1
|
Liu T, Zhang W, Guo R. Enhancing Photocatalytic Hydrogen Evolution by Improving the Morphology of Organic Semiconductor Nanoparticles with TCB Additive. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502829. [PMID: 40304178 DOI: 10.1002/smll.202502829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/12/2025] [Indexed: 05/02/2025]
Abstract
Organic semiconductor nanoparticles (NPs) are promising organic photocatalysts for water splitting. However, effective organic semiconductor NPs require efficient charge dissociation and transport at the heterojunction interface. Common core-shell structured NPs exhibit low hydrogen evolution rates (HERs) due to limited charge dissociation efficiency. Here, this challenge is addressed by introducing 1,3,5-trichlorobenzene (TCB) additive into organic semiconductor NPs to improve their heterojunction morphology. As a result, PM6:Y6 NPs with TCB have a more intimately blended morphology, which enhances charge dissociation and transport. These NPs achieve a HER of 16,490 µmol g-1 h-1, which is more than twice that of NPs without TCB. Further optimization of the NPs concentration led to a remarkable HER of 58,400 µmol g-1 h-1. Moreover, the PM6:Y6 NPs with TCB exhibit better operational stability due to their enhanced morphological stability. This study demonstrates the effectiveness of the additive strategy in improving the heterojunction morphology of organic semiconductor NPs to overcome key limitations of their photocatalytic hydrogen evolution efficiency and provides valuable insights for the development of high-performance organic photocatalysts.
Collapse
Affiliation(s)
- Tong Liu
- Institute Future Lighting, Academy of Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Ruiqian Guo
- Institute Future Lighting, Academy of Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Sun H, Fan J, Fan R, Sun P, Wang S, Wang D, Gu P, Tan W, Zhu Y. A Carboxylate-based Hydrophilic Organic Photovoltaic Catalyst with a Large Molecular Dipole Moment for High-Performance Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2025:e202503792. [PMID: 40271547 DOI: 10.1002/anie.202503792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 04/25/2025]
Abstract
Achieving ultrafast dissociation of photogenerated excitons and efficient charge transport within the photocatalyst is a fundamental issue. Additionally, enhancing the interaction between semiconductors and water is crucial for efficient photocatalytic water splitting. Herein, we synthesized a carboxylate-based hydrophilic polymer, hPTB7-Th. Exposed carboxylates enhance semiconductor-water interfacial compatibility, reducing contact resistance and accelerating charge transfer kinetics. Furthermore, the carboxylate substitution shifts polarity centers, amplifying the molecular dipole moment by 10-fold. This induces a giant built-in electric field, enabling ultrafast electron-transfer process (ca. 0.31 ps) in the hPTB7-Th:PCBM bulk heterojunction. Consequently, the hPTB7-Th:PCBM-based bulk heterojunction nanoparticles exhibit excellent photocatalytic activity, achieving an optimal hydrogen evolution rate of 111.5 mmol g-1 h-1, four times over the ester-based counterpart (PTB7-Th:PCBM). Moreover, the electrostatic stability imparted by the carboxylates endows hPTB7-Th:PCBM with outstanding operational stability, maintaining 81% of its initial hydrogen evolution rate after 100 h operation. This result places it among the state-of-the-art organic photovoltaic bulk heterojunction photocatalysts in terms of stability. This work establishes a molecular engineering strategy for high-performance bulk heterojunction photocatalysts, emphasizing synergistic optimization of hydrophilicity, dipole engineering, and interfacial dynamics.
Collapse
Affiliation(s)
- Hua Sun
- School of Material and Chemistry Engineering, Hydrogen-Carbon Fusion Energy Industry Technology Innovation Center, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Jianan Fan
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P.R. China
| | - Rong Fan
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P.R. China
| | - Po Sun
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P.R. China
| | - Shifan Wang
- School of Material and Chemistry Engineering, Hydrogen-Carbon Fusion Energy Industry Technology Innovation Center, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Wenyi Tan
- School of Material and Chemistry Engineering, Hydrogen-Carbon Fusion Energy Industry Technology Innovation Center, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
3
|
Zhou Q, Zhang X, Ning L, Song Y, Wang Y, Feng J, Sun CL, Li J, Gong Q, Zhang Q, Huang Y. Boosting FRET Efficiency of Chromophores with Aggregation-Caused Quenching by a Crystallization-Induced Precise Co-assembly Strategy. SMALL METHODS 2025; 9:e2401439. [PMID: 39473300 DOI: 10.1002/smtd.202401439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Indexed: 04/25/2025]
Abstract
Förster resonance energy transfer (FRET) plays a critical role in organic optoelectronic materials. However, developing facile and effective strategies to achieve high-efficiency energy harvesting of chromophores with aggregation-caused quenching (ACQ) remains an appealing yet challenging task, that has not yet been explored. Herein, a subtly strategy, crystallization-induced precise co-assembly (CIPCA) involving a molecular "lightening agent," to effectively improve FRET efficiency of ACQ chromophores is developed. Bis(phenylethynyl)anthracene (BPA) and bis(phenylethynyl)naphthacene (BPN) with significant ACQ effect are chosen as representative FRET donor and acceptor, respectively, and weakly-fluorescent octafluoronaphthalene (OFN) acted as the "lightening agent." Thanks to precise co-assembly with OFN, the PLQY of solid BPA is enhanced by 107%, and the BPN powder can be unprecedentedly lighted. More importantly, through such powerful CIPCA, the monotonous and weak emission for BPA@BPN can be remarkably regulated to colorful and much brighter ones with FRET efficiency improvement of as high as 180-270%. An in-depth understanding of FRET regulation is elucidated through a precise correlation of the supramolecular structures and properties. Such achievements allow to successfully fabricate distinct multi-stimuli-responsive fluorescent patterns and highly-emissive colorful flowers with high flexibility. This research provides an efficient strategy to improve the FRET efficiency of ACQ pairs.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuhui Song
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yanli Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jinkun Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic, Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jun Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Gao Z, Sun J, Shi L, Yuan W, Yan H, Tian W. Precise Supramolecular Nanoarchitectonics for Simultaneous Enhanced Photoluminescence and Photocatalysis in a Co-Assembly by a Biomimetic Isolation-Conduction Strategy. Angew Chem Int Ed Engl 2025; 64:e202423174. [PMID: 39714439 DOI: 10.1002/anie.202423174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Limited by the two mutually exclusive physicochemical processes of separation and recombination of photogenerated carriers, achieving photoluminescence and photocatalysis simultaneously is extremely challenging but essential for ever-growing complex issues and specialized scenarios. Here we proposed a biomimetic isolation-conduction strategy induced by an arene-perfluoroarene (A-P) interaction for enabling photoluminescence and photocatalytic hydrogen evolution reaction (HER) activity in the co-assembly of aromatic monomers and octafluoronapthalene (OFN). Inspired by the isolation-conduction effect of periodic isolation of myelin sheaths on the axons of vertebrate nerve fibers by node of Ranvier, we use OFN as a molecular isolator embedded in the aromatic monomers array to block the singlet-to-triplet pathway, while the enlarged intermolecular dipoles resulting from the A-P interactions facilitate the conduction of photogenerated carriers in the isolated regions. The resultant co-assembly exhibits an enhanced monomeric green emission compared to the corresponding monocomponent self-assembly with weak red emission. Meanwhile, it also has an enhanced photocatalytic HER performance with a rate of 2.45 mmol g-1 h-1, which is 15.2 times more than the self-assembled one. On this basis, a sequential fluoric wastewater reuse system that includes real-time fluorescence detection/removal of perfluorooctanoic acids and photocatalytic HER device is constructed.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianxiang Sun
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Yuan
- Department of Chemistry, National University of Singapore 3, Science Drive 3, Singapore, 117543, Singapore
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
5
|
Wu S, Zhang Z, Lee Y, Li Y, Tai X, Si W, Bai S, Lin Y. Reversing Surface Charge for Highly-Active Organic Photovoltaic Catalysts. Angew Chem Int Ed Engl 2025; 64:e202422779. [PMID: 39714376 DOI: 10.1002/anie.202422779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
Organic photovoltaic materials typically exhibit low charge separation and transfer efficiency and severe exciton/carrier recombination due to high exciton binding energy and short exciton diffusion lengths, limiting the enhancement of photocatalytic hydrogen evolution performance. Here, we introduce a surface charge reversal strategy to regulate the charge character of organic photovoltaic catalyst (OPC). Compared to OPC nanoparticles (NPs) stabilized by an anionic surfactant ((-) NPs), NPs stabilized by a cationic surfactant ((+) NPs) exhibit a raised Fermi level, larger surface band bending and Schottky barrier, thereby enhancing charge separation and transfer efficiency while suppressing charge carrier recombination. As a result, (+) NPs demonstrate better photocatalytic performance than (-) NPs, independent of the chemical structure of OPCs and surfactant molecules. Under the illumination of AM1.5G, 100 mW cm-2, the PM6: 2FBP-4F NPs stabilized by cationic surfactant (dodecyltrimethylammonium bromide, DTAB) exhibit much higher photocatalytic activity for hydrogen evolution (up to 946.1±15.76 mmol h-1 g-1) than that of PM6: 2FBP-4F NPs stabilized by anionic surfactant, among the best results reported so far for photocatalytic hydrogen evolution under simulated sunlight.
