1
|
Gao Z, Zhang X, Zheng B, Gu J, Tong Z. Creation of Segmented Platelets with Diverse Crystalline Cores Using Double Crystalline Triblock Copolymers. J Am Chem Soc 2025; 147:5172-5181. [PMID: 39893684 DOI: 10.1021/jacs.4c15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Two-dimensional (2D) platelet structures with uniform dimensions and spatially defined diverse cores are highly sought but are still challenging to access. Living crystallization-driven self-assembly (CDSA)-seeded growth enables the creation of uniform 2D core-shell nanomaterials with diverse core compositions via sequential epitaxial crystallization of block copolymers. Nevertheless, general limitation of the growth process to strict requirements of heteroepitaxial crystallization is a major obstacle to the formation of segmented nanoparticles with extended diverse core chemistries. Herein, we introduce a strategy of using double-crystalline triblock copolymers, such as poly(ε-caprolactone)-block-poly(p-dioxanone)-block-poly(N,N-dimethyl acrylamide) (PCL-b-PPDO-b-PDMA), as bridges to create segmented platelets with compositionally distinct cores. The epitaxial crystallization of the PCL block excludes the PPDO block, forming out-of-plane PPDO crystals that seed subsequent epitaxial crystallization of the added PPDO unimer, producing flat-on quasi-square PPDO crystals. Meanwhile, the less-defined orientation of PPDO crystals has confirmed the presence of flat-on epitaxy between PCL and PPDO. For comparison, PCL-b-PHL (PHL = poly(ζ-heptalactone)) forms in-plane crystals with a strictly defined orientation via edge-on epitaxy due to the cocrystallization of PCL and PHL. Therefore, this approach provides a novel route to construct precisely controlled segmented 2D platelet structures with chemically distinct cores and tunable functionalities, an extension to expand the precise design of complex nanoparticles.
Collapse
Affiliation(s)
- Zhiqiang Gao
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xu Zhang
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bowen Zheng
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingyuan Gu
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
2
|
Li H, Li C, Ren H, Cai Y, Tan J, Huang X, Yin D, Zhang Q. Ultrafast, Robust, and Reversible Self-Assembled Nanofibers via Thiolactone Chemistry Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411982. [PMID: 39778059 DOI: 10.1002/smll.202411982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Self-assembly in supramolecular chemistry is crucial for nanostructure creation but faces challenges like slow speeds and lack of reversibility. In this study, a novel comb-like polymer poly(amide sulfide) (PAS) based on thiolactone chemistry is reported, which rapidly self-assemble into stable nanofibers, offering excellent robustness and reversibility in the self-assembled structure. The PAS backbone contains pairs of amide bonds, each linked to an alkyl side chain in a controlled 2:1 ratio. The polymer rapidly forms fibrillar micelles driven by the hydrophobic side chains and then undergoes hydrogen-bonded cross-linking between the main-chain amide bonds to form stable nanofibers. N, N-dimethylacetamide/LiCl solution allows for reversible regulation of nanofiber self-assembly, without altering the fiber properties. It is anticipated that this line of research will enrich the field of macromolecular self-assembly with important advances toward the realization of ultrafast, robust, and reversible self-assembly systems.
Collapse
Affiliation(s)
- Haonan Li
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Chunmei Li
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hua Ren
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Yingchao Cai
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xinyi Huang
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Dezhong Yin
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Qiuyu Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
3
|
Xia L, Zhu H, Xu B, Duan C, Huang X, Lin S, Feng C. Liquid-Crystallization-Driven Self-Assembly toward Uniform Multi-Morphology Fried-Egg-Like Nanostructures. Chemistry 2025; 31:e202403430. [PMID: 39542843 DOI: 10.1002/chem.202403430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
Liquid-crystallization-driven self-assembly (LCDSA) has recently emerged as an efficient strategy to create uniform one-dimensional (1-D), 2-D and 3-D nanostructures in a controlled manner. However, the examples of generation of uniform multi-morphology nanostructures from solution self-assembly of one single polymer sample are rare. Herein, we report the first example of preparation of multi-morphology fried-egg-like nanostructures consisting of an inner spherical/bowl-like core of uniform size and platelets protruded from the core by LCDSA of PAMAM-Azo6 (PAMAM=polyamidoamine, Azo=azobenzene) in methanol. It is disclosed that the different aggregation rates for PAMAM-Azo6 with varying contents of Azo units spontaneously separated nucleation and growth stages, which led to the formation of inner spherical/bowl-like cores ("seeds") firstly, followed by the formation of platelets protruded from the edges of inner core to give "imperfect" fried-egg-like nanostructures. Additional annealing of initially formed "imperfect" fried-egg-like micelles will promote the rearrangement of Azo units to give thermodynamically-favored "perfect" fried-egg-shaped micelles with a uniform dimension both in the core and whole structure. This work not only provides an efficient strategy to create uniform multi-morphology fried-egg-shaped nanostructures, but also reveals the essential impact of aggregation kinetics of liquid-crystalline-coil BCPs in the formation of multi-morphology nanostructures.
Collapse
Affiliation(s)
- Longgang Xia
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Hao Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Chuyu Duan
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiaoyu Huang
- Macau University of Science and Technology, Faculty of Medicine, Macau SAR, 999078, People's Republic China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Chun Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
4
|
Lee M, Jeon Y, Kim S, Jung I, Kang S, Jeong SH, Park J. Unravelling complex mechanisms in materials processes with cryogenic electron microscopy. Chem Sci 2025; 16:1017-1035. [PMID: 39697416 PMCID: PMC11651391 DOI: 10.1039/d4sc05188b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Investigating nanoscale structural variations, including heterogeneities, defects, and interfacial characteristics, is crucial for gaining insight into material properties and functionalities. Cryogenic electron microscopy (cryo-EM) is developing as a powerful tool in materials science particularly for non-invasively understanding nanoscale structures of materials. These advancements bring us closer to the ultimate goal of correlating nanoscale structures to bulk functional outcomes. However, while understanding mechanisms from structural information requires analysis that closely mimics operation conditions, current challenges in cryo-EM imaging and sample preparation hinder the extraction of detailed mechanistic insights. In this Perspective, we discuss the innovative strategies and the potential for using cryo-EM for revealing mechanisms in materials science, with examples from high-resolution imaging, correlative elemental analysis, and three-dimensional and time-resolved analysis. Furthermore, we propose improvements in cryo-sample preparation, optimized instrumentation setup for imaging, and data interpretation techniques to enable the wider use of cryo-EM and achieve deeper context into materials to bridge structural observations with mechanistic understanding.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Yonggoon Jeon
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Department of Physics and Chemistry, Korea Military Academy (KMA) Seoul 01805 Republic of Korea
| | - Sungin Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - Ihnkyung Jung
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Sungsu Kang
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - Seol-Ha Jeong
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Jungwon Park
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University Suwon 16229 Republic of Korea
| |
Collapse
|
5
|
Yu L, Cui Y, Xing M, Sun Y, Li Z, Liu Y, Qu X, Chen S. Crystallization-Driven Controlled 2D Self-Assemblies via Aqueous RAFT Emulsion Polymerization. Macromol Rapid Commun 2024; 45:e2400549. [PMID: 39137300 DOI: 10.1002/marc.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Aqueous emulsion polymerization is a robust technique for preparing nanoparticles of block copolymers; however, it typically yields spherical nanoassemblies. The scale preparation of nanoassemblies with nonspherical high-order morphologies is a challenge, particularly 2D core-shell nanosheets. In this study, the polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are combined to demonstrate the preparation of 2D nanosheets and their aggregates via aqueous reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. First, the crucial crystallizable component for CDSA, hydroxyethyl methacrylate polycaprolactone (HPCL) macromonomer is synthesized by ring opening polymerization (ROP). Subsequently, the RAFT emulsion polymerization of HPCL is conducted to generate crystallizable nanomicelles by a grafting-through approach. This PISA process simultaneously prepared spherical latices and bottlebrush block copolymers comprising poly(N',N'-dimethylacrylamide)-block-poly(hydroxyethyl methacrylate polycaprolactone) (PDMA-b-PHPCL). The latexes are now served as seeds for inducing the formation of 2D hexagonal nanosheets, bundle-shaped and flower-like aggregation via the CDSA of PHPCL segments and unreacted HPCL during cooling. Electron microscope analysis trace the morphology evolution of these 2D nanoparticles and reveal that an appropriate crystallized component of PHPCL blocks play a pivotal role in forming a hierarchical structure. This work demonstrates significant potential for large-scale production of 2D nanoassemblies through RAFT emulsion polymerization.
