1
|
Berekute AK, Wang AY, Lin KY, Siregar S, Yu KP. A novel MOF-on-MOF-derived carbon-encapsulated CeO 2/Co/Co 3O 4 humidity-resistant heterojunction with abundant oxygen vacancies for efficient ozone removal. ENVIRONMENTAL RESEARCH 2025; 268:120775. [PMID: 39778617 DOI: 10.1016/j.envres.2025.120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Ground-level ozone (O3) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites. This paper presents a carbon-supported CeO2/Co/Co3O4 humidity-resistant heterojunction derived from a bimetallic-organic framework (Ce-BTC/Co-ZIF-67 precursor) via hydrothermal-carbonization. Instrumental characterization confirmed the successful construction of the heterojunction. The O3 removal efficiency was evaluated at the ppb level under different relative humidity conditions (RH = 0%, 50%, and 75%) at a weight hourly space velocity (WHSV) of 10,000 L g-1 h-1 and ambient temperature. The carbon-supported 20 wt% CeO2/Co/Co3O4 composite demonstrated 99 ± 0.2% O3 removal and a high reaction rate of 1.1 ± 0.06 μg.gcat-1.sec-1 for 200 ppb O3 under an RH of 50% at ambient temperature. The O3 removal rate remained at approximately 92 ± 1.2%, even in harsh environments (75% RH), indicating excellent stability and strong moisture-resistance. Oxygen vacancies and defect structures are crucial for O3 adsorption and activation processes. The optimal catalyst exhibited greater electron mobility and redox ability than the pristine materials, as confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) analyses. Furthermore, the as-synthesized catalyst is both recyclable and stable, making it suitable for practical applications. This research offers a new strategy for the fabrication of highly moisture-resistant MOF-derived heterojunctions, which will greatly facilitate the elimination of ground-level O3 in real indoor environments.
Collapse
Affiliation(s)
- Abiyu Kerebo Berekute
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan; Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | - An-Yu Wang
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan
| | - Kun-Yi Lin
- Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan.
| | | | - Kuo-Pin Yu
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
2
|
Oyama ST, Lee YK. Use of In Situ X-ray Absorption to Probe Reactivity: A Catalysis Golden Rule. J Am Chem Soc 2025; 147:1875-1883. [PMID: 39722563 DOI: 10.1021/jacs.4c14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The decomposition of ozone on supported manganese oxide catalysts, studied here, exemplifies reactions involving electron transfer. In situ extended X-ray absorption fine-structure spectra (Mn K-edge) on in situ treated samples show that the supported phase in MnOx/SiO2 resembles Mn3O4 while that in MnOx/Al2O3 samples resembles MnO2. In situ Raman spectroscopy shows the involvement of a common peroxide surface species. Kinetic data indicate a nonuniform surface and a rate-determining step (rds) involving electron transfer from the peroxide intermediate. The activation energy for all the catalysts is the same, indicating that the pre-exponential factor controls the rate. This can be associated with the electronic partition function (unoccupied density of states (DOS)), and X-ray absorption near-edge spectroscopy duly shows that the areas of the pre-edge peaks due to 1s to 3d transitions track the reactivity trends. The relation to the unoccupied DOS is analogous to Fermi's Golden Rule for electronic transitions, and we denote the finding here, applicable to reactions involving electron transfer, as a Catalysis Golden Rule.
Collapse
Affiliation(s)
- S Ted Oyama
- Department of Chemical Systems Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yong-Kul Lee
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemical Engineering, Dankook University, Yongin 16890, South Korea
| |
Collapse
|
3
|
Ma J, Hu Z, Guo W, Ni C, Li P, Chen B, Chen S, Wang J, Guo Y. Mechanism for airborne ozone decomposition on X-MIL-53(Fe) (X = H, NH 2, NO 2). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135849. [PMID: 39298962 DOI: 10.1016/j.jhazmat.2024.135849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Ground-level ozone (O3) pollution poses a significant threat to both ecosystem sustainability and human health. The catalytic decomposition of O3 presents as a promising technology to address the issues of O3 pollution. This study undertook the synthesis of various functionalized metal-organic framework (MOF) catalysts (i.e., X-MIL-53(Fe) (X = H, NH2, NO3)) to delve into the influence of ligand functional groups on skeletal structure and catalytic efficacy, particularly focusing on unraveling the mechanism of O3 catalytic decomposition under humid conditions. NH2-MIL-53(Fe) catalyst achieved complete O3 decomposition under ambient temperature and high humidity conditions (RH=75 %), exhibiting a reaction rates (mol·m-2·s-1) 129 and 10.5 times greater than that of MIL-53(Fe) and NO2-MIL-53(Fe). The NH2 group promotes electron flow within the backbone towards the hydroxyl group (OH) linked to Fe atom. In humid O3, H2O molecules augment the interaction between O3 and NH2-MIL-53(Fe), and OH is converted to·O2- after deprotonation, promoting O3 decomposition. Additionally, leveraging three-dimensional (3D) printing technology, a monolithic catalyst for O3 decomposition was prepared for application. This study not only advances understanding of the mechanisms underlying O3 decomposition but also offers practical solutions for addressing O3 pollution at humid conditions.
Collapse
Affiliation(s)
- Jiami Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, PR China; Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China
| | - Zhixin Hu
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China
| | - Weihong Guo
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, PR China
| | - Cheng Ni
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, PR China
| | - Pan Li
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, PR China
| | - Bosheng Chen
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China
| | - Songhua Chen
- College of Chemistry and Material, Longyan University, Longyan 364000, PR China.
| | - Jinlong Wang
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, PR China.
| | - Yanbing Guo
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Central China Normal University, Wuhan 430079, PR China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, PR China.
| |
Collapse
|
4
|
Wang K, Tao ZP, Chu JQ, Wang SM, Han ZB. Investigation into the Internal Factors for the Catalytic Oxidation of Cyclohexane by Zr(IV)-Based Metal-Organic Frameworks. Polymers (Basel) 2024; 16:3114. [PMID: 39599205 PMCID: PMC11598140 DOI: 10.3390/polym16223114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Three porous Zr(IV)-based MOFs, UiO-66, MOF-808 and MOF-802, were selected to catalyze cyclohexane oxidation in order to reveal the intrinsic factors of the active site and catalytic performance. It was found that reducing the number of Zr6O8 ligand linkages could improve the catalytic efficiency of cyclohexane oxidation. The main reason for this is the different enrichment abilities of MOFs with different linkage numbers for cyclohexane, which was confirmed by the TPD of cyclohexane and also by GCMC simulations. Meanwhile, the catalytic effect of MOF-802 was lower than expected due to its low porosity and narrow inner pore size. The by-products were identified in detail by GC-MS, providing evidence for this catalytic mechanism. In addition, the potential of this catalyst for industrial applications in cyclohexane oxidation was demonstrated by optimizing the catalytic conditions.
