1
|
He R, Guo L, Kou X, Gao R, Huang W, Zhong N, Li ZW, Huang S, Huang S, Chen G, Ouyang G. Hierarchically Macroporous Ce-MOF Nanozyme with Enhanced Phosphoester Hydrolase- and Oxidase-like Activities for Self-Cascade Colorimetric Detection of Profenofos On-Site. Anal Chem 2025. [PMID: 40405505 DOI: 10.1021/acs.analchem.5c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The extensive application of profenofos (PFF), a widely used organophosphorus pesticide (OP), has raised significant environmental and health concerns due to its accumulation in ecosystems and its inhibitory effects on acetylcholinesterase in humans. Despite advancements in analytical technologies, currently available chromatography and electrochemical assays often involve complex procedures, high costs, and specialized equipment, limiting their applicability for routine and on-site PFF monitoring. Here, we report a novel self-cascade nanozyme-based colorimetric biosensor employing a hierarchically macroporous Ce-MOF (HMUiO-66(Ce)) with integrated phosphoester hydrolase (PEH)- and oxidase (OXD)-like activities. The HMUiO-66(Ce) nanozyme features hierarchical macrochannels that enhance mass transfer and substrate accessibility, significantly improving its cascade sensing performance compared with conventional UiO-66(Ce). Through PEH-OXD cascade catalysis, PFF is hydrolyzed into 4-bromo-2-chlorophenol, which undergoes selective oxidative coupling via OXD-like catalysis, yielding a distinct red-colored product. This colorimetric response is highly specific to PFF, as other organophosphates do not trigger the OXD-catalyzed coupling, minimizing interference and ensuring high analytical selectivity. The colorimetric biosensor can be seamlessly integrated with a smartphone for on-site detection, exhibiting a broad linear detection range (0.1-50 μg/mL) and an impressively low detection limit (0.068 μg/mL), surpassing most existing colorimetric methods. This work provides new insights into the development of a highly sensitive and selective biosensor through the self-cascade principle, offering great potential for on-site screening of environmental pollutants.
Collapse
Affiliation(s)
- Rongwei He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Lihong Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Wei Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Ningyi Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Wei Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Siming Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
He Q, Ma D, Du Y, Huang Q, Ji J, Wang X, Ji H, Ma W, Zhao J. An Atypical Heterojunction in Favor of Conversion of CO 2 and Sunlight into C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503336. [PMID: 40344650 DOI: 10.1002/advs.202503336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Current heterojunction semiconduction assemblies, including type I, II, Z-Scheme, and S-Scheme constructures, enable the utilization of longer-wavelength sunlight for photocatalytic conversions. However, such benefits are often achieved at the expense of either the redox potentials of the conduction and valence bands or the quantum yield due to additional electron-hole recombination across the heterojunction interface. Herein, an atypical type II heterojunction constituted of Au/TiO2/MFU-4l is reported that demonstrates outstanding catalytic performance in photocatalytic reduction of carbon dioxide (CO2) to ethylene (C2H4) through tuning up-converting of holes in MFU-4l component raised from full-spectrum solar irradiation. Anchored to the edge of cube MFU-4l with a TiO2 cover layer, aurum ions (Au+)supported by aurum (Au) nanoparticles enables such a reverse hole-transfer event through leveraging the Ti-O-•-Au+/0-•-O-Zn potential, which significantly accelerates the hole-dominated oxidative desaturation of C-C intermediates from CO2 reduction into C═C bond products. The catalyst efficiently converts CO2 to C2H4 with more than 90% selectivity and a yield of 107.0 µmol g-1 h-1 under simulated sunlight. Electron paramagnetic resonance (EPR) experiments directly observe the holes formed in visible-light excited MFU-4l moiety of Au/TiO2/MFU-4l that are fused into TiO2 component's holes, thereby generating more hydroxyl radicals (•OH) than that TiO2 is excited alone under ultraviolet (UV) carbon dioxide (CO2) light of the same intensity.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yangyang Du
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Huang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianfei Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wanhong Ma
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Bunzen H, Sertcan Gökmen B, Kalytta-Mewes A, Grzywa M, Wojciechowski J, Hutter J, Hehn AS, Volkmer D. Experimental and Theoretical Insights on Gas Trapping of Noble Gases in MFU-4-Type Metal-Organic Frameworks. Chemistry 2025; 31:e202403574. [PMID: 39570680 DOI: 10.1002/chem.202403574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Isostructural metal-organic frameworks (MOFs), namely MFU-4 and MFU-4-Br, in which the pore apertures are defined by anionic side ligands (Cl- and Br-, respectively), were synthesized and loaded with noble gases. By selecting the type of side ligand, one can fine-tune the pore aperture size, allowing for precise regulation of the entry and release of gas guests. In this study, we conducted experiments to examine gas loading and release using krypton and xenon as model gases, and we complemented our findings with computational modeling. Remarkably, the loaded gas guests remained trapped inside the pores even after being exposed to air under ambient conditions for extended periods, in some cases for up to several weeks. Therefore, we focused on determining the energy barrier preventing gas release using both theoretical and experimental methods. The results were compared in relation to the types of hosts and guests, providing valuable insights into the gas trapping process in MOFs, as well as programmed gas release in air under ambient conditions. Furthermore, the crystal structure of MFU-4-Br was elucidated using the three-dimensional electron diffraction (3DED) technique, and the bulk purity of the sample was subsequently verified through Rietveld refinement.
Collapse
Affiliation(s)
- Hana Bunzen
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
| | - Beliz Sertcan Gökmen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Kalytta-Mewes
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
| | - Maciej Grzywa
- Rigaku Europe SE, Hugenottenallee 167, 63263, Neu-Isenburg, Germany
| | | | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna-Sophia Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Strasse 1, 24118, Kiel, Germany
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
| |
Collapse
|
4
|
Thompson WJ, Maldeni Kankanamalage BKP, Thaggard GC, Park KC, Martin CR, Niu J, Byers JA, Shustova NB. Catalytically Active Site Mapping Realized through Energy Transfer Modeling. Angew Chem Int Ed Engl 2025; 64:e202416695. [PMID: 39365638 DOI: 10.1002/anie.202416695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024]
Abstract
The demands of a sustainable chemical industry are a driving force for the development of heterogeneous catalytic platforms exhibiting facile catalyst recovery, recycling, and resilience to diverse reaction conditions. Homogeneous-to-heterogeneous catalyst transitions can be realized through the integration of efficient homogeneous catalysts within porous matrices. Herein, we offer a versatile approach to understanding how guest distribution and evolution impact the catalytic performance of heterogeneous host-guest catalytic platforms by implementing the resonance energy transfer (RET) concept using fluorescent model systems mimicking the steric constraints of targeted catalysts. Using the RET-based methodology, we mapped condition-dependent guest (re)distribution within a porous support on the example of modular matrices such as metal-organic frameworks (MOFs). Furthermore, we correlate RET results performed on the model systems with the catalytic performance of two MOF-encapsulated catalysts used to promote CO2 hydrogenation and ring-closing metathesis. Guests are incorporated using aperture-opening encapsulation, and catalyst redistribution is not observed under practical reaction conditions, showcasing a pathway to advance catalyst recyclability in the case of host-guest platforms. These studies represent the first generalizable approach for mapping the guest distribution in heterogeneous host-guest catalytic systems, providing a foundation for predicting and tailoring the performance of catalysts integrated into various porous supports.