Collapse
Affiliation(s)
- Li Yu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yuhong Cui
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Mingxue Xing
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yuemeng Sun
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Zhengxiao Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yingchun Liu
- Jinghua Plastics Industry Co. Ltd., Langfang, 065800, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shengli Chen
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
6
|
Liang X, Lv J, Qiang H, Li J, Wang W, Du J, Zhu Y. Easy access to amphiphilic nitrogenous block copolymers via switchable catalysis. Chem Sci 2024; 15:d4sc05047a. [PMID: 39464611 PMCID: PMC11499957 DOI: 10.1039/d4sc05047a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
A key challenge in polymer synthesis is to develop new methods that enable block copolymers to be prepared from mixed monomer feedstock. The emerging switchable polymerization catalysis can generate block copolymers with well-defined structures and tunable properties from monomer mixtures. However, constrained by the reactivity of monomers and the incompatibility of different polymerization mechanisms, this method is usually confined to oxygenated monomers. In this work, the switchable polymerization was successfully applied to nitrogenous monomers for the first time, achieving the efficient copolymerization of N-substituted N-carboxyanhydrides (NNCAs) with epoxides and cyclic anhydrides. This leads to easy access towards amphiphilic nitrogenous copolymers, such as polyester-b-polypeptoids. Density functional theory calculations demonstrated that the reaction of cyclic anhydrides with the alkoxide terminal is thermodynamically more favorable than that of NNCAs. Characterization, using nuclear magnetic resonance spectroscopy, size exclusion chromatography and in situ infrared spectroscopy, has confirmed the well-defined block structure of the obtained copolymers. This switchable polymerization strategy is applicable to a range of monomer mixtures with different oxygenated monomers and NNCAs, providing a highly efficient synthetic route towards nitrogenous block copolymers. Most importantly, the easily accessed amphiphilic polyester-b-polypeptoids demonstrated excellent anti-protein adsorption capabilities and barely any cytotoxicity, showing great potential in the field of biomedicine.
Collapse
Affiliation(s)
- Xue Liang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jiachen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Hongru Qiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jiahui Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Wenli Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai 200434 China
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
- School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| |
Collapse
|
7
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
8
|
Jiang N, Yu T, Zhang M, Barrett BN, Sun H, Wang J, Luo Y, Sternhagen GL, Xuan S, Yuan G, Kelley EG, Qian S, Bonnesen PV, Hong K, Li D, Zhang D. Effect of Micellar Morphology on the Temperature-Induced Structural Evolution of ABC Polypeptoid Triblock Terpolymers into Two-Compartment Hydrogel Network. Macromolecules 2024; 57:6449-6464. [PMID: 39071044 PMCID: PMC11270984 DOI: 10.1021/acs.macromol.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/14/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
We investigated the temperature-dependent structural evolution of thermoreversible triblock terpolypeptoid hydrogels, namely poly(N-allyl glycine)-b-poly(N-methyl glycine)-b-poly(N-decyl glycine) (AMD), using small-angle neutron scattering (SANS) with contrast matching in conjunction with X-ray scattering and cryogenic transmission electron microscopy (cryo-TEM) techniques. At room temperature, A100M101D10 triblock terpolypeptoids self-assemble into core-corona-type spherical micelles in aqueous solution. Upon heating above the critical gelation temperature (T gel), SANS analysis revealed the formation of a two-compartment hydrogel network comprising distinct micellar cores composed of dehydrated A blocks and hydrophobic D blocks. At T ≳ T gel, the temperature-dependent dehydration of A block further leads to the gradual rearrangement of both A and D domains, forming well-ordered micellar network at higher temperatures. For AMD polymers with either longer D block or shorter A block, such as A101M111D21 and A43M92D9, elongated nonspherical micelles with a crystalline D core were observed at T < T gel. Although these enlarged crystalline micelles still undergo a sharp sol-to-gel transition upon heating, the higher aggregation number of chains results in the immediate association of the micelles into ordered aggregates at the initial stage, followed by a disruption of the spatial ordering as the temperature further increases. On the other hand, fiber-like structures were also observed for AMD with longer A block, such as A153M127D10, due to the crystallization of A domains. This also influences the assembly pathway of the two-compartment network. Our findings emphasize the critical impact of initial micellar morphology on the structural evolution of AMD hydrogels during the sol-to-gel transition, providing valuable insights for the rational design of thermoresponsive hydrogels with tunable network structures at the nanometer scale.
Collapse
Affiliation(s)
- Naisheng Jiang
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tianyi Yu
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Meng Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bailee N. Barrett
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Haofeng Sun
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Wang
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Luo
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Garrett L. Sternhagen
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sunting Xuan
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guangcui Yuan
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Elizabeth G. Kelley
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shuo Qian
- Neutron
Scattering Division and Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peter V. Bonnesen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dongcui Li
- Hua An Tang
Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Liu L, Meng X, Li M, Chu Z, Tong Z. Regulation of Two-Dimensional Platelet Micelles with Tunable Core Composition Distribution via Coassembly Seeded Growth Approach. ACS Macro Lett 2024; 13:542-549. [PMID: 38629823 DOI: 10.1021/acsmacrolett.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Seeded growth termed "living" crystallization-driven self-assembly (CDSA) has been identified as a powerful method to create one- or two-dimensional nanoparticles. Epitaxial crystallization is usually regarded as the growth mechanism for the formation of uniform micelles. From this perspective, the unimer depositing rate is largely related to the crystallization temperature, which is a key factor to determine the crystallization rate and regulate the core composition distribution among nanoparticles. In the present work, the coassembly of two distinct crystallizable polymers is explored in detail in a one-pot seeded growth protocol. Results have shown that polylactone containing a larger number of methylene groups (-CH2-) in their repeating units such as poly(η-octalactone) (POL) has a faster crystallization rate compared to poly(ε-caprolactone) (PCL) with a smaller number of -CH2- at ambient temperature (25 °C), thus a block or blocky platelet structure with heterogeneous composition distribution is formed. In contrast, when the crystallization temperature decreases to 4 °C, the difference of crystallization rate between both cores become negligible. Consequently, a completely random component distribution within 2D platelets is observed. Moreover, we also reveal that the core component of seed micelles is also paramount for the coassembly seeded growth, and a unique structure of flower-like platelet micelle is created from the coassembly of PCL/POL using POL core-forming seeds. This study on the formation of platelet micelles by one-pot seeded growth using two crystallizable components offers a considerable scope for the design of 2D polymer nanomaterials with a controlled core component distribution.