Collapse
Affiliation(s)
- Kechao Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China; (K.W.); (Z.-P.T.); (J.-Q.C.)
| | - Zhi-Peng Tao
- College of Chemistry, Liaoning University, Shenyang 110036, China; (K.W.); (Z.-P.T.); (J.-Q.C.)
| | - Jia-Qi Chu
- College of Chemistry, Liaoning University, Shenyang 110036, China; (K.W.); (Z.-P.T.); (J.-Q.C.)
| | - Shi-Ming Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, China; (K.W.); (Z.-P.T.); (J.-Q.C.)
| |
Collapse
|
5
|
Zhang M, Wang Z, Li T, Zhang S, Zhong Q. Synthesis Ag-Hollandite by mild route for highly efficient ozone decomposition. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135388. [PMID: 39094308 DOI: 10.1016/j.jhazmat.2024.135388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Catalytic ozone (O3) decomposition is a promising technology for curbing indoor O3 pollution, whereas its application is limited by the stability and moisture resistance of heterogeneous catalysts. Ag-Hollandite is a capable solution, but its facile synthesis still lacks systematic investigation. In this study, Ag-Hollandite catalysts were prepared using AgMnO4 as the precursor by reflux (AMO-Re), hydrothermal (AMO-HT), and homogeneous (AMO-HR) methods, respectively. The as-prepared samples showed excellent stability under moisture conditions, with the optimal one maintaining an O3 conversion rate of 99.19 % after 100 h. In the characterization results, Ramsdellite (R-MnO2) was identified as an intermediate species in the synthesis. AMO-HR exhibits higher activity due to enhanced active site exposure and weakened adsorption towards *OO species, while reduced surface hydroxyl content was a crucial factor for moisture resistance. This study aims to contribute insights for preparing catalysts by a facile method.
Collapse
Affiliation(s)
- Mingjia Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhongyu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ting Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shule Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
6
|
Qu W, Tang Z, Wen H, Tang S, Lian Q, Zhao H, Tian S, Shu D, He C. Optimization of Carbon-Defect Engineering to Boost Catalytic Ozonation Efficiency of Single Fe─N 4 Coordination Motif. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311879. [PMID: 38461527 DOI: 10.1002/smll.202311879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Carbon-defect engineering in single-atom metal-nitrogen-carbon (M─N─C) catalysts by straightforward and robust strategy, enhancing their catalytic activity for volatile organic compounds, and uncovering the carbon vacancy-catalytic activity relationship are meaningful but challenging. In this study, an iron-nitrogen-carbon (Fe─N─C) catalyst is intentionally designed through a carbon-thermal-diffusion strategy, exposing extensively the carbon-defective Fe─N4 sites within a micro-mesoporous carbon matrix. The optimization of Fe─N4 sites results in exceptional catalytic ozonation efficiency, surpassing that of intact Fe─N4 sites and commercial MnO2 by 10 and 312 times, respectively. Theoretical calculations and experimental data demonstrated that carbon-defect engineering induces selective cleavage of C─N bond neighboring the Fe─N4 motif. This induces an increase in non-uniform charges and Fermi density, leading to elevated energy levels at the center of Fe d-band. Compared to the intact atomic configuration, carbon-defective Fe─N4 site is more activated to strengthen the interaction with O3 and weaken the O─O bond, thereby reducing the barriers for highly active surface atomic oxygen (*O/*OO), ultimately achieving efficient oxidation of CH3SH and its intermediates. This research not only offers a viable approach to enhance the catalytic ozonation activity of M─N─C but also advances the fundamental comprehension of how periphery carbon environment influences the characteristics and efficacy of M─N4 sites.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hailin Wen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Su Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
7
|
Ma J, Guo W, Ni C, Chen X, Li W, Zheng J, Chen W, Luo Z, Wang J, Guo Y. Graphitized Carbon-Supported Co@Co 3O 4 for Ozone Decomposition over the Entire Humidity Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12189-12200. [PMID: 38838084 DOI: 10.1021/acs.est.4c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Ground-level ozone (O3) pollution has emerged as a significant concern due to its detrimental effects on human health and the ecosystem. Catalytic removal of O3 has proven to be the most efficient and cost-effective method. However, its practical application faces substantial challenges, particularly in relation to its effectiveness across the entire humidity range. Herein, we proposed a novel strategy termed "dual active sites" by employing graphitized carbon-loaded core-shell cobalt catalysts (Co@Co3O4-C). Co@Co3O4-C was synthesized via the pyrolysis of a Co-organic ligand as the precursor. By utilizing this approach, we achieved a nearly constant 100% working efficiency of the Co@Co3O4-C catalyst for catalyzing O3 decomposition across the entire humidity range. Physicochemical characterization coupled with density functional theory calculations elucidates that the presence of encapsulated metallic Co nanoparticles enhances the reactivity of the cobalt oxide capping layer. Additionally, the interface carbon atom, strongly influenced by adjacent metallic Co nuclei, functions as a secondary active site for the decomposition of O3 decomposition. The utilization of dual active sites effectively mitigates the competitive adsorption of H2O molecules, thus isolating them for adsorption in the cobalt oxide capping layer. This optimized configuration allows for the decomposition of O3 without interference from moisture. Furthermore, O3 decomposition monolithic catalysts were synthesized using a material extrusion-based three-dimensional (3D) printing technology, which demonstrated a low pressure drop and exceptional mechanical strength. This work provides a "dual active site" strategy for the O3 decomposition reaction, realizing O3 catalytic decomposition over the entire humidity range.