Collapse
Affiliation(s)
| | | | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, SC, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, SC, USA
| | - Corey R Martin
- Savannah River National Laboratory, 29808, Aiken, SC, USA
| | - Jia Niu
- Department of Chemistry, Boston College, 02467, Chestnut Hill, MA, USA
| | - Jeffery A Byers
- Department of Chemistry, Boston College, 02467, Chestnut Hill, MA, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, SC, USA
| |
Collapse
|
5
|
Huang C, Yang Y, Hu X, Wang Q, Fu H, Wang P, Zhou Y, Zhang L, Zhong Y. Synergistic effect of Lewis acid-base sites in Zr 4+-doped layered double hydroxides promotes rapid decontamination of nerve and blister agents under ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136565. [PMID: 39581028 DOI: 10.1016/j.jhazmat.2024.136565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Nerve and blister agents are among the deadliest chemicals posing a major threat to the society, and the development of materials that can rapidly decontaminate them under solvent-free ambient conditions is a major societal challenge. In this paper, layered double hydroxides (ZnAlxZr1-x-LDH) with varying Zr4+ doping content were synthesized and the decontamination properties of nerve and blister agents were investigated under ambient conditions. The results show that, compared to ZnAl-LDH, the ZnAl0.4Zr0.6-LDH with the highest amount of Zr4+ dopant reduced the decontamination reaction half-life of sarin (GB) and soman (GD) by 10 and 9 times, respectively. Mechanism studies revealed that ZnAl0.4Zr0.6-LDH employs the synergistic effect of Lewis acid-base sites to catalyze the decomposition of GB and GD into hydrolysis products and surface-bound hydrolysis products. The study also showed that under ambient conditions, ZnAl0.4Zr0.6-LDH demonstrated superior decontamination performance for the sulfur mustard (HD) simulant 2-chloroethyl ethyl sulfide (CEES) compared to ZnAl-LDH, effectively catalyzing the detoxification of CEES into dehydrohalogenation (EVS) and 1,2-bis-(ethylthio) ethane (BETE). ZnAl0.4Zr0.6-LDH also had satisfactory decontamination performance against HD. This work provides not only a green and efficient catalyst with potential for practical applications but also new insights for constructing broad-spectrum, highly efficient self-detoxifying materials.
Collapse
Affiliation(s)
- Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China; Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Ying Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xin Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongchen Fu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pingjing Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
6
|
Li Y, Xu M, Liu H, Wang X, Wang Y, Sun M, Fan W, Sun D. Two amino-functionalized metal-organic frameworks with different topologies for C 2H 2/C 2H 4 separation. Dalton Trans 2024; 53:18094-18098. [PMID: 39523989 DOI: 10.1039/d4dt02592j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The rational design of metal-organic framework adsorbents is crucial for target gas separation. Herein, we report two three-dimensional MOFs with different topologies by regulating metal ions with amino-functionalized V-type ligands. Adsorption isotherms and Grand Canonical Monte Carlo simulation reveal that UPC-122 with channel-cavity structure has the potential to separate C2H2/C2H4 at room temperature with a separation ratio of 2.35 (50/50).
Collapse
Affiliation(s)
- Yue Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Mingming Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Hongyan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Yutong Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Meng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
7
|
Xie XJ, Zhang ZH, Cao QY, Huang YL, Luo D, Zeng H, Lu W, Li D. Surface Chemistry Regulation in Cu 4I 4-Triazolate Metal-Organic Frameworks for One-Step C 3H 6 Purification from Quaternary C 3 Mixtures. J Am Chem Soc 2024; 146:30155-30163. [PMID: 39324803 DOI: 10.1021/jacs.4c08530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
C3H6 is a crucial building block for many chemicals, yet separating it from other C3 hydrocarbons presents a significant challenge. Herein, we report a hydrolytically stable Cu4I4-triazolate metal-organic framework (MOF) (JNU-9-CH3) featuring 1D channels decorated with readily accessible iodine and nitrogen atoms from Cu4I4 clusters and triazolate linkers, respectively. The exposed iodine and nitrogen atoms allow for cooperative binding of C3 hydrocarbons, as evidenced by in situ single-crystal crystallography and Raman spectroscopy studies. As a result, JNU-9-CH3 exhibits substantially stronger binding affinity for C3H4, CH2═C═CH2, and C3H8 than that for C3H6. Breakthrough experiments confirm its ability to directly separate C3H6 (≥99.99%) from C3H4/CH2═C═CH2/C3H8/C3H6 mixtures at varying ratios and flow rates. Overall, we illustrate the cooperative binding of C3 hydrocarbons in a Cu4I4-triazolate MOF and its highly efficient C3H6 purification from quaternary C3 mixtures. The study highlights the potential of MOF adsorbents with metal-iodide clusters for cooperative bindings and hydrocarbon separations.
Collapse
Affiliation(s)
- Xiao-Jing Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhi-Hao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Qi-Yun Cao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Heng Zeng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Gibbons B, Johnson EM, Javed MK, Yang X, Morris AJ. Macromorphological Control of Zr-Based Metal-Organic Frameworks for Hydrolysis of a Nerve Agent Simulant. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52703-52711. [PMID: 39292638 PMCID: PMC11450694 DOI: 10.1021/acsami.4c11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Zirconium-based metal-organic frameworks (MOFs) have become one of the most promising materials for the adsorption and destruction of chemical warfare agents. While numerous studies have shown differences in reactivity based on MOF topology and postsynthetic modification, the understanding of how modifying MOF macromorphology is less understood. MOF xerogels demonstrate modified defect levels and larger porosity, which increase the number of and access to potential active sites. Indeed, UiO-66 and NU-901 xerogels display reaction rates 2 and 3 times higher, respectively, for the hydrolysis of DMNP relative to their powder morphologies. Upon recycling, MOF-808 xerogel outperforms MOF-808 powder, previously noted as the fastest Zr6 MOF for hydrolysis of organophosphate nerve agents. The increase in reactivity is largely driven by a higher external surface area and the introduction of mesoporosity to previously microporous materials.