Collapse
Affiliation(s)
- Shichao Wu
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhsuan Lee
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Tai
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Miao X, Bai X, Zhang P, Wang B, Wang S, Yang Y, Lin Z, Li S, Wang B, Liu W. Promoted Photocatalytic H 2 Production of 0 D/2D CeO 2 Nanoparticles and N-Defects Graphitic Carbon Nitride S-Scheme Heterojunction. Inorg Chem 2025; 64:2637-2648. [PMID: 39915278 DOI: 10.1021/acs.inorgchem.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Incorporating two-phase heterojunctions with matching band structures represents a promising strategy for developing photocatalysts with enhanced efficiency. This work prefers a novel approach that employs a template-assisted strategy based on a porous structured UCCN@CeO2 0D/2D S-scheme heterojunction. The proposed method aims to improve photocatalytic activity by harnessing the synergistic effects of monodispersed CeO2 nanoparticles and ultrathin N-defect CN nanosheets. The catalyst demonstrates a remarkable photocatalytic hydrogen evolution rate, reaching an impressive value of 5.59 mmol h-1 g-1 when subjected to simulated sunlight irradiation. Furthermore, the photocatalyst maintains a substantial activity level, yielding 2.35 mmol h-1 g-1 under visible light (≥400 nm). The significant improvement in the photocatalytic performance of the UCCN@CeO2 catalyst is attributed to the unique structural design and effective charge separation facilitated by the S-scheme mechanism. Kelvin probe force microscopy, theoretical calculations, and femtosecond transient absorption spectroscopy affirm the efficient charge transportation across the catalyst interface. Additionally, electron spin resonance spectroscopy measurements further support the charge transfer pathway in the S-scheme. This research presents an innovative approach for designing and developing CN-based catalysts featuring S-scheme heterojunctions, aiming to improve their efficiency and practical use in photocatalytic applications.
Collapse
Affiliation(s)
- Xuan Miao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Department of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Xiao Bai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bolong Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shuyan Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuzhu Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zenggang Lin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sixia Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Binbin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Kim Y, Kim H, Lee H, Lee TH, Cho HH. Organic semiconductor bulk heterojunctions for solar-to-chemical conversion: recent advances and challenges. NANOSCALE 2025; 17:1889-1921. [PMID: 39688026 DOI: 10.1039/d4nr03938f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Solar fuel production involving the conversion of solar energy directly into chemical fuels such as hydrogen and valuable chemicals using photoelectrochemical (PEC) cells and photocatalysts (PCs) offers a promising avenue for sustainable energy while reducing carbon emissions. However, existing PEC cells and PCs fall short of economic viability due to their low solar-to-chemical (STC) conversion efficiency associated with the employed semiconductors, highlighting the clear need for identifying ideal semiconductor materials. Organic semiconductors (OSs), π-conjugated carbon-based materials, have emerged as promising candidates for enhancing STC conversion efficiency due to their remarkable optoelectrical properties, which can be readily adjustable through molecular engineering. In particular, the use of OS bulk heterojunctions (BHJs) consisting of intermixed electron-donating and electron-accepting OSs facilitates efficient charge generation under illumination, thereby contributing to enhanced STC conversion efficiency. This review explores the recent advancements in the rational design of OS materials and approaches aimed at enhancing the performance of BHJ-based PEC cells and PCs for solar-driven production of hydrogen and valuable chemicals. The discussion also introduces new perspectives to address the remaining challenges in this field.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Hoon Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hyeongyu Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tack Ho Lee
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Han-Hee Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Lin WC, Sun YE, Zhuang YR, Huang TF, Lin KJ, Elsenety MM, Yen JC, Hsu HK, Chen BH, Chang CY, Chang JW, Huang HN, Li BH, Jungsuttiwong S, Haldar T, Wang SH, Lin WC, Wu TL, Chen CW, Yu CH, Su AC, Lin KH, Jeng US, Yang SD, Chou HH. Optimally Miscible Polymer Bulk-Heterojunction-Particles for Nonsurfactant Photocatalytic Hydrogen Evolution. J Am Chem Soc 2025; 147:2537-2548. [PMID: 39705715 PMCID: PMC11760146 DOI: 10.1021/jacs.4c13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024]
Abstract
Mini-emulsion and nanoprecipitation techniques relied on large amounts of surfactants, and unresolved miscibility issues of heterojunction materials limited their efficiency and applicability in the past. Through our molecular design and developed surfactant-free precipitation method, we successfully fabricated the best miscible bulk-heterojunction-particles (BHJP) ever achieved, using donor (PS) and acceptor (PSOS) polymers. The structural similarity ensures optimal miscibility, as supported by the interaction parameter of the PS/PSOS blend is positioned very close to the binodal curve. Experimental studies and molecular dynamics simulations further revealed that surfactants hinder electron output sites and reduce the concentration of sacrificial agents at the interface, slowing polaron formation. Multiscale experiments verified that these BHJP, approximately 12 nm in diameter, further form cross-linked fractal networks of several hundred nanometers. Transient absorption spectroscopy showed that BHJP facilitates polaron formation and electron transfer. Our BHJP demonstrated a superior hydrogen evolution rate (HER) compared to traditional methods. The most active BHJP achieved an HER of 251.2 mmol h-1 g-1 and an apparent quantum yield of 26.2% at 500 nm. This work not only introduces a practical method for preparing BHJP but also offers a new direction for the development of heterojunction materials.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Yu-En Sun
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Ying-Rang Zhuang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Tse-Fu Huang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Kuei-Jhong Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Mohamed M. Elsenety
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- Department
of Chemistry, Faculty of Science, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Jui-Chen Yen
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hung-Kai Hsu
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Han Chen
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chen-Yu Chang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Je-Wei Chang
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Ni Huang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Bing-Heng Li
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Siriporn Jungsuttiwong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Toton Haldar
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 106344, Taiwan
| | - Shin-Huei Wang
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - Wan-Chi Lin
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - Tien-Lin Wu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chin-Wen Chen
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 106344, Taiwan
| | - Chi-Hua Yu
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - An-Chung Su
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Kun-Han Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - U-Ser Jeng
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Shang-Da Yang
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Center
for Photonics Research, National Tsing Hua
University, Hsinchu 300044, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Ho-Hsiu Chou
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- Center
for Photonics Research, National Tsing Hua
University, Hsinchu 300044, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
9
|
Zhu J, Dang J, Xiao H, Wang Y, Ding L, Zheng J, Chen J, Zhang J, Wang X, Xin JH, Chen S, Wang Y. Multi-Scale Hierarchical Organic Photocatalytic Platform for Self-Suspending Sacrificial Hydrogen Production from Seawater. Angew Chem Int Ed Engl 2025; 64:e202412794. [PMID: 39291306 DOI: 10.1002/anie.202412794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
The widespread application of photocatalysis for converting solar energy and seawater into hydrogen is generally hindered by limited catalyst activity and the lack of sustainable large-scale platforms. Here, a multi-scale hierarchical organic photocatalytic platform was developed, combining a photosensitive molecular heterojunction with a molecular-scale gradient energy level alignment and micro-nanoscale hierarchical pore structures. The ternary system facilitates efficient charge transfer and enhances photocatalytic activity compared to conventional donor-acceptor pairs. Meanwhile, the super-wetted hierarchical interfaces of the platform endow it with the ability to repeatedly capture light and self-suspend below the water surface, which simultaneously improves the light utilization efficiency, and reduces the adverse effects of salt deposition. Under a Xe lamp illumination, the hydrogen evolution rate of this organic platform utilizing a sacrificial agent can reach 165.8 mmol h-1 m-2, exceeding that of mostly inorganic systems as reported. And upon constructing a scalable system, the platform produced 80.6 ml m-2 of hydrogen from seawater within five hours at noon. More importantly, the outcomes suggest an innovative multi-scale approach that bridges disciplines, advancing the frontier of sustainable seawater hydrogen production driven by solar energy.
Collapse
Affiliation(s)
- Jingshuai Zhu
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Jie Dang
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
| | - Haoyuan Xiao
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Yuqi Wang
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Lei Ding
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Jiaxin Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, China
| | - Jianming Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Kowloon, Hong Kong
| | - Jianxiang Zhang
- National Innovation Center of Advanced Dyeing & Finishing Technology, 271000, Tai'an, Shandong, China
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Kowloon, Hong Kong
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Kowloon, Hong Kong
| | - Shiguo Chen
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Yuanfeng Wang
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
10
|
Brnovic A, Hunt LA, Tian H, Hammarström L. Revising exciton diffusion lengths in polymer dot photocatalysts. Phys Chem Chem Phys 2025; 27:1083-1088. [PMID: 39679930 DOI: 10.1039/d4cp04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Exciton migration in organic polymer dots (Pdots) is crucial for optimizing photocatalytic reactions at the particle surface, such as hydrogen evolution and carbon dioxide reduction. Despite the use of Pdots in photocatalysis, there is still a need for better understanding of exciton diffusion within these systems. This study investigates the exciton diffusion in PFBT Pdots stabilized with different weight percentages of the co-polymer surfactant PS-PEG-COOH and doped with perylene red as an internal quencher. Time-resolved fluorescence quenching data yields a quenching volume that the excitons explore during their lifetime (Vq), which is comparable to the volume of the hydrophobic core of PFBT Pdots. This indicates that excitons can migrate to the particle surface with high probability and suggests that the intrinsic exciton diffusion length (LD ≈ 19 nm) for PFBT is significantly larger than previously reported in Pdot studies from the literature (5.3 and 8.6 nm). Additionally, a larger quenching rate constant (kq) and smaller volume (Vq) is observed for the higher PS-PEG-COOH weight ratio, which are attributed to their smaller core. The study provides insights into the exciton migration within Pdots, with important implications for photocatalysis.
Collapse
Affiliation(s)
- Andjela Brnovic
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
| | - Leigh Anna Hunt
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
| | - Haining Tian
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
| |
Collapse
|
11
|
Liu X, Yu M, Huang K, Huang H, Gu H, Tian C, Qi J, Guo Z, Lian C, Wu Y, Zhang W, Zhu WH. Efficient Quasi-Homogenous Photocatalysis Enabled by Molecular Nanophotocatalysts with Donor-Acceptor Motif. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413440. [PMID: 39623807 DOI: 10.1002/adma.202413440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/26/2024] [Indexed: 01/30/2025]
Abstract
Polymer semiconductors have attracted much attention for photocatalytic hydrogen evolution, but they typically exhibit micrometer-sized particles in water-suspension, causing severe loss in light absorption and exciton recombination. Here a molecular nanophotocatalyst featuring a donor-acceptor motif is presented that solution is processed via a facile stirring nanoprecipitation method assisted by hydrophilic surfactants, enabling an efficient quasi-homogenous hydrogen evolution. In contrast to the original bulk powder (heterogeneous system), these quasi-homogenous nanophotocatalysts exhibit significantly improved light-harvesting, water-wettability, and exciton dissociation, resulting in distinctly enhanced (by four-order-of-magnitude) photocatalytic hydrogen evolution rate. The optimized nanophotocatalysts (4CzPN/DDBAB/SDBS) generate an outstanding hydrogen evolution rate of 116.42 mmol g-1 h-1 and apparent quantum yield of 30.2% at 365 nm, which are among the highest reported for single-junction organic photocatalysts. The scalability of the quasi-homogenous photocatalysts is further demonstrated using a flow-based flash nanoprecipitation (FNP) processing.
