1
|
Liu Q, Liu D, Wen J, Yang L. Nucleolin-targeted carbon/manganese nanoparticles for synergistic anti-tumor therapy. Int J Pharm 2025:125787. [PMID: 40449637 DOI: 10.1016/j.ijpharm.2025.125787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/03/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
To address the limitations of single therapy and ensure the safe and efficient delivery of nanomedicine, we developed carbon/manganese nanoparticles (NPs). These NPs were engineered by depositing manganese dioxide on the surface of mesoporous carbon (MMCN), thus enabling Peroxidase (POD)-Catalase (CAT)-Glutathione peroxidase (GPX)-like function. Following the modification with AS1411 aptamer (AMMCN), doxorubicin hydrochloride (DOX) was incorporated to produce AMMCN@DOX. This compound demonstrated satisfactory biocompatibility, efficient tumor tissue accumulation, and the capability to release DOX in response to the tumor microenvironment (TME). It was confirmed that AMMCN@DOX is effectively endocytosed by cells, releases DOX, decomposes H2O2 to generate O2 to alleviate tumor hypoxia, and mediates a Fenton-like reaction. Additionally, AMMCN@DOX showed excellent photothermal conversion efficiency, producing localized heating in tumors and yielding superior synergistic anti-tumor activity in mice with solid tumors. Thus, this study proposes a safe, targeted delivery strategy for carbon/manganese NPs, facilitating chemical, chemokinetic, and photothermal synergistic therapy.
Collapse
Affiliation(s)
- Qiantong Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dongming Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ji Wen
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Yang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
2
|
Wang J, Chen H, Chen D, Luo Y, Shen ZL, Zhang NN, Dong B, Tian W, Liu K, Xu B. Stabilizing Gold Nanotetrapods via in Situ Polymerization for Superior Photoacoustic and Photothermal Applications. NANO LETTERS 2025; 25:8758-8767. [PMID: 40376746 DOI: 10.1021/acs.nanolett.5c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Gold nanotetrapods (NTPs) possess sharp branched tips, high surface-to-volume ratios, and strong localized surface plasmon resonance in the near-infrared (NIR) region, making them candidates for biomedical applications. However, their practical use is limited by structural instability and inadequate biocompatibility in complex physiological environments. In this study, we developed an innovative in situ radical polymerization technique to encapsulate NTPs with a thin, cross-linked zwitterionic polymer shell, forming highly stable and biocompatible nanoparticles (NTP@XP). The polymer shell preserved the tetrapod structure and endowed NTPs with tunable surface properties through the polymerization of different monomers. Under NIR irradiation, NTP@XP exhibited enhanced photoacoustic imaging and a photothermal conversion performance in vitro. In vivo, the antifouling and biocompatible coating of NTP@XP allowed durable imaging and suppressed tumor regrowth in mice. This work establishes in situ polymerization as a robust strategy to stabilize NTPs, paving the way for various biomedical fields.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Huazhen Chen
- Academy for Engineering and Technology, Yiwu Research Institute, Fudan University, Shanghai 200433, China
| | - Dazhi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Yuchao Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
| | - Zhi-Li Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Biqin Dong
- Academy for Engineering and Technology, Yiwu Research Institute, Fudan University, Shanghai 200433, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun 130012, China
| |
Collapse
|
3
|
Łazarski G, Rajtar N, Romek M, Jamróz D, Rawski M, Kepczynski M. Interaction of Polystyrene Nanoplastic with Lipid Membranes. J Phys Chem B 2025; 129:4110-4122. [PMID: 40205692 PMCID: PMC12035802 DOI: 10.1021/acs.jpcb.5c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
As demonstrated in in vitro studies, polystyrene nanoplastics (PSNPs) are effectively internalized by various cells. All known mechanisms of PSNP internalization involve the initial step of their interaction with the cell membrane, highlighting the importance of understanding such interactions at the molecular level. Here we consider the effects of PSNPs obtained from disposable food packaging on zwitterionic lipid membranes, used as a model system for protein-free cell membranes. We combined microscopic imaging and unbiased atomistic molecular dynamics (MD) to investigate the behavior of PSNPs on the surface and inside the lipid membrane. Our results show that PSNPs are hydrated and have a high negative surface charge when dispersed in an aqueous media. The penetration of PS nanoparticles into the lipid bilayer requires the removal of water molecules at the nanoparticle-membrane interface, which is an effective barrier to the entry of PSNPs into its hydrophobic region. Overcoming this energy barrier by slightly inserting the PS nanoparticle into the polar region of the membrane leads to its rapid penetration into the center of the bilayer and coating its surface with lipid molecules. PS nanoplastics do not disaggregate after penetrating the lipid membrane, which affects the molecular structure of the bilayer. In addition, our MD simulations demonstrated that small-molecule additives (e.g., unreacted monomers) present in nanoplastics can be released into lipid membranes if they are located close to the nanoparticle surface. The outcomes of this study are important for understanding the passive uptake of nanoplastics by cells.
Collapse
Affiliation(s)
- Grzegorz Łazarski
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Prof. S.
Łojasiewicza 11, Krakow 30-348, Poland
| | - Natan Rajtar
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Prof. S.
Łojasiewicza 11, Krakow 30-348, Poland
| | - Marek Romek
- Department
of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa Street, Kraków 30-387, Poland
| | - Dorota Jamróz
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Michał Rawski
- National
Synchrotron Radiation Centre SOLARIS, Jagiellonian
University, 98 Czerwone
Maki Street, Kraków 30-392, Poland
| | - Mariusz Kepczynski
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
4
|
Cheng X, Cheng X, Huang R, Zeng L, Song D, Zhang X, Wang Y, Huang TX, Chen K, Fang N, Li X. Digitally Assisted Single-Particle Tracking for Accurate Analysis of Complicated Cargo Transport Dynamics in Microtubule Networks. Anal Chem 2025. [PMID: 40243168 DOI: 10.1021/acs.analchem.4c07046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Intracellular transport is a fundamental process crucial for cellular function, driven by the coordinated action of motor proteins that move cargo along microtubule tracks. Traditional tracking methods primarily focus on cargo trajectories, often overlooking rotational dynamics and their impact on cargo interactions with the complex microtubule network. To address this limitation, we introduced a digitally assisted single-particle tracking (dSPT) method that significantly advances the angular resolution of intracellular cargo dynamics. By integrating intensity measurements with advanced digital classification algorithms to process defocused half-plane image patterns captured through bifocal parallax microscopy, this approach extends the angular resolution range from the conventional method to a full 0-360° range, even in heterogeneous cellular environments, while maintaining high spatial and temporal resolutions. In intracellular transport events, we directly observed the accurate determination of the chiral rotational directions and precise calculation of the step angles. When combined with super-resolution radial fluctuation (SRRF) imaging to achieve higher-resolution microtubule imaging, our dSPT technique enables in vivo investigations of cargo dynamics during intracellular transport. To validate this, we studied the rotational dynamics of the cargo in microtubule confinement. Furthermore, we identified characteristic patch-searching patterns in the microtubule network, where cargo exhibited a combined motion pattern of confined and hopping diffusion to navigate through the constraints imposed by the microtubules.
Collapse
Affiliation(s)
- Xiaodong Cheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaojuan Cheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Riyang Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Linying Zeng
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Dongliang Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Teng-Xiang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kuangcai Chen
- Imaging Core Facility, Georgia State University, Atlanta, Georgia 30302, United States
| | - Ning Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaokun Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Ren L, Cao S, Guo L, Li J, Jiao K, Wang L. Recent advances in nucleic acid-functionalized metallic nanoparticles. Chem Commun (Camb) 2025; 61:4904-4923. [PMID: 40047804 DOI: 10.1039/d5cc00359h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nucleic acid-functionalized metallic nanoparticles (N-MNPs) precisely integrate the advantageous characteristics of nucleic acids and metallic nanomaterials, offering various abilities such as resistance to enzymatic degradation, penetration of physiological barriers, controllable mobility, biomolecular recognition, programmable self-assembly, and dynamic structure-function transformation. These properties demonstrate significant potential in the field of biomedical diagnostics and therapeutics. In this review, we examine recent advancements in the construction and theranostic applications of N-MNPs. We briefly summarize the methodologies employed in the conjugation of nucleic acids with metallic nanoparticles and the formation of their superstructural assemblies. We highlight recent representative applications of N-MNPs in biomolecular diagnosis, imaging, and smart delivery of theranostic agents. We also discuss challenges currently faced in this field and provide an outlook on future development directions and application prospects.