Collapse
Affiliation(s)
| | | | | | - Xiaozhou Yang
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Riddhi RK, Penas-Hidalgo F, Chen H, Quadrelli EA, Canivet J, Mellot-Draznieks C, Solé-Daura A. Experimental and computational aspects of molecular frustrated Lewis pairs for CO 2 hydrogenation: en route for heterogeneous systems? Chem Soc Rev 2024; 53:9874-9903. [PMID: 39212094 DOI: 10.1039/d3cs00267e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Catalysis plays a crucial role in advancing sustainability. The unique reactivity of frustrated Lewis pairs (FLPs) is driving an ever-growing interest in the transition metal-free transformation of small molecules like CO2 into valuable products. In this area, there is a recent growing incentive to heterogenize molecular FLPs into porous solids, merging the benefits of homogeneous and heterogeneous catalysis - high activity, selectivity, and recyclability. Despite the progress, challenges remain in preventing deactivation, poisoning, and simplifying catalyst-product separation. This review explores the expanding field of FLPs in catalysis, covering existing molecular FLPs for CO2 hydrogenation and recent efforts to design heterogeneous porous systems from both experimental and theoretical perspectives. Section 2 discusses experimental examples of CO2 hydrogenation by molecular FLPs, starting with stoichiometric reactions and advancing to catalytic ones. It then examines attempts to immobilize FLPs in porous matrices, including siliceous solids, metal-organic frameworks (MOFs), covalent organic frameworks, and disordered polymers, highlighting current limitations and challenges. Section 3 then reviews computational studies on the mechanistic details of CO2 hydrogenation, focusing on H2 splitting and hydride/proton transfer steps, summarizing efforts to establish structure-activity relationships. It also covers the computational aspects on grafting FLPs inside MOFs. Finally, Section 4 summarizes the main design principles established so far, while addressing the complexities of translating computational approaches into the experimental realm, particularly in heterogeneous systems. This section underscores the need to strengthen the dialogue between theoretical and experimental approaches in this field.
Collapse
Affiliation(s)
- Riddhi Kumari Riddhi
- IRCELYON, UMR 5256, Université LYON 1, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Francesc Penas-Hidalgo
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, PSL Research University, Sorbonne Université, 75231 Paris Cedex 05, France.
| | - Hongmei Chen
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, PSL Research University, Sorbonne Université, 75231 Paris Cedex 05, France.
| | | | - Jérôme Canivet
- IRCELYON, UMR 5256, Université LYON 1, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, PSL Research University, Sorbonne Université, 75231 Paris Cedex 05, France.
| | - Albert Solé-Daura
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| |
Collapse
|
10
|
Wu G, Zhang B, Zhang H, Zhang X, Hu X, Meng X, Wu J, Hou H. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant. Inorg Chem 2024; 63:12658-12666. [PMID: 38916863 DOI: 10.1021/acs.inorgchem.4c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Phosphonate-based nerve agents, as a kind of deadly chemical warfare agent, are a persistent and evolving threat to humanity. Zirconium-based metal-organic frameworks (Zr-MOFs) are a kind of highly porous crystalline material that includes Zr-OH-Zr sites and imitates the active sites of the phosphotriesterase enzyme, representing significant potential for the adsorption and catalytic hydrolysis of phosphonate-based nerve agents. In this work, we present a new Zr-MOF, UiO-66-2I, which attaches two iodine atoms in the micropore of the MOF and exhibits excellent catalytic activity on the degradation of a nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), as the result of the formation of halogen bonds between the phosphate ester bonds and iodine groups. Furthermore, various morphologies of UiO-66-2I, such as blocky-shaped nanoparticles (NPs), two-dimensional (2D) nanosheets, hexahedral NPs, stick-like NPs, colloidal microspheres, and colloidal NPs, have been obtained by adding acetic acid (AA), formic acid (FA), propionic acid (PA), valeric acid (VA), benzoic acid (BA), and trifluoroacetic acid (TFA) as modulators, respectively, and show different catalytic hydrolysis activities. Specifically, the catalytic activities follow the trend UiO-66-2I-FA (t1/2 = 1 min) > UiO-66-2I-AA-NP (t1/2 = 4 min) ≈ UiO-66-2I-VA (t1/2 = 4 min) > UiO-66-2I-BA (t1/2 = 5 min) > UiO-66-2I-PA (t1/2 = 15 min) > UiO-66-2I-TFA (t1/2 = 18 min). The experimental results show that the catalytic hydrolysis activity of Zr-MOF is regulated by the crystallinity, defect quantity, morphologies, and hydrophilicity of these samples, which synergistically affect the accessibility of catalytic sites and the diffusion of phosphate in the pores of Zr-MOFs.
Collapse
Affiliation(s)
- Gaigai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Heyao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiying Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaomeng Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiangru Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
11
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Pan T, Yang K, Dong X, Zuo S, Chen C, Li G, Emwas AH, Zhang H, Han Y. Strategies for high-temperature methyl iodide capture in azolate-based metal-organic frameworks. Nat Commun 2024; 15:2630. [PMID: 38521857 PMCID: PMC10960856 DOI: 10.1038/s41467-024-47035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Efficiently capturing radioactive methyl iodide (CH3I), present at low concentrations in the high-temperature off-gas of nuclear facilities, poses a significant challenge. Here we present two strategies for CH3I adsorption at elevated temperatures using a unified azolate-based metal-organic framework, MFU-4l. The primary strategy leverages counter anions in MFU-4l as nucleophiles, engaging in metathesis reactions with CH3I. The results uncover a direct positive correlation between CH3I breakthrough uptakes and the nucleophilicity of the counter anions. Notably, the optimal variant featuring SCN- as the counter anion achieves a CH3I capacity of 0.41 g g-1 at 150 °C under 0.01 bar, surpassing all previously reported adsorbents evaluated under identical conditions. Moreover, this capacity can be easily restored through ion exchange. The secondary strategy incorporates coordinatively unsaturated Cu(I) sites into MFU-4l, enabling non-dissociative chemisorption for CH3I at 150 °C. This modified adsorbent outperforms traditional materials and can be regenerated with polar organic solvents. Beyond achieving a high CH3I adsorption capacity, our study offers profound insights into CH3I capture strategies viable for practically relevant high-temperature scenarios.