Collapse
Affiliation(s)
- Jiami Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Weihong Guo
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Cheng Ni
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiaoping Chen
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Weihao Li
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Juan Zheng
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Wei Chen
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhu Luo
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Jinlong Wang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| | - Yanbing Guo
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
8
|
Dai W, Zhang B, Ji J, Zhu T, Liu B, Gan Y, Xiao F, Zhang J, Huang H. Efficient Ozone Elimination Over MnO 2 via Double Moisture-Resistance Protection of Active Carbon and CeO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12091-12100. [PMID: 38916160 DOI: 10.1021/acs.est.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The widespread ozone (O3) pollution is extremely hazardous to human health and ecosystems. Catalytic decomposition into O2 is the most promising method to eliminate ambient O3, while the fast deactivation of catalysts under humid conditions remains the primary challenge for their application. Herein, we elaborately developed a splendidly active and stable Mn-based catalyst with double hydrophobic protection of active carbon (AC) and CeO2 (CeMn@AC), which possessed abundant interfacial oxygen vacancies and excellent desorption of peroxide intermediates (O22-). Under extremely humid (RH = 90%) conditions and a high space velocity of 1200 L h-1 g-1, the optimized CeMn@AC achieved nearly 100% O3 conversion (140 h) at 5 ppm, showing unprecedented catalytic activity and moisture resistance toward O3 decomposition. In situ DRIFTS and theory calculations confirmed that the exceptional moisture resistance of CeMn@AC was ascribed to the double protection effect of AC and CeO2, which cooperatively prevented the competitive adsorption of H2O molecules and their accumulation on the active sites of MnO2. AC provided a hydrophobic reaction environment, and CeO2 further alleviated moisture deterioration of the MnO2 particles exposed on the catalyst surface via the moisture-resistant oxygen vacancies of MnO2-CeO2 crystal boundaries. This work offers a simple and efficient strategy for designing moisture-resistant materials and facilitates the practical application of the O3 decomposition catalysts in various environments.
Collapse
Affiliation(s)
- Wenjing Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Ji
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Tianle Zhu
- School of Space and Environment, Beihang Universtiy, Beijing 100191, China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanling Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiarui Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Li J, Ma Y, Li F, Zeng Z, Zhu H, Wang C, Wang L, Li K, Wang X, Ning P, Wang F. Stable O 3 Decomposition by Layered Double Hydroxides: The Pivotal Role of NiOOH Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10696-10705. [PMID: 38845125 DOI: 10.1021/acs.est.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Because ozone (O3) is a significant air pollutant, advanced O3 elimination technologies, particularly those under high-humidity conditions, have become an essential research focus. In this study, a nickel-iron layered double hydroxide (NiFe-LDH) was modified via intercalation with octanoate to develop an effective hydrophobic catalyst (NiFe-OAa-LDH) for O3 decomposition. The NiFe-OAa-LDH catalyst sustained its O3 decomposition rate of >98% for 48 h under conditions of 90% relative humidity, 840 L/(g·h) space velocity, and 100 ppm inlet O3 concentration. Moreover, it maintained a decomposition rate of 90% even when tested at a higher airflow rate of 2500 L/(g·h). Based on the changes induced by the Ni-OII to Ni-OIII bonds in NiFe-OAa-LDH during O3 treatment, catalytic O3 decomposition was proposed to occur in two stages. The first stage involved the reaction between the hydroxyl groups and O3, leading to the breakage of the O-H bonds, formation of NiOOH, and structural changes in the catalyst. This transformation resulted in the formation of abundant and stable hydrogen vacancies. According to density functional theory calculations, O3 can be effectively decomposed at the hydrogen vacancies with a low energy barrier during the second stage. This study provides new insights into O3 decomposition.
Collapse
Affiliation(s)
- Jiaqi Li
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yixing Ma
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Fengyu Li
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ziruo Zeng
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Hengxi Zhu
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Chunxue Wang
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Langlang Wang
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Kai Li
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xueqian Wang
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ping Ning
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Fei Wang
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
10
|
Liu H, Wang S, Huang M, Bian Q, Zhang Y, Yang K, Li B, Yao W, Zhou Y, Xie S, Tang BZ, Zeng Z. A Photoelectromagnetic 3D Metal-Organic Framework from Flexible Tetraarylethylene-Backboned Ligand and Dynamic Copper-Based Coordination Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306956. [PMID: 38100256 DOI: 10.1002/smll.202306956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Porous frameworks that display dynamic responsiveness are of interest in the fields of smart materials, information technology, etc. In this work, a novel copper-based dynamic metal-organic framework [Cu3TTBPE6(H2O)2] (H4TTBPE = 1,1,2,2-tetrakis(4″-(1H-tetrazol-5-yl)-[1,1″-biphenyl]-4-yl)ethane), denoted as HNU-1, is reported which exhibits modulable photoelectromagnetic properties. Due to the synergetic effect of flexible tetraarylethylene-backboned ligands and diverse copper-tetrazole coordination chemistries, a complex 3D tunneling network is established in this MOF by the layer-by-layer staggered assembly of triplicate monolayers, showing a porosity of 59%. These features further make it possible to achieve dynamic transitions, in which the aggregate-state MOF can be transferred to different structural states by changing the chemical environment or upon heating while displaying sensitive responsiveness in terms of light absorption, photoluminescence, and magnetic properties.