Collapse
Affiliation(s)
- Lei Ren
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Shuting Cao
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan 314102, Zhejiang, China
- Nano-translational Medicine Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Diloknawarit B, Schaumann EN, Odom TW. High-Curvature Features on Branched Nanoconstructs Circumvent Protein Corona Interference. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15187-15195. [PMID: 40013422 DOI: 10.1021/acsami.5c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This paper reports how the local nanoscale curvature on nanoparticle constructs determines the protein corona distribution in biological conditions. Using transmission electron microscopy, we found that DNA-gold nanostar nanoconstructs (DNA-AuNS) having positive-curvature tips <5 nm in radius showed less dense and less uniform protein corona layers compared to 50 nm gold nanospheres (DNA-50NPs). Statistical analysis based on type of curvature on AuNS revealed that the protein layer thickness on the tips was lower than that on the neutral and negative curvature regions. Since protein coronas screen ligands on nanoparticles, we used DNA hybridization to evaluate whether local ligand functionality was preserved after adsorption of proteins. DNA-AuNS nanoconstructs with less dense protein coronas hybridized more 5 nm gold nanosphere probes (5NPs) compared to DNA-50NPs. Without the protein corona layer, the two classes of nanoconstructs hybridized higher numbers of 5NPs, and differences due to NP shape were minimal. Notably, we found that the tips of DNA-AuNS nanoconstructs exhibited higher percentages of hybridization compared to neutral and negative curvature regions; this trend was independent of DNA sequence. Our work demonstrates the importance of nanoconstruct curvature in mitigating local protein adsorption and preserving ligand functionality at the single-particle level.
Collapse
|
7
|
Wu YL, Jia J, Das J, Riordan KT, Flynn CD, Wang Y, Kelley SO, Odom TW. Antifouling Spiky Nanoelectrodes Enhance Detection of Bacterial mRNA. J Am Chem Soc 2025; 147:7868-7874. [PMID: 39989312 DOI: 10.1021/jacs.4c18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Nanomaterials have extensive applications in the development of sensitive biosensors, but the influence of their specific structural properties remains unclear. This work presents a platform that can provide mechanistic insight into how nanostructured electrodes improve the performance of electrochemical biosensors. We designed nanoelectrodes with sub-10 nm spike features through a combination of top-down lithography and solution-based synthesis. These anisotropic structures facilitated rapid electron-transfer, minimized biofouling, and promoted efficient target capture. Using these spiky nanoelectrodes in a biosensor, we detected bacterial mRNA at aM-levels and within 3 min. Our findings reveal the mechanism underlying signal enhancement from high-curvature regions on nanostructured electrodes, highlighting the structure-property relationships of nanostructures in electrochemical sensing.
Collapse
Affiliation(s)
- Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Jia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kimberly T Riordan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Connor D Flynn
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shana O Kelley
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Fan Z, Mao X, Zhu M, Hu X, Li M, Huang L, Li J, Maimaiti T, Zuo X, Fan C, Li Q, Liu M, Tian Y. Probing Twist-Induced Endocytotic Membrane Fission using Anisotropic Gold Homodimers. Angew Chem Int Ed Engl 2025; 64:e202413244. [PMID: 39227862 DOI: 10.1002/anie.202413244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
Membrane fission involves a crucial step of lipid remodeling, in which the dynamin collar constricts and severs the tubulated lipid membrane at the neck of budding vesicles. Nevertheless, the difficulty in accurately determining the rotational dynamics of live endocytotic vesicles poses a limit on the elucidation of dynamin-induced membrane remodeling for endocytotic vesicle scission. Herein, we designed a DNA-modified gold homodimer (AuHD)-based anisotropic plasmonic probe with uniform surface chemistry, minimizing orientational fluctuation within vesicle encapsulation. Using AuHDs as cargos to image the dynamics of cargo-containing vesicles during endocytosis, we showed that, prior to detachment from plasma membrane, the cargo-containing vesicles underwent multiple intermittent twists of ~4° angular orientation relative to plasma membrane with a ~0.2 s dwell time. These findings suggest that the membrane torques resulting from dynamin actions in vivo constitute the pathway to membrane fission, potentially shedding light on how dynamin-mediated lipid remodeling orchestrates membrane fission.
Collapse
Affiliation(s)
- Zhiying Fan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Meng Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Xingjie Hu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Lulu Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jie Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Tumala Maimaiti
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| |
Collapse
|
9
|
Chen M, Miao S, Zhang Y, Chang X, Dai J, Chen C, Li S, Li H, Xia F. Precise Preparation of Supramolecular Spherical Nucleic Acids for Nucleolin-Targeted Gene Delivery. Angew Chem Int Ed Engl 2024; 63:e202410744. [PMID: 39177424 DOI: 10.1002/anie.202410744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Molecular spherical nucleic acids (m-SNAs) are a second generation of spherical nucleic acids (SNAs), which are of significance in potential application of targeted delivery of nucleic acids or gene regulation due to their defined molecular structures. Nevertheless, m-SNAs typically involve a single DNA sequence which greatly limits its functions as either targeting purpose or gene regulation. In response, we proposed here a third generation, supramolecular spherical nucleic acids (Supra-SNAs) with two different sequences to achieve both above-mentioned functions. Specifically, we constructed a series of supramolecular self-assembly structures by coupling a cell membrane receptor (i.e., nucleolin)-recognizing aptamer (AS1411)-modified adamantine as targeting probe and human epithelial growth factor receptor 2 (HER2) antisense-functionalized β-cyclodextrin to specifically inhibit the overexpression of HER2 proteins for gene regulations. In comparison to the m-SNA precursors, such Supra-SNA structures exhibited enhanced levels of resistance to nuclease degradation, cellular uptake, gene regulation capabilities and tumor retention capacity. We demonstrated that Supra-SNAs exhibited optimal cell suppression rates and cell apoptosis via a phosphatidylinositol 3-kinase/protein kinase B signaling pathway. The well-defined molecular structures provide an attractive platform for investigating interrelationship between structure and property at the molecular level.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yaqi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xueman Chang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuxin Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
10
|
Li M, Tang Q, Wan H, Zhu G, Yin D, Lei L, Li S. Functional inorganic nanoparticles in cancer: Biomarker detection, imaging, and therapy. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer poses a major global public health challenge. Developing more effective early diagnosis methods and efficient treatment techniques is crucial to enhance early detection sensitivity and treatment outcomes. Nanomaterials offer sensitive, accurate, rapid, and straightforward approaches for cancer detection, diagnosis, and treatment. Inorganic nanoparticles are widely used in medicine because of their high stability, large specific surface area, unique surface properties, and unique quantum size effects. Functional inorganic nanoparticles involve modifying inorganic nanoparticles to enhance their physical properties, enrichment capabilities, and drug-loading efficiency and to minimize toxicity. This Review provides an overview of various types of inorganic nanoparticles and their functionalization characteristics. We then discuss the progress of functional inorganic nanoparticles in cancer biomarker detection and imaging. Furthermore, we discuss the application of functional inorganic nanoparticles in radiotherapy, chemotherapy, gene therapy, immunotherapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and combination therapy, highlighting their characteristics and advantages. Finally, the toxicity and potential challenges of functional inorganic nanoparticles are analyzed. The purpose of this Review is to explore the application of functional inorganic nanoparticles in diagnosing and treating cancers, while also presenting a new avenue for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Hua Wan
- Department of Otorhinolaryngology Head and Neck Surgery 2 , 331 Hospital of Zhuzhou, Zhuzhou 412002, Hunan,
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 3 , Hangzhou 310015, Zhejiang,
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| |
Collapse
|
11
|
Esmaeili F, Wu YL, Wang Z, Abdrabou A, Juska VB, Zargartalebi H, Flynn CD, Odom TW, Sargent EH, Kelley SO. Spiky Gold Nanoparticles, a Nanoscale Approach to Enhanced Ex Vivo T-Cell Activation. ACS NANO 2024; 18:21554-21564. [PMID: 39079006 DOI: 10.1021/acsnano.4c07306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
While existing synthetic technologies for ex vivo T-cell activation face challenges like suboptimal expansion rates and low effectiveness, artificial antigen-presenting cells (aAPCs) hold great promise for enhanced T-cell based therapies. In particular, gold nanoparticles (AuNPs), known for their biocompatibility, ease of synthesis, and versatile surface chemistry, are strong candidates for use as nanoscale aAPCs. In this study, we developed spiky AuNPs with branched geometries to present activating ligands to primary human T-cells. The special structure of spiky AuNPs enhances biomolecule loading capacity and significantly improves T-cell activation through multivalent binding of costimulatory ligands and receptors. Our spiky AuNPs outperform existing systems including Dynabeads and soluble activators by promoting greater polyclonal expansion of T-cells, boosting sustained cytokine production, and generating highly functional T-cells with reduced exhaustion. In addition, spiky AuNPs effectively activate and expand CD19 CAR-T cells while demonstrating increased in vitro cytotoxicity against target cells using fewer effector cells than Dynabeads. This study underscores the potential of spiky AuNPs as a powerful tool, bringing new opportunities to adoptive cell therapy applications.