Collapse
Affiliation(s)
- Tingting Pan
- Advanced Membranes and Porous Materials Center (AMPM), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Thuwal, Saudi Arabia
| | - Kaijie Yang
- Advanced Membranes and Porous Materials Center (AMPM), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Thuwal, Saudi Arabia
| | - Xinglong Dong
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Shouwei Zuo
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Thuwal, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center (AMPM), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Thuwal, Saudi Arabia
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center (AMPM), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Jeddah, Thuwal, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Thuwal, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center (AMPM), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Thuwal, Saudi Arabia.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Center for Electron Microscopy, South China University of Technology, Guangzhou, China.
| |
Collapse
|
13
|
Ma K, Cheung YH, Kirlikovali KO, Xie H, Idrees KB, Wang X, Islamoglu T, Xin JH, Farha OK. Fibrous Zr-MOF Nanozyme Aerogels with Macro-Nanoporous Structure for Enhanced Catalytic Hydrolysis of Organophosphate Toxins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300951. [PMID: 37310697 DOI: 10.1002/adma.202300951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium-based MOFs (Zr-MOFs), comprise a growing class of phosphatase-like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as-synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF-based active sites. To overcome these limitations, a rapid synthesis method is developed to introduce Zr-MOF nanozyme coating into cellulose nanofibers, resulting in the formation of processable monolithic aerogel composites with high MOF loadings. These composites contain Zr-MOF nanozymes embedded in the structure, and hierarchical macro-micro porosity enables excellent accessibility to catalytic active sites. This multifaceted rational design strategy, including the selection of a MOF with many catalytic sites, fine-tuning the coating morphology, and the fabrication of a hierarchically structured monolithic aerogel, renders synergistic effects toward the efficient continuous hydrolytic detoxification of organophosphorus-based nerve agent simulants and pesticides from contaminated water.
Collapse
Affiliation(s)
- Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yuk Ha Cheung
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
14
|
Martin-Romera J, Borrego-Marin E, Jabalera-Ortiz PJ, Carraro F, Falcaro P, Barea E, Carmona FJ, Navarro JAR. Organophosphate Detoxification and Acetylcholinesterase Reactivation Triggered by Zeolitic Imidazolate Framework Structural Degradation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9900-9907. [PMID: 38344949 PMCID: PMC10910433 DOI: 10.1021/acsami.3c18855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Organophosphate (OP) toxicity is related to inhibition of acetylcholinesterase (AChE) activity, which plays a key role in the neurotransmission process. In this work, we report the ability of different zinc zeolitic imidazolate frameworks (ZIFs) to behave as potential antidotes against OP poisoning. The Zn-L coordination bond (L = purine, benzimidazole, imidazole, or 2-methylimidazole) is sensitive to the G-type nerve agent model compounds diisopropylfluorophosphate (DIFP) and diisopropylchlorophosphate, leading to P-X (X = F or Cl) bond breakdown into nontoxic diisopropylphosphate. P-X hydrolysis is accompanied by ZIF structural degradation (Zn-imidazolate bond hydrolysis), with the concomitant release of the imidazolate linkers and zinc ions representing up to 95% of ZIF particle dissolution. The delivered imidazolate nucleophilic attack on the OP@AChE adduct gives rise to the recovery of AChE enzymatic function. P-X bond breakdown, ZIF structural degradation, and AChE reactivation are dependent on imidazolate linker nucleophilicity, framework topology, and particle size. The best performance is obtained for 20 nm nanoparticles (NPs) of Zn(2-methylimidazolate)2 (sod ZIF-8) exhibiting a DIFP degradation half-life of 2.6 min and full recovery of AChE activity within 1 h. 20 nm sod ZIF-8 NPs are not neurotoxic, as proven by in vitro neuroblastoma cell culture viability tests.
Collapse
Affiliation(s)
- Javier
D. Martin-Romera
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Emilio Borrego-Marin
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Pedro J. Jabalera-Ortiz
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Francesco Carraro
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgasse 9, Graz A-8010, Austria
| | - Paolo Falcaro
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgasse 9, Graz A-8010, Austria
| | - Elisa Barea
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Francisco J. Carmona
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Jorge A. R. Navarro
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| |
Collapse
|
15
|
Fahy KM, Lee S, Akpinar I, Sha F, Ahmadi Khoshooei M, Su S, Islamoglu T, Gianneschi NC, Farha OK. Thermodynamic Insights into Phosphonate Binding in Metal-Azolate Frameworks. J Am Chem Soc 2024; 146:5661-5668. [PMID: 38353616 DOI: 10.1021/jacs.3c14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Organophosphorus chemicals, including chemical warfare agents (CWAs) and insecticides, are acutely toxic materials that warrant capture and degradation. Metal-organic frameworks (MOFs) have emerged as a class of tunable, porous, crystalline materials capable of hydrolytically cleaving, and thus detoxifying, several organophosphorus nerve agents and their simulants. One such MOF is M-MFU-4l (M = metal), a bioinspired azolate framework whose metal node is composed of a variety of divalent first-row transition metals. While Cu-MFU-4l and Zn-MFU-4l are shown to rapidly degrade CWA simulants, Ni-MFU-4l and Co-MFU-4l display drastically lower activities. The lack of reactivity was hypothesized to arise from the strong binding of the phosphate product to the node, which deactivates the catalyst by preventing turnover. No such study has provided detailed insight into this mechanism. Here, we leverage isothermal titration calorimetry (ITC) to monitor the binding of an organophosphorus compound with the M-MFU-4l series to construct a complete thermodynamic profile (Ka, ΔH, ΔS, ΔG) of this interaction. This study further establishes ITC as a viable technique to probe small differences in thermodynamics that result in stark differences in material properties, which may allow for better design of first-row transition metal MOF catalysts for organophosphorus hydrolysis.
Collapse
Affiliation(s)
- Kira M Fahy
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seryeong Lee
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Isil Akpinar
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milad Ahmadi Khoshooei
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Materials Science & Engineering, Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Lee S, Xie H, Chen Z, Mian MR, Gómez-Torres A, Syed ZH, Reischauer S, Chapman KW, Delferro M, Farha OK. Metal-Organic Frameworks as a Tunable Platform to Deconvolute Stereoelectronic Effects on the Catalytic Activity of Thioanisole Oxidation. J Am Chem Soc 2024; 146:3955-3962. [PMID: 38295514 DOI: 10.1021/jacs.3c11809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The local environment of a metal active site plays an important role in affecting the catalytic activity and selectivity. In recent studies, tailoring the behavior of a molybdenum-based active site via modulation of the first coordination sphere has led to improved thioanisole oxidation performance, but disentangling electronic effects from steric influences that arise from these modifications is nontrivial, especially in heterogeneous systems. To this end, the tunability of metal-organic frameworks (MOFs) makes them promising scaffolds for controlling the coordination sphere of a heterogeneous, catalytically active metal site while offering additional attractive features such as crystallinity and high porosity. Herein, we report a variety of MOF-supported Mo species, which were investigated for catalytic thioanisole oxidation to methyl phenyl sulfoxide and/or methyl phenyl sulfone using tert-butyl hydroperoxide (tBHP) as the oxidant. In particular, MOFs of contrasting node architectures were targeted, presenting a unique opportunity to investigate the stereoelectronic control of Mo active sites in a systematic manner. A Zr6-based MOF, NU-1000, was employed along with its sulfated analogue Zr6-based NU-1000-SO4 to anchor a dioxomolybdenum species, which enabled examination of support-mediated active site polarizability on catalytic performance. In addition, a MOF containing a mixed metal node, Mo-MFU-4l, was used to probe the stereoelectronic impact of an N-donor ligand environment on the catalytic activity of the transmetalated Mo center. Characterization techniques, including single crystal X-ray diffraction, were concomitantly used with reaction time course profiles to better comprehend the dynamics of different Mo active sites, thus correlating structural change with activity.