Collapse
Affiliation(s)
- Haohao Liu
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuodong Wang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengfan Huang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qilong Bian
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kun Yang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Wenhuan Yao
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- AIE Institute, Guangzhou Development District, Huangpu, 510530, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
11
|
Qu W, Tang Z, Tang S, Zhong T, Zhao H, Tian S, Shu D, He C. Precisely constructing orbital coupling-modulated iron dinuclear site for enhanced catalytic ozonation performance. Proc Natl Acad Sci U S A 2024; 121:e2319119121. [PMID: 38588435 PMCID: PMC11032441 DOI: 10.1073/pnas.2319119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
The advancement of atomically precise dinuclear heterogeneous catalysts holds great potential in achieving efficient catalytic ozonation performance and contributes to the understanding of synergy mechanisms during reaction conditions. Herein, we demonstrate a "ship-in-a-bottle and pyrolysis" strategy that utilizes Fe2(CO)9 dinuclear-cluster to precisely construct Fe2 site, consisting of two Fe1-N3 units connected by Fe-Fe bonds and firmly bonded to N-doped carbon. Systematic characterizations and theoretical modeling reveal that the Fe-Fe coordination motif markedly reduced the devotion of the antibonding state in the Fe-O bond because of the strong orbital coupling interaction of dual Fe d-d orbitals. This facilitates O-O covalent bond cleavage of O3 and enhances binding strength with reaction intermediates (atomic oxygen species; *O and *OO), thus boosting catalytic ozonation performance. As a result, Fe dinuclear site catalyst exhibits 100% ozonation efficiency for CH3SH elimination, outperforming commercial MnO2 catalysts by 1,200-fold. This research provides insights into the atomic-level structure-activity relationship of ozonation catalysts and extends the use of dinuclear catalysts in catalytic ozonation and beyond.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Su Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
12
|
Zhang M, Zhang S, Wang Z, Hu J, Lian Z, Zhong Q. Enhanced water resistance mechanism in Ag-Hollandite for catalytic ozone decomposition. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133481. [PMID: 38219590 DOI: 10.1016/j.jhazmat.2024.133481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Catalytic ozone (O3) decomposition at ambient temperature is an efficient method to mitigate O3 pollution. However, practical application is hindered by the poor water resistance of catalysts. Herein, Ag-Hollandite (Ag-HMO) with varying Ag+ content was synthesized. Catalysts with more Ag+ exhibited improved efficiency and water-resistance, with the optimal one maintaining 98% O3 conversion at 70% relative humidity (RH) within 8 h. Physicochemical characterizations revealed that Ag+ had entered the tunnel of OMS-2, facilitating oxygen species removal. Notably, enhanced H2O desorption and the complete inhibition of chemisorbed water formation on Ag-HMO were the primary reasons for its high-efficiency O3 conversion across a wide humidity range. The underlying mechanism arises from the charge redistribution induced by the Ag-O interaction within the tunnel, which reduces acidity and modulates hydrophilicity. This study aims to contribute insights for designing catalysts with higher water-resistance.
Collapse
Affiliation(s)
- Mingjia Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shule Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Zimai Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jiajun Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zheng Lian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
13
|
Dai W, Zhang B, Ji J, Liu B, Xie R, Gan Y, Xie X, Zhang J, Huang P, Huang H. Exceptional Ozone Decomposition over δ-MnO 2/AC under an Entire Humidity Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17727-17736. [PMID: 36862670 DOI: 10.1021/acs.est.3c00717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ozone (O3) pollution is highly detrimental to human health and the ecosystem due to it being ubiquitous in ambient air and industrial processes. Catalytic decomposition is the most efficient technology for O3 elimination, while the moisture-induced low stability represents the major challenge for its practical applications. Here, activated carbon (AC) supported δ-MnO2 (Mn/AC-A) was facilely synthesized via mild redox in an oxidizing atmosphere to obtain exceptional O3 decomposition capacity. The optimal 5Mn/AC-A achieved nearly 100% of O3 decomposition at a high space velocity (1200 L g-1 h-1) and remained extremely stable under entire humidity conditions. The functionalized AC provided well-designed protection sites to inhibit the accumulation of water on δ-MnO2. Density functional theory (DFT) calculations confirmed that the abundant oxygen vacancies and a low desorption energy of intermediate peroxide (O22-) can significantly boost O3 decomposition activity. Moreover, a kilo-scale 5Mn/AC-A with low cost (∼1.5 $/kg) was used for the O3 decomposition in practical applications, which could quickly decompose O3 pollution to a safety level below 100 μg m-3. This work offers a simple strategy for the development of moisture-resistant and inexpensive catalysts and greatly promotes the practical application of ambient O3 elimination.
Collapse
Affiliation(s)
- Wenjing Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Ji
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanling Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiarui Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Pingli Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Ma D, Lian Q, Zhang Y, Huang Y, Guan X, Liang Q, He C, Xia D, Liu S, Yu J. Catalytic ozonation mechanism over M 1-N 3C 1 active sites. Nat Commun 2023; 14:7011. [PMID: 37919306 PMCID: PMC10622452 DOI: 10.1038/s41467-023-42853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The structure-activity relationship in catalytic ozonation remains unclear, hindering the understanding of activity origins. Here, we report activity trends in catalytic ozonation using a series of single-atom catalysts with well-defined M1-N3C1 (M: manganese, ferrum, cobalt, and nickel) active sites. The M1-N3C1 units induce locally polarized M - C bonds to capture ozone molecules onto M atoms and serve as electron shuttles for catalytic ozonation, exhibiting excellent catalytic activities (at least 527 times higher than commercial manganese dioxide). The combined in situ characterization and theoretical calculations reveal single metal atom-dependent catalytic activity, with surface atomic oxygen reactivity identified as a descriptor for the structure-activity relationship in catalytic ozonation. Additionally, the dissociation barrier of surface peroxide species is proposed as a descriptor for the structure-activity relationship in ozone decomposition. These findings provide guidelines for designing high-performance catalytic ozonation catalysts and enhance the atomic-level mechanistic understanding of the integral control of ozone and methyl mercaptan.