Collapse
Affiliation(s)
- Fatemeh Esmaeili
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S3G4, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zongjie Wang
- Department of Biomedical Engineering, Northwestern University, Evanston Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Abdalla Abdrabou
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
| | - Vuslat B Juska
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Tyndall National Institute, University College Cork, Cork T12R5CP, Ireland
| | - Hossein Zargartalebi
- Department of Biomedical Engineering, Northwestern University, Evanston Illinois 60208, United States
| | - Connor D Flynn
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
| | - Edward H Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S3G4, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shana O Kelley
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston Illinois 60208, United States
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| |
Collapse
|
12
|
Yin YW, Ma YQ, Ding HM. Effect of Nanoparticle Curvature on Its Interaction with Serum Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15205-15213. [PMID: 38990344 DOI: 10.1021/acs.langmuir.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The size or the curvature of nanoparticles (NPs) plays an important role in regulating the composition of the protein corona. However, the molecular mechanisms of how curvature affects the interaction of NPs with serum proteins still remain elusive. In this study, we employ all-atom molecular dynamics simulations to investigate the interactions between two typical serum proteins and PEGylated Au NPs with three different surface curvatures (0, 0.1, and 0.5 nm-1, respectively). The results show that for proteins with a regular shape, the binding strength between the serum protein and Au NPs decreases with increasing curvature. For irregularly shaped proteins with noticeable grooves, the binding strength between the protein and Au NPs does not change obviously with increasing curvature in the cases of smaller curvature. However, as the curvature continues to increase, Au NPs may act as ligands firmly adsorbed in the protein grooves, significantly enhancing the binding strength. Overall, our findings suggest that the impact of NP curvature on protein adsorption may be nonmonotonic, which may provide useful guidelines for better design of functionalized NPs in biomedical applications.
Collapse
Affiliation(s)
- Yue-Wen Yin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
13
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
14
|
Jana D, Han Z, Huang X, Wadhwa A, Raveendran A, Ebeid K, Meher N, Flavell RR, Desai T. Enhanced Prostate-specific Membrane Antigen Targeting by Precision Control of DNA Scaffolded Nanoparticle Ligand Presentation. ACS NANO 2024; 18:16674-16683. [PMID: 38907991 PMCID: PMC11223598 DOI: 10.1021/acsnano.4c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Targeted nanoparticles have been extensively explored for their ability to deliver their payload to a selective cell population while reducing off-target side effects. The design of actively targeted nanoparticles requires the grafting of a ligand that specifically binds to a highly expressed receptor on the surface of the targeted cell population. Optimizing the interactions between the targeting ligand and the receptor can maximize the cellular uptake of the nanoparticles and subsequently improve their activity. Here, we evaluated how the density and presentation of the targeting ligands dictate the cellular uptake of nanoparticles. To do so, we used a DNA-scaffolded PLGA nanoparticle system to achieve efficient and tunable ligand conjugation. A prostate-specific membrane antigen (PSMA) expressing a prostate cancer cell line was used as a model. The density and presentation of PSMA targeting ligand ACUPA were precisely tuned on the DNA-scaffolded nanoparticle surface, and their impact on cellular uptake was evaluated. It was found that matching the ligand density with the cell receptor density achieved the maximum cellular uptake and specificity. Furthermore, DNA hybridization-mediated targeting chain rigidity of the DNA-scaffolded nanoparticle offered ∼3 times higher cellular uptake compared to the ACUPA-terminated PLGA nanoparticle. Our findings also indicated a ∼ 3.7-fold reduction in the cellular uptake for the DNA hybridization of the non-targeting chain. We showed that nanoparticle uptake is energy-dependent and follows a clathrin-mediated pathway. Finally, we validated the preferential tumor targeting of the nanoparticles in a bilateral tumor xenograft model. Our results provide a rational guideline for designing actively targeted nanoparticles and highlight the application of DNA-scaffolded nanoparticles as an efficient active targeting platform.
Collapse
Affiliation(s)
- Deblin Jana
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Zhiyuan Han
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| | - Xiao Huang
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Anju Wadhwa
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Athira Raveendran
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Kareem Ebeid
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Niranjan Meher
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Tejal Desai
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Gao Y, Han S, Lu F, Liu Q, Yang J, Wang W, Wang Y, Zhang J, Ju R, Shen X, Zhao Y, Wang H, Tan W, Wang L. Dimethyl-Dioctadecyl-Ammonium Bromide/Poly(lactic acid) Nanoadjuvant Enhances the Immunity and Cross-Protection of an NM2e-Based Universal Influenza Vaccine. ACS NANO 2024; 18:12905-12916. [PMID: 38721835 DOI: 10.1021/acsnano.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
For most frequent respiratory viruses, there is an urgent need for a universal influenza vaccine to provide cross-protection against intra- and heterosubtypes. We previously developed an Escherichia coli fusion protein expressed extracellular domain of matrix 2 (M2e) and nucleoprotein, named NM2e, and then combined it with an aluminum adjuvant, forming a universal vaccine. Although NM2e has demonstrated a protective effect against the influenza virus in mice to some extent, further improvement is still needed for the induction of immune responses ensuring adequate cross-protection against influenza. Herein, we fabricated a cationic solid lipid nanoadjuvant using poly(lactic acid) (PLA) and dimethyl-dioctadecyl-ammonium bromide (DDAB) and loaded NM2e to generate an NM2e@DDAB/PLA nanovaccine (Nv). In vitro experiments suggested that bone marrow-derived dendritic cells incubated with Nv exhibited ∼4-fold higher antigen (Ag) uptake than NM2e at 16 h along with efficient activation by NM2e@DDAB/PLA Nv. In vivo experiments revealed that Ag of the Nv group stayed in lymph nodes (LNs) for more than 14 days after initial immunization and DCs in LNs were evidently activated and matured. Furthermore, the Nv primed T and B cells for robust humoral and cellular immune responses after immunization. It also induced a ratio of IgG2a/IgG1 higher than that of NM2e to a considerable extent. Moreover, NM2e@DDAB/PLA Nv quickly restored body weight and improved survival of homo- and heterosubtype influenza challenged mice, and the cross-protection efficiency was over 90%. Collectively, our study demonstrated that NM2e@DDAB/PLA Nv could offer notable protection against homo- and heterosubtype influenza virus challenges, offering the potential for the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Shulan Han
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, P.R. China
| | - Funa Lu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, P.R. China
- Basic Medical College, Inner Mongolia Medical University, Hohhot 010010, P.R. China
| | - Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jun Yang
- Beijing Economic-Technological Development Area (BDA), Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing 100176, China
| | - Wenling Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Yuanyuan Wang
- Beijing Institute of Petrochemical Technology, Beijing 102617, P.R. China
| | - Jing Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ruijun Ju
- Beijing Institute of Petrochemical Technology, Beijing 102617, P.R. China
| | - Xiaoling Shen
- Basic Medical College, Inner Mongolia Medical University, Hohhot 010010, P.R. China
| | - Yanping Zhao
- Beijing Economic-Technological Development Area (BDA), Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing 100176, China
| | - Hongjun Wang
- Beijing Economic-Technological Development Area (BDA), Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing 100176, China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
16
|
Diloknawarit B, Lee K, Choo P, Odom TW. Nanoparticle Anisotropy Increases Targeting Interactions on Live-Cell Membranes. ACS NANO 2024; 18:12537-12546. [PMID: 38684051 PMCID: PMC11252448 DOI: 10.1021/acsnano.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This paper describes how branch lengths of anisotropic nanoparticles can affect interactions between grafted ligands and cell-membrane receptors. Using live-cell, single-particle tracking, we found that DNA aptamer-gold nanostar nanoconstructs with longer branches showed improved binding efficacy to human epidermal growth factor receptor 2 (HER2) on cancer cell membranes. Inhibiting nanoconstruct-HER2 binding promoted nonspecific interactions, which increased the rotational speed of long-branched nanoconstructs but did not affect that of short-branched constructs. Bivariate analysis of the rotational and translational dynamics showed that longer branch lengths increased the ratio of targeting to nontargeting interactions. We also found that longer branches increased the nanoconstruct-cell interaction times before internalization and decreased intracellular trafficking velocities. Differences in binding efficacy revealed by single-particle dynamics can be attributed to the distinct protein corona distributions on short- and long-branched nanoconstructs, as validated by transmission electron microscopy. Minimal protein adsorption at the high positive curvature tips of long-branched nanoconstructs facilitated binding of DNA aptamer ligands to HER2. Our study reveals the significance of nanoparticle branch length in regulating local chemical environment and interactions with live cells at the single-particle level.
