of China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Shahid Zaman
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Huan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Xianying Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, People's Republic of China.
| | - Ya Yan
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China.
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, People's Republic of China.
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
48
|
Liu J, Chen Z, Wang R, Alayoglu S, Islamoglu T, Lee SJ, Sheridan TR, Chen H, Snurr RQ, Farha OK, Hupp JT. Zirconium Metal-Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22485-22494. [PMID: 33961384 DOI: 10.1021/acsami.1c03717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia capture by porous materials is relevant to protection of humans from chemical threats, while ammonia separation may be relevant to its isolation and use following generation by emerging electrochemical schemes. Our previous work described both reversible and irreversible interactions of ammonia with the metal-organic framework (MOF) material, NU-1000, following thermal treatment at either 120 or 300 °C. In the present work, we have examined NU-1000-Cl, a variant that features a modified node structure-at ambient temperature, Zr6(μ3-O)4(μ3-OH)4(H2O)812+ in place of Zr6(μ3-O)4(μ3-OH)4(OH)4(H2O)48+. Carboxylate termini from each of eight linkers balance the 8+ charge of the parent node, while four chloride ions, attached only by hydrogen bonding, complete the charge balance for the 12+ version. We find that both reversible and irreversible uptake of ammonia are enhanced for NU-1000-Cl, relative to the chloride-free version. Two irreversible interactions were observed via in situ diffuse-reflectance infrared Fourier-transform spectroscopy: coordination of NH3 at open Zr sites generated during thermal pretreatment and formation of NH4+ by proton transfer from node aqua ligands. The irreversibility of the latter appears to be facilitated by the presence chloride ions, as NH4+ formation occurs reversibly with chloride-free NU-1000. At room temperature, chemically reversible (and irreversible) interactions between ammonia and NU-1000-Cl result in separation of NH3 from N2 when gas mixtures are examined with breakthrough instrumentation, as evinced by a much longer breakthrough time (∼9 min) for NH3.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Reactor Engineering and Catalyst Testing Core, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seung-Joon Lee
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas R Sheridan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
49
|
Yang D, Gates BC. Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal-Organic Frameworks. Acc Chem Res 2021; 54:1982-1991. [PMID: 33843190 DOI: 10.1021/acs.accounts.1c00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ConspectusMetal-organic frameworks (MOFs) are a huge, rapidly growing class of crystalline, porous materials that consist of inorganic nodes linked by organic struts. Offering the advantages of thermal stability combined with high densities of accessible reactive sites, some MOFs are good candidate materials for applications in catalysis and separations. Such MOFs include those with nodes that are metal oxide clusters (e.g., Zr6O8, Hf6O8, and Zr12O22) and long rods (e.g., [Al(OH)]n). These nanostructured metal oxides are often compared with bulk metal oxides, but they are in essence different because their structures are not the same and because the MOFs have a high degree of uniformity, offering the prospect of a deep understanding of reactivity that is barely attainable for most bulk metal oxides because of their surface heterogeneity. This prospect is being realized as it has become evident that adventitious components on MOF node surfaces, besides the linkers, are crucial. These ligands arise from modulators, solvents, or products of solvent decomposition in MOF synthesis solutions, and because they are minor components that are often irregularly placed on defects, they may not show up in X-ray diffraction (XRD) crystal structures. Hydroxyl groups on the nodes (like those on bulk metal oxides) are regarded as native functional groups arising from solvent water, but they may barely be present initially, with common ligands instead being formate and acetate formed from modulators formic acid and acetic acid. (Formate also arises from the decomposition of dimethylformamide (DMF) solvent.) Replacement and control of the node ligands is facilitated by postsynthesis reactions (e.g., with alcohols or aqueous HCl/H2SO4 solutions) or as a result of high-temperature decomposition. In catalysis, adventitious node ligands can be (a) reaction inhibitors that block active sites on the nodes (e.g., formate blocking Zr, Hf, or Al Lewis acid sites); (b) reaction intermediates (e.g., ethoxy in ethanol dehydration); or (c) active sites themselves (e.g., terminal OH groups in tert-butyl alcohol (TBA) dehydration). Surprisingly, in view of the catalytic importance of such ligands on bulk metal oxides, their subtle chemistry on MOF nodes is only recently being determined. We describe (1) methods for identifying and quantifying node ligands (especially by IR spectroscopy and by 1H NMR spectroscopy of MOFs digested in NaOH/D2O solutions); (2) node ligand surface chemistry expressed as reaction networks; (3) catalysis, with mechanisms and energetics determined by density functional theory (DFT) and spectroscopy; and (4) MOF unzipping by reactions of linker carboxylate ligands with reactants such as alcohols that break node-linker bonds, a cause of catalyst deactivation and also an indicator of node-linker bond strength and MOF stability.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
50
|
Chen Y, Zhang X, Wang X, Drout RJ, Mian MR, Cao R, Ma K, Xia Q, Li Z, Farha OK. Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. J Am Chem Soc 2021; 143:4302-4310. [DOI: 10.1021/jacs.0c12963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yongwei Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People’s Republic of China
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Riki J. Drout
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ran Cao
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People’s Republic of China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People’s Republic of China
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|