Collapse
Affiliation(s)
- Dingren Ma
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yexing Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yajing Huang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinyi Guan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiwen Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shengwei Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, China.
| |
Collapse
|
15
|
Pu S, Song H, Zhang L, Su Y, Liu R, Lv Y. Controllable Synthesis of Defective UiO-66 for Efficient Degradation and Detection of Ozone. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49920-49930. [PMID: 37819026 DOI: 10.1021/acsami.3c13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Metal-organic framework (MOF) structures have gained significant attention for their exceptional catalytic performance in ozone degradation, even under high humidity conditions, which is attributed to the presence of unsaturated metal sites (MOF defects). However, the correlation between MOF defects and catalytic ozone remains ambiguous, and a general approach for the controllable synthesis of high-performance MOF structures is currently lacking. Herein, different defective UiO-66 materials with cluster or ligand defects were obtained by precisely controlling small molecular acid modulators. Their catalytic performance can be analyzed in real time through the specific cataluminescence (CTL) signal of ozone at the interface. The presence of ligand defects was found to be crucial for both catalytic degradation and luminescence of ozone, and the CTL signal exhibited a positive correlation with the endogenous hydroxyl group content in the material (R2 = 0.982), while external humidity further supplemented internal water molecules within the material. Furthermore, theoretical calculations were conducted to compare the adsorption behaviors of ozone on the defective UiO-66 under dry/wet conditions, leading to the proposal of two potential reaction pathways. Subsequently, UiO-66-DA with superior catalytic performance was employed to develop a highly efficient CTL sensor capable of accurately detecting ozone (LOD = 23.3 ppb). This study held significant value in elucidating the reaction site of ozone on MOFs and achieving optimal catalytic effects through the careful selection of modulators and humidity levels.
Collapse
Affiliation(s)
- Sirui Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
16
|
Zhu Y, Yang L, Ma J, Fang Y, Yang J, Chen X, Zheng J, Zhang S, Chen W, Pan C, Zhang B, Qiu X, Luo Z, Wang J, Guo Y. Rapid Ozone Decomposition over Water-activated Monolithic MoO 3 /Graphdiyne Nanowalls under High Humidity. Angew Chem Int Ed Engl 2023; 62:e202309158. [PMID: 37496398 DOI: 10.1002/anie.202309158] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Catalytic ozone (O3 ) decomposition at high relative humidity (RH) remains a great challenge due to the catalysts poison and deactivation under high humidity. Here, we firstly elaborate the role of water activation and the corresponding mechanism of the promoted O3 decomposition over the three-dimensional monolithic molybdenum oxide/graphdiyne (MoO3 /GDY) catalyst. The O3 decomposition over MoO3 /GDY reaches up to 100 % under high humid condition (75 % RH) at room temperature, which is 4.0 times as high as that of dry conditions, significantly surpasses other carbon-based MoO3 materials(≤7.1 %). The sp-hybridized carbon in GDY donates electrons to MoO3 along the C-O-Mo bond, facilitating water activation to form hydroxyl species. As a result, hydroxyl species dissociated from water act as new active sites, promoting the adsorption of O3 and the generation of new intermediate species (hydroxyl ⋅OH and superoxo ⋅O2 - ), which significantly lowers the energy barriers of O3 decomposition (0.57 eV lower than dry conditions).
Collapse
Affiliation(s)
- Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Leyi Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Jiami Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Xiaoping Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Juan Zheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Shuhong Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Wei Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Baojian Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Xiaofeng Qiu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430082, P. R. China
| | - Jinlong Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430082, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430082, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430082, P. R. China
| |
Collapse
|
17
|
Qu W, Luo M, Tang Z, Zhong T, Zhao H, Hu L, Xia D, Tian S, Shu D, He C. Accelerated Catalytic Ozonation in a Mesoporous Carbon-Supported Atomic Fe-N 4 Sites Nanoreactor: Confinement Effect and Resistance to Poisoning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13205-13216. [PMID: 37487235 DOI: 10.1021/acs.est.2c08101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The design of a micro-/nanoreactor is of great significance for catalytic ozonation, which can achieve effective mass transfer and expose powerful reaction species. Herein, the mesoporous carbon with atomic Fe-N4 sites embedded in the ordered carbon nanochannels (Fe-N4/CMK-3) was synthesized by the hard-template method. Fe-N4/CMK-3 can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the internal catalytic ozonation of CH3SH. During the CH3SH oxidation process, the mass transfer coefficient of the Fe-N4/CMK-3 confined system with sufficient O3 transfer featured a level of at least 1.87 × 10-5, which is 34.6 times that of the Fe-N4/C-Si unconfined system. Detailed experimental studies and theoretical calculations demonstrated that the anchored atomic Fe-N4 sites and nanoconfinement effects regulated the local electronic structure of the catalyst and promoted the activation of O3 molecules to produce atomic oxygen species (AOS) and reactive oxygen species (ROS), eventually achieving efficient oxidation of CH3SH into CO2/SO42-. Benefiting from the high diffusion rate and the augmentation of AOS/ROS, Fe-N4/CMK-3 exhibited an excellent poisoning tolerance, along with high catalytic durability. This contribution provides the proof-of-concept strategy for accelerating catalytic ozonation of sulfur-containing volatile organic compounds (VOCs) by combining confined catalysis and atomic catalysts and can be extended to the purification of other gaseous pollutants.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Manhui Luo
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
18
|
Obeso JL, Flores JG, Flores CV, Huxley MT, de Los Reyes JA, Peralta RA, Ibarra IA, Leyva C. MOF-based catalysts: insights into the chemical transformation of greenhouse and toxic gases. Chem Commun (Camb) 2023; 59:10226-10242. [PMID: 37554029 DOI: 10.1039/d3cc03148a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Metal-organic framework (MOF)-based catalysts are outstanding alternative materials for the chemical transformation of greenhouse and toxic gases into high-add-value products. MOF catalysts exhibit remarkable properties to host different active sites. The combination of catalytic properties of MOFs is mentioned in order to understand their application. Furthermore, the main catalytic reactions, which involve the chemical transformation of CH4, CO2, NOx, fluorinated gases, O3, CO, VOCs, and H2S, are highlighted. The main active centers and reaction conditions for these reactions are presented and discussed to understand the reaction mechanisms. Interestingly, implementing MOF materials as catalysts for toxic gas-phase reactions is a great opportunity to provide new alternatives to enhance the air quality of our planet.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Michael T Huxley
- School of Physics, Chemistry and Earth Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
| |
Collapse
|
19
|
Liang X, Wang X, Yang M, Dong H, Ji Y, Wang L, Zhang J, Long C. α-Fe 2O 3-supported Co 3O 4 nanoparticles to construct highly active interfacial oxygen vacancies for ozone decomposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121704. [PMID: 37116569 DOI: 10.1016/j.envpol.2023.121704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Ozone pollution has become one of the most concerned environmental issue. Developing low-cost and efficient catalysts is a promising alternative for ozone decomposition. This work presents a creative strategy that using α-Fe2O3-supported Co3O4 nanoparticles for constructing interfacial oxygen vacancies (Vo) to remove ozone. The efficiency of Co3O4/α-Fe2O3 was superior to that of pure α-Fe2O3 by nearly two times for 200-ppm ozone removal after 6-h reaction at 25 °C, which is ascribed to the highly active interfacial Vo. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy suggest that the Fe3+-Vo-Co2+ was formed when Co3O4 was loaded in α-Fe2O3. Furthermore, the density functional theory (DFT) calculations reveal the desorption and electron transfer ability of intermediate peroxide (O22-) on Fe3+-Vo-Co2+ are higher than the Vo from other regions. In situ diffuse reflectance Fourier transform (DRIFT) spectroscopy also demonstrate the higher conversion rate of O22- on Co3O4/α-Fe2O3. Base on the intermediates detected, we propose a recycle mechanism of interfacial Vo for ozone removal: O22- is quickly converted to O2- and transformed into O2 on interfacial Vo. Moreover, O2-temperature-programmed desorption (TPD), H2-temperature-programmed reduction (TPR), and electrochemical impedance spectroscopy (EIS) reveal that the oxygen mobility, reducibility, and conductivity of Co3O4/α-Fe2O3 are greatly superior to those of α-Fe2O3, which is contributed to the conversion of O22-. Consequently, our proposed strategy effectively enhances the activity and stability of the bimetallic transition oxides for ozone decomposition.