Collapse
Affiliation(s)
- Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kwahun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Lee S, Yoo J, Bae G, Thangam R, Heo J, Park JY, Choi H, Kim C, An J, Kim J, Mun KR, Shin S, Zhang K, Zhao P, Kim Y, Kang N, Han SB, Kim D, Yoon J, Kang M, Kim J, Yang L, Karamikamkar S, Kim J, Zhu Y, Najafabadi AH, Song G, Kim DH, Lee KB, Oh SJ, Jung HD, Song HC, Jang WY, Bian L, Chu Z, Yoon J, Kim JS, Zhang YS, Kim Y, Jang HS, Kim S, Kang H. Photonic control of ligand nanospacing in self-assembly regulates stem cell fate. Bioact Mater 2024; 34:164-180. [PMID: 38343773 PMCID: PMC10859239 DOI: 10.1016/j.bioactmat.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 10/28/2024] Open
Abstract
Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.
Collapse
Affiliation(s)
- Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jounghyun Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Kwang Rok Mun
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungyong Shin
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwon Yoon
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Misun Kang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jihwan Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering and Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Seong Jang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
18
|
Ulanova M, Gloag L, Kim CK, Bongers A, Kim Duong HT, Gooding JJ, Tilley RD, Sachdev PS, Braidy N. Biocompatibility and proteomic profiling of DMSA-coated iron nanocubes in a human glioblastoma cell line. Nanomedicine (Lond) 2024; 19:303-323. [PMID: 38270934 DOI: 10.2217/nnm-2023-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Background: Superparamagnetic iron core iron oxide shell nanocubes have previously shown superior performance in magnetic resonance imaging T2 contrast enhancement compared with spherical nanoparticles. Methods: Iron core iron oxide shell nanocubes were synthesized, stabilized with dimercaptosuccinic acid (DMSA-NC) and physicochemically characterized. MRI contrast enhancement and biocompatibility were assessed in vitro. Results: DMSA-NC showed a transverse relaxivity of 122.59 mM-1·s-1 Fe. Treatment with DMSA-NC did not induce cytotoxicity or oxidative stress in U-251 cells, and electron microscopy demonstrated DMSA-NC localization within endosomes and lysosomes in cells following internalization. Global proteomics revealed dysregulation of iron storage, transport, transcription and mRNA processing proteins. Conclusion: DMSA-NC is a promising T2 MRI contrast agent which, in this preliminary investigation, demonstrates favorable biocompatibility with an astrocyte cell model.
Collapse
Affiliation(s)
- Marina Ulanova
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lucy Gloag
- School of Mathematical & Physical Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Andre Bongers
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
- National Imaging Facility, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hong Thien Kim Duong
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Richard D Tilley
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, New South Wales, 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
19
|
Wu YL, Lee K, Diloknawarit B, Odom TW. Ligand Separation on Nanoconstructs Affects Targeting Selectivity to Protein Dimers on Cell Membranes. NANO LETTERS 2024; 24:519-524. [PMID: 38126338 PMCID: PMC11252445 DOI: 10.1021/acs.nanolett.3c04641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This work demonstrates that targeting ligand density on nanoparticles can affect interactions between the nanoconstructs and cell membrane receptors. We discovered that when the separation between covalently grafted DNA aptamers on gold nanostars was comparable to the distance between binding sites on a receptor dimer (matched density; MD), nanoconstructs exhibited a higher selectivity for binding to the dimeric form of the protein. Single-particle dynamics of MD nanoconstructs showed slower rotational rates and larger translational footprints on cancer cells expressing more dimeric forms of receptors (dimer+) compared with cells having more monomeric forms (dimer-). In contrast, nanoconstructs with either increased (nonmatched density; NDlow) or decreased ligand spacing (NDhigh) had minimal changes in dynamics on either dimer+ or dimer- cells. Real-time, single-particle analyses can reveal the importance of nanoconstruct ligand density for the selective targeting of membrane receptors in live cells.
Collapse
Affiliation(s)
- Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kwahun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Xi Z, Zhang R, Kiessling F, Lammers T, Pallares RM. Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomater Sci Eng 2024; 10:38-50. [PMID: 37249042 DOI: 10.1021/acsbiomaterials.3c00249] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gold nanostars (AuNSs) are nanoparticles with intricate three-dimensional structures and shape-dependent optoelectronic properties. For example, AuNSs uniquely display three distinct surface curvatures, i.e. neutral, positive, and negative, which provide different environments to adsorbed ligands. Hence, these curvatures are used to introduce different surface chemistries in nanoparticles. This review summarizes and discusses the role of surface curvature in AuNS properties and its impact on biomedical and chemical applications, including surface-enhanced Raman spectroscopy, contrast agent performance, and catalysis. We examine the main synthetic approaches to generate AuNSs, control their morphology, and discuss their benefits and drawbacks. We also describe the optical characteristics of AuNSs and discuss how these depend on nanoparticle morphology. Finally, we analyze how AuNS surface curvature endows them with properties distinctly different from those of other nanoparticles, such as strong electromagnetic fields at the tips and increased hydrophilic environments at the indentations, together making AuNSs uniquely useful for biosensing, imaging, and local chemical manipulation.