Collapse
Affiliation(s)
- Seryeong Lee
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alejandra Gómez-Torres
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Susanne Reischauer
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Carsch K, Huang AJ, Dods MN, Parker ST, Rohde RC, Jiang HZH, Yabuuchi Y, Karstens SL, Kwon H, Chakraborty R, Bustillo KC, Meihaus KR, Furukawa H, Minor AM, Head-Gordon M, Long JR. Selective Adsorption of Oxygen from Humid Air in a Metal-Organic Framework with Trigonal Pyramidal Copper(I) Sites. J Am Chem Soc 2024; 146:3160-3170. [PMID: 38276891 PMCID: PMC10859921 DOI: 10.1021/jacs.3c10753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
High or enriched-purity O2 is used in numerous industries and is predominantly produced from the cryogenic distillation of air, an extremely capital- and energy-intensive process. There is significant interest in the development of new approaches for O2-selective air separations, including the use of metal-organic frameworks featuring coordinatively unsaturated metal sites that can selectively bind O2 over N2 via electron transfer. However, most of these materials exhibit appreciable and/or reversible O2 uptake only at low temperatures, and their open metal sites are also potential strong binding sites for the water present in air. Here, we study the framework CuI-MFU-4l (CuxZn5-xCl4-x(btdd)3; H2btdd = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), which binds O2 reversibly at ambient temperature. We develop an optimized synthesis for the material to access a high density of trigonal pyramidal CuI sites, and we show that this material reversibly captures O2 from air at 25 °C, even in the presence of water. When exposed to air up to 100% relative humidity, CuI-MFU-4l retains a constant O2 capacity over the course of repeated cycling under dynamic breakthrough conditions. While this material simultaneously adsorbs N2, differences in O2 and N2 desorption kinetics allow for the isolation of high-purity O2 (>99%) under relatively mild regeneration conditions. Spectroscopic, magnetic, and computational analyses reveal that O2 binds to the copper(I) sites to form copper(II)-superoxide moieties that exhibit temperature-dependent side-on and end-on binding modes. Overall, these results suggest that CuI-MFU-4l is a promising material for the separation of O2 from ambient air, even without dehumidification.
Collapse
Affiliation(s)
- Kurtis
M. Carsch
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Adrian J. Huang
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Matthew N. Dods
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Surya T. Parker
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rachel C. Rohde
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Henry Z. H. Jiang
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Yuto Yabuuchi
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sarah L. Karstens
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Hyunchul Kwon
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Romit Chakraborty
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Karen C. Bustillo
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Katie R. Meihaus
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Hiroyasu Furukawa
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Andrew M. Minor
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
19
|
Dai J, Wang D, Yang J, Tian R, Wang Q, Li Y. Construction of imidazole@defective hierarchical porous UiO-66 and fibrous composites for rapid and nonbuffered catalytic hydrolysis of organophosphorus nerve agents. J Colloid Interface Sci 2023; 652:1156-1169. [PMID: 37657216 DOI: 10.1016/j.jcis.2023.08.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Hydrolytic destruction of toxic organophosphorus nerve agents by metal-organic framework (MOF) catalysts is commonly reliant on bulk water and volatile liquid base, preventing real-world implementation. Poor accessibility to MOF-based active sites in heterogeneous catalysis is also a crucial factor since reactants diffusion is limited by inherently small micropores. To overcome these practical limitations, a ligand-selective pyrolysis strategy was used to construct unsaturated Zr defects and additional mesopores in UiO-66(Zr). Owing to synergistic effect of Zr defects and hierarchical pores, hydrolysis rate constant (k) of nerve agent simulant DMNP (dimethyl 4-nitrophenyl phosphate) on optimal DHP-UiO-30% (defective hierarchical porous UiO-66) is 3.2 times higher than counterpart UiO-30% in N-ethylmorpholine buffer. Encapsulating imidazole (Im) into DHP-UiO-30% affords Im@DHP-UiO, mimicking phosphotriesterase. Im-72@DHP-UiO exhibits rapid DMNP detoxification with 99% conversion in 12 min and initial half-life (t1/2) of 1.8 min in nonbuffered water. As the first example of 'three-in-one' detoxifier, Im@DHP-UiO is further integrated onto nonwoven fabric to construct Im@DHP/Fiber, achieving solid-phase detoxification at ambient humidity with t1/2 of 19.6 min and final conversion of 91%. This is comparable to many powdered catalysts in aqueous solution buffered by volatile bases. This unified strategy is critical and viable to efficiently hydrolyze nerve agents in practical settings.
Collapse
Affiliation(s)
- Jun Dai
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Dazhao Wang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Juan Yang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Ran Tian
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yao Li
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
20
|
Xiao SJ, Yuan MY, Shi YD, Wang MP, Li HH, Zhang L, Qiu JD. Construction of covalent organic framework nanozymes with photo-enhanced hydrolase activities for colorimetric sensing of organophosphorus nerve agents. Anal Chim Acta 2023; 1278:341706. [PMID: 37709428 DOI: 10.1016/j.aca.2023.341706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Construction of covalent organic frameworks (COFs)-based nanozymes is of great importance for the extensive applications in catalysis and sensing fields. In this work, a two-dimensional COF (DAFB-DCTP COF) was fabricated via Knoevenagel condensation reaction. The integration of catalytically active sites of pyridine groups into the donor-acceptor (D-A) conjugated skeleton endows DAFB-DCTP COF with both hydrolytic and photosensitive properties. The DAFB-DCTP COF can be utilized as an artificial enzyme with selective and photo-enhanced catalytic efficiency, facilitating its application in photocatalytic degradation of hydrolase substrates (p-nitrophenyl acetate, pNPA) by nucleophilic reaction and further realizing colorimetric detection of the nanozyme inhibitor of organophosphorus nerve agent (diethyl cyanophosphonate, DCNP). The distinct color changes could be distinguished by naked eyes even at a low DCNP concentration, and the versatile smartphone analysis featured with reliability and simplicity. For the first time, the COFs' intrinsic hydrolase activity depending on their structural characteristics was investigated in synergy with the photosensitive performance originating from their photoelectric features. The present contribution provides a promising direction towards construction of colorimetric sensing platform based on the regulation of COFs' non-oxidoreductase activity under visible light irradiation.