Collapse
Affiliation(s)
- Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiancheng Meng
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Meili Li
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhenyan Chu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
10
|
Liu D, Yang K, Xu L, Shen X, Feng L, Jiang Y, Ali A, Lu J, Guo L. Self-Assembly Study of Block Copolypeptoids in Response to pH and Temperature Stimulation. Polymers (Basel) 2024; 16:1082. [PMID: 38675001 PMCID: PMC11053516 DOI: 10.3390/polym16081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Polypeptoids with well-designed structures have the ability to self-assemble into nanomaterials, which have wide potential applications. In this study, a series of diblock copolypeptoids were synthesized via ring-opening polymerization followed by click chemistry and exhibited both temperature and pH stimulation responsiveness. Under specific temperature and pH conditions, the responsive blocks in the copolypeptoids became hydrophobic and aggregated to form micelles. The self-assembly process was monitored using the UV-Vis and DLS methods, which suggested the reversible transition of free molecules to micelles and bigger aggregates upon instituting temperature and pH changes. By altering the length and proportion of each block, the copolypeptoids displayed varying self-assembly characteristics, and the transition temperature could be tuned. With good biocompatibility, stability, and no cytotoxicity, the polypeptoids reported in this study are expected to be applied as bionanomaterials in fields including drug delivery, tissue engineering, and intelligent biosensing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianwei Lu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Brisson ERL, Worthington MJH, Kerai S, Müllner M. Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications. Chem Soc Rev 2024; 53:1984-2021. [PMID: 38173417 DOI: 10.1039/d1cs01114f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polymer self-assembly has become a reliable and versatile workhorse to produce polymeric nanomaterials. With appropriate polymer design and monomer selection, polymers can assemble into shapes and morphologies beyond well-studied spherical and cylindrical micellar structures. Steadfast access to anisotropic polymer nanoparticles has meant that the fabrication and application of 2D soft matter has received increasing attention in recent years. In this review, we focus on nanoscale polymer discs, toroids, and platelets: three morphologies that are often interrelated and made from similar starting materials or common intermediates. For each morphology, we illustrate design rules, and group and discuss commonly used self-assembly strategies. We further highlight polymer compositions, fundamental principles and self-assembly conditions that enable precision in bottom-up fabrication strategies. Finally, we summarise potential applications of such nanomaterials, especially in the context of biomedical research and template chemistry and elaborate on future endeavours in this space.
Collapse
Affiliation(s)
- Emma R L Brisson
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Max J H Worthington
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Simran Kerai
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 NSW, Australia
| |
Collapse
|
12
|
Teng F, Xiang B, Liu L, Varlas S, Tong Z. Precise Control of Two-Dimensional Hexagonal Platelets via Scalable, One-Pot Assembly Pathways Using Block Copolymers with Crystalline Side Chains. J Am Chem Soc 2023; 145:28049-28060. [PMID: 38088129 DOI: 10.1021/jacs.3c09370] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers (BCPs) in selective solvents provides a promising route for direct access to two-dimensional (2D) platelet micelles with excellent uniformity, although significant limitations also exist for this robust approach, such as tedious, multistep procedures, and low yield of assembled materials. Herein, we report a facile strategy for massively preparing 2D, highly symmetric hexagonal platelets with precise control over their dimensions based on BCPs with crystalline side chains. Mechanistic studies unveiled that the formation of hexagonal platelets was subjected to a hierarchical self-assembly process, involving an initial stage of formation of kinetically trapped spheres upon cooling driven by solvophobic interactions, and a second stage of fusion of such spheres to the 2D nuclei to initiate the lateral growth of hexagonal platelets via sequential particle attachments driven by thermodynamically ordered reorganization of the BCP upon aging. Moreover, the size of the developed 2D hexagonal platelets could be finely regulated by altering the copolymer concentration over a broad concentration range, enabling scale-up to a total solids concentration of at least 6% w/w. Our work reveals a new mechanism to create uniform 2D core-shell nanoparticles dictated by crystallization and particle fusion, while it also provides an alternative facile strategy for the design of soft materials with precise control of their dimensions, as well as for the scalability of the derived nanostructures.
Collapse
Affiliation(s)
- Feiyang Teng
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingbing Xiang
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill S3 7HF, Sheffield, U.K
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
13
|
Yao Y, Zhang L, Zhang S, Huang X, Feng C, Lin S, Xu B. Morphologically Tunable Rectangular Platelets Self-Assembled from Diblock Molecular Brushes Containing Azopyridine Pendants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18880-18888. [PMID: 38084706 DOI: 10.1021/acs.langmuir.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Two-dimensional (2D) platelet structures are of growing importance as building blocks for the preparation of optical and electrical devices. However, the creation of morphologically tunable rectangular platelets through polymer self-assembly still remains a challenge. Herein, we describe a rational strategy for the fabrication of 2D rectangular platelets by stacking azopyridine-containing diblock molecular brushes in two dimensions in a selective solvent. Amphiphilic PEG-co-(PtBA-g-PAzoPy) DMBs with poly(ethylene glycol) (PEG) block, poly(t-butyl acrylate) (PtBA) backbone, and poly(6-(4-(4-pyridyazo)phenoxy)-hexyl methacrylate) (PAzoPy) brush were synthesized by sequential reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization. Various rectangular platelets were obtained via the solution self-assembly of PEG-co-(PtBA-g-PAzoPy) through a heating-cooling-aging process in which the morphology and size of platelets could be controlled by adjusting the composition of DMBs as well as the solvent polarity. In addition, we investigated the metal chelation ability and H-bonding-assisted co-assembly capability of PEG-co-(PtBA-g-PAzoPy). The results displayed that 2D hybrids and flower-like platelets were formed, respectively. Our study presents an efficient method to fabricate rectangular platelets with tunable morphologies.
Collapse
Affiliation(s)
- Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Lu Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Chun Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
14
|
Schmid SY, Lachowski K, Chiang HT, Pozzo L, De Yoreo J, Zhang S. Mechanisms of Biomolecular Self-Assembly Investigated Through In Situ Observations of Structures and Dynamics. Angew Chem Int Ed Engl 2023; 62:e202309725. [PMID: 37702227 DOI: 10.1002/anie.202309725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Biomolecular self-assembly of hierarchical materials is a precise and adaptable bottom-up approach to synthesizing across scales with considerable energy, health, environment, sustainability, and information technology applications. To achieve desired functions in biomaterials, it is essential to directly observe assembly dynamics and structural evolutions that reflect the underlying energy landscape and the assembly mechanism. This review will summarize the current understanding of biomolecular assembly mechanisms based on in situ characterization and discuss the broader significance and achievements of newly gained insights. In addition, we will also introduce how emerging deep learning/machine learning-based approaches, multiparametric characterization, and high-throughput methods can boost the development of biomolecular self-assembly. The objective of this review is to accelerate the development of in situ characterization approaches for biomolecular self-assembly and to inspire the next generation of biomimetic materials.