Collapse
Affiliation(s)
- Zhongqian Xi
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Rui Zhang
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
21
|
Liu J, Ren Z, Sun Y, Xu L, Wei D, Tan W, Ding D. Investigation of the Relationship between Aptamers' Targeting Functions and Human Plasma Proteins. ACS NANO 2023; 17:24329-24342. [PMID: 38044589 DOI: 10.1021/acsnano.3c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of recognizing targets via specific three-dimensional structures. Taking advantage of this unique targeting function, aptamers have been extensively applied to bioanalysis and disease theranostics. However, the targeting functionality of aptamers in the physiological milieu is greatly impeded compared with their in vitro applications. To investigate the physiological factors that adversely affect the in vivo targeting ability of aptamers, we herein systematically studied the interactions between human plasma proteins and aptamers and the specific effects of plasma proteins on aptamer targeting. Microscale thermophoresis and flow cytometry analysis showed that plasma interacted with aptamers, restricting their affinity toward targeted tumor cells. Further pull-down assay and proteomic identification verified that the interactions between aptamers and plasma proteins were mainly involved in complement activation and immune response as well as showed structure-selective and sequence-specific features. Particularly, the fibronectin 1 (FN1) protein showed dramatically specific interactions with nucleolin (NCL) targeting aptamer AS1411. The competitive binding between FN1 and NCL almost deprived the AS1411 aptamer's targeting ability in vivo. In order to maintain the targeting function in the physiological milieu, a series of optimizations were performed via the chemical modifications of AS1411 aptamer, and 3'-terminal pegylation was demonstrated to be resistant to the interaction with FN1, leading to improved tumor-targeting effects. This work emphasizes the physiological environment influences on aptamers targeting functionality and suggests that rational design and modification of aptamers to minimize the nonspecific interaction with plasma proteins might be effective to maintain aptamer functionality in future clinical uses.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhiqiang Ren
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yang Sun
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liujun Xu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Dali Wei
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
22
|
Ye Z, Zhang C, Yuan J, Xiao L. Ligand-Receptor Interaction Triggers Hopping and Sliding Motions on Living Cell Membranes. J Am Chem Soc 2023; 145:25177-25185. [PMID: 37947087 DOI: 10.1021/jacs.3c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Exploring the surface-capturing and releasing processes of nanocargo on the living cell membrane is critical for understanding the membrane translocation process. In this work, we achieve total internal reflection scattering (TIRS) illumination on a commercial dark-field optical microscope without the introduction of any additional optical components. By gradually reducing the diaphragm size in the excitation light path, the angle of the incident beam can be well manipulated. Under optimal conditions, the excitation light can be totally reflected at the glass/water interface, resulting in a thin layer of evanescent field for TIRS illumination. Due to the exponential decay feature of the evanescent field, the displacement of the nanocargo along the vertical direction can be directly resolved in the intensity track. With this method, we selectively monitor the dynamics of the transferrin-modified nanocargo on the living cell membrane. Transition between confined diffusion and long-range searching is involved in the binding site recognition process, which exhibits non-Gaussian and nonergodic-like behavior. More interestingly, 2D fast sliding and 3D hopping motions are also distinguished on the fluidic cell membrane, which is essentially modulated by the strength of ligand-receptor interactions, as revealed by the free-energy profiles. These heterogeneous and dynamic interactions together control the diffusion mode of the nanocargo on the lipid membrane and, thus, determine the cellular translocation efficiency.
Collapse
Affiliation(s)
- Zhongju Ye
- Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Zhang
- Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Lehui Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
23
|
Li Y, Liu X, Yu L, Huang X, Wang X, Han D, Yang Y, Liu Z. Covalent LYTAC Enabled by DNA Aptamers for Immune Checkpoint Degradation Therapy. J Am Chem Soc 2023. [PMID: 37910771 DOI: 10.1021/jacs.3c03899] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Immune checkpoint blockade (ICB) therapy, while achieving tremendous clinical successes, still suffers from a low objective response rate in clinical cancer treatment. As a proof-of-concept study, we propose a new immune checkpoint degradation (ICD) therapy relying on lysosome-targeting chimera (LYTAC) to deplete immune checkpoint programmed death ligand-1 (PD-L1) on the tumor cell surface. Our designed chimeric aptamer on one side targets lysosome-trafficking receptor, and on the other side allows biorthogonal covalent-conjugation-reinforced specific binding of PD-L1. This covalent LYTAC is able to hijack PD-L1 for lysosomal degradation with greatly improved efficiency over its noncovalent counterpart in complex in vivo environment. Beyond abolishing the PD-1/PD-L1 axis associated immune resistance, we demonstrate for the first time that LYTAC-triggered PD-L1 degradation could directly cause immunogenic apoptosis of tumor cells to elicit tumor-specific immune responses, offering unparalleled advantages over ICB antibody therapy. Remarkably, ICD therapy with covalent LYTAC achieves comparable or higher antitumor efficacy while causing significantly less inflammatory injury compared to antibody-based ICB therapy. Moreover, covalent LYTAC can serve as a general platform for specifically degrading other membrane-associated proteins, making it a promising tool for future applications. Our work presents a novel molecular tool for effective LYTAC in complex environments, offering valuable insights in pushing DNA-based LYTAC drugs toward in vivo and clinical applications.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xin Huang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xuan Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
Angjelova A, Jovanova E, Polizzi A, Santonocito S, Lo Giudice A, Isola G. The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leukoplakia: A Narrative Review. J Clin Med 2023; 12:6819. [PMID: 37959284 PMCID: PMC10649116 DOI: 10.3390/jcm12216819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Oral leukoplakia is a predominantly white lesion of the oral mucosa that cannot be classified as any other definable lesion with the risk of progressing into malignancy. Despite the advancements in conventional therapy, the rates of malignant transformation remain notably high, affecting 4.11% of adults, due to the difficulty of accurate diagnosis and indistinct treatment. Photodynamic therapy (PDT), being a minimally invasive surgical intervention, employs a variety of factors, including light, nano-photosensitizers (PSs) and oxygen in the management of precancerous lesions. PDT faces limitations in administering photosensitizers (PSs) because of their low water solubility. However, these challenges could be effectively resolved through the incorporation of PSs in nanostructured drug delivery systems, such as gold nanoparticles, micelles, liposomes, metal nanoparticles, dendrimers and quantum dots. This review will give an overview of the different innovative PS approaches in the management of premalignant lesions, highlighting the most recent advancements. From a clinical perspective, it is expected that nanotechnology will overcome barriers faced by traditional therapeutics and will address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Angela Angjelova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Elena Jovanova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| |
Collapse
|
25
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
27
|
Hou TL, Zhang XL, Zhou J, Chai YQ, Yuan R. Near-Infrared-Driven Nanorocket for Rapid and Ultrasensitive Detection of MicroRNA. Anal Chem 2023; 95:13156-13162. [PMID: 37606955 DOI: 10.1021/acs.analchem.3c01962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Herein, by introducing gold nanostars (AuNSs) as fuel core, a near-infrared-driven nanorocket (NIDNR) with pretty fast walking was exploited for ultrasensitive miRNA detection. Compared with traditional nanomaterials-comprised nanomachines (NMs), the NIDNR possesses much better kinetic and thermodynamic performance owing to the extra photothermal driving force from localized surface plasmon (LSP). Impressively, the whole reaction time of NIDNR down to 15 min was realized, which is almost more than 8 times beyond those of conventional DNA-based NMs. This way, the inherent obstacle of traditional NMs, including long reaction time and low efficiency, could be easily addressed. As a proof of concept, the NIDNR was successfully applied to develop an electrochemical biosensing platform for rapid and sensitive detection of miRNA with an LOD down to 2.95 aM and achieved the real-time assay of real biological samples from human hepatocellular carcinoma cells (MHCC97L) and HeLa, thus providing an innovative insight to design more versatile DNA nanomachines for ultimate application in biosensing platform construction and clinical sample detection.
Collapse
Affiliation(s)
- Tong-Lin Hou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
28
|
Xuan Y, Zhang W, Zhu X, Zhang S. An updated overview of some factors that influence the biological effects of nanoparticles. Front Bioeng Biotechnol 2023; 11:1254861. [PMID: 37711450 PMCID: PMC10499358 DOI: 10.3389/fbioe.2023.1254861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Nanoparticles (NPs) can be extremely effective in the early diagnosis and treatment of cancer due to their properties. The nanotechnology industry is developing rapidly. The number of multifunctional NPs has increased in the market and hundreds of NPs are in various stages of preclinical and clinical development. Thus, the mechanism underlying the effects of NPs on biological systems has received much attention. After NPs enter the body, they interact with plasma proteins, tumour cell receptors, and small biological molecules. This interaction is closely related to the size, shape, chemical composition and surface modification properties of NPs. In this review, the effects of the size, shape, chemical composition and surface modification of NPs on the biological effects of NPs were summarised, including the mechanism through which NPs enter cells, the resulting oxidative stress response, and the interaction with proteins. This review of the biological effects of NPs can not only provide theoretical support for the preparation of safer and more efficient NPs but also lay the foundation for their clinical application.