Collapse
Affiliation(s)
- Sai-Jin Xiao
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Ming-Yue Yuan
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Ya-Di Shi
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Meng-Ping Wang
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Hui-Han Li
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China.
| | - Jian-Ding Qiu
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
21
|
Chen Z, Kirlikovali KO, Shi L, Farha OK. Rational design of stable functional metal-organic frameworks. MATERIALS HORIZONS 2023; 10:3257-3268. [PMID: 37285170 DOI: 10.1039/d3mh00541k] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Functional porous metal-organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions (e.g., Al3+, Cr3+, Fe3+, Ti4+ and Zr4+) and carboxylate ligands; (2) MOFs based on low valent metal ions (e.g., Ni2+, Cu2+, and Zn2+) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials.
Collapse
Affiliation(s)
- Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
22
|
Mhatre CV, Wardzala JJ, Shukla PB, Agrawal M, Johnson JK. Calculation of Self, Corrected, and Transport Diffusivities of Isopropyl Alcohol in UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111793. [PMID: 37299696 DOI: 10.3390/nano13111793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The UiO-6x family of metal-organic frameworks has been extensively studied for applications in chemical warfare agent (CWA) capture and destruction. An understanding of intrinsic transport phenomena, such as diffusion, is key to understanding experimental results and designing effective materials for CWA capture. However, the relatively large size of CWAs and their simulants makes diffusion in the small-pored pristine UiO-66 very slow and hence impractical to study directly with direct molecular simulations because of the time scales required. We used isopropanol (IPA) as a surrogate for CWAs to investigate the fundamental diffusion mechanisms of a polar molecule within pristine UiO-66. IPA can form hydrogen bonds with the μ3-OH groups bound to the metal oxide clusters in UiO-66, similar to some CWAs, and can be studied by direct molecular dynamics simulations. We report self, corrected, and transport diffusivities of IPA in pristine UiO-66 as a function of loading. Our calculations highlight the importance of the accurate modeling of the hydrogen bonding interactions on diffusivities, with about an order of magnitude decrease in diffusion coefficients when the hydrogen bonding between IPA and the μ3-OH groups is included. We found that a fraction of the IPA molecules have very low mobility during the course of a simulation, while a small fraction are highly mobile, exhibiting mean square displacements far greater than the ensemble average.
Collapse
Affiliation(s)
- Chinmay V Mhatre
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jacob J Wardzala
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
23
|
Gao Z, Li B, Li Z, Yu T, Wang S, Fang Q, Qiu S, Xue M. Free-Standing Metal-Organic Framework Membranes Made by Solvent-Free Space-Confined Conversion for Efficient H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19241-19249. [PMID: 37029737 DOI: 10.1021/acsami.3c02208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for the advanced membrane materials based on their diverse structures, modifiable pore environment, precise pore sizes, etc. Nevertheless, the use of supports and large amounts of solvents in traditional solvothermal synthesis of MOF membranes is considered inefficient, costly, and environmentally problematic, coupled with challenges in their scalable manufacturing. In this work, we report a solvent-free space-confined conversion (SFSC) approach for the fabrication of a series of free-standing MOF (ZIF-8, Zn(EtIm)2, and Zn2(BIm)4) membranes. This approach excludes the employment of solvents and supports that require tedious pretreatment and, thus, makes the process more environment-friendly and highly efficient. The free-standing membranes feature a robust and unique architecture, which comprise dense surface layers and highly porous interlayer with large amounts of irregular-shaped micron-scale pore cavities, inducing satisfactory H2/CO2 selectivities and exceptional H2 permeances. The ZIF-8 membrane affords a considerable H2 permeance of 2653.7 GPU with a competitive H2/CO2 selectivity of 17.1, and the Zn(EtIm)2 membrane exhibits a high H2/CO2 selectivity of 22.1 with an excellent H2 permeance (6268.7 GPU). The SFSC approach potentially provides a new pathway for preparing free-standing MOF membranes under solvent-free conditions, rendering it feasible for scale-up production of membrane materials for gas separation.
Collapse
Affiliation(s)
- Zhuangzhuang Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Baoju Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Shuchang Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Xue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
24
|
Mian MR, Wang X, Wang X, Kirlikovali KO, Xie H, Ma K, Fahy KM, Chen H, Islamoglu T, Snurr RQ, Farha OK. Structure-Activity Relationship Insights for Organophosphonate Hydrolysis at Ti(IV) Active Sites in Metal-Organic Frameworks. J Am Chem Soc 2023; 145:7435-7445. [PMID: 36919617 DOI: 10.1021/jacs.2c13887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Organophosphorus nerve agents are among the most toxic chemicals known and remain threats to humans due to their continued use despite international bans. Metal-organic frameworks (MOFs) have emerged as a class of heterogeneous catalysts with tunable structures that are capable of rapidly detoxifying these chemicals via hydrolysis at Lewis acidic active sites on the metal nodes. To date, the majority of studies in this field have focused on zirconium-based MOFs (Zr-MOFs) that contain hexanuclear Zr(IV) clusters, despite the large toolbox of Lewis acidic transition metal ions that are available to construct MOFs with similar catalytic properties. In particular, very few reports have disclosed the use of a Ti-based MOF (Ti-MOF) as a catalyst for this transformation even though Ti(IV) is a stronger Lewis acid than Zr(IV). In this work, we explored five Ti-MOFs (Ti-MFU-4l, NU-1012-NDC, MIL-125, Ti-MIL-101, MIL-177(LT), and MIL-177(HT)) that each contains Ti(IV) ions in unique coordination environments, including monometallic, bimetallic, octanuclear, triangular clusters, and extended chains, as catalysts to explore how both different node structures and different linkers (e.g., azolate and carboxylate) influence the binding and subsequent hydrolysis of an organophosphorus nerve agent simulant at Ti(IV)-based active sites in basic aqueous solutions. Experimental and theoretical studies confirm that Ti-MFU-4l, which contains monometallic Ti(IV)-OH species, exhibits the best catalytic performance among this series with a half-life of roughly 2 min. This places Ti-MFU-4l as one of the best nerve agent hydrolysis catalysts of any MOF reported to date.