Collapse
Affiliation(s)
- Sakshi Yadav Schmid
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kacper Lachowski
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Huat Thart Chiang
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Lilo Pozzo
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Jim De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
15
|
Zhu L, Liu L, Varlas S, Wang RY, O'Reilly RK, Tong Z. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics. ACS NANO 2023. [PMID: 37979190 DOI: 10.1021/acsnano.3c09130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Seeded heteroepitaxial growth is a "living" crystallization-driven self-assembly (CDSA) method that has emerged as a promising route to create uniform segmented nanoparticles with diverse core chemistries by using chemically distinct core-forming polymers. Our previous results have demonstrated that crystallization kinetics is a key factor that determines the occurrence of heteroepitaxial growth, but an in-depth understanding of controlling heteroepitaxy from the perspective of crystallization thermodynamics is yet unknown. Herein, we select crystallizable aliphatic polycarbonates (PxCs) with a different number of methylene groups (xCH2, x = 4, 6, 7, 12) in their repeating units as model polymers to explore the effect of lattice match and core compatibility on the seeded growth behavior. Seeded growth of PxCs-containing homopolymer/block copolymer blend unimers from poly(ε-caprolactone) (PCL) core-forming seed platelet micelles exhibits distinct crystal growth behavior at subambient temperatures, which is governed by the lattice match and core compatibility. A case of seeded growth with better core compatibility and a smaller lattice mismatch follows epitaxial growth, where the newly created crystal domain has the same structural orientation as the original platelet substrate. In contrast, a case of seeded growth with better core compatibility but a larger lattice mismatch shows nonepitaxial growth with less-defined crystal orientations in the platelet plane. Additionally, a case of seeded growth with poor core compatibility and larger lattice mismatch results in polydisperse platelet micelles, whereby crystal formation is not nucleated from the crystalline substrate. These findings reveal important factors that govern the specific crystal growth during a seeded growth approach by using compositionally distinct cores, which would further guide researchers in designing 2D segmented materials via polymer crystallization approaches.
Collapse
Affiliation(s)
- Lingyuan Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Liping Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| | - Rui-Yang Wang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
16
|
Zhang M, Liu Y, Zuo X, Qian S, Pingali SV, Gillilan RE, Huang Q, Zhang D. pH-Dependent Solution Micellar Structure of Amphoteric Polypeptoid Block Copolymers with Positionally Controlled Ionizable Sites. Biomacromolecules 2023; 24:3700-3715. [PMID: 37478325 PMCID: PMC10428163 DOI: 10.1021/acs.biomac.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/09/2023] [Indexed: 07/23/2023]
Abstract
While solution micellization of ionic block copolymers (BCP) with randomly distributed ionization sites along the hydrophilic segments has been extensively studied, the roles of positionally controlled ionization sites along the BCP chains in their micellization and resulting micellar structure remain comparatively less understood. Herein, three amphoteric polypeptoid block copolymers carrying two oppositely charged ionizable sites, with one fixed at the hydrophobic terminus and the other varyingly positioned along the hydrophilic segment, have been synthesized by sequential ring-opening polymerization method. The presence of the ionizable site at the hydrophobic segment terminus is expected to promote polymer association toward equilibrium micellar structures in an aqueous solution. The concurrent presence of oppositely charged ionizable sites on the polymer chains allows the polymer association to be electrostatically modulated in a broad pH range (ca. 2-12). Micellization of the amphoteric polypeptoid BCP in dilute aqueous solution and the resulting micellar structure at different solution pHs was investigated by a combination of scattering and microscopic methods. Negative-stain transmission-electron microscopy (TEM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) analyses revealed the dominant presence of core-shell-type spherical micelles and occasional rod-like micelles with liquid crystalline (LC) domains in the micellar core. The micellar structures (e.g., aggregation number, radius of gyration, chain packing in the micelle) were found to be dependent on the solution pH and the position of the ionizable site along the chain. This study has highlighted the potential of controlling the position of ionizable sites along the BCP polymer to modulate the electrostatic and LC interactions, thus tailoring the micellar structure at different solution pH values in water.
Collapse
Affiliation(s)
- Meng Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yun Liu
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shuo Qian
- Neutron
Scattering Division and Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Richard E. Gillilan
- MacCHESS
(Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, New York 14850, United States
| | - Qingqiu Huang
- MacCHESS
(Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, New York 14850, United States
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
17
|
Yu T, Luo X, Prendergast D, Butterfoss GL, Rad B, Balsara NP, Zuckerman RN, Jiang X. The Structural Evolution of Polypeptoid Nanofibers Revealed by 3-D Cryo-TEM. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1722-1723. [PMID: 37613920 DOI: 10.1093/micmic/ozad067.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Tianyi Yu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xubo Luo
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University, Abu Dhabi, United Arab Emirates
| | - Behzad Rad
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nitash P Balsara
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Ronald N Zuckerman
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xi Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
18
|
Kang L, Wang Q, Zhang L, Zou H, Gao J, Niu K, Jiang N. Recent Experimental Advances in Characterizing the Self-Assembly and Phase Behavior of Polypeptoids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114175. [PMID: 37297308 DOI: 10.3390/ma16114175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Polypeptoids are a family of synthetic peptidomimetic polymers featuring N-substituted polyglycine backbones with large chemical and structural diversity. Their synthetic accessibility, tunable property/functionality, and biological relevance make polypeptoids a promising platform for molecular biomimicry and various biotechnological applications. To gain insight into the relationship between the chemical structure, self-assembly behavior, and physicochemical properties of polypeptoids, many efforts have been made using thermal analysis, microscopy, scattering, and spectroscopic techniques. In this review, we summarize recent experimental investigations that have focused on the hierarchical self-assembly and phase behavior of polypeptoids in bulk, thin film, and solution states, highlighting the use of advanced characterization tools such as in situ microscopy and scattering techniques. These methods enable researchers to unravel multiscale structural features and assembly processes of polypeptoids over a wide range of length and time scales, thereby providing new insights into the structure-property relationship of these protein-mimetic materials.