Collapse
Affiliation(s)
- Xueyan Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miaojie Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kai Huang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haiyang Huang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongxu Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changhao Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Qi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongzhen Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
12
|
Gonzalez-Carrero S, Kosco J, Fei T, McCulloch I, Durrant JR. Impact of water solvation on the charge carrier dynamics of organic heterojunction photocatalyst nanoparticle dispersions. Chem Sci 2024:d4sc04030a. [PMID: 39479153 PMCID: PMC11514576 DOI: 10.1039/d4sc04030a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Organic heterojunction nanoparticles (NP) have recently gained significant interest as photocatalysts for visible light-driven hydrogen production. Whilst promising photocatalytic efficiencies have been reported for aqueous NP dispersions, the underlying dynamics of photogenerated charges in such organic heterojunction photocatalysts and how these might differ from more widely studied dry heterojunction films remain relatively unexplored. In this study, we combine transient optical spectroscopies over twelve orders of magnitude in time, using pulsed and continuous light illumination, to elucidate the differences in the charge carrier dynamics of heterojunction NP dispersions, dried NP films, and bulk heterojunction films prepared by spin coating. The ultrafast fast (ps to ns) transient absorption results show efficient charge generation and indistinguishable nanosecond charge recombination decay kinetics of separated charges in all three samples. In contrast, on the slower μs to ms time range, the decay kinetics of heterojunction NP dispersion exhibited up to 15-fold larger amplitude and more than one order of magnitude slower decay of the photogenerated charges than those in films. The analysis of the nanomorphology, NP surfactant, polymer residual metal content and local polar environment suggest that the longer lifetime differences (in ms) in the charge recombination in NP dispersion are mostly associated with a charge carrier stabilisation on a shallow density of states on the NP surface of ∼350 meV by interaction with local water environment, resulting in suppressed charge recombination. The lengthening of NP dispersion charge carrier lifetime is discussed regarding the energetic loss for function and their implications in photocatalysis.
Collapse
Affiliation(s)
- Soranyel Gonzalez-Carrero
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
- Institute of Molecular Science, University of Valencia 46980 Paterna Valencia Spain
| | - Jan Kosco
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) Thuwal 23955-6900 Saudi Arabia
| | - Teng Fei
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) Thuwal 23955-6900 Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
- Department of Electrical and Computer Engineering, Andlinger Center for Energy and the Environment, Princeton University Princeton NJ 08544 USA
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
- SPECIFIC IKC, College of Engineering, Swansea University Bay Campus, Fabian Way, Wales Swansea SA1 8EN UK
| |
Collapse
|
13
|
Lyons RJ, Sprick RS. Processing polymer photocatalysts for photocatalytic hydrogen evolution. MATERIALS HORIZONS 2024; 11:3764-3791. [PMID: 38895815 DOI: 10.1039/d4mh00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Conjugated materials have emerged as competitive photocatalysts for the production of sustainable hydrogen from water over the last decade. Interest in these polymer photocatalysts stems from the relative ease to tune their electronic properties through molecular engineering, and their potentially low cost. However, most polymer photocatalysts have only been utilised in rudimentary suspension-based photocatalytic reactors, which are not scalable as these systems can suffer from significant optical losses and often require constant agitation to maintain the suspension. Here, we will explore research performed to utilise polymeric photocatalysts in more sophisticated systems, such as films or as nanoparticulate suspensions, which can enhance photocatalytic performance or act as a demonstration of how the polymer can be scaled for real-world applications. We will also discuss how the systems were prepared and consider both the benefits and drawbacks of each system before concluding with an outlook on the field of processable polymer photocatalysts.
Collapse
Affiliation(s)
- Richard Jack Lyons
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | | |
Collapse
|
14
|
Wang S, Pavliuk MV, Zou X, Huang P, Cai B, Svensson OM, Tian H. Covalently linked molecular catalysts in conjugated polymer dots boost photocatalytic alcohol oxidation in neutral condition. Nat Commun 2024; 15:6765. [PMID: 39117646 PMCID: PMC11310486 DOI: 10.1038/s41467-024-51097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
As a new class of organic photocatalysts, polymer dots show a potential application in photocatalytic hydrogen peroxide production coupled with chemical oxidation such as methanol oxidation. However, the poor methanol oxidation ability by polymer dots still inhibits the overall photocatalytic reaction occurring in the neutral condition. In this work, an organic molecular catalyst 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl radical is covalently linked to a fluorene unit in a polymer skeleton, eventually enabling photocatalytic hydrogen peroxide production coupled with methanol oxidation in the neutral condition. By conducting various spectroscopic measurements, charge transfer between components in this molecular catalyst-immobilized polymer dots system is studied and found to be very efficient for hydrogen peroxide production coupled with alcohol oxidation. This work proves a strategy for designing polymer dots photocatalysts with molecular catalysts, facilitating their future development and potential applications in other fields such as water splitting, CO2 reduction, photoredox catalysis and photodynamic therapy.
Collapse
Affiliation(s)
- Sicong Wang
- Department of Chemistry - Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Mariia V Pavliuk
- Department of Chemistry - Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Xianshao Zou
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, CN-266 000, China
| | - Ping Huang
- Department of Chemistry - Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Bin Cai
- Department of Chemistry - Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Orpita M Svensson
- Department of Chemistry - Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Haining Tian
- Department of Chemistry - Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden.
| |
Collapse
|
15
|
Cheng L, Wu Q, Sun H, Tang Y, Xiang Q. Toward Functionality and Deactivation of Metal-Single-Atom in Heterogeneous Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406807. [PMID: 38923045 DOI: 10.1002/adma.202406807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Single-atom heterogeneous catalysts (SAHCs) provide an enticing platform for understanding catalyst structure-property-performance relationships. The 100% atom utilization and adjustable local coordination configurations make it easy to probe reaction mechanisms at the atomic level. However, the progressive deactivation of metal-single-atom (MSA) with high surface energy leads to frequent limitations on their commercial viability. This review focuses on the atomistic-sensitive reactivity and atomistic-progressive deactivation of MSA to provide a unifying framework for specific functionality and potential deactivation drivers of MSA, thereby bridging function, purpose-modification structure-performance insights with the atomistic-progressive deactivation for sustainable structure-property-performance accessibility. The dominant functionalization of atomically precise MSA acting on properties and reactivity encompassing precise photocatalytic reactions is first systematically explored. Afterward, a detailed analysis of various deactivation modes of MSA and strategies to enhance their durability is presented, providing valuable insights into the design of SAHCs with deactivation-resistant stability. Finally, the remaining challenges and future perspectives of SAHCs toward industrialization, anticipating shedding some light on the next stage of atom-economic chemical/energy transformations are presented.
Collapse
Affiliation(s)
- Lei Cheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qiaolin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
16
|
Zhao W, Luo L, Cong M, Liu X, Zhang Z, Bahri M, Li B, Yang J, Yu M, Liu L, Xia Y, Browning ND, Zhu WH, Zhang W, Cooper AI. Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production. Nat Commun 2024; 15:6482. [PMID: 39090140 PMCID: PMC11294449 DOI: 10.1038/s41467-024-50839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Nanosizing confers unique functions in materials such as graphene and quantum dots. Here, we present two nanoscale-covalent organic frameworks (nano-COFs) that exhibit exceptionally high activity for photocatalytic hydrogen production that results from their size and morphology. Compared to bulk analogues, the downsizing of COFs crystals using surfactants provides greatly improved water dispersibility and light-harvesting properties. One of these nano-COFs shows a hydrogen evolution rate of 392.0 mmol g-1 h-1 (33.3 μmol h-1), which is one of the highest mass-normalized rates reported for a COF or any other organic photocatalysts. A reverse concentration-dependent photocatalytic phenomenon is observed, whereby a higher photocatalytic activity is found at a lower catalyst concentration. These materials also show a molecule-like excitonic nature, as studied by photoluminescence and transient absorption spectroscopy, which is again a function of their nanoscale dimensions. This charts a new path to highly efficient organic photocatalysts for solar fuel production.
Collapse
Affiliation(s)
- Wei Zhao
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Liang Luo
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Muyu Cong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xueyan Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Mounib Bahri
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, L69 3GL, UK
| | - Boyu Li
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jing Yang
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Miaojie Yu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Lunjie Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yu Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Nigel D Browning
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, L69 3GL, UK
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Andrew I Cooper
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK.
| |
Collapse
|
17
|
Lin B, Duan R, Li Y, Hua W, Zhou Y, Zhou J, Di J, Luo X, Li H, Zhao W, Yang G, Liu Z, Liu F. Black Ultrathin Single-Crystalline Flakes of CuVP 2S 6 and CuCrP 2S 6 for Near-Infrared-Driven Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404833. [PMID: 38847439 DOI: 10.1002/adma.202404833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Indexed: 06/18/2024]
Abstract
The development of new near-infrared-responsive photocatalysts is a fascinating and challenging approach to acquire high photocatalytic hydrogen evolution (PHE) performance. Herein, near-infrared-responsive black CuVP2S6 and CuCrP2S6 flakes, as well as CuInP2S6 flakes, are designed and constructed for PHE. Atom-resolved scanning transmission electron microscopy images and X-ray absorption fine structure evidence the formation of ultrathin single-crystalline sheet-like structure of CuVP2S6 and CuCrP2S6. The synthetic CuVP2S6 and CuCrP2S6, with a narrow bandgap of ≈1.0 eV, shows the high light-absorption edge exceeding 1100 nm. Moreover, through the femtosecond-resolved transient absorption spectroscopy, CuCrP2S6 displays the efficient charge transfer and long charge lifetime (18318.1 ps), which is nearly 3 and 29 times longer than that of CuVP2S6 and CuInP2S6, respectively. In addition, CuCrP2S6, with the appropriate d-band and p-band, is thermodynamically favorable for the H+ adsorption and H2 desorption by contrast with CuVP2S6 and CuInP2S6. As a result, CuCrP2S6 exhibits high PHE rates of 9.12 and 0.66 mmol h-1 g-1 under simulated sunlight and near-infrared light irradiation, respectively, far exceeding other layered metal phospho-sulfides. This work offers a distinctive perspective for the development of new near-infrared-responsive photocatalysts.