Collapse
Affiliation(s)
- Yang Xuan
- Key Laboratory of Biological Resources and Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China
| | - Wenliang Zhang
- Key Laboratory of Biological Resources and Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China
| | - Xinjiang Zhu
- Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Shubiao Zhang
- Key Laboratory of Biological Resources and Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China
| |
Collapse
|
29
|
Wang H, Ding Y, Zhang Y, Shi X, Liu H. In situ decrypting plasmonic nanoparticle size-controlled phosphorylation of epidermal growth factor receptor in living cells. Chem Commun (Camb) 2023. [PMID: 37439663 DOI: 10.1039/d3cc02154h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Recently, interaction between epidermal growth factor receptor (EGFR) and EGFR-targeted nanoprobes is a hot topic. Here, we use dark field microscope (DFM) observe different aggregations of EGFR-targeted nanoprobes in diverticulum. Different aggregation states are related to phosphorylation of EGFR. EGFR phosphorylation can be adjusted by gold nanoparticles (GNPs) size.
Collapse
Affiliation(s)
- Hongyan Wang
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Yan Ding
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Yu Zhang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| | - Xiaoqi Shi
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
30
|
Huang L, Mao X, Li J, Li Q, Shen J, Liu M, Fan C, Tian Y. Nanoparticle Spikes Enhance Cellular Uptake via Regulating Myosin IIA Recruitment. ACS NANO 2023; 17:9155-9166. [PMID: 37171255 DOI: 10.1021/acsnano.2c12660] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Spike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells. We discovered that nanospikes at the nanoparticle regulated myosin IIA recruitment at the cell membrane during cellular uptake, thereby enhancing cellular uptake efficiency, as revealed by dual-modality (plasmonic and fluorescence) imaging. Furthermore, the spiky nanoparticles also exhibited facilitated endocytosis dynamics, as revealed by real-time dark-field microscopy (DFM) imaging and colorimetry-based classification algorithms. These findings highlight the crucial role of the spiky morphology in regulating the intracellular fate of nanoparticles, which may shed light on engineering theranostic nanocarriers.
Collapse
Affiliation(s)
- Lulu Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
31
|
Perez-Potti A, Rodríguez-Pérez M, Polo E, Pelaz B, Del Pino P. Nanoparticle-based immunotherapeutics: from the properties of nanocores to the differential effects of administration routes. Adv Drug Deliv Rev 2023; 197:114829. [PMID: 37121275 DOI: 10.1016/j.addr.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
The engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications. We review and discuss newest evidence in the field, which include in vivo experiments with an extensive physicochemical characterization as well as detailed study of the induced immune response. We emphasize the need of incorporating knowledge about immune response development and regulation in the design and application of nanoparticles, including the effect by parameters such as the administration route and the differential interactions with immune subsets.
Collapse
Affiliation(s)
- André Perez-Potti
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
32
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
33
|
Chan WCW. Principles of Nanoparticle Delivery to Solid Tumors. BME FRONTIERS 2023; 4:0016. [PMID: 37849661 PMCID: PMC10085247 DOI: 10.34133/bmef.0016] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 10/19/2023] Open
Abstract
The effective treatment of patients with cancer hinges on the delivery of therapeutics to a tumor site. Nanoparticles provide an essential transport system. We present 5 principles to consider when designing nanoparticles for cancer targeting: (a) Nanoparticles acquire biological identity in vivo, (b) organs compete for nanoparticles in circulation, (c) nanoparticles must enter solid tumors to target tumor components, (d) nanoparticles must navigate the tumor microenvironment for cellular or organelle targeting, and (e) size, shape, surface chemistry, and other physicochemical properties of nanoparticles influence their transport process to the target. This review article describes these principles and their application for engineering nanoparticle delivery systems to carry therapeutics to tumors or other disease targets.
Collapse
Affiliation(s)
- Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
34
|
Craig TM, Kadu AA, Batenburg KJ, Bals S. Real-time tilt undersampling optimization during electron tomography of beam sensitive samples using golden ratio scanning and RECAST3D. NANOSCALE 2023; 15:5391-5402. [PMID: 36825781 DOI: 10.1039/d2nr07198c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electron tomography is a widely used technique for 3D structural analysis of nanomaterials, but it can cause damage to samples due to high electron doses and long exposure times. To minimize such damage, researchers often reduce beam exposure by acquiring fewer projections through tilt undersampling. However, this approach can also introduce reconstruction artifacts due to insufficient sampling. Therefore, it is important to determine the optimal number of projections that minimizes both beam exposure and undersampling artifacts for accurate reconstructions of beam-sensitive samples. Current methods for determining this optimal number of projections involve acquiring and post-processing multiple reconstructions with different numbers of projections, which can be time-consuming and requires multiple samples due to sample damage. To improve this process, we propose a protocol that combines golden ratio scanning and quasi-3D reconstruction to estimate the optimal number of projections in real-time during a single acquisition. This protocol was validated using simulated and realistic nanoparticles, and was successfully applied to reconstruct two beam-sensitive metal-organic framework complexes.
Collapse
Affiliation(s)
- Timothy M Craig
- Electron Microscopy for Materials Science and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| | - Ajinkya A Kadu
- Electron Microscopy for Materials Science and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
- Centrum Wiskunde & Informatica, Science Park 123, Amsterdam 1098 XG, The Netherlands
| | - Kees Joost Batenburg
- Centrum Wiskunde & Informatica, Science Park 123, Amsterdam 1098 XG, The Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333CA Leiden, The Netherlands
| | - Sara Bals
- Electron Microscopy for Materials Science and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| |
Collapse
|
35
|
Rogers KE, Nag OK, Susumu K, Oh E, Delehanty JB. Photothermal-Enhanced Modulation of Cellular Membrane Potential Using Long-Wavelength-Activated Gold Nanoflowers. Bioconjug Chem 2023; 34:405-413. [PMID: 36731145 DOI: 10.1021/acs.bioconjchem.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In mammalian cells, plasma membrane potential plays vital roles in both physiology and pathology and it is controlled by a network of membrane-resident ion channels. There is considerable interest in the use of nanoparticles (NPs) to control biological functions, including the modulation of membrane potential. The photoexcitation of gold NPs (AuNPs) tethered close to the plasma membrane has been shown to induce membrane depolarization via localized heating of the AuNP surface coupled with the opening of voltage-gated sodium channels. Previous work has employed spherical AuNPs (AuNS) with absorption in the 500-600 nm range for this purpose. However, AuNP materials with absorption at longer wavelengths [e.g., near-infrared (NIR)] would enable greater tissue penetration depth in vivo. We show here the use of new anisotropic-shaped AuNPs [gold nanoflowers (AuNFs)] with broad absorption spanning into the NIR part of the spectrum (∼650-1000 nm). The AuNFs are directly synthesized with bidentate thiolate ligands, which preserves the AuNF's shape and colloidal stability, while facilitating conjugation to biomolecules. We describe the characterization of the AuNF particles and demonstrate that they adhere to the plasma membrane when bioconjugated to PEGylated cholesterol (PEG-Chol) moieties. The AuNF-PEG-Chol mediated the depolarization of rat adrenal medulla pheochromocytoma (PC-12) neuron-like cells more effectively than AuNS-PEG-Chol and unconjugated AuNS and AuNF when photoexcited at ∼561 or ∼640 nm. Importantly, AuNF induction of depolarization had no impact on cellular viability. This work demonstrates anisotropic AuNFs as an enabling nanomaterial for use in cellular depolarization and the spatiotemporal control of cellular activity.