Collapse
Affiliation(s)
- Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hang Zou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Gao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
19
|
Scanga RA, Shahrokhinia A, Borges J, Sarault SH, Ross MB, Reuther JF. Asymmetric Polymerization-Induced Crystallization-Driven Self-Assembly of Helical, Rod-Coil Poly(aryl isocyanide) Block Copolymers. J Am Chem Soc 2023; 145:6319-6329. [PMID: 36913666 DOI: 10.1021/jacs.2c13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Polymerization-induced crystallization-driven self-assembly (PI-CDSA) is combined, for the first time, with helical, rod-coil block copolymer (BCP) self-assembly to enable scalable and controllable in situ synthesis of chiral nanostructures of variable shape, size, and dimensionality. Herein, we report newly developed asymmetric PI-CDSA (A-PI-CDSA) methodologies in the synthesis and in situ self-assembly of chiral, rod-coil BCPs composed of poly(aryl isocyanide) (PAIC) rigid-rod and poly(ethylene glycol) (PEG) random-coil components. Using PEG-based nickel(II) macroinitiators, the construction of PAIC-BCP nanostructures with variable chiral morphologies is accomplished at solids contents ranging 5.0-10 wt %. At low core-to-corona ratios for PAIC-BCPs, we demonstrate the scalable formation of chiral one-dimensional (1D) nanofibers via "living" A-PI-CDSA whose contour lengths can be tuned through alterations to unimer-to-1D seed particle ratio. At high core-to-corona ratios, A-PI-CDSA was implemented for the rapid fabrication of molecularly thin, uniform hexagonal nanosheets via spontaneous nucleation and growth aided by vortex agitation. Investigations into 2D seeded, living A-PI-CDSA revealed a brand-new paradigm in the context of CDSA where hierarchically chiral, M helical spirangle morphologies (i.e., hexagonal helicoids) are size-tuned in three dimensions (i.e., heights and areas) via alterations to unimer-to-seed ratio. These unique nanostructures are formed in situ at scalable solids contents up to 10 wt % via rapid crystallization about screw dislocation defect sites in an enantioselective fashion. The liquid crystalline nature of PAIC blocks dictates the hierarchical assembly of these BCPs, with chirality translated across length scales and in multiple dimensions affording large amplifications in chiroptical activity with g-factors reaching -0.030 for spirangle nanostructures.
Collapse
Affiliation(s)
- Randall A Scanga
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Ali Shahrokhinia
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jake Borges
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Sean H Sarault
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Michael B Ross
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - James F Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
20
|
Yu T, Luo X, Prendergast D, Butterfoss GL, Rad B, Balsara NP, Zuckermann RN, Jiang X. Structural Elucidation of a Polypeptoid Chain in a Crystalline Lattice Reveals Key Morphology-Directing Role of the N-Terminus. ACS NANO 2023; 17:4958-4970. [PMID: 36821346 PMCID: PMC10018772 DOI: 10.1021/acsnano.2c12503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
The ability to engineer synthetic polymers with the same structural precision as biomacromolecules is crucial to enable the de novo design of robust nanomaterials with biomimetic function. Peptoids, poly(N-substituted) glycines, are a highly controllable bio-inspired polymer family that can assemble into a variety of functional, crystalline nanostructures over a wide range of sequences. Extensive investigation on the molecular packing in these lattices has been reported; however, many key atomic-level details of the molecular structure remain underexplored. Here, we use cryo-TEM 3D reconstruction to directly visualize the conformation of an individual polymer chain within a peptoid nanofiber lattice in real space at 3.6 Å resolution. The backbone in the N-decylglycine hydrophobic core is shown to clearly adopt an extended, all-cis-sigma strand conformation, as previously suggested in many peptoid lattice models. We also show that packing interactions (covalent and noncovalent) at the solvent-exposed N-termini have a dominant impact on the local chain ordering and hence the ability of the chains to pack into well-ordered lattices. Peptoids in pure water form fibers with limited growth in the a direction (<14 molecules in width), whereas in the presence of formamide, they grow to over microns in length in the a direction. This dependence points to the significant role of the chain terminus in determining the long-range order in the packing of peptoid lattices and provides an opportunity to modulate lattice stability and nanoscale morphology by the addition of exogenous small molecules. These findings help resolve a major challenge in the de novo structure-based design of sequence-defined biomimetic nanostructures based on crystalline domains and should accelerate the design of functional nanostructures.
Collapse
Affiliation(s)
- Tianyi Yu
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xubo Luo
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Prendergast
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Glenn L. Butterfoss
- Center
for Genomics and Systems Biology, New York
University, Abu Dhabi, United Arab Emirates
| | - Behzad Rad
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nitash P. Balsara
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xi Jiang
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Xiao X, Zhou M, Cong Z, Zou J, Liu R. Advance in the Polymerization Strategy for the Synthesis of β-Peptides and β-Peptoids. Chembiochem 2023; 24:e202200368. [PMID: 36226554 DOI: 10.1002/cbic.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/20/2022] [Indexed: 02/04/2023]
Abstract
Peptide mimics, possessing excellent biocompatibility and protease stability, have attracted broad attention and research in the biomedical field. β-Peptides and β-peptoids, as two types of vital peptide mimics, have demonstrated great potential in the field of foldamers, antimicrobials and protein binding, etc. Currently, the main synthetic strategies for β-peptides and β-peptoids include solid-phase synthesis and polymerization. Among them, polymerization in one-pot can minimize the repeated separation and purification used in solid-phase synthesis, and has the advantages of high efficiency and low cost, and can synthesize β-peptides and β-peptoids with high molecular weight. This review summarizes the polymerization methods for β-peptides and β-peptoids. Moreover, future developments of the polymerization method for the synthesis of β-peptides and β-peptoids will be discussed.
Collapse
Affiliation(s)
- Ximian Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Jingcheng Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China.,East China University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
22
|
A Review on the Synthesis of Polypeptoids. Catalysts 2023. [DOI: 10.3390/catal13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyeptoids are a promising class of polypeptide mimetic biopolymers based on N-substituted glycine backbones. Because of the high designability of their side chains, polypeptoids have a wide range of applications in surface antifouling, biosensing, drug delivery, and stimuli-responsive materials. To better control the structures and properties of polypeptoids, it is necessary to understand different methods for polypeptoid synthesis. This review paper summarized and discussed the main synthesis methods of polypeptoids: the solid-phase submonomer synthesis method, ring-opening polymerization method and Ugi reaction method.
Collapse
|
23
|
Cai C, Lin J. Recent advances in the solution self‐assembly of polypeptides. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
24
|
Ma A, Yu X, Liao M, Liu W, Xuan S, Zhang Z. Research Progress in Polypeptoids Prepared by Controlled Ring-Opening Polymerizations. Macromol Rapid Commun 2023; 44:e2200301. [PMID: 35748135 DOI: 10.1002/marc.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Indexed: 01/11/2023]
Abstract
Polypeptoids, structural mimics of polypeptides, have attracted considerable attention due to their biocompatibility, proteolytic stability, thermal processability, good solubility, synthetic accessibility, and structural diversity. Polypeptoids have emerged as an interesting material in both polymer science and biological field. This review primarily discusses the research progress of polypeptoids prepared by controlled ring-opening polymerizations in the past decade, including synthetic strategies of monomers, polymerizations by different initiators, postfunctionalization, fundamental properties, crystallization-driven self-assembly, and potential biological applications.
Collapse
Affiliation(s)
- Anyao Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinyan Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mingzhen Liao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wenxiao Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
25
|
Cai S, Huang Y, Xie S, Wang S, Guan Y, Wan X, Zhang J. 2D Hexagonal Assemblies of Amphiphilic Double-Helical Poly(phenylacetylene) Homopolymers with Enhanced Circularly Polarized Luminescence and Chiral Self-Sorting. Angew Chem Int Ed Engl 2022; 61:e202214293. [PMID: 36305302 DOI: 10.1002/anie.202214293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Two-dimensional (2D) chiral materials have been attracting immense attentions owing to their unique properties. Herein, we successfully developed a unique assembly strategy of amphiphilic homopolymers to construct stable free-standing 2D chiral nanosheets in solution. The amphiphilic poly(phenylacetylene) (PPA) homopolymers bearing the hydrophobic and hydrophilic dendritic side chains adopt a DNA-like double-helical conformation. The regular hexagonal nanosheets were formed in THF/EtOH through nucleation and epitaxial growth. The sizes of the nanosheets can be modulated from nanometers to submillimeters upon varying the ratio of binary solvents, while the thickness is linearly correlated with the molecular weights. The 2D architecture can significantly enhance the CPL of polymers with a high dissymmetry factor ≈0.1. Driven by a discrimination of helical conformation, the PPAs can self-sort into homochiral 2D nanosheets, as directly visualized by using fluorescent microscopy.