Collapse
Affiliation(s)
- Xiaoshan Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaoxiang Wang
- Institute for Carbon-Neutral Technology, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Mengyun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hao Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yekun Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lisha Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou, 362000, China.
| |
Collapse
|
20
|
Facile Synthesis of Metal-Impregnated Sugarcane-Derived Catalytic Biochar for Ozone Removal at Ambient Temperature. Catalysts 2023. [DOI: 10.3390/catal13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
This study presents the first attempt at employing catalytic biochar to remove ground-level ozone at ambient temperature. With the increase in human activity, ozone has become a critical inorganic pollutant that needs to be addressed, using more sustainable methods. Fe- and Mn-impregnated catalytic biochars were prepared from a sugarcane feedstock via the wet impregnation method and pyrolysis at various temperatures, where the optimum value was determined to be 550 °C. The metal-impregnated biochar samples demonstrated enhanced surface areas and pore volumes compared with the pristine biochar (SCB550), resulting in improved ozone-adsorption capacity. SCB550-Fe exhibited an ozone-adsorption capacity of 52.1 mg/g at 20 ppm, which was approximately four times higher than that of SCB550. SCB550-Fe demonstrated superior ozone-removal performance compared to SCB550-Mn; 122 mg/g capacity as opposed to 116.2 mg/g at 80 ppm, respectively. Isothermal and kinetic modeling are also presented to suggest a plausible mechanism of ozone removal by catalytic biochar. This includes physical adsorption, complexation, electrostatic interaction, and electron transfer during the redox reaction between ozone and metals. Overall, this study should provide preliminary insights into ozone removal using biochar and promote further research regarding material optimization and kinetic studies.
Collapse
|
21
|
Zhang Q, Guo F, Yu L, Wang B, Ding J, Fan L, Wu Y, Yang B, Xu Q. Efficient Degradation of Toluene over MnO 2/TiO 2 Nanobelts under Vacuum Ultraviolet Irradiation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qi Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Liangyun Yu
- School of Light Industry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing100048, P. R. China
| | - Bailin Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Jingya Ding
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Lan Fan
- Yancheng Lanfeng Environmental Engineering Technology Co, Ltd, Yancheng224051, P. R. China
| | - Yifan Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| | - Qi Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng224051, P. R. China
| |
Collapse
|
22
|
Stuhr R, Bayer P, von Wangelin AJ. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. CHEMSUSCHEM 2022; 15:e202201323. [PMID: 36214486 PMCID: PMC10100308 DOI: 10.1002/cssc.202201323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Oxygen is a molecule of utmost importance in our lives. Beside its vital role for the respiration and sustaining of organisms, oxygen is involved in numerous chemical and physical processes. Upon combination of the different forms of molecular oxygen species with various activation modes, substrates, and reaction conditions an extremely wide chemical space can be covered that enables rich applications of diverse oxygenation processes. This Review provides an instructive overview of the individual properties and reactivities of oxygen species and illustrates their importance in nature, everyday life, and in the context of chemical synthesis.
Collapse
Affiliation(s)
- Robin Stuhr
- Department of ChemistryUniversity of HamburgMartin-Luther-King Platz 620146HamburgGermany
| | - Patrick Bayer
- Pantheon AustriaThermo Fisher ScientificSt. Peter Str. 254020LinzAustria
| | | |
Collapse
|
23
|
Song G, Shi G, Chen L, Wang X, Sun J, Yu L, Xie X. Different degradation mechanisms of low-concentration ozone for MIL-100(Fe) and MIL-100(Mn) over wide humidity fluctuation. CHEMOSPHERE 2022; 308:136352. [PMID: 36088966 DOI: 10.1016/j.chemosphere.2022.136352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The synergistic control of ozone and fine particulate matter is a research hotspot in the current environmental fields. Among the ozone removal, wide humidity fluctuation and low concentration dynamic adsorption are two thorny problems. In this work, MIL-100(Fe) and MIL-100(Mn), synthesized by hydrothermal and solvothermal methods respectively, were selected to investigate the degradation of flowing ozone pollutants. The samples showed different ozone degradation mechanisms, namely photocatalytic degradation and normal temperature degradation. Notably, MIL-100(Fe) exhibited more outstanding photocatalytic activity than MIL-100(Mn), while the normal temperature catalytic efficiency of MIL-100(Mn) was much superior to MIL-100(Fe). For different humidity conditions, MIL-100(Fe) has the optimal photocatalytic performance at 10% humidity, which is 38%, while MIL-100(Mn) has basically no change in normal temperature catalytic degradation efficiency at different humidity levels of 10-90%. Furthermore, the degradation mechanism was proposed by in-situ DRIFTS and ESR, which was significantly correlated with oxygen vacancy and photogenerated electron efficiency. By the aid of Temperature Programmed Desorption (TPD), a large quantity of Lewis acid sites was detected in MIL-100(Mn), which was the critical factor that the selected materials could maintain excellent normal temperature degradation performance under high humidity. This work will expand the practical application of ozone removal and improve the degradation efficiency.