Collapse
Affiliation(s)
- Bo Lin
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Weibo Hua
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yao Zhou
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiao Luo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - He Li
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenting Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
18
|
Zhang Z, Xu C, Sun Q, Zhu Y, Yan W, Cai G, Li Y, Si W, Lu X, Xu W, Yang Y, Lin Y. Delocalizing Excitation for Highly-Active Organic Photovoltaic Catalysts. Angew Chem Int Ed Engl 2024; 63:e202402343. [PMID: 38639055 DOI: 10.1002/anie.202402343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged charge carrier lifetime highly related to enhanced exciton delocalization, the PM6 : 2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6-561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6 : BP-4F and PM6 : 2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM 1.5G, 100 mW cm-2).
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qianlu Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yufan Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenlong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guilong Cai
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
20
|
Aitchison CM, Gonzalez-Carrero S, Yao S, Benkert M, Ding Z, Young NP, Willner B, Moruzzi F, Lin Y, Tian J, Nellist PD, Durrant JR, McCulloch I. Templated 2D Polymer Heterojunctions for Improved Photocatalytic Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300037. [PMID: 37165538 DOI: 10.1002/adma.202300037] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/28/2023] [Indexed: 05/12/2023]
Abstract
2D polymers have emerged as one of the most promising classes of organic photocatalysts for solar fuel production due to their tunability, charge-transport properties, and robustness. They are however difficult to process and so there are limited studies into the formation of heterojunction materials incorporating these components. In this work, a novel templating approach is used to combine an imine-based donor polymer and an acceptor polymer formed through Knoevenagel condensation. Heterojunction formation is shown to be highly dependent on the topological match of the donor and acceptor polymers with the most active templated material found to be between three and nine times more active for photocatalysis than its constituent components. Transient absorption spectroscopy reveals that this improvement is due to faster charge separation and more efficient charge extraction in the templated heterojunction. The templated material shows a very high hydrogen evolution rate of >20 mmol h-1 m-2 with an ascorbic acid hole scavenger but also produces hydrogen in the presence of only water and a cobalt-based redox mediator. This suggests the improved charge-separation interface and reduced trapping accessed through this approach could be suitable for Z-scheme formation.
Collapse
Affiliation(s)
- Catherine M Aitchison
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Soranyel Gonzalez-Carrero
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Shilin Yao
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Max Benkert
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Zhiyuan Ding
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Neil P Young
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Benjamin Willner
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Floriana Moruzzi
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Yuanbao Lin
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Junfu Tian
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Peter D Nellist
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
21
|
O'Connor MM, Aubry TJ, Reid OG, Rumbles G. Charge Concentration Limits the Hydrogen Evolution Rate in Organic Nanoparticle Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210481. [PMID: 36972554 DOI: 10.1002/adma.202210481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Time-resolved microwave conductivity is used to compare aqueous-soluble organic nanoparticle photocatalysts and bulk thin films composed of the same mixture of semiconducting polymer and non-fullerene acceptor molecule and the relationship between composition, interfacial surface area, charge-carrier dynamics, and photocatalytic activity is examined. The rate of hydrogen evolution reaction by nanoparticles composed of various donor:acceptor blend ratio compositions is quantitatively measured, and it is found that the most active blend ratio displays a hydrogen quantum yield of 0.83% per photon. Moreover, it is found that nanoparticle photocatalytic activity corresponds directly to charge generation, and that nanoparticles have 3× more long-lived accumulated charges relative to bulk samples of the same material composition. These results suggest that, under the current reaction conditions, with ≈3× solar flux, catalytic activity by the nanoparticles is limited by the concentration of electrons and holes in operando and not a finite number of active surface sites or the catalytic rate at the interface. This provides a clear design goal for the next generation of efficient photocatalytic nanoparticles.
Collapse
Affiliation(s)
- Max M O'Connor
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Taylor J Aubry
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Obadiah G Reid
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Garry Rumbles
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
22
|
Guo Y, Sun J, Guo T, Liu Y, Yao Z. Emerging Light-Harvesting Materials Based on Organic Photovoltaic D/A Heterojunctions for Efficient Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202319664. [PMID: 38240469 DOI: 10.1002/anie.202319664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Photocatalytic water splitting to hydrogen is a highly promising method to meet the surging energy consumption globally through the environmentally friendly means. As the initial step before photocatalysis, harvesting photons from sunlight is crucially important, thus making the design of photosensitizers with visible even near-infrared (NIR) absorptions get more and more attentions. In the past three years, organic donor/acceptor (D/A) heterojunctions with absorptions extending to 950 nm, have emerged as the new star light-harvesting materials for photocatalytic water splitting, demonstrating exciting advantages over inorganic materials in solar light utilization, hydrogen yielding rate, etc. This Minireview firstly gives a brief discussion about the principle processes and determining factors for photocatalytic water splitting with organic photovoltaic D/A heterojunction as photosensitizers. Thereafter, the current progress is summarized in details by introducing typical and excellent D/A heterojunction-based photocatalytic systems. Finally, not only the great prospects but also the most challenging issues confronted by organic D/A heterojunctions are indicated along with a perspective on the opportunities and new directions for future material explorations.
Collapse
Affiliation(s)
- Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Jiayuan Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Tao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Zhaoyang Yao
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
23
|
Wang L, Zhu W. Organic Donor-Acceptor Systems for Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307227. [PMID: 38145342 PMCID: PMC10933655 DOI: 10.1002/advs.202307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Organic semiconductor materials are considered to be promising photocatalysts due to their excellent light absorption by chromophores, easy molecular structure tuning, and solution-processable properties. In particular, donor-acceptor (D-A) type organic photocatalytic materials synthesized by introducing D and A units intra- or intermolecularly, have made great progress in photocatalytic studies. More and more studies have demonstrated that the D-A type organic photocatalytic materials combine effective carrier separation, tunable bandgap, and sensitive optoelectronic response, and are considered to be an effective strategy for enhancing light absorption, improving exciton dissociation, and optimizing carrier transport. This review provides a thorough overview of D-A strategies aimed at optimizing the photocatalytic performance of organic semiconductors. Initially, essential methods for modifying organic photocatalytic materials, such as interface engineering, crystal engineering, and interaction modulation, are briefly discussed. Subsequently, the review delves into various organic photocatalytic materials based on intramolecular and intermolecular D-A interactions, encompassing small molecules, conjugated polymers, crystalline polymers, supramolecules, and organic heterojunctions. Meanwhile, the energy band structures, exciton dynamics, and redox-active sites of D-A type organic photocatalytic materials under different bonding modes are discussed. Finally, the review highlights the advanced applications of organic photocatalystsand outlines prospective challenges and opportunities.
Collapse
Affiliation(s)
- Lingsong Wang
- Key Laboratory of Organic Integrated CircuitsMinistry of EducationTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated CircuitsMinistry of EducationTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| |
Collapse
|
24
|
Aitchison CM, McCulloch I. Organic Photovoltaic Materials for Solar Fuel Applications: A Perfect Match? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1781-1792. [PMID: 38435046 PMCID: PMC10902810 DOI: 10.1021/acs.chemmater.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
This work discusses the use of donor and acceptor materials from organic photovoltaics in solar fuel applications. These two routes to solar energy conversion have many shared materials design parameters, and in recent years there has been increasing overlap of the molecules and polymers used in each. Here, we examine whether this is a good approach, where knowledge can be translated, and where further consideration to molecular design is required.
Collapse
Affiliation(s)
- Catherine M. Aitchison
- Department of Chemistry, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Iain McCulloch
- Department of Chemistry, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
25
|
Huang TF, Liu JJ, Lai ZY, Chang JW, Zhuang YR, Jiang ZC, Chang CL, Lin WC, Chen YH, Wu YH, Sun YE, Luo TA, Chen YK, Yen JC, Hsu HK, Chen BH, Ting LY, Lu CY, Lin YT, Hsu LY, Wu TL, Yang SD, Su AC, Jeng US, Chou HH. Performance and Solution Structures of Side-Chain-Bridged Oligo (Ethylene Glycol) Polymer Photocatalysts for Enhanced Hydrogen Evolution under Natural Light Illumination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304743. [PMID: 37803930 DOI: 10.1002/smll.202304743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Converting solar energy into hydrogen energy using conjugated polymers (CP) is a promising solution to the energy crisis. Improving water solubility plays one of the critical factors in enhancing the hydrogen evolution rate (HER) of CP photocatalysts. In this study, a novel concept of incorporating hydrophilic side chains to connect the backbones of CPs to improve their HER is proposed. This concept is realized through the polymerization of carbazole units bridged with octane, ethylene glycol, and penta-(ethylene glycol) to form three new side-chain-braided (SCB) CPs: PCz2S-OCt, PCz2S-EG, and PCz2S-PEG. Verified through transient absorption spectra, the enhanced capability of PCz2S-PEG for ultrafast electron transfer and reduced recombination effects has been demonstrated. Small- and wide-angle X-ray scattering (SAXS/WAXS) analyses reveal that these three SCB-CPs form cross-linking networks with different mass fractal dimensions (f) in aqueous solution. With the lowest f value of 2.64 and improved water/polymer interfaces, PCz2S-PEG demonstrates the best HER, reaching up to 126.9 µmol h-1 in pure water-based photocatalytic solution. Moreover, PCz2S-PEG exhibits comparable performance in seawater-based photocatalytic solution under natural sunlight. In situ SAXS analysis further reveals nucleation-dominated generation of hydrogen nanoclusters with a size of ≈1.5 nm in the HER of PCz2S-PEG under light illumination.
