1
|
Park KH, Lim Y, Bae HB, Kim JS, Lee S, Kim D, Chung SY. Complex Iridate Solid Solutions for Catalyzing Oxygen Evolution Reaction: Comparison of Elemental Leaching and Stability Numbers. J Am Chem Soc 2025; 147:17725-17738. [PMID: 40375491 DOI: 10.1021/jacs.5c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
As predicted by the Hume-Rothery rules, forming solid solutions of rutile IrO2 with other metal oxides that have different crystal structures is thermodynamically challenging. Consequently, achieving high solubility of foreign elements in Ir-based solid-solution oxides has been significantly limited. We demonstrate that hexagonal-perovskite BaIrO3 can serve as a flexible matrix oxide capable of incorporating a wide spectrum of (post)transition-metal cations with different electronic structures, ranging from d0 to d10 configurations. Among 12 cation solutes, Ta5+, Nb5+, and Zr4+ are found to be stable without substantial leaching during the oxygen evolution reaction (OER) under acidic condition. Acceptor-type trivalent cations, including Sc3+, In3+, and Fe3+, are identified to leach out gradually from the particle surface while enhancing the OER catalytic activity. Both X-ray absorption spectroscopy and ab initio molecular dynamics simulations consistently show that the robust face-sharing [IrO6] octahedral framework of the solid solutions remains unperturbed unless electrochemical leaching rapidly occurs. As a result, notably high S-numbers, on the order of 106, are achievable at pH = 1. Although our work focuses on single-element incorporation, it is suggested that the solid-solution methodology is an effective strategy for developing stable, long-lasting OER catalysts with further reduced Ir usage for acidic water oxidation.
Collapse
Affiliation(s)
- Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Younghwan Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jun Seop Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sangmyeong Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Dongho Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
2
|
Zhao S, Jin Q, Shi Y, Zhao M, Xu H, Shen X, Han X, Hong X. Optimization of Short-Range Order in Amorphous AlO x Nanosheets for Enhanced Methane Oxidation. NANO LETTERS 2025; 25:8211-8219. [PMID: 40357674 DOI: 10.1021/acs.nanolett.5c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Heterogeneous catalysts often undergo dynamic evolution during catalysis, forming true active sites. Amorphous materials, due to their inherent structural flexibility, are particularly prone to evolution and self-adaptation under catalytic conditions. Herein, we demonstrate that the short-range order of an Al-O polyhedron in amorphous aluminum oxide nanosheets undergoes a transformation from a mixed AlO6, AlO5, and AlO4 configuration to a randomly connected AlO6 structure during both hydrothermal treatment and direct methane oxidation, confirmed by time-series 27Al solid-state NMR spectroscopy. The resulting structural changes induce nanosheet wrinkling and a 5-fold increase in specific surface area, concomitant with a transition from weak to moderately strong basic sites, enabling the amorphous nanosheets to efficiently activate hydrogen peroxide and generate hydroxyl radicals. When coupled with supported Cu single atoms, the catalysis achieves an exceptional C1 liquid oxygenate production rate of 5202 mmol gCu-1 h-1 with nearly 100% selectivity during methane oxidation.
Collapse
Affiliation(s)
- Shuyan Zhao
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qi Jin
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Shi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengmeng Zhao
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haonan Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xiaoshuang Shen
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Sim Y, Yun TG, Park KH, Kim D, Bae HB, Chung SY. Effect of ionic-bonding d 0 cations on structural durability in barium iridates for oxygen evolution electrocatalysis. Nat Commun 2025; 16:4152. [PMID: 40320410 PMCID: PMC12050298 DOI: 10.1038/s41467-024-55290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/06/2024] [Indexed: 05/08/2025] Open
Abstract
Iridium has the exclusive chemistry guaranteeing both high catalytic activity and sufficient corrosion resistance in a strong acidic environment under anodic potential. Complex iridates thus attract considerable attention as high-activity electrocatalysts with less iridium utilization for the oxygen evolution reaction (OER) in water electrolyzers using a proton-exchange membrane. Here we demonstrate the effect of chemical doping on the durability of hexagonal-perovskite Bax(M,Ir)yOz-type iridates in strong acid (pH ~ 0). Some aliovalent cations are directly visualized to periodically locate at the octahedral sites bridging the two face-sharing [Ir2O9] dimer or [Ir3O12] trimers in hexagonal-perovskite polytypes. In particular, highly ionic bonding of the d0 Nb5+ and Ta5+ cations with oxygen anions results in notable suppression of lattice oxygen participation during the OER and thus effectively preserves the connectivity between the [Ir3O12] trimers without lattice collapse. Providing an in-depth understanding of the correlation between the electronic structure and bonding nature in crystals, our work suggests that proper control of chemical doping in complex oxides promises a simple but efficient tool to realize OER electrocatalysts with markedly improved durability.