Collapse
Affiliation(s)
- Guanqing Song
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
| | - Gansheng Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Lu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Xiao Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Jing Sun
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Lei Yu
- Shandong University of Science and Technology, 17 Shenglizhuang Road, Jinan, 250031, China.
| | - Xiaofeng Xie
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China.
| |
Collapse
|
24
|
Dong C, Yang JJ, Xie LH, Cui G, Fang WH, Li JR. Catalytic ozone decomposition and adsorptive VOCs removal in bimetallic metal-organic frameworks. Nat Commun 2022; 13:4991. [PMID: 36008479 PMCID: PMC9411195 DOI: 10.1038/s41467-022-32678-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022] Open
Abstract
Atmospheric ozone has long been a threat to human health, however, rational design of high-performance O3-decomposition catalysts remains challenging. Herein, we demonstrate the great potential of a series of isomorphous bimetallic MOFs denoted as PCN-250(Fe2M) (M = Co2+, Ni2+, Mn2+) in catalytic O3 decomposition. Particularly, PCN-250(Fe2Co) showed 100% O3 removal efficiency for a continuous air flow containing 1 ppm O3 over a wide humidity range (0 ‒ 80% RH) at room temperature. Mechanism studies suggested that the high catalytic performance originated from the introduction of open Co(II) sites as well as its porous structure. Additionally, at low pressures around 10 Pa, PCN-250(Fe2Co) exhibited high adsorption capacities (89 ‒ 241 mg g-1) for most VOCs, which are not only a class of hazardous air pollutants but also the precursor of O3. This work opens up a new avenue to develop advanced air purification materials for O3 and VOCs removal in one.
Collapse
Affiliation(s)
- Chen Dong
- grid.28703.3e0000 0000 9040 3743Beijing Key Laboratory for Green Catalysis and Separation, and Department of Environmental Chemical Engineering, Beijing University of Technology, 100124 Beijing, China
| | - Jia-Jia Yang
- grid.20513.350000 0004 1789 9964Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Lin-Hua Xie
- grid.28703.3e0000 0000 9040 3743Beijing Key Laboratory for Green Catalysis and Separation, and Department of Environmental Chemical Engineering, Beijing University of Technology, 100124 Beijing, China
| | - Ganglong Cui
- grid.20513.350000 0004 1789 9964Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Wei-Hai Fang
- grid.20513.350000 0004 1789 9964Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875 Beijing, China
| | - Jian-Rong Li
- grid.28703.3e0000 0000 9040 3743Beijing Key Laboratory for Green Catalysis and Separation, and Department of Environmental Chemical Engineering, Beijing University of Technology, 100124 Beijing, China
| |
Collapse
|
25
|
Li Y, He J, Wang H. Exploring an electric-aid ozone decomposition mode to enhance water resistance over manganese oxide monolith catalyst under high humidity. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129252. [PMID: 35739772 DOI: 10.1016/j.jhazmat.2022.129252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, a facile, green, and effective reaction mode of electric-aid ozone decomposition (EAOD) was developed over a manganese-based monolith catalyst for eliminating ozone under high humidity. The catalyst was prepared by directly growing α-MnO2 nanorods on Al honeycomb substrate (MnO2/Al) via a simple hydrothermal process, and the EAOD mode was performed just by connecting the MnO2/Al monolith catalyst with a DC power supply during ozone decomposition reaction. In the EAOD mode reaction, the MnO2/Al catalyst exhibited a stable ozone conversion efficiency of over 82 % and excellent stability over 720 min under a relative humidity of 90%, well beyond the performance of catalyst in the conventional ozone decomposition reaction without the help of electric aid. Here, the water evaporation by the external electric field generated from the EAOD mode hinders the competitive adsorption of water vapor on the active sites of MnO2/Al catalyst, consequently enhances its water resistance. Moreover, increasing input electric current of the DC power supply could further improve the catalytic activity and stability of the monolith catalyst for ozone decomposition in EAOD mode reaction.
Collapse
Affiliation(s)
- Yongfeng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Jiajun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Hongmian Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
26
|
Epelle EI, Emmerson A, Nekrasova M, Macfarlane A, Cusack M, Burns A, Mackay W, Yaseen M. Microbial Inactivation: Gaseous or Aqueous Ozonation? Ind Eng Chem Res 2022; 61:9600-9610. [PMID: 35855724 PMCID: PMC9284554 DOI: 10.1021/acs.iecr.2c01551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
For decades, ozone
has been known to have antimicrobial properties
when dissolved or generated in water and when utilized in its gaseous
form on different substrates. This property (the ability to be used
in air and water) makes it versatile and applicable to different industries.
Although the medium of ozonation depends on the specific process requirements,
some industries have the inherent flexibility of medium selection.
Thus, it is important to evaluate the antimicrobial efficacy in both
media at similar concentrations, an endeavor hardly reported in the
literature. This study provides insights into ozone’s efficacy
in air and water using two Gram-negative bacteria (Escherichia coli NTCC1290 and Pseudomonas
aeruginosa NCTC10332), two Gram-positive bacteria
(Staphylococcus aureus ATCC25923 and Streptococcus mutans), and two fungi (Candida albicans and Aspergillus fumigatus). For gaseous ozonation, we utilized a custom-made ozone chamber
(equipped with ultraviolet lamps), whereas an electrolysis oxygen
radical generator was applied for ozone generation in water. During
gaseous ozonation, the contaminated substrates (fabric swatches inoculated
with bacterial and fungal suspensions) were suspended in the chamber,
whereas the swatches were immersed in ozonated water for aqueous ozone
treatment. The stability of ozone nanobubbles and their resulting
impact on the aqueous disinfection efficiency were studied via dynamic
light scattering measurements. It was observed that ozone is more
effective in air than in water on all tested organisms except Staphylococcus aureus. The presented findings allow
for the adjustment of the treatment conditions (exposure time and
concentration) for optimal decontamination, particularly when a certain
medium is preferred for ozonation.