Collapse
Affiliation(s)
- Siliang Cai
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yihan Huang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
26
|
Hao X, Lv Z, Wang H, Rao J, Liu Q, Lü B, Peng F. Top-Down Production of Sustainable and Scalable Hemicellulose Nanocrystals. Biomacromolecules 2022; 23:4607-4616. [DOI: 10.1021/acs.biomac.2c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Hairong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Qiaoling Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| |
Collapse
|
27
|
Deng R, Mao X, Pearce S, Tian J, Zhang Y, Manners I. Role of Competitive Crystallization Kinetics in the Formation of 2D Platelets with Distinct Coronal Surface Patterns via Seeded Growth. J Am Chem Soc 2022; 144:19051-19059. [PMID: 36201750 DOI: 10.1021/jacs.2c07962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low dispersity 2D platelet micelles with controllable surface patterns were prepared by seeded-growth/living crystallization-driven self-assembly (CDSA) of block copolymer/homopolymer (BCP/HP) blends of poly(ferrocenyldimethylsilane)-b-poly(2-vinyl pyridine) (PFS-b-P2VP) and PFS. The precise morphology was found to be dependent on the proportion of the P2VP corona block, which can be efficiently controlled by changing the molar concentration ratio of PFS-b-P2VP/PFS, (cB/cH)t, as well as their relative rates of crystallization, (GB/GH)t. In the case where their molar concentration ratio was comparable to their crystallization rate ratio, platelets with a uniform distribution of P2VP coronal chains were formed. In other cases, as the concentration ratio increased (or decreased) during the living CDSA process, hierarchical structures were formed, including chain-like assemblies consisting of end-to-end linked rectangular platelets and fusiform (tapered) micelles. (GB/GH)t was adjusted by tuning the degree of polymerization of the crystallizable PFS core-forming block and the BCP block ratio and by varying the terminus of the HP or changing the solvent used. Furthermore, the open edge of the platelets remained active for further growth, which permitted control of the morphology and dimensions of the platelets. Interestingly, in cases where the molar concentration ratio was lower than the crystallization rate ratio, growth rings were observed after two or more living CDSA steps. This study on the formation of platelet micelles by living CDSA of BCP/HP blends under kinetic control offers a considerable scope for the design of 2D polymer nanomaterials with controlled shape and surface patterns.
Collapse
Affiliation(s)
- Renhua Deng
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Mao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Jia Tian
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Yifan Zhang
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
28
|
Chen M, Wang H, Li E, Li X, Shi T. Hierarchically supramolecular polymerization of anthraquinone dye to chiral aggregates via 2D-monolayered nanosheets: the unanticipated role of pathway complexity. NANOSCALE 2022; 14:14052-14056. [PMID: 36134624 DOI: 10.1039/d2nr04404h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An anthraquinone dye underwent supramolecular polymerization, affording 2D-monolayered nanosheets in a kinetically controlled state. The nanosheets then transformed into hierarchically chiral aggregates in a thermodynamically controlled step. The unanticipated role played by pathway complexity was clearly unravelled in this work, highlighting the diversified pathways in the supramolecular polymerization of various building blocks.
Collapse
Affiliation(s)
- Mingyue Chen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Houchen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Enhui Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Xueru Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| |
Collapse
|
29
|
Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers (Basel) 2022; 14:polym14194125. [PMID: 36236073 PMCID: PMC9571386 DOI: 10.3390/polym14194125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022] Open
Abstract
Fabricating hierarchical nanomaterials by self-assembly of rod-coil block copolymers attracts great interest. However, the key factors that affect the formation of the hierarchical nanomaterials have not been thoroughly researched. Herein, we have synthesized two diblock copolymers composed of poly(3-hexylthiophene) (P3HT) and polyethylene glycol (PEG). Through a heating, cooling, and aging process, a series of multilayered hierarchical micelles and fibers were prepared in alcoholic solutions. The transition from fibers to hierarchical micelles are strictly influenced by the strength of the π-π stacking interaction, the PEG chain length, and solvent. In isopropanol, the P3HT22-b-PEG43 could self-assemble into hierarchical micelles composed of several two-dimensional (2D) laminar layers, driven by the π-π stacking interaction and van der Waals force. The P3HT22-b-PEG43 could not self-assemble into well-defined nanostructures in methanol and ethanol, but could self-assemble into fibers in isobutanol. However, the P3HT22-b-PEG113 with a longer corona block only self-assembled into fibers in four alcoholic solutions, due to the increase in dissolving capacity and steric hindrance. The sizes and the size distributions of the nanostructures both increased with the increase in polymer concentration and the decrease in solvent polarity. This study shows a method to fabricate the hierarchical micelles.
Collapse
|
30
|
Clapperton A, Babi J, Tran H. A Field Guide to Optimizing Peptoid Synthesis. ACS POLYMERS AU 2022; 2:417-429. [PMID: 36536890 PMCID: PMC9756346 DOI: 10.1021/acspolymersau.2c00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022]
Abstract
N-Substituted glycines (peptoids) are a class of peptidomimetic molecules used as materials for health, environmental, and drug delivery applications. Automated solid-phase synthesis is the most widely used approach for preparing polypeptoids, with a range of published protocols and modifications for selected synthetic targets. Simultaneously, emerging solution-phase syntheses are being leveraged to overcome limitations in solid-phase synthesis and access high-molecular weight polypeptoids. This Perspective aims to outline strategies for the optimization of both solid- and solution-phase synthesis, provide technical considerations for robotic synthesizers, and offer an outlook on advances in synthetic methodologies. The solid-phase synthesis sections explore steps for protocol optimization, accessing complex side chains, and adaptation to robotic synthesizers; the sections on solution-phase synthesis cover the selection of initiators, side chain compatibility, and strategies for controlling polymerization efficiency and scale. This text acts as a "field guide" for researchers aiming to leverage the flexibility and adaptability of peptoids in their research.