Collapse
Affiliation(s)
- Tse-Fu Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jia-Jen Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ze-Yu Lai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Je-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ying-Rang Zhuang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Zi-Cheng Jiang
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Li Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wei-Cheng Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yan-Heng Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Hsiang Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-En Sun
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ting-An Luo
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jui-Chen Yen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hung-Kai Hsu
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chia-Yeh Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Tung Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ling-Yu Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - U-Ser Jeng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
26
|
Hua Z, Wu B, Zhang Y, Wang C, Dong T, Song Y, Jiang Y, Wang C. Efficient Charge Separation and Transport in Fullerene-CuPcOC 8 Donor-Acceptor Nanorod Enhancing Photocatalytic Hydrogen Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:256. [PMID: 38334527 PMCID: PMC10856716 DOI: 10.3390/nano14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
Photocatalytic hydrogen generation via water decomposition is a promising avenue in the pursuit of large-scale, cost-effective renewable hydrogen energy generation. However, the design of an efficient photocatalyst plays a crucial role in achieving high yields in hydrogen generation. Herein, we have engineered a fullerene-2,3,9,10,16,17,23,24-octa(octyloxy)copper phthalocyanine (C60-CuPcOC8) photocatalyst, achieving both efficient hydrogen generation and high stability. The significant donor-acceptor (D-A) interactions facilitate the efficient electron transfer from CuPcOC8 to C60. The rate of photocatalytic hydrogen generation for C60-CuPcOC8 is 8.32 mmol·g-1·h-1, which is two orders of magnitude higher than the individual C60 and CuPcOC8. The remarkable increase in hydrogen generation activity can be attributed to the development of a robust internal electric field within the C60-CuPcOC8 assembly. It is 16.68 times higher than that of the pure CuPcOC8. The strong internal electric field facilitates the rapid separation within 0.6 ps, enabling photogenerated charge transfer efficiently. Notably, the hydrogen generation efficiency of C60-CuPcOC8 remains above 95%, even after 10 h, showing its exceptional photocatalytic stability. This study provides critical insight into advancing the field of photocatalysis.
Collapse
Affiliation(s)
- Zihui Hua
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Bo Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yuhe Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
| | - Chong Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Tianyang Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
| | - Yupeng Song
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
27
|
Elsayed MH, Abdellah M, Alhakemy AZ, Mekhemer IMA, Aboubakr AEA, Chen BH, Sabbah A, Lin KH, Chiu WS, Lin SJ, Chu CY, Lu CH, Yang SD, Mohamed MG, Kuo SW, Hung CH, Chen LC, Chen KH, Chou HH. Overcoming small-bandgap charge recombination in visible and NIR-light-driven hydrogen evolution by engineering the polymer photocatalyst structure. Nat Commun 2024; 15:707. [PMID: 38267492 PMCID: PMC10808228 DOI: 10.1038/s41467-024-45085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).
Collapse
Affiliation(s)
- Mohamed Hammad Elsayed
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Mohamed Abdellah
- Department of Chemistry, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
- Department of Chemistry, Qena Faculty of Science, South Valley University, 83523, Qena, Egypt
- Chemical Physics and NanoLund, Lund University, 22100, Lund, Sweden
| | - Ahmed Zaki Alhakemy
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71542, Egypt
| | - Islam M A Mekhemer
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ahmed Esmail A Aboubakr
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Taipei, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Institute of Chemistry, Academia Sinica, 128 Sec 2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Amr Sabbah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wen-Sheng Chiu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Sheng-Jie Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Che-Yi Chu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Kaohsiung, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Kaohsiung, Taiwan
| | - Chen-Hsiung Hung
- Institute of Chemistry, Academia Sinica, 128 Sec 2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
28
|
Jin X, Wang H, Lv X, Lan Q, Ge T, Guo L, Li X, Sun H, Ding C, Guo Y, Xie H, Ye L. K-N Bridge-Mediated charge separation in hollow g-C 3N 4 Frameworks: A bifunctional photocatalysts towards efficient H 2 and H 2O 2 production. J Colloid Interface Sci 2023; 652:1545-1553. [PMID: 37660611 DOI: 10.1016/j.jcis.2023.08.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
The development of bifunctional photocatalysts for enhancing hydrogen (H2) and hydrogen peroxide (H2O2) production from water is essential in addressing environmental and energy issues. However, the practical implementation of photocatalytic technology is still constrained by the inadequate separation of photo-generated charge carriers. Herein, potassium (K) atoms are introduced into the interlayers of graphitic carbon nitride (g-C3N4) with a hollow hexagonal structure (K-TCN) and are coordinated with N atoms in adjacent layers. The presence of K-N coordination serves as a layer bridge, facilitating the separation of charge carriers. The hollow hexagonal structure reduces the distance over which photogenerated electrons migrate to the surface, thereby enhancing the reaction kinetics. Consequently, the optimized K-TCN exhibits a dramatically improved photocatalytic H2 (941.6 μmol g-1h-1 with platinum (Pt) as the cocatalyst) and H2O2 (347.6 μmol g-1h-1) generation as compared to hollow g-C3N4 (TCN) and bulk g-C3N4 nanosheet (CN) without K-N bridge under visible light irradiation. The unique design holds promising potential for developing highly efficient bifunctional photocatalysts towards producing renewable fuels and value-added chemicals.
Collapse
Affiliation(s)
- Xiaoli Jin
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Huiqing Wang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xiongtao Lv
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Qing Lan
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Teng Ge
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Lin Guo
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xin Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China.
| | - Hongxian Sun
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Chenghua Ding
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yuwei Guo
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Haiquan Xie
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China.
| | - Liqun Ye
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
29
|
Yang H, Che Y, Cooper AI, Chen L, Li X. Machine Learning Accelerated Exploration of Ternary Organic Heterojunction Photocatalysts for Sacrificial Hydrogen Evolution. J Am Chem Soc 2023. [PMID: 38040666 DOI: 10.1021/jacs.3c10586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Donor-acceptor heterojunctions in organic photocatalysts can provide enhanced exciton dissociation and charge separation, thereby improving the photocatalytic activity. However, the wide choice of possible donors and acceptors poses a challenge for the rational design of organic heterojunction photocatalysts, particularly for large ternary phase spaces. We accelerated the exploration of ternary organic heterojunction photocatalysts (TOHP) by using a combination of machine learning and high-throughput experimental screening. This involved 736 experiments in all, out of possible 4320 ternary combinations. The top ten most active TOHPs discovered using this strategy showed outstanding sacrificial hydrogen production rates of more than 500 mmol g-1 h-1, with the most active ternary material reaching a rate of 749.8 mmol g-1 h-1 under 1 sun illumination. These rates of photocatalytic hydrogen generation are among the highest reported for organic photocatalysts in the literature.