Collapse
Affiliation(s)
- Yelyn Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Dongho Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
4
|
Yuan Y, Fang H, Chen K, Huang J, Chen J, Lu Z, Wang H, Zhao Z, Chen W, Wen Z. Engineering High-Density Grain Boundaries in Ru 0.8Ir 0.2O x Solid-Solution Nanosheets for Efficient and Durable OER Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501607. [PMID: 40123248 DOI: 10.1002/adma.202501607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
The oxygen evolution reaction (OER) in proton exchange membrane water electrolyzers (PEMWE) has long stood as a formidable challenge for green hydrogen sustainable production, hindered by sluggish kinetics, high overpotentials, and poor durability. Here, these barriers are transcended through a novel material design: strategic engineering of high-density grain boundaries within solid-solution Ru0.8Ir0.2Ox ultrathin nanosheets. These carefully tailored grain boundaries and synergistic Ir─Ru interactions, reduce the coordination of Ru atoms and optimize the distribution of charge, thereby enhancing both the catalytic activity and stability of the nanosheets, as verified by merely requiring an overpotential of 189 mV to achieve 10 mA cm-2 in acidic electrolyte. In situ electrochemical techniques, complemented by theoretical calculations, reveal that the OER follows an adsorption evolution mechanism, demonstrating the pivotal role of grain boundary engineering and electronic modulation in accelerating reaction kinetics. Most notably, the Ru0.8Ir0.2Ox exhibits outstanding industrial-scale performance in PEMWE, reaching 4.0 A cm-2 at 2 V and maintaining stability for >1000 h at 500 mA cm-2. This efficiency reduces hydrogen production costs to $0.88 kg-1. This work marks a transformative step forward in designing efficient, durable OER catalysts, offering a promising pathway toward hydrogen production technologies and advancing the global transition to sustainable energy.
Collapse
Affiliation(s)
- Yalong Yuan
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Huiling Fang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Kai Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Junheng Huang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Junxiang Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiwen Lu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Huibing Wang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixuan Zhao
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wenxing Chen
- Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenhai Wen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
5
|
Huo M, Sun H, Jin Z, Liu W, Liang Y, Liu J, Liu C, Xing Z, Yang Y, Chang J. Tailoring Octahedron-Tetrahedron Synergism in Spinel Catalysts for Acidic Water Electrolysis. J Am Chem Soc 2025; 147:10678-10689. [PMID: 40017462 DOI: 10.1021/jacs.5c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The instability issues of oxide-based electrocatalysts during the oxygen evolution reaction (OER) under acidic conditions, caused by the oxidation and dissolution of the catalysts along with the current-capacitance effect, constrain their application in proton exchange membrane water electrolysis (PEMWE). To address these challenges, we tailored the spinel structure of Co3O4 and exploited the synergism between the tetrahedron and octahedron sites by partially substituting Co with Ni and Ru (denoted as NiRuCoOx), respectively. Such a catalyst design creates a Ru-O-Ni electronic coupling effect, facilitating a direct dioxygen radical-coupled OER pathway. Density-functional theory (DFT) calculations and in situ Raman spectroscopy results confirm that Ru is the active site in the diatomic oxygen mechanism while Ni stabilizes lattice oxygen and the Ru-O bonding. The designed NiRuCoOx catalyst exhibits an exceptionally low overpotential of 166 mV to achieve a current density of 10 mA cm-2. Moreover, when serving as the anode in PEMWE, the NiRuCoOx requires 1.72 V to reach a current density of 3A cm-2, meeting the 2026 target set by the U.S. Department of Energy (DOE: 1.8 V@3A cm-2). The PEMWE device can operate stably for more than 1500 h with a significantly reduced performance decay rate of 0.025 mV h-1 compared to commercial RuO2 (2.13 mV h-1). This work provides an efficient method for tailoring the octahedron-tetrahedron sites of spinel Co3O4, which significantly improves the activity and stability of PEMWE.
Collapse
Affiliation(s)
- Mengtian Huo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Hao Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhao Jin
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yu Liang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jingyao Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zihao Xing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida 32826, United States
| | - Jinfa Chang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
6
|
Zhao S, Dang Q, Cao A, Sendeku MG, Liu H, Peng J, Fan Y, Li H, Wang F, Kuang Y, Sun X. Hydroxylation Strategy Enables Ru-Mn Oxide for Stable Proton Exchange Membrane Water Electrolysis under 1 A cm -2. ACS NANO 2025; 19:8773-8785. [PMID: 39993936 DOI: 10.1021/acsnano.4c15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Ruthenium (Ru)-based catalysts have demonstrated promising utilization potentiality to replace the much expensive iridium (Ir)-based ones for proton exchange membrane water electrolysis (PEMWE) due to their high electrochemical activity and low cost. However, the susceptibility of RuO2-based materials to easily be oxidized to high-valent and soluble Ru species during the oxygen evolution reaction (OER) in acid media hinders the practical application, especially under current density above 500 mA cm-2. Here, a manganese-doped RuO2 catalyst with the hydroxylated metal sites (i.e., H-Mn0.1Ru0.9O2) is synthesized for acidic OER assisted by hydrogen peroxide, where the hydroxylation results in the valence state of the Ru sites below +4. The H-Mn0.1Ru0.9O2 catalyst demonstrates an overpotential of 169 mV at 10 mA cm-2 and promising stability for an OER over 1000 h in an acidic electrolyte. A PEMWE device fabricated with the H-Mn0.1Ru0.9O2 catalyst as the anode shows a current density of 1 A cm-2 at ∼1.65 V, along with a low degradation over continuous tens of hours. Differential electrochemical mass spectrometry (DEMS) results and theoretical calculations confirm that H-Mn0.1Ru0.9O2 performs the OER through the adsorbate evolution mechanism (AEM) pathway, where the synergistic effect of hydroxylation and Mn doping in RuO2 can effectively enhance the stability of Ru sites and lattice oxygen atoms.