Collapse
Affiliation(s)
- Abigail
Mae Clapperton
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Jon Babi
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Helen Tran
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada,Department
of Chemical Engineering, University of Toronto, 200 College St, Toronto, Toronto, ON M5S
3E5, Canada,
| |
Collapse
|
31
|
Feng S, Zhao Y, Liang W. Substituent Effect on Vibrationally Resolved Absorption Spectra and Exciton Dynamics of Dipyrrolonaphthyridinedione Aggregates. J Phys Chem A 2022; 126:6395-6406. [PMID: 36073236 DOI: 10.1021/acs.jpca.2c03907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipyrrolonaphthyridinedione (DPND) thin films exhibit interesting photophysical properties and singlet fission (SF) processes. A recent experimental work found that the alkyl substitution in the DPND skeleton has the remarkable influence on the characteristics of electronic absorption spectra and SF rates. Here, we theoretically elucidate the microscopic mechanism of the substituent effect on the optical properties and exciton dynamics of materials by combining the electronic structure calculations and the quantum dynamics simulations. The results show that the alkyl substituent has a minor effect on the single molecular properties but dramatically changes those of DPND aggregates via varying the intermolecular interactions. The aggregates of DPND with and without alkyl side chains exhibit the more likely characters of H-type aggregations. In the former (DPND6), the weak degree of mixing of intramolecular localized excited (LE) states and intermolecular charge transfer (CT) states makes the low-energy absorption band possess the predominant optical absorption, while in the latter (DPND), the CT and LE states are close in energy, together with their strong interaction, resulting in the substantial state-mixing, so that its two low-energy absorption bands have nearly equal oscillator strengths and a wide energy spacing of more than 0.5 eV. The simulation of exciton dynamics elucidates that the photoinitiated states in both aggregates cannot generate the free charge carrier because of the lack of enough driving forces. However, the population exchanges between LE and CT states in DPND aggregates are much faster than in DPND6 aggregates, indicating the different SF behaviors, consistent with the experimental observation.
Collapse
Affiliation(s)
- Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
32
|
Zou J, Zhou M, Xiao X, Liu R. Advance in Hybrid Peptides Synthesis. Macromol Rapid Commun 2022; 43:e2200575. [PMID: 35978269 DOI: 10.1002/marc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Indexed: 11/08/2022]
Abstract
Hybrid peptides with heterogeneous backbone are a class of peptide mimics with adjustable proteolytic stability obtained from incorporating unnatural amino acid residues into peptide backbone. α/β-peptides and peptide/peptoid hybrids are two types of hybrid peptides that are widely studied for diverse applications, and several synthetic methods have been developed. In this mini review, the advance in hybrid peptide synthesis is summarized, including solution-phase method, solid-phase method, and novel polymerization method. Conventional solution-phase method and solid-phase method generally result in oligomers with defined sequences, while polymerization methods have advantages in preparing peptide hybrid polymers with high molecular weight with simple operation and low cost. In addition, the future development of polymerization method to realize the control of the peptide hybrid polymer sequence is discussed.
Collapse
Affiliation(s)
- Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
33
|
Wang Q, Kang L, Xu X, Zhang M, Chao A, Chen J, Han Z, Yu H, Li R, Zhao Y, Zhang D, Jiang N. Multiscale Crystalline Structure of Confined Polypeptoid Films: The Effect of Alkyl Side Chain Branching. ACS Macro Lett 2022; 11:1060-1066. [PMID: 35976225 DOI: 10.1021/acsmacrolett.2c00271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the effect of alkyl side chain branching on melt-recrystallization of nanoconfined polypeptoid films using poly(N-octyl glycine) (PNOG) and poly(N-2-ethyl-1-hexyl glycine) (PNEHG) as model systems. Upon cooling from the isotropic melt, confined PNOG molecules recrystallize into a near-perfect orthorhombic crystal structure with the board-like molecules stacked face-to-face in the substrate-parallel direction, resulting in long-range ordered wormlike lamellae that occupy the entire film. By contrast, rod-like PNEHG molecules bearing branched N-2-ethyl-1-hexyl side chains stack into a columnar hexagonal mesophase with their backbones oriented parallel to the substrates, forming micron-sized sheaf-like superstructures under confinement, exposing large areas of empty spaces in the film. These findings highlight the effect of alkyl side chain branching on the packing motif and multiscale crystalline structure of polypeptoids under a nanoconfined geometry.
Collapse
Affiliation(s)
- Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Albert Chao
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jianxia Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhijing Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huihui Yu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yixin Zhao
- Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology, Beijing 100083, China
| | - Donghui Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
34
|
Ding X, Liu D, Jiang X, Chen X, Zuckermann RN, Sun J. Hierarchical Approach for Controlled Assembly of Branched Nanostructures from One Polymer Compound by Engineering Crystalline Domains. ACS NANO 2022; 16:10470-10481. [PMID: 35638769 DOI: 10.1021/acsnano.2c01171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interplay of crystalline packing, which governs atomic length-scale order, and hierarchical assembly, which governs longer length scales, is essential to fabricate complex superstructures from polymers for many applications. Here, we demonstrate that a diblock copolymer containing an N-octylglycine peptoid block, which has a propensity to crystallize, can form distinct hierarchical superstructures including a star-like morphology, a superbrush, or a nanosheet by tuning the balance between surface energy arising from the solubility of the copolymers and crystallization energy of the solvophobic polypeptoid blocks. We show that partially ordered micellar aggregates (clusters) are key intermediates that form early in the assembly process and template the formation of superstructures via the oriented fusion of individual micelles as the growth materials. Notably, the fiber-like branch of the superstructures is driven by crystallization and exhibits growth in a living linear manner. The superstructures can be internalized by mammalian cells and hold promise for biomedical applications.
Collapse
Affiliation(s)
- Xiangmin Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dandan Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xi Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ronald N Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
35
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
36
|
Jin X, Zhang C, Lin J, Cai C, Chen J, Gao L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
37
|
Li P, Davis JL, Mays JW, Wang X, Kilbey SM. Architecture- and Composition-Controlled Self-Assembly of Block Copolymers and Binary Mixtures With Crosslinkable Components: Chain Exchange Between Block Copolymer Nanoparticles. Front Chem 2022; 10:833307. [PMID: 35281559 PMCID: PMC8906501 DOI: 10.3389/fchem.2022.833307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Chain exchange behaviors in self-assembled block copolymer (BCP) nanoparticles (NPs) at room temperature are investigated through observations of structural differences between parent and binary systems of BCP NPs with and without crosslinked domains. Pairs of linear diblock or triblock, and branched star-like polystyrene-poly(2-vinylpyridine) (PS-PVP) copolymers that self-assemble in a PVP-selective mixed solvent into BCP NPs with definite differences in size and self-assembled morphology are combined by diverse mixing protocols and at different crosslinking densities to reveal the impact of chain exchange between BCP NPs. Clear structural evolution is observed by dynamic light scattering and AFM and TEM imaging, especially in a blend of triblock + star copolymer BCP NPs. The changes are ascribed to the chain motion inherent in the dynamic equilibrium, which drives the system to a new structure, even at room temperature. Chemical crosslinking of PVP corona blocks suppresses chain exchange between the BCP NPs and freezes the nanostructures at a copolymer crosslinking density (CLD) of ∼9%. This investigation of chain exchange behaviors in BCP NPs having architectural and compositional complexity and the ability to moderate chain motion through tailoring the CLD is expected to be valuable for understanding the dynamic nature of BCP self-assemblies and diversifying the self-assembled structures adopted by these systems. These efforts may guide the rational construction of novel polymer NPs for potential use, for example, as drug delivery platforms and nanoreactors.