Collapse
Affiliation(s)
- Haofan Yang
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K
| | - Yu Che
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K
| | - Andrew I Cooper
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K
| | - Linjiang Chen
- School of Chemistry and School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K
| | - Xiaobo Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
30
|
Zhang M, Li Z, Luo M, Baryshnikov GV, Valiev RR, Weng T, Shen S, Liu Q, Sun H, Xu X, Sun Z, Ågren H, Zhu L. Highly Efficient Room-Temperature Light-Induced Synthesis of Polymer Dots: A Programming Control Paradigm of Polymer Nanostructurization from Single-Component Precursor. J Am Chem Soc 2023. [PMID: 37907829 DOI: 10.1021/jacs.3c07412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Polymer dots (PDs) have raised considerable research interest due to their advantages of designable nanostructures, high biocompatibility, versatile photoluminescent properties, and recyclability as nanophase. However, there remains a lack of in situ, real-time, and noncontact methods for synthesizing PDs. Here we report a rational strategy to synthesize PDs through a well-designed single-component precursor (an asymmetrical donor-acceptor-donor' molecular structure) by photoirradiation at ambient temperature. In contrast to thermal processes that normally lack atomic economy, our method is mild and successive, based on an aggregation-promoted sulfonimidization triggered by photoinduced delocalized intrinsic radical cations for polymerization, followed by photooxidation for termination with structural shaping to form PDs. This synthetic approach excludes any external additives, rendering a conversion rate of the precursor exceeding 99%. The prepared PDs, as a single entity, can realize the integration of nanocore luminescence and precursor-transferred luminescence, showing 41.5% of the total absolute luminescence quantum efficiency, which is higher than most reported PD cases. Based on these photoluminescent properties, together with the superior biocompatibility, a unique membrane microenvironmental biodetection could be exemplified. This strategy with programming control of the single precursor can serve as a significant step toward polymer nanomanufacturing with remote control, high-efficiency, precision, and real-time operability.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Rashid R Valiev
- Department of Chemistry, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Taoyu Weng
- Institute of Molecular Plus, Department of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoyan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
31
|
Zhang Y, Tian J, Shaikh H, MacKenzie HK, He Y, Zhao C, Lei S, Ren Y, Manners I. Tailored Energy Funneling in Photocatalytic π-Conjugated Polymer Nanofibers for High-Performance Hydrogen Production. J Am Chem Soc 2023; 145:22539-22547. [PMID: 37788384 DOI: 10.1021/jacs.3c07443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The creation of artificial high-performance photosynthetic assemblies with a tailorable antenna system to deliver absorbed solar energy to a photosynthetic reaction center, thereby mimicking biological photosynthesis, remains a major challenge. We report the construction of recyclable, high-performance photosynthetic nanofibers with a crystalline π-conjugated polyfluorene core as an antenna system that funnels absorbed solar energy to spatially defined sensitized Co(II) porphyrin photocatalysts for the hydrogen evolution reaction. Highly effective energy funneling was achieved by tuning the dimensions of the nanofibers to exploit the very long exciton diffusion lengths (>200 nm) associated with the highly crystalline polyfluorene core formed using the living crystallization-driven self-assembly seeded growth method. This enabled efficient solar light-driven hydrogen production from water with a turnover number of over 450 for 8 h of irradiation, an H2 production rate of ca. 65 mmol h-1 g-1, and an overall quantum yield of 0.4% in the wavelength region (<405 nm) beyond the absorption of the molecular photocatalyst. The strategy of using a tailored antenna system based on π-conjugated polymers and maximizing exciton transport to a reaction center reported in this work opens up future opportunities for potential applications in other fields such as solar overall water splitting, CO2 reduction, and photocatalytic small molecule synthesis.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Huda Shaikh
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Harvey K MacKenzie
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Yunxiang He
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Yangyang Ren
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
32
|
Lin WC, Chang CL, Shih CH, Lin WC, Yu Lai Z, Chang JW, Ting LY, Huang TF, Sun YE, Huang HY, Lin YT, Liu JJ, Wu YH, Tseng YT, Zhuang YR, Li BH, Su AC, Yu CH, Chen CW, Lin KH, Jeng US, Chou HH. Sulfide Oxidation on Ladder-Type Heteroarenes to Construct All-Acceptor Copolymers for Visible-Light-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302682. [PMID: 37322304 DOI: 10.1002/smll.202302682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Conjugated polymers (CPs) have recently gained increasing attention as photocatalysts for sunlight-driven hydrogen evolution. However, they suffer from insufficient electron output sites and poor solubility in organic solvents, severely limiting their photocatalytic performance and applicability. Herein, solution-processable all-acceptor (A1 -A2 )-type CPs based on sulfide-oxidized ladder-type heteroarene are synthesized. A1 -A2 -type CPs showed upsurging efficiency improvements by two to three orders of magnitude, compared to their donor-acceptor -type CP counterparts. Furthermore, by seawater splitting, PBDTTTSOS exhibited an apparent quantum yield of 18.9% to 14.8% at 500 to 550 nm. More importantly, PBDTTTSOS achieved an excellent hydrogen evolution rate of 35.7 mmol h-1 g-1 and 150.7 mmol h-1 m-2 in the thin-film state, which is among the highest efficiencies in thin film polymer photocatalysts to date. This work provides a novel strategy for designing polymer photocatalysts with high efficiency and broad applicability.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Li Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chin-Hsuan Shih
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Wan-Chi Lin
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Ze- Yu Lai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Je-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Tse-Fu Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-En Sun
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hung-Yi Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Tung Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jia-Jen Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Hsiang Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yuan-Ting Tseng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ying-Rang Zhuang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Bing-Heng Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chi-Hua Yu
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Engineering Science, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chin-Wen Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - U-Ser Jeng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Photonics Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
33
|
Darkwah WK, Appiagyei AB, Puplampu JB. Transforming the Petroleum Industry through Catalytic Oxidation Reactions vis-à-vis Preceramic Polymer Catalyst Supports. ACS OMEGA 2023; 8:34215-34234. [PMID: 37780012 PMCID: PMC10536879 DOI: 10.1021/acsomega.2c07562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/21/2023] [Indexed: 10/03/2023]
Abstract
Preceramic polymers, for instance, are used in a variety of chemical processing industries and applications. In this contribution, we report on the catalytic oxidation reactions generated using preceramic polymer catalyst supports. Also, we report the full knowledge of the use of the remarkable catalytic oxidation, and the excellent structures of these preceramic polymer catalyst supports are revealed. This finding, on the other hand, focuses on the functionality and efficacy of future applications of catalytic oxidation of preceramic polymer nanocrystals for energy and environmental treatment. The aim is to design future implementations that can address potential environmental impacts associated with fuel production, particularly in downstream petroleum industry processes. As a result, these materials are being considered as viable candidates for environmentally friendly applications such as refined fuel production and related environmental treatment.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- School
of Chemical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052 NSW, Australia
- Department
of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 4P48+59H, Ghana
| | - Alfred Bekoe Appiagyei
- Department
of Chemical and Biological Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Joshua B. Puplampu
- Department
of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 4P48+59H, Ghana
| |
Collapse
|
34
|
Ru C, Wang Y, Chen P, Zhang Y, Wu X, Gong C, Zhao H, Wu J, Pan X. Replacing CC Unit with B←N Unit in Isoelectronic Conjugated Polymers for Enhanced Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302384. [PMID: 37116108 DOI: 10.1002/smll.202302384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Three linear isoelectronic conjugated polymers PCC, PBC, and PBN are synthesized by Suzuki-Miyaura polycondensation for photocatalytic hydrogen (H2 ) production from water. PBN presented an excellent photocatalytic hydrogen evolution rate (HER) of 223.5 µmol h-1 (AQY420 = 23.3%) under visible light irradiation, which is 7 times that of PBC and 31 times that of PCC. The enhanced photocatalytic activity of PBN is due to the improved charge separation and transport of photo-induced electrons/holes originating from the lower exciton binding energy (Eb ), longer fluorescence lifetime, and stronger built-in electric field, caused by the introduction of the polar B←N unit into the polymer backbone. Moreover, the extension of the visible light absorption region and the enhancement of surface catalytic ability further increase the activity of PBN. This work reveals the potential of B←N fused structures as building blocks as well as proposes a rational design strategy for achieving high photocatalytic performance.
Collapse
Affiliation(s)
- Chenglong Ru
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yue Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Peiyan Chen
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yahui Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xuan Wu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chenliang Gong
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao Zhao
- School of Physics and Electronic Information, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Jincai Wu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaobo Pan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
35
|
Cai B, Song H, Brnovic A, Pavliuk MV, Hammarström L, Tian H. Promoted Charge Separation and Long-Lived Charge-Separated State in Porphyrin-Viologen Dyad Nanoparticles. J Am Chem Soc 2023; 145:18687-18692. [PMID: 37582183 PMCID: PMC10472426 DOI: 10.1021/jacs.3c04372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Developing light-harvesting systems with efficient photoinduced charge separation and long-lived charge-separated (CS) state is desirable but still challenging. In this study, we designed a zinc porphyrin photosensitizer covalently linked with viologen (ZnP-V) that can be prepared into nanoparticles in aqueous solution. In DMF solution, the monomeric ZnP-V dyads show no electron transfer between the ZnP and viologen units. In contrast, the ZnP-V nanoparticles in aqueous solution show fast charge separation with a CS state lifetime of up to 4.3 ms. This can be attributed to charge hopping induced by aggregation or distance modification between the donor and acceptor induced by electronic interaction. Nevertheless, the lifetime of the CS state is orders of magnitude longer than for molecular aggregates reported previously. The ZnP-V nanoparticles show enhanced photocatalytic hydrogen production as compared to the ZnP nanoparticles and still hold promise for other applications such as photovoltaic devices and photoredox catalysis.
Collapse
Affiliation(s)
- Bin Cai
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Hongwei Song
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Andjela Brnovic
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Mariia V. Pavliuk
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Leif Hammarström
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Haining Tian
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| |
Collapse
|
36
|
Du Y, Wang Y, Shamraienko V, Pöschel K, Synytska A. Donor:Acceptor Janus Nanoparticle-Based Films as Photoactive Layers: Control of Assembly and Impact on Performance of Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206907. [PMID: 37010023 DOI: 10.1002/smll.202206907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Water-processable organic semiconductor nanoparticles (NPs) are considered promising materials for the next-generation of optoelectronic applications due to their controlled size, internal structure, and environmentally friendly processing. Reasonably, the controllable assembly of donor:acceptor (D:A) NPs on large areas, quality, and packing density of deposited films, as well as layer morphology, will influence the effectiveness of charge transfer at an interface and the final performance of designed optoelectronic devices.This work represents an easy and effective approach for designing self-assembled monolayers of D:A NPs. In this self-assembly procedure, the NP arrays are prepared on a large scale (2 × 2 cm2 ) at the air/water interface with controlled packing density and morphology. Due to the unique structure of individual D:A Janus particles and their assembled arrays, the Janus nanoparticle (JNP)-based device exhibits an 80% improvement of electron mobility and more balanced charge extraction compared to the conventional core-shell NP-based device. An outstanding performance of polymer solar cells with over 5% efficiency is achieved after post-annealing treatment of assembled arrays, representing one of the best results for NP-based organic photovoltaics. Ultimately, this work provides a new protocol for processing water-processable organic semiconductor colloids and future optoelectronic fabrication.
Collapse
Affiliation(s)
- Yixuan Du
- Institut Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
- Fakultat Mathematik und Naturwissenschaften, Technische Universität Dresden, 01062, Dresden, Germany
- Bayerisches Polymerinstitut, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - Yuemeng Wang
- Institut Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Volodymyr Shamraienko
- Fakultat Mathematik und Naturwissenschaften, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kathrin Pöschel
- Institut Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Alla Synytska
- Institut Physikalische Chemie und Physik der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
- Fakultat Mathematik und Naturwissenschaften, Technische Universität Dresden, 01062, Dresden, Germany
- Bayerisches Polymerinstitut, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
37
|
Yuan C, Xu YT, Huang YT, Zhou H, Jiang XW, Ju P, Zhu YC, Zhang L, Lin P, Chen G, Zhao WW. Polymer Dot-Gated Accumulation-Type Organic Photoelectrochemical Transistor for Urea Biosensing. ACS Sens 2023; 8:1835-1840. [PMID: 37011305 DOI: 10.1021/acssensors.3c00289] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Organic photoelectrochemical transistor (OPECT) biosensing represents a new platform interfacing optoelectronics and biological systems with essential amplification, which, nevertheless, are concentrated on depletion-type operation to date. Here, a polymer dot (Pdot)-gated accumulation-type OPECT biosensor is devised and applied for sensitive urea detection. In such a device, the as-designed Pdot/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) is validated as a superior gating module against the diethylenetriamine (DETA) de-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, and the urea-dependent status of Pdots has been shown to be sensitively correlated with the device's response. High-performance urea detection is thus realized with a wide linear range of 1 μM-50 mM and a low detection limit of 195 nM. Given the diversity of the Pdot family and its immense interactions with other species, this work represents a generic platform for developing advanced accumulation-type OPECT and beyond.