Collapse
Affiliation(s)
- Mohammad Rasel Mian
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xijun Wang
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kira M Fahy
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry, The University of Texas Rio Grande Valley, 1201 W University Drive, Edinburg, Texas 78539, United States
| | - Timur Islamoglu
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Kirlikovali KO, Hanna SL, Son FA, Farha OK. Back to the Basics: Developing Advanced Metal-Organic Frameworks Using Fundamental Chemistry Concepts. ACS NANOSCIENCE AU 2023; 3:37-45. [PMID: 37101466 PMCID: PMC10125349 DOI: 10.1021/acsnanoscienceau.2c00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 04/28/2023]
Abstract
Over the past 25 years, metal-organic frameworks (MOFs) have developed into an increasingly intricate class of crystalline porous materials in which the choice of building blocks offers significant control over the physical properties of the resulting material. Despite this complexity, fundamental coordination chemistry design principles provided a strategic basis to design highly stable MOF structures. In this Perspective, we provide an overview of these design strategies and discuss how researchers leverage fundamental chemistry concepts to tune reaction parameters and synthesize highly crystalline MOFs. We then discuss these design principles in the context of several literature examples, highlighting both relevant fundamental chemistry principles and additional design principles required to access stable MOF structures. Finally, we envision how these fundamental concepts may offer access to even more advanced structures with tailored properties as the MOF field looks toward the future.
Collapse
Affiliation(s)
- Kent O. Kirlikovali
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sylvia L. Hanna
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Florencia A. Son
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Costa LMO, Reis IS, Fernandes C, Marques MM, Resende JALC, Krenske EH, Schenk G, Gahan LR, Horn A. Synthesis, characterization and computational investigation of the phosphatase activity of a dinuclear Zinc(II) complex containing a new heptadentate asymmetric ligand. J Inorg Biochem 2023; 239:112064. [PMID: 36410306 DOI: 10.1016/j.jinorgbio.2022.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
We report the synthesis of a new asymmetric heptadentate ligand based on the 1,3-diaminopropan-2-ol backbone. The ligand 3-[[3-(bis-pyridin-2-ylmethyl-amino)-2-hydroxy-propyl]-(2-carbamoyl-ethyl)-amino]-propionamide (HL1) contains two amide and two pyridine groups attached to the 1,3-diaminopropan-2-ol core. Reaction between HL1 and Zn(ClO4)2.6H2O resulted in the formation of the dinuclear [Zn2(L1)(μ-OAc)](ClO4)2 complex, characterized by single crystal X-ray diffraction, 1H, 13C and 15N NMR, ESI-(+)-MS, CHN elemental analysis as well as infrared spectroscopy. The phosphatase activity of the complex was studied in the pH range 6-11 employing pyridinium bis(2,4-dinitrophenyl)phosphate (py(BDNPP)) as substrate. The complex exhibited activity dependent on the pH, presenting an asymmetric bell shape profile with the highest activity at pH 9; at high pH ligand exchange is rate-limiting. The hydrolysis of BDNPP- at pH 9 displayed behavior characteristic of Michaelis-Menten kinetics, with kcat = 5.06 × 10-3 min-1 and Km = 5.7 ± 1.0 mM. DFT calculations map out plausible reaction pathways and identify a terminal, Zn(II)-bound hydroxide as likely nucleophile.
Collapse
Affiliation(s)
- Luel M O Costa
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Iago S Reis
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Marcelo M Marques
- Colégio Universitário Geraldo Reis, Universidade Federal Fluminense, Niterói, RJ 24210-200, Brazil
| | - Jackson A L C Resende
- Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia, 4072; Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
27
|
Nitrogen-rich cobalt (II) MOFs as efficient bifunctional catalysts for single or tandem oxidation and CO2 conversion reactions. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Wang QY, Sun ZB, Zhang M, Zhao SN, Luo P, Gong CH, Liu WX, Zang SQ. Cooperative Catalysis between Dual Copper Centers in a Metal–Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants. J Am Chem Soc 2022; 144:21046-21055. [DOI: 10.1021/jacs.2c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian-You Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Bing Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Chun-Hua Gong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Xiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Röß-Ohlenroth R, Kraft M, Bunzen H, Volkmer D. Inhibition, Binding of Organometallics, and Thermally Induced CO Release in an MFU-4-Type Metal-Organic Framework Scaffold with Open Bidentate Bibenzimidazole Coordination Sites. Inorg Chem 2022; 61:16380-16389. [PMID: 36197843 DOI: 10.1021/acs.inorgchem.2c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triazolate-based MFU-4-type metal-organic frameworks are promising candidates for various applications, of which heterogeneous catalysis has emerged as a hot topic owing to the facile post-synthetic metal and ligand exchange in Kuratowski secondary building units (SBUs). Herein, we present the largest non-interpenetrated isoreticular MFU-4-type framework CFA-19 ([Co5IICl4(H2-bibt)3]; H4-bibt = 1,1',5,5'-tetrahydro-6,6'-biimidazo[4,5-f]benzotriazole; CFA-19 = Coordination Framework Augsburg University-19) and the CFA-19-Tp derivative featuring trispyrazolylborate inhibited SBUs as a scaffold with open bibenzimidazole coordination sites at the backbone of the H4-bibt linker. The proof-of-principle incorporation of accessible MIBr(CO)3 (M = Re, Mn) sites in CFA-19-Tp was revealed by single-crystal X-ray diffraction, and a thermally induced CO release was observed for MnBr(CO)3. Deprotonation of bibenzimidazole was also achieved by the reaction with ZnEt2.
Collapse
Affiliation(s)
- Richard Röß-Ohlenroth
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | - Maryana Kraft
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | - Hana Bunzen
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| |
Collapse
|
30
|
Yang K, Jiang J. Highly efficient CO2 conversion on a robust metal-organic framework Cu(I)-MFU-4l: Prediction and mechanistic understanding from DFT calculations. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Wang K, Li Y, Xie LH, Li X, Li JR. Construction and application of base-stable MOFs: a critical review. Chem Soc Rev 2022; 51:6417-6441. [PMID: 35702993 DOI: 10.1039/d1cs00891a] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials constructed from organic ligands and metal ions/clusters. Owing to their unique advantages, they have attracted more and more attention in recent years and numerous studies have revealed their great potential in various applications. Many important applications of MOFs inevitably involve harsh alkaline operational environments. To achieve high performance and long cycling life in these applications, high stability of MOFs against bases is necessary. Therefore, the construction of base-stable MOFs has become a critical research direction in the MOF field. This review gives a historic summary of the development of base-stable MOFs in the last few years. The key factors that can determine the robustness of MOFs under basic conditions are analyzed. We also demonstrate the exciting achievements that have been made by utilizing base-stable MOFs in different applications. In the end, we discuss major challenges for the further development of base-stable MOFs. Some possible methods to address these problems are presented.