Collapse
Affiliation(s)
- Katherine E Rogers
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States.,Jacobs Corporation, Hanover, Maryland 21076, United States
| | - Eunkeu Oh
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| |
Collapse
|
36
|
Promises and challenges for targeting the immunological players in the tumor micro-environment – Critical determinants for NP-based therapy. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
37
|
Kaplan M, Öztürk K, Öztürk SC, Tavukçuoğlu E, Esendağlı G, Calis S. Effects of Particle Geometry for PLGA-Based Nanoparticles: Preparation and In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:175. [PMID: 36678804 PMCID: PMC9862984 DOI: 10.3390/pharmaceutics15010175] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The physicochemical properties (size, shape, zeta potential, porosity, elasticity, etc.) of nanocarriers influence their biological behavior directly, which may result in alterations of the therapeutic outcome. Understanding the effect of shape on the cellular interaction and biodistribution of intravenously injected particles could have fundamental importance for the rational design of drug delivery systems. In the present study, spherical, rod and elliptical disk-shaped PLGA nanoparticles were developed for examining systematically their behavior in vitro and in vivo. An important finding is that the release of the encapsulated human serum albumin (HSA) was significantly higher in spherical particles compared to rod and elliptical disks, indicating that the shape can make a difference. Safety studies showed that the toxicity of PLGA nanoparticles is not shape dependent in the studied concentration range. This study has pioneering findings on comparing spherical, rod and elliptical disk-shaped PLGA nanoparticles in terms of particle size, particle size distribution, colloidal stability, morphology, drug encapsulation, drug release, safety of nanoparticles, cellular uptake and biodistribution. Nude mice bearing non-small cell lung cancer were treated with 3 differently shaped nanoparticles, and the accumulation of nanoparticles in tumor tissue and other organs was not statistically different (p > 0.05). It was found that PLGA nanoparticles with 1.00, 4.0 ± 0.5, 7.5 ± 0.5 aspect ratios did not differ on total tumor accumulation in non-small cell lung cancer.
Collapse
Affiliation(s)
- Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, Isparta 32260, Turkey
| | - Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Süleyman Can Öztürk
- Centre for Laboratory Animals Research and Application, Hacettepe University, Ankara 06100, Turkey
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| | - Sema Calis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
38
|
Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel) 2022; 10:1946. [PMID: 36423041 PMCID: PMC9694785 DOI: 10.3390/vaccines10111946] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccination is still the most cost-effective way to combat infectious illnesses. Conventional vaccinations may have low immunogenicity and, in most situations, only provide partial protection. A new class of nanoparticle-based vaccinations has shown considerable promise in addressing the majority of the shortcomings of traditional and subunit vaccines. This is due to recent breakthroughs in chemical and biological engineering, which allow for the exact regulation of nanoparticle size, shape, functionality, and surface characteristics, resulting in improved antigen presentation and robust immunogenicity. A blend of physicochemical, immunological, and toxicological experiments can be used to accurately characterize nanovaccines. This narrative review will provide an overview of the current scenario of the nanovaccine.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Guwahati 781017, Assam, India
| | - Farak Ali
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | | |
Collapse
|
39
|
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:14-30. [PMID: 36029849 DOI: 10.1016/j.pbiomolbio.2022.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium.
| |
Collapse
|
40
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| |
Collapse
|
41
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
42
|
Winkler M, Rhein F, Nirschl H, Gleiss M. Real-Time Modeling of Volume and Form Dependent Nanoparticle Fractionation in Tubular Centrifuges. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3161. [PMID: 36144949 PMCID: PMC9500975 DOI: 10.3390/nano12183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A dynamic process model for the simulation of nanoparticle fractionation in tubular centrifuges is presented. Established state-of-the-art methods are further developed to incorporate multi-dimensional particle properties (traits). The separation outcome is quantified based on a discrete distribution of particle volume, elongation and flatness. The simulation algorithm solves a mass balance between interconnected compartments which represent the separation zone. Grade efficiencies are calculated by a short-cut model involving material functions and higher dimensional particle trait distributions. For the one dimensional classification of fumed silica nanoparticles, the numerical solution is validated experimentally. A creation and characterization of a virtual particle system provides an additional three dimensional input dataset. Following a three dimensional fractionation case study, the tubular centrifuge model underlines the fact that a precise fractionation according to particle form is extremely difficult. In light of this, the paper discusses particle elongation and flatness as impacting traits during fractionation in tubular centrifuges. Furthermore, communications on separation performance and outcome are possible and facilitated by the three dimensional visualization of grade efficiency data. Future research in nanoparticle characterization will further enhance the models use in real-time separation process simulation.
Collapse
|
43
|
Cho NH, Kim YB, Lee YY, Im SW, Kim RM, Kim JW, Namgung SD, Lee HE, Kim H, Han JH, Chung HW, Lee YH, Han JW, Nam KT. Adenine oligomer directed synthesis of chiral gold nanoparticles. Nat Commun 2022; 13:3831. [PMID: 35780141 PMCID: PMC9250518 DOI: 10.1038/s41467-022-31513-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/21/2022] [Indexed: 12/30/2022] Open
Abstract
Precise control of morphology and optical response of 3-dimensional chiral nanoparticles remain as a significant challenge. This work demonstrates chiral gold nanoparticle synthesis using single-stranded oligonucleotide as a chiral shape modifier. The homo-oligonucleotide composed of Adenine nucleobase specifically show a distinct chirality development with a dissymmetric factor up to g ~ 0.04 at visible wavelength, whereas other nucleobases show no development of chirality. The synthesized nanoparticle shows a counter-clockwise rotation of generated chiral arms with approximately 200 nm edge length. The molecular dynamics and density functional theory simulations reveal that Adenine shows the highest enantioselective interaction with Au(321)R/S facet in terms of binding orientation and affinity. This is attributed to the formation of sequence-specific intra-strand hydrogen bonding between nucleobases. We also found that different sequence programming of Adenine-and Cytosine-based oligomers result in chiral gold nanoparticles' morphological and optical change. These results extend our understanding of the biomolecule-directed synthesis of chiral gold nanoparticles to sequence programmable deoxyribonucleic acid and provides a foundation for programmable synthesis of chiral gold nanoparticles.
Collapse
Affiliation(s)
- Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Bi Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yoon Young Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Won Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Won Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
44
|
Shin J, Naskar A, Ko D, Kim S, Kim KS. Bioconjugated Thymol-Zinc Oxide Nanocomposite as a Selective and Biocompatible Antibacterial Agent against Staphylococcus Species. Int J Mol Sci 2022; 23:6770. [PMID: 35743214 PMCID: PMC9224476 DOI: 10.3390/ijms23126770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Owing to the rapid spread of antibiotic resistance among Staphylococcus species, effective and low-risk alternatives to antibiotics are being actively searched. Thymol (THO), the most abundant component of the oil extracted from thyme, can be considered as a natural antibacterial alternative. However, the low antibacterial activity and non-selectivity of THO limit its usage as a universal anti-Staphylococcus agent. Herein, we report the bioconjugation of THO with ZnO nanoparticle (ZO), which resulted in the TZ nanocomposite (NC), as a potent and selective antibacterial agent against Staphylococcus species, particularly S. epidermidis. The cell-free supernatant (CFS) of ATCC 25923 cultures was employed for the production of TZ NC. Successful production of TZ NC was confirmed via X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-Vis) studies. TZ NC had selective efficacy against Staphylococcus species, with MIC values 2-32-fold lower than THO. The antibacterial mechanisms of TZ NC are proposed to involve membrane rupture, suppression of biofilm formation, and modulation of new cell wall and protein-synthesis-associated cellular pathways. Its biocompatibility against HCT116 cells was also checked. Our findings suggest that the TZ nanocomposite could improve the selectivity and bactericidal activity of THO against target species.
Collapse
Affiliation(s)
- Joonho Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (J.S.); (A.N.)
| | - Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (J.S.); (A.N.)
| | - Dongjoon Ko
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (D.K.); (S.K.)