Collapse
Affiliation(s)
- Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xing-Wu Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, Ministry of Natural Resources, First Institute of Oceanography, No. 6 Xianxialing Road, Qingdao, Shandong 266061, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, Ministry of Natural Resources, First Institute of Oceanography, No. 6 Xianxialing Road, Qingdao, Shandong 266061, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guangxu Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
38
|
Cao FY, Huang CL, Cheng TY, Cheng HJ, Wu TK, Cheng YJ. Solution-Processable Donor–Acceptor Copolymer Thin Films for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. ACS Macro Lett 2023; 12:468-474. [PMID: 36971302 DOI: 10.1021/acsmacrolett.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Conjugated polymers (CPs) have been actively utilized as photocatalysts for hydrogen evolution due to their easy synthetic tunability to endow specific functionalities, including visible-light absorption, higher-lying LUMO energy for proton reduction, and sufficient photochemical stability. Enhancing interfacial surface and compatibility of hydrophobic CPs with hydrophilic water is the central focus to improve the hydrogen evolution rate (HER). Although a number of successful approaches have been developed in recent years, tedious chemical modifications or post-treatment of CPs make reproducibility of the materials difficult. In this work, a solution processable PBDB-T polymer is directly deposited on a glass substrate to form a thin film that is immersed in an aqueous solution to photochemically catalyze H2 generation. The PBDB-T thin film showed a much higher hydrogen evolution rate (HER) than the typical method of using PBDB-T suspended solids due to the enhanced interfacial area with a more suitable solid-state morphology. When the thickness of the thin film is reduced to dramatically improve the utilization of the photocatalytic material, the 0.1 mg-based PBDB-T thin film exhibited an unprecedentedly high HER of 120.90 mmol h-1 g-1.
Collapse
|
39
|
Qi MY, Tang ZR, Xu YJ. Near Field Scattering Optical Model-Based Catalyst Design for Artificial Photoredox Transformation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
40
|
Liang Y, Li T, Lee Y, Zhang Z, Li Y, Si W, Liu Z, Zhang C, Qiao Y, Bai S, Lin Y. Organic Photovoltaic Catalyst with σ-π Anchor for High-Performance Solar Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202217989. [PMID: 36700554 DOI: 10.1002/anie.202217989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
Efficient in situ deposition of metallic cocatalyst, like zero-valent platinum (Pt), on organic photovoltaic catalysts (OPCs) is the prerequisite for their high catalytic activities. Here we develop the OPC (Y6CO), by introducing carbonyl in the core, which is available to σ-π coordinate with transition metals, due to the high-energy empty π* orbital of carbonyl. Y6CO exhibits a stronger capability to anchor Pt species and reduce them to metallic state, resulting in more Pt0 deposition, relative to the control OPC without the central σ-π anchor. Single-component and heterojunction nanoparticles (NPs) employing Y6CO show enhanced average hydrogen evolution rates of 230.98 and 323.22 mmol h-1 g[OPC] -1 , respectively, under AM 1.5G, 100 mW cm-2 for 10 h, and heterojunction NPs yield the external quantum efficiencies of ca. 10 % in 500-800 nm. This work demonstrates that σ-π anchoring is one efficient strategy for integrating metallic cocatalyst and OPC for high-performance photocatalysis.
Collapse
Affiliation(s)
- Yuanxin Liang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei Li
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhsuan Lee
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zesheng Liu
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Liu A, Wang S, Song H, Liu Y, Gedda L, Edwards K, Hammarström L, Tian H. Excited-state and charge-carrier dynamics in binary conjugated polymer dots towards efficient photocatalytic hydrogen evolution. Phys Chem Chem Phys 2023; 25:2935-2945. [PMID: 36606387 DOI: 10.1039/d2cp04204e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aqueous dispersed conjugated polymer dots (Pdots) have shown promising application in photocatalytic hydrogen evolution. To efficiently extract photogenerated charges from type-II heterojunction Pdots for hydrogen evolution, the mechanistic study of photophysical processes is essential for Pdot optimization. Within this work, we use a PFODTBT donor (D) polymer and an ITIC small molecule acceptor (A) as a donor/acceptor (D/A) model system to study their excited states and charge/energy transfer dynamics via steady-state and time-resolved photoluminescence spectroscopy, respectively. Charge-carrier generation and the recombination dynamics of binary Pdots with different D/A ratios were followed using femtosecond transient absorption spectroscopy. A significant spectral relaxation of photoluminescence was observed for individual D Pdots, implying an energetic disorder by nature. However, this was not seen for charge carriers in binary Pdots, probably due to the ultrafast charge generation process at an early time (<200 fs). The results showed slower charge recombination upon increasing the ratio of ITIC in binary Pdots, which further resulted in an enhanced photocatalytic hydrogen evolution, twice that as compared to individual D Pdots. Although binary Pdots prepared via the nanoprecipitation method exhibit a large interfacial area that allows high charge generation efficiencies, it also provides a high possibility for charge recombination and limits the further utilization of free charges. Therefore, for the future design of type-II heterojunction Pdots, suppressing the charge carrier recombination via increasing the crystallinity and proper phase segregation is necessary for enhanced photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Aijie Liu
- Department of Chemistry-Ångström Lab., Box 523, SE 751 20, Uppsala University, Sweden.
| | - Sicong Wang
- Department of Chemistry-Ångström Lab., Box 523, SE 751 20, Uppsala University, Sweden.
| | - Hongwei Song
- Department of Chemistry-Ångström Lab., Box 523, SE 751 20, Uppsala University, Sweden.
| | - Yawen Liu
- Department of Chemistry-Ångström Lab., Box 523, SE 751 20, Uppsala University, Sweden.
| | - Lars Gedda
- Department of Chemistry-Ångström Lab., Box 523, SE 751 20, Uppsala University, Sweden.
| | - Katarina Edwards
- Department of Chemistry-Ångström Lab., Box 523, SE 751 20, Uppsala University, Sweden.
| | - Leif Hammarström
- Department of Chemistry-Ångström Lab., Box 523, SE 751 20, Uppsala University, Sweden.
| | - Haining Tian
- Department of Chemistry-Ångström Lab., Box 523, SE 751 20, Uppsala University, Sweden.
| |
Collapse
|
42
|
Chen P, Ru C, Hu L, Yang X, Wu X, Zhang M, Zhao H, Wu J, Pan X. Construction of Efficient D–A-Type Photocatalysts by B–N Bond Substitution for Water Splitting. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Leilei Hu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xuan Yang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People’s Republic of China
| | - Xuan Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Mingcai Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hao Zhao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- School of Physics and Electronic Information, Yantai University, 30 Qingquan Road, Yantai 264005, People’s Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 People’s Republic of China
- Key Laboratory of Petroleum Resources Research, Gansu Province, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
43
|
Yu W, Pavliuk MV, Liu A, Zeng Y, Xia S, Huang Y, Bai H, Lv F, Tian H, Wang S. Photosynthetic Polymer Dots-Bacteria Biohybrid System Based on Transmembrane Electron Transport for Fixing CO 2 into Poly-3-hydroxybutyrate. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2183-2191. [PMID: 36563111 DOI: 10.1021/acsami.2c18831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic semiconductor-microbial photosynthetic biohybrid systems show great potential in light-driven biosynthesis. In such a system, an organic semiconductor is used to harvest solar energy and generate electrons, which can be further transported to microorganisms with a wide range of metabolic pathways for final biosynthesis. However, the lack of direct electron transport proteins in existing microorganisms hinders the hybrid system of photosynthesis. In this work, we have designed a photosynthetic biohybrid system based on transmembrane electron transport that can effectively deliver the electrons from organic semiconductor across the cell wall to the microbe. Biocompatible organic semiconductor polymer dots (Pdots) are used as photosensitizers to construct a ternary synergistic biochemical factory in collaboration with Ralstonia eutropha H16 (RH16) and electron shuttle neutral red (NR). Photogenerated electrons from Pdots promote the proportion of nicotinamide adenine dinucleotide phosphate (NADPH) through NR, driving the Calvin cycle of RH16 to convert CO2 into poly-3-hydroxybutyrate (PHB), with a yield of 21.3 ± 3.78 mg/L, almost 3 times higher than that of original RH16. This work provides a concept of an integrated photoactive biological factory based on organic semiconductor polymer dots/bacteria for valuable chemical production only using solar energy as the energy input.