Collapse
Affiliation(s)
- Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yaping Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiangyu Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
32
|
Johnson EM, Boyanich MC, Gibbons B, Sapienza NS, Yang X, Karim AM, Morris JR, Troya D, Morris AJ. Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66. Inorg Chem 2022; 61:8585-8591. [PMID: 35613459 DOI: 10.1021/acs.inorgchem.2c01351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have shown great success in aqueous-phase hydrolysis of nerve agents, with some even showing promise in the gas phase. However, both aqueous-phase reactivity and gas-phase reactivity are hindered because of the binding of the hydrolyzed products to the MOF nodes in a stable, bridging configuration, which limits turnover. Single transition-metal atoms in MOFs have been a growing field of interest for catalytic applications, and single atoms have been proposed to prevent the unwanted bridged conformation and increase catalytic turnover. To date, there has been little experimental evidence to support the hypothesis. Herein, we report two copper single atom-modified UiO-66 MOFs for nerve-agent simulant degradation. Despite the capping of highly active Zr4+ nodes with fewer Lewis acidic Cun+ atoms, the reactivity of both CuMOFs approaches that of native UiO-66 under aqueous conditions. Computational studies reveal that the Cu coordination environment impairs product inhibition with respect to the native MOF.
Collapse
Affiliation(s)
- Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mikaela C Boyanich
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bradley Gibbons
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas S Sapienza
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
33
|
Xiong D, Li Y, Shi Z, Qin T, Li D, Fu P, Yang Q, Zhu Y, Dong X. Syntheses, structures, and properties of three new complexes (Co(II), Cd(II), Zn(II)) assembled with 3-(2,4-di-carboxyphenoxy)phthalic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Yu GH, Yang CL, Zhao HL, Yu AX, Zhang G, Du DY, Su ZM. Mixed-Linker Strategy for the Construction of Metal-Organic Framework Combined with Dyes toward Alcohol Detection. Inorg Chem 2022; 61:5318-5325. [PMID: 35302364 DOI: 10.1021/acs.inorgchem.2c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a N-rich metal-organic framework (MOF) with four kinds of cages, Zn4(ade)2(TCA)2(H2O) (NENU-1000, Hade = adenine, H3TCA = 4,4',4″-tricarboxytriphenylamine, NENU = Northeast Normal University), was prepared by the mixed-ligand strategy. Cationic dyes can be selectively absorbed by NENU-1000 at proper concentrations, but not neutral and anionic dyes, which perhaps can be assigned to the N-rich neutral framework of NENU-1000. When NENU-1000 was introduced to a relatively lower concentration of cationic dye solutions (e.g., rhodamine B or basic red 2), the colors of these systems faded quickly. Furthermore, the faded solutions can be used for the detection of methanol and other small alcohol molecules with either the naked eye or common UV-vis spectra. The effect of the length of carbon chain, the position of the -OH group, and the number of the hydroxyl group of the alcohols was explored for the color development rate. In addition, the performance of NENU-1000 in iodine sorption and release was also studied.
Collapse
Affiliation(s)
- Guang-Hui Yu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Chun-Lei Yang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Hong-Lei Zhao
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ai-Xuan Yu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Dong-Ying Du
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhong-Min Su
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| |
Collapse
|
35
|
Wang Y, Zhao L, Ji G, He C, Liu S, Duan C. Vanadium(V IV)-Porphyrin-Based Metal-Organic Frameworks for Synergistic Bimetallic Activation of Inert C(sp 3)-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2794-2804. [PMID: 34989552 DOI: 10.1021/acsami.1c20420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activation and selective functionalization of inert C(sp3)-H bonds remain one of the most challenging tasks in current synthetic chemistry. Herein, by decorating vanadium(VIV)-porphyrin into metal-organic frameworks (MOFs) to stabilize the active tertbutyl peroxide radical, we reported a new approach to accomplish inert C(sp3)-H bond activation by a synergistic bimetallic strategy via a hydrogen atom transfer process under mild conditions. The stabilized peroxide radical by VIV-porphyrin-based MOFs abstracted a hydrogen atom from the inert C(sp3)-H bonds for direct oxidization transformation utilizing environmentally friendly oxygen. Taking advantage of the high stability of Zr6 clusters, the new Zr-MOF was recyclable six times without a conversion efficiency decrease. From this foundation, {Mn3(μ3-O)} cluster nodes with potential unsaturated coordinated sites were introduced into MOFs to replace Zr6 clusters, realizing the pre-activation of substrates through the interaction between Mn nodes and substrates. The synergistic bimetallic activation effect of VIV-porphyrin and Mn nodes dramatically promoted the conversion efficiency and product selectivity for inert C(sp3)-H bond functionalization.
Collapse
Affiliation(s)
- Yefei Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
36
|
Tang Y, Zhao L, Ji G, Zhang Y, He C, Wang Y, Wei J, Duan C. Ligand regulated metal–organic frameworks for synergistic photoredox and nickel catalysis. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic photoredox and nickel catalytic cross-coupling systems have created a great attraction as a promising methodology to produce the aryl C−N bonds under mild conditions as well as extreme challenge,...
Collapse
|
37
|
Jia JG, Zhao CC, Bao SS, Wu LQ, Wen GH, Jacobson AJ, Ma J, Zheng LM. Layer or Tube? Uncovering Key Factors Determining the Rolling-up of Layered Coordination Polymers. J Am Chem Soc 2021; 143:17587-17598. [PMID: 34644503 DOI: 10.1021/jacs.1c07517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nanotubular materials have garnered considerable attention since the discovery of carbon nanotubes. Although the layer-to-tube rolling up mechanism has been well recognized in explaining the formation of many inorganic nanotubes, it has not been generally applied to coordination polymers (CPs). To uncover the key factors that determine the rolling-up of layered CPs, we have chosen the Co/R-, S-Xpemp [Xpemp = (4-X-1-phenylethylamino)methylphosphonic acid, X = H, F, Cl, Br] systems and study how the weak interactions influence the formation of layered or tubular structures. Four pairs of homochiral isostructural compounds R-, S-Co(Xpemp)(H2O)2 [X = H (1H), F (2F), Cl (3Cl), Br (4Br)] were obtained with tubular structures. The inclusion of 3,3'-azobipyridine (ABP) guest molecules led to compounds R-, S-[Co(Xpemp)(H2O)2]4·ABP·H2O with layered structures when X was Cl (5Cl) and Br (6Br), but tubular compounds 1H and 2F when X was H and F. Layered structures were also obtained for racemic compounds meso-Co(Xpemp)(H2O)2 [X = F (7F), Cl (8Cl), Br (9Br)] using racemic XpempH2 as the reaction precursor, but not when X = H. A detailed study on R-6Br revealed that layer-to-tube transformation occurred upon removal of ABP under hydrothermal conditions, forming R-4Br with a tubular structure. Similar layer-to-tube conversion did not occur in organic solvents. The results demonstrate that weak interlayer interactions are a prerequisite but not sufficient for the rolling-up of the layers. In the present cases, water also provides a driving force in the layer-to-tube transformation. The experimental results were rationalized by theoretical calculations.
Collapse
Affiliation(s)
- Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chen-Chen Zhao
- Theoretical and Computational Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lan-Qing Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| | - Allan J Jacobson
- Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Jing Ma
- Theoretical and Computational Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|