Collapse
Affiliation(s)
- Emmanuel I Epelle
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, U.K.,ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, U.K
| | - Amy Emmerson
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, U.K
| | - Marija Nekrasova
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, U.K
| | - Andrew Macfarlane
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, U.K
| | - Michael Cusack
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, U.K
| | - Anthony Burns
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, U.K
| | - William Mackay
- School of Health & Life Sciences, University of the West of Scotland, Paisley PA1 2BE, U.K
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, U.K
| |
Collapse
|
27
|
Wan X, Wang L, Zhang S, Shi H, Niu J, Wang G, Li W, Chen D, Zhang H, Zhou X, Wang W. Ozone Decomposition below Room Temperature Using Mn-based Mullite YMn 2O 5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8746-8755. [PMID: 35617124 DOI: 10.1021/acs.est.1c08922] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A super-low-temperature ozone decomposition is realized without energy consumption on a ternary oxide catalyst mullite YMn2O5 for the first time. The YMn2O5 oxide catalyzed ozone decomposition from a low temperature of -40 °C with 29% conversion (reaction rate: 1534.2 μmol g-1 h-1) and quickly reached 100% (5459.5 μmol g-1 h-1) when warmed up to -5 °C. The superior low-temperature performance over YMn2O5 could surpass that of the reported ozone decomposition catalysts. The structure and element valence characterizations confirmed that YMn2O5 remained the same after 100 h of room-temperature reaction, indicating excellent durability of the catalyst. O2-TPD (O2-temperature-programmed desorption) showed that the active sites are the Mn3+ sites bonded with singly coordinated oxygen on the surface. Combined with in situ Raman measurements and density functional theory calculations, we found that the ozone decomposition reaction on YMn2O5 showed a barrier of only 0.29 eV, following the Eley-Rideal (E-R) mechanism with a rate-limiting step of intermediate O22- desorption. The low barrier minimizes the accumulation of intermediate products and realizes the fast O3 decomposition even at super-low temperatures. Fundamentally, the moderate Mn-O bonding strength in the low-symmetry ternary oxides is crucial to produce singly coordinated active species on the surface responsible for the efficient ozone degradation at low temperatures.
Collapse
Affiliation(s)
- Xiang Wan
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Lijing Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Shen Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Haozhe Shi
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin 300211, China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environment Sciences, Tianjin 300191, China
| | - Weifang Li
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environment Sciences, Tianjin 300191, China
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Haijun Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
High Water Adsorption MOFs with Optimized Pore‐Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Yang W, Ren J, Li J, Zhang H, Ma K, Wang Q, Gao Z, Wu C, Gates ID. A novel Fe-Co double-atom catalyst with high low-temperature activity and strong water-resistant for O 3 decomposition: A theoretical exploration. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126639. [PMID: 34396974 DOI: 10.1016/j.jhazmat.2021.126639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/19/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Developing catalysts with high activity, durability, and water resistance for ozone decomposition is crucial to regulate the pollution of ozone in the troposphere, especially in indoor air. To overcome the shortcomings of metal oxide catalysts with respect to their durability and water resistance, Fe-Co double-atom catalyst (DAC) is proposed as a novel catalyst for ozone decomposition. Here, through a systematic study using density functional theory (DFT) calculations and microkinetic modeling, the adsorption and catalytic decomposition of O3 on Fe-Co DAC have been examined based on adsorption configuration, orbital hybridization, and electron transfer. Based on Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) reaction mechanisms, the mechanisms of ozone decomposition on Fe-Co DAC were explored by analyzing reaction paths and energy variations. To confirm the water-resistant of Fe-Co DAC, competitive adsorption behavior between O3 and dominant environmental gases was discussed through ab initio molecular dynamic (AIMD) simulation. The dominant reaction mechanism of ozone decomposition is L-H and the rate-determining step is the desorption of the first oxygen molecule from the surface of Fe-Co DAC which has an energy barrier of 0.78 eV. Due to this relatively low energy barrier and high turnover frequency (TOF), the optimal operation window of catalytic O3 decomposition on Fe-Co DAC is <500 K suggesting that catalytic decomposition of O3 on Fe-Co DAC can occur at room temperature. This theoretical study provides new insights for designing novel catalysts for ozone decomposition and fundamental guidance for subsequent experimental research.
Collapse
Affiliation(s)
- Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jianuo Ren
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jiajia Li
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Hanwen Zhang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Kai Ma
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Qingwu Wang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhengyang Gao
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China.
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
| | - Ian D Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada.
| |
Collapse
|
30
|
Efficient ozone decomposition over bifunctional Co3Mn-layered double hydroxide with strong electronic interaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Zhu NX, Wei ZW, Chen CX, Xiong XH, Xiong YY, Zeng Z, Wang W, Jiang JJ, Fan YN, Su CY. High Water Adsorption MOFs with Optimized Pore-Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angew Chem Int Ed Engl 2021; 61:e202112097. [PMID: 34779556 DOI: 10.1002/anie.202112097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/15/2023]
Abstract
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.
Collapse
Affiliation(s)
- Neng-Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang-Yang Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zheng Zeng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ji-Jun Jiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ya-Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
32
|
The crystal structure of catena-poly[(1,10-phenanthroline-k2
N,N′)-(μ3-tetraoxidomoybdato(VI)-k3
O:O′:O″)manganese(II)] C12H8N2O4MoMn. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C12H8N2O4MoMn, monoclinic, P21/m (no. 11), a = 8.9812(5) Å, b = 6.5212(3) Å, c = 10.6167(6) Å, β = 100.120(6)°, V = 612.13(6) Å3, Z = 2, R
gt
(F) = 0.0391, wR
ref(F
2) = 0.0783, T = 293(2) K.
Collapse
|