Collapse
Affiliation(s)
- Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mariia V Pavliuk
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Aijie Liu
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Yue Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shengpeng Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haining Tian
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
44
|
McQueen E, Bai Y, Sprick RS. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4299. [PMID: 36500922 PMCID: PMC9739915 DOI: 10.3390/nano12234299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic processes have been inorganic semiconductors, but since the first report of carbon nitride organic semiconductors have also been considered. Conjugated materials have been relatively extensively studied as photocatalysts for solar fuels generation over the last 5 years due to the synthetic control over composition and properties. The understanding of materials' properties, its impact on performance and underlying factors is still in its infancy. Here, we focus on the impact of interfaces, and nanostructure on fundamental processes which significantly contribute to performance in these organic photocatalysts. In particular, we focus on presenting explicit examples in understanding the interface of polymer photocatalysts with water and how it affects performance. Wetting has been shown to be a clear factor and we present strategies for increased wettability in conjugated polymer photocatalysts through modifications of the material. Furthermore, the limited exciton diffusion length in organic polymers has also been identified to affect the performance of these materials. Addressing this, we also discuss how increased internal and external surface areas increase the activity of organic polymer photocatalysts for hydrogen production from water.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Yang Bai
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
45
|
Alahmadi AF, Zuo J, Jäkle F. B-N Lewis pair-fused dipyridylfluorene copolymers incorporating electron-deficient benzothiadiazole comonomers. Polym J 2022. [DOI: 10.1038/s41428-022-00723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Pavliuk MV, Lorenzi M, Morado DR, Gedda L, Wrede S, Mejias SH, Liu A, Senger M, Glover S, Edwards K, Berggren G, Tian H. Polymer Dots as Photoactive Membrane Vesicles for [FeFe]-Hydrogenase Self-Assembly and Solar-Driven Hydrogen Evolution. J Am Chem Soc 2022; 144:13600-13611. [PMID: 35863067 PMCID: PMC9354254 DOI: 10.1021/jacs.2c03882] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A semiartificial photosynthesis approach that utilizes enzymes for solar fuel production relies on efficient photosensitizers that should match the enzyme activity and enable long-term stability. Polymer dots (Pdots) are biocompatible photosensitizers that are stable at pH 7 and have a readily modifiable surface morphology. Therefore, Pdots can be considered potential photosensitizers to drive such enzyme-based systems for solar fuel formation. This work introduces and unveils in detail the interaction within the biohybrid assembly composed of binary Pdots and the HydA1 [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The direct attachment of hydrogenase on the surface of toroid-shaped Pdots was confirmed by agarose gel electrophoresis, cryogenic transmission electron microscopy (Cryo-TEM), and cryogenic electron tomography (Cryo-ET). Ultrafast transient spectroscopic techniques were used to characterize photoinduced excitation and dissociation into charges within Pdots. The study reveals that implementation of a donor-acceptor architecture for heterojunction Pdots leads to efficient subpicosecond charge separation and thus enhances hydrogen evolution (88 460 μmolH2·gH2ase-1·h-1). Adsorption of [FeFe]-hydrogenase onto Pdots resulted in a stable biohybrid assembly, where hydrogen production persisted for days, reaching a TON of 37 500 ± 1290 in the presence of a redox mediator. This work represents an example of a homogeneous biohybrid system combining polymer nanoparticles and an enzyme. Detailed spectroscopic studies provide a mechanistic understanding of light harvesting, charge separation, and transport studied, which is essential for building semiartificial photosynthetic systems with efficiencies beyond natural and artificial systems.
Collapse
Affiliation(s)
- Mariia V Pavliuk
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Marco Lorenzi
- Department of Chemistry─Ångström Laboratory, Molecular Biomimetics, Uppsala University, 751 20 Uppsala, Sweden
| | - Dustin R Morado
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Lars Gedda
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Sina Wrede
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Sara H Mejias
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Aijie Liu
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Moritz Senger
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Starla Glover
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Katarina Edwards
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Gustav Berggren
- Department of Chemistry─Ångström Laboratory, Molecular Biomimetics, Uppsala University, 751 20 Uppsala, Sweden
| | - Haining Tian
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| |
Collapse
|
47
|
Zhu Y, Zhang Z, Si W, Sun Q, Cai G, Li Y, Jia Y, Lu X, Xu W, Zhang S, Lin Y. Organic Photovoltaic Catalyst with Extended Exciton Diffusion for High-Performance Solar Hydrogen Evolution. J Am Chem Soc 2022; 144:12747-12755. [PMID: 35815841 DOI: 10.1021/jacs.2c03161] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The short exciton diffusion length (LD) associated with most classical organic photocatalysts (5-10 nm) imposes severe limits on photocatalytic hydrogen evolution efficiency. Here, a photovoltaic molecule (F1) without electron-deficient units at the central building block was designed and synthesized to improve the photoluminescence quantum yield (PLQY). With the enhanced PLQY of 9.3% and a large integral spectral overlap of 3.32 × 1016 nm4 M-1 cm-1, the average LD of F1 film increases to 20 nm, nearly twice the length of the control photovoltaic molecule (Y6). Then, the single-component organic nanoparticles (SC-NPs) based on F1 show an optimized average hydrogen evolution rate (HER) of 152.60 mmol h-1 g-1 under AM 1.5G sunlight (100 mW cm-2) illumination for 10 h, which is among the best results for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Yufan Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation, Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianlu Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guilong Cai
- Department of Physics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation, Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shiming Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation, Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Chen HL, Liu FY, Xiao X, Lin YY, Hu J, Liu GY, Gao B, Zou D, Chen CC. Photoreduction of carbon dioxide and photodegradation of organic pollutants using alkali cobalt oxides MCoO 2 (M = Li or Na) as catalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114930. [PMID: 35367671 DOI: 10.1016/j.jenvman.2022.114930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The recycling of lithium batteries should be prioritized, and the use of discarded alkali metal battery electrode materials as photocatalysts merits research attention. This study synthesized alkali metal cobalt oxide (MCoO2, M = Li or Na) as a photocatalyst for the photoreduction of CO2 and degradation of toxic organic substances. The optimized NaCoO2 and LiCoO2 photocatalysts increased the photocatalytic CO2-CH4 conversion rate to 21.0 and 13.4 μmol g-1 h-1 under ultraviolet light irradiation and to 16.2 and 5.3 μmol g-1 h-1 under visible light irradiation, which is 17 times higher than that achieved by TiO2 P25. The rate constants of the optimized reactions of crystal violet (CV) with LiCoO2 and NaCoO2 were 2.29 × 10-2 and 4.35 × 10-2 h-1, respectively. The quenching effect of the scavengers and electron paramagnetic resonance in CV degradation indicated that active O2•-, 1O2, and h+ play the main role, whereas •OH plays a minor role for LiCoO2. The hyperfine splitting of the DMPO-•OH and DMPO-•CH3 adducts was aN = 1.508 mT, aHβ = 1.478 mT and aN = 1.558 mT, aHβ = 2.267 mT, respectively, whereas the hyperfine splitting of DMPO+• was aN = 1.475 mT. The quenching effect also indicated that active O2•- and h+ play the main role and that •OH and 1O2 play a minor role for NaCoO2. The hyperfine splitting of the DMPO-•OH and DMPO+• adducts was aN = 1.517 mT, aHβ = 1.489 mT and aN = 1.496 mT, respectively. Discarded alkali metal battery electrode materials can be reused as photocatalysts to address environmental pollution.
Collapse
Affiliation(s)
- Hung-Lin Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fu-Yu Liu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 40306, Taiwan
| | - Xinyu Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu-Yun Lin
- Department of Science Education and Application, National Taichung University of Education, Taichung, 40306, Taiwan
| | - Jing Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guan-Yo Liu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 40306, Taiwan
| | - Bo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Dechun Zou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Chiing-Chang Chen
- Department of Science Education and Application, National Taichung University of Education, Taichung, 40306, Taiwan.
| |
Collapse
|
49
|
Wang S, Cai B, Tian H. Efficient Generation of Hydrogen Peroxide and Formate by an Organic Polymer Dots Photocatalyst in Alkaline Conditions. Angew Chem Int Ed Engl 2022; 61:e202202733. [PMID: 35299290 PMCID: PMC9324198 DOI: 10.1002/anie.202202733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 02/02/2023]
Abstract
A photocatalyst comprising binary organic polymer dots (Pdots) was prepared. The Pdots were constructed from poly(9,9-dioctylfluorene-alt-benzothiadiazole), as an electron donor, and 1-[3-(methoxycarbonyl)propyl]-1-phenyl-[6.6]C61 , as an electron acceptor. The photocatalyst produces H2 O2 in alkaline conditions (1 M KOH) with a production rate of up to 188 mmol h-1 g-1 . The external quantum efficiencies were 30 % (5 min) and 14 % (75 min) at 450 nm. Furthermore, photo-oxidation of methanol by Pdots, followed by a disproportionation reaction and an oxidation reaction, produced the high-value chemical formate. On the basis of various spectroscopic and electrochemical measurements, the photophysical processes of the system were studied in detail and a reaction mechanism was proposed.
Collapse
Affiliation(s)
- Sicong Wang
- Department of Chemistry—Ångström LaboratoryUppsala University751 20UppsalaSweden
| | - Bin Cai
- Department of Chemistry—Ångström LaboratoryUppsala University751 20UppsalaSweden
| | - Haining Tian
- Department of Chemistry—Ångström LaboratoryUppsala University751 20UppsalaSweden
| |
Collapse
|
50
|
Kosco J, Gonzalez-Carrero S, Howells CT, Zhang W, Moser M, Sheelamanthula R, Zhao L, Willner B, Hidalgo TC, Faber H, Purushothaman B, Sachs M, Cha H, Sougrat R, Anthopoulos TD, Inal S, Durrant JR, McCulloch I. Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105007. [PMID: 34714562 DOI: 10.1002/adma.202105007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Organic semiconductor nanoparticles (NPs) composed of an electron donor/acceptor (D/A) semiconductor blend have recently emerged as an efficient class of hydrogen-evolution photocatalysts. It is demonstrated that using conjugated polymers functionalized with (oligo)ethylene glycol side chains in NP photocatalysts can greatly enhance their H2 -evolution efficiency compared to their nonglycolated analogues. The strategy is broadly applicable to a range of structurally diverse conjugated polymers. Transient spectroscopic studies show that glycolation facilitates charge generation even in the absence of a D/A heterojunction, and further suppresses both geminate and nongeminate charge recombination in D/A NPs. This results in a high yield of photogenerated charges with lifetimes long enough to efficiently drive ascorbic acid oxidation, which is correlated with greatly enhanced H2 -evolution rates in the glycolated NPs. Glycolation increases the relative permittivity of the semiconductors and facilitates water uptake. Together, these effects may increase the high-frequency relative permittivity inside the NPs sufficiently, to cause the observed suppression of exciton and charge recombination responsible for the high photocatalytic activities of the glycolated NPs.
Collapse
Affiliation(s)
- Jan Kosco
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Soranyel Gonzalez-Carrero
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Calvyn T Howells
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Weimin Zhang
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maximilian Moser
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 4BH, UK
| | - Rajendar Sheelamanthula
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lingyun Zhao
- KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Benjamin Willner
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 4BH, UK
| | - Tania C Hidalgo
- Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hendrik Faber
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Balaji Purushothaman
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Michael Sachs
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rachid Sougrat
- KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Thomas D Anthopoulos
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sahika Inal
- Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Iain McCulloch
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 4BH, UK
| |
Collapse
|