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (D.K.); (S.K.)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (J.S.); (A.N.)
| |
Collapse
|
45
|
Kim Y, Jung HJ, Lee Y, Koo S, Thangam R, Jang WY, Kim SY, Park S, Lee S, Bae G, Patel KD, Wei Q, Lee KB, Paulmurugan R, Jeong WK, Hyeon T, Kim D, Kang H. Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages. J Am Chem Soc 2022; 144:5769-5783. [PMID: 35275625 DOI: 10.1021/jacs.1c08861] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptor-ligand interactions in cells are dynamically regulated by modulation of the ligand accessibility. In this study, we utilize size-tunable magnetic nanoparticle aggregates ordered at both nanometer and atomic scales. We flexibly anchor magnetic nanoparticle aggregates of tunable sizes over the cell-adhesive RGD ligand (Arg-Gly-Asp)-active material surface while maintaining the density of dispersed ligands accessible to macrophages at constant. Lowering the accessible ligand dispersity by increasing the aggregate size at constant accessible ligand density facilitates the binding of integrin receptors to the accessible ligands, which promotes the adhesion of macrophages. In high ligand dispersity, distant magnetic manipulation to lift the aggregates (which increases ligand accessibility) stimulates the binding of integrin receptors to the accessible ligands available under the aggregates to augment macrophage adhesion-mediated pro-healing polarization both in vitro and in vivo. In low ligand dispersity, distant control to drop the aggregates (which decreases ligand accessibility) repels integrin receptors away from the aggregates, thereby suppressing integrin receptor-ligand binding and macrophage adhesion, which promotes inflammatory polarization. Here, we present "accessible ligand dispersity" as a novel fundamental parameter that regulates receptor-ligand binding, which can be reversibly manipulated by increasing and decreasing the ligand accessibility. Limitless tuning of nanoparticle aggregate dimensions and morphology can offer further insight into the regulation of receptor-ligand binding in host cells.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Yunjung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Seong Yeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sangwoo Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kapil Dev Patel
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Woong Kyo Jeong
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
46
|
Lv H, Wang T, Ma F, Zhang K, Gao T, Pei R, Zhang Y. Aptamer-functionalized targeted siRNA delivery system for tumor immunotherapy. Biomed Mater 2022; 17. [PMID: 35147520 DOI: 10.1088/1748-605x/ac5415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
Abstract
Programmed death ligand 1 (PD-L1) overexpressed on the surface of tumor cells is one of the reasons for tumor immune escape. Reducing PD-L1 expression has been proved to be an effective strategy to facilitate immune system activation and inhibit tumor progression. RNA interference (RNAi) is a promising technology for gene regulation in tumor therapy. In this study, we constructed a targeted siRNA delivery system NPs@apt to transfect PD-L1 siRNA into human non-small-cell lung carcinoma cell line (A549) for inhibiting tumor immune evasion. NPs@apt was prepared by compressing PD-L1 siRNA with cationic Lipofectamine 2000, fusing with erythrocyte membrane-derived nanovesicles, and further modifying with targeting AS1411 aptamer. The introduction of erythrocyte membrane endowed the siRNA delivery system with lower cytotoxicity and the ability to escape from the phagocytosis of macrophages. The stability of NPs@apt and the protection to loaded siRNA were confirmed.In vitrostudies after NPs@apt treatment demonstrated that PD-L1 siRNA was selectively delivered into A549 cells, and further resulted in PD-L1 gene knockdown, T cell activation and tumor cell growth inhibition. This study offered an alternative strategy for specific siRNA transfection for improving anti-tumor immunity.
Collapse
Affiliation(s)
- Haiyin Lv
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Tengfei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Fanshu Ma
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| | - Tian Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
47
|
Rama P, Abbas Z. The influence of silica nanoparticle geometry on the interfacial interactions of organic molecules: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:3713-3721. [PMID: 35080551 DOI: 10.1039/d1cp04315c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of nanoparticle shape in the interaction and adsorption of organic molecules on the particle surface is an unexplored area. On the other hand, such knowledge is not only vital for a basic understanding of organic molecule interaction with nanoparticle surfaces but also essential for evaluating the cellular uptake of nanoparticles for living organisms. The current study investigates the role of silica nanoparticle shape in the interactions of phthalic acid organic molecules by using molecular dynamics simulations. Silica nanoparticles of two different geometries namely spheroid and cuboid with varying charge densities along with protonated and deprotonated phthalic acid molecules are studied. The adsorption characteristics of phthalic acid molecules on these nanoparticles have been analysed under different aquatic environments. The interactions of phthalic acid molecules, water molecules and ions were found to be different for spheroid and cubic shaped particles at pH values of 2-3, 7 and 9-10. The interaction of phthalic acid molecules with cubical silica nanoparticles is enhanced compared to the spherical shape particles. Such an enhanced interaction was seen when the silica surface is neutral, pH 2-3 and when the silica surface is charged at pH 7 and pH 9-10 in the presence of 0.5 M NaCl electrolyte. The cuboid-shaped silica also exhibited more hydrophilicity and less negative surface potential compared to spheroid shaped particles at pH 9-10. This is due to the enhanced condensation of Na+ counter-ions at the cuboid nanoparticle solution interface as to the interface of spheroid particles, which is well in agreement with Manning's theory of counter-ion condensation. Simulation results presented in this study indicate that the shape of the silica nanoparticle has significant influence on the interaction of water molecules, counter-ions and organic molecules which consequently determine the adsorption behaviour of organic molecules on the nanoparticle surface.
Collapse
Affiliation(s)
- Prasad Rama
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg - 41125, Sweden.
| | - Zareen Abbas
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg - 41125, Sweden.
| |
Collapse
|
48
|
Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology 2022; 20:57. [PMID: 35101048 PMCID: PMC8805415 DOI: 10.1186/s12951-022-01240-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Targeted cancer therapy has become one of the most important medical methods because of the spreading and metastatic nature of cancer. Based on the introduction of AS1411 and its four-chain structure, this paper reviews the research progress in cancer detection and drug delivery systems by modifying AS1411 aptamers based on graphene, mesoporous silica, silver and gold. The application of AS1411 in cancer treatment and drug delivery and the use of AS1411 as a targeting agent for the detection of cancer markers such as nucleoli were summarized from three aspects of active targeting, passive targeting and targeted nucleic acid apharmers. Although AS1411 has been withdrawn from clinical trials, the research surrounding its structural optimization is still very popular. Further progress has been made in the modification of nanoparticles loaded with TCM extracts by AS1411.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| | - Yong Wang
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
49
|
Surendra D, Chamaraja N, Godipurge S, Yallappa S. Synthesis and functionalization of silver ferrite (AgFe2O3) nanoparticles with l-methionine: In vivo toxicity studies against Drosophila melanogaster (Diptera: Drosophilidae). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
Critical parameters for design and development of multivalent nanoconstructs: recent trends. Drug Deliv Transl Res 2022; 12:2335-2358. [PMID: 35013982 PMCID: PMC8747862 DOI: 10.1007/s13346-021-01103-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
A century ago, the groundbreaking concept of the magic bullet was given by Paul Ehrlich. Since then, this concept has been extensively explored in various forms to date. The concept of multivalency is among such advancements of the magic bullet concept. Biologically, the concept of multivalency plays a critical role in significantly huge numbers of biochemical interactions. This concept is the sole reason behind the higher affinity of biological molecules like viruses to more selectively target the host cell surface receptors. Multivalent nanoconstructs are a promising approach for drug delivery by the active targeting principle. Designing and developing effective and target-specific multivalent drug delivery nanoconstructs, on the other hand, remain a challenge. The underlying reason for this is a lack of understanding of the crucial interactions between ligands and cell surface receptors, as well as the design of nanoconstructs. This review highlights the need for a better theoretical understanding of the multivalent effect of what happens to the receptor-ligand complex after it has been established. Furthermore, the critical parameters for designing and developing robust multivalent systems have been emphasized. We have also discussed current advances in the design and development of multivalent nanoconstructs for drug delivery. We believe that a thorough knowledge of theoretical concepts and experimental methodologies may transform a brilliant idea into clinical translation.
Collapse
|