Collapse
Affiliation(s)
- Panpan Li
- Shenzhen Research Institute of Shandong University, Shenzhen, China
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jesse L. Davis
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Jimmy W. Mays
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Xu Wang
- Shenzhen Research Institute of Shandong University, Shenzhen, China
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - S. Michael Kilbey
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
38
|
Yang C, Li Z, Xu J. Single crystals and two‐dimensional crystalline assemblies of block copolymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi‐Xian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
39
|
Monodisperse fusiform microporous silica formed by evaporation-induced self assembly of polyamino acid copolymer template. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Cai X, Ji L, Tang H, Wang R, Feng F. One pot synthesis and self-assembly of methylene blue-backboned polymers. Chem Commun (Camb) 2021; 57:12313-12316. [PMID: 34734930 DOI: 10.1039/d1cc04769h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies of methylene blue-backboned polymers (MBPs) are hindered by the limited availability of polymerization methods. Herein, we developed an oxidative polymerization method to produce MBPs. The polymerization is performed in aqueous medium, and is organic solvent-free, heavy metal-free, time-efficient (on a timescale of minutes), and does not need pre-formed methylene blue chromophores. The effects of the alkyl chains of the MBPs on the photophysical properties and self-assembly behavior (e.g., vesicles and nanorings) are significant, which highlights the possibility of controlling the MBP properties via rationally tailoring the functionality of the MBP monomers prior to polymerization. Importantly, the self-assembly structures can be predicted using the dissipative particle dynamics (DPD) simulation method.
Collapse
Affiliation(s)
- Xuetong Cai
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Luyang Ji
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Hao Tang
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Rong Wang
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Fude Feng
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
41
|
Xu XH, Jiang ZQ, Xu L, Zhou L, Liu N, Wu ZQ. Precise Synthesis of π-Conjugated Block Copolymers and Polymerization-Induced Chiral Self-Assembly toward Helical Nanofibers with Circularly Polarized Luminescence. ACS APPLIED BIO MATERIALS 2021; 4:7213-7221. [PMID: 35006953 DOI: 10.1021/acsabm.1c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precise synthesis and efficient self-assembly of semiconducting polymers are of great interest. Herein, we report the controlled synthesis of π-conjugated poly(phenyl isocyanide)-b-poly(phenyleneethylene) (PPI-b-PPE) copolymers via chain extension of ethynyl 4-iodobenzene initiated by Pd(II)-terminated helical poly(phenyl isocyanide) (PPI). The in-situ-generated block copolymers self-assembled into various supramolecular architectures depending on the PPE length. The helical PPI segment induced the block copolymers with an appropriate PPE length self-assemble into helical nanofibers with a controlled size and defined helicity. Interestingly, the chiral assemblies of the block copolymers exhibit intense optical activity and emit clear circularly polarized luminescence.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zhi-Qiang Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
42
|
Jiang N, Zhang D. Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl Side Chains. Polymers (Basel) 2021; 13:3131. [PMID: 34578031 PMCID: PMC8473287 DOI: 10.3390/polym13183131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Polypeptoids, a class of synthetic peptidomimetic polymers, have attracted increasing attention due to their potential for biotechnological applications, such as drug/gene delivery, sensing and molecular recognition. Recent investigations on the solution self-assembly of amphiphilic block copolypeptoids highlighted their capability to form a variety of nanostructures with tailorable morphologies and functionalities. Here, we review our recent findings on the solutions self-assembly of coil-crystalline diblock copolypeptoids bearing alkyl side chains. We highlight the solution self-assembly pathways of these polypeptoid block copolymers and show how molecular packing and crystallization of these building blocks affect the self-assembly behavior, resulting in one-dimensional (1D), two-dimensional (2D) and multidimensional hierarchical polymeric nanostructures in solution.
Collapse
Affiliation(s)
- Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Donghui Zhang
- Macromolecular Studies Group, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
43
|
Zhou P, Shen T, Ling J. Synthesis and properties of polypeptoid‐containing block copolymers: A review. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peng Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
44
|
Zhao M. Hierarchical assemblies of polypeptoids for rational design of advanced functional nanomaterials. Biopolymers 2021; 112:e23469. [PMID: 34406644 DOI: 10.1002/bip.23469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Polypeptoids (poly-N-substituent glycines) are a class of highly tailorable peptidomimetic polymers. Polypeptoids have identical backbones as polypeptides (poly-C-substituent glycines), but sidechains of polypeptoids are appended to backbone nitrogen rather than α-carbon of polypeptides. As a result, peptoid backbone lacks of chirality and hydrogen bond donors. This unique structure gives polypeptoids a combined merit of both high stability as synthetic polymers and biocompatibility as biopolymers. In addition, peptoid sequences can be engineered precisely to assemble specific crystalline patterns such as spheres, fibers, ribbons, tubes, and sheets, which shows promising potentials of polypeptoids for different applications such as antimicrobials, catalysts, drug delivery, and templating inorganic materials. In this review, we summarize recent investigations into hierarchical self-assembly pathways and molecular structures of peptoid crystals that are of interest as templates for fabricating functional materials for potential biomedical, biochemical, and bioengineering applications. This review provides a summary of recent experimental and computational studies of polypeptoid assembly in solution and solid-liquid interfaces, current achievements in the field, and discusses future challenges and opportunities for the rational design of self-assembled polypeptoid nanomaterials.
Collapse
Affiliation(s)
- Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
45
|
Hammons JA, Baer MD, Jian T, Lee JRI, Weiss TM, De Yoreo JJ, Noy A, Chen CL, Van Buuren A. Early-Stage Aggregation and Crystalline Interactions of Peptoid Nanomembranes. J Phys Chem Lett 2021; 12:6126-6133. [PMID: 34181429 DOI: 10.1021/acs.jpclett.1c01033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fully synthetic peptoid membranes are known to mimic important features of biological membranes, with several advantages over other biomimetic membranes. A fundamental understanding of how the individual peptoid amphiphiles assemble in solution to form the bilayer membrane is key to unlocking their versatility for application in a broad range of processes. In this study, in situ X-ray scattering and molecular dynamics simulations are used to understand the early stages of assembly of three different peptoids that exhibit distinctly different crystallization kinetics. The in situ measurements reveal that the peptoids aggregate first into a nascent phase that is less crystalline than the assembled peptoid membrane. Anisotropic aromatic interactions are determined to be the dominant driving force in the early stages of membrane formation. These results provide key insights into how the peptoid assembly may be manipulated during the early stages of assembly and nucleation and growth.
Collapse
Affiliation(s)
- Joshua A Hammons
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jonathan R I Lee
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Thomas M Weiss
- Stanford, Synchrotron Radiation Light Source, SLAC National Accelerator Centre, Menlo Park, California 94025, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Anthony Van Buuren
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
46
|
Hils C, Manners I, Schöbel J, Schmalz H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers (Basel) 2021; 13:1481. [PMID: 34064413 PMCID: PMC8125556 DOI: 10.3390/polym13091481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers bearing one crystallizable block has emerged to be a powerful and highly relevant method for the production of one- and two-dimensional micellar assemblies with controlled length, shape, and corona chemistries. This gives access to a multitude of potential applications, from hierarchical self-assembly to complex superstructures, catalysis, sensing, nanomedicine, nanoelectronics, and surface functionalization. Related to these applications, patchy crystalline-core micelles, with their unique, nanometer-sized, alternating corona segmentation, are highly interesting, as this feature provides striking advantages concerning interfacial activity, functionalization, and confinement effects. Hence, this review aims to provide an overview of the current state of the art with respect to self-assembly concepts, properties, and applications of patchy micelles with crystalline cores formed by CDSA. We have also included a more general discussion on the CDSA process and highlight block-type co-micelles as a special type of patchy micelle, due to similarities of the corona structure if the size of the blocks is well below 100 nm.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Judith Schöbel
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|