Collapse
Affiliation(s)
- Susu Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qian Dang
- Multi-Scale Simulation Lab for Environment and Energy Science, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Aiqing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Hai Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North, Wollongong, NSW 2500, Australia
| | - Yameng Fan
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North, Wollongong, NSW 2500, Australia
| | - Hui Li
- Multi-Scale Simulation Lab for Environment and Energy Science, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fengmei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yun Kuang
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Qian Y, Guo Y, Yang Z, Luo Z, Zhang L, Zhang Q, He C, Zhang H, Sun X, Ren X. Bias-Induced Ga-O-Ir Interface Breaks the Limits of Adsorption-Energy Scaling Relationships for High-Performing Proton Exchange Membrane Electrolyzers. Angew Chem Int Ed Engl 2025; 64:e202419352. [PMID: 39875333 DOI: 10.1002/anie.202419352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Rationally manipulating the in situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at oxygen evolution reaction (OER) overpotentials. We found that OER at the Ga-O-Ir interface follows a bi-nuclear adsorbate evolution mechanism with unsaturated IrOx as the active sites, while GaOx atoms play an indirect role in promoting water dissociation to form OH* and transferring OH* to Ir sites. This breaks the scaling relationship of the adsorption energies between OH* and OOH*, significantly lowering the energy barrier of the rate-limiting step and greatly increasing reactivity. The Ir@Ga2O3 catalyst achieves lower overpotentials, a current density of 2 A cm-2 at 1.76 V, and stable operation up to 1 A cm-2 in scalable proton exchange membrane water electrolyzer (PEMWE) at 1.63 V, maintaining stable operation at 1 A cm-2 over 1000 hours with a degradation rate of 11.5 μV h-1. This work prompted us to jointly address substrate-catalyst interactions and catalyst reconstruction, an underexplored path, to improve activity and stability in Ir PEMWE anodes.
Collapse
Affiliation(s)
- Yinnan Qian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Yirun Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Zijie Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Zhaoyan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Xueliang Sun
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315000, P. R. China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| |
Collapse
|
8
|
Wang Q, Zhang K, Zhang Z, Chen X, Deng H, Hua W, Wei J, Shen S, Chen J. Lattice-Doped Ir Cooperating with Surface-Anchored IrO x for Acidic Oxygen Evolution Reaction with Ultralow Ir Loading. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7929-7937. [PMID: 39865589 DOI: 10.1021/acsami.4c21373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Reducing iridium (Ir) loading while maintaining efficiency and stability is crucial for the acidic oxygen evolution reaction (OER). In this study, we develop a synthetic method of sequential electrochemical deposition and high-temperature thermal shock to produce an IrOx/Ir-WO3 electrocatalyst with ∼1.75 nm IrOx nanoparticles anchoring on Ir-doped WO3 nanosheets. The IrOx/Ir-WO3 electrocatalyst with a low Ir loading of 0.035 mg cm-2 demonstrates a low overpotential of 239 mV to achieve a current density of 10 mA cm-2 and a mass activity of 6.6 × 104 A gIr-1 @1.75 V vs RHE in 0.5 M H2SO4. IrOx/Ir-WO3 on carbon paper as the anode and Pt/C as the cathode work stably for 40 h at 30 mA cm-2 in a proton exchange membrane water electrolyzer. It is found that the cooperation of lattice-doped Ir and surface-anchored IrOx enhances the activity and stability of IrOx/Ir-WO3 for acidic OER. Specifically, the doped Ir reduces the electron density of the anchored IrOx, thus optimizing the adsorption energy of oxygen-containing intermediates and the kinetic barrier of H2O dissociation, leading to an enhanced activity of IrOx/Ir-WO3. Also, the Ir-WO3 support provides electrons to retard the overoxidation and dissolution of Ir atoms from the anchored IrOx during acidic OER.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kaini Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhengqi Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Deng
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Weibo Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinjia Wei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
9
|
He N, Yuan Z, Wu C, Xi S, Xiong J, Huang Y, Lian G, Du Z, Liu L, Wu D, Chen Z, Tu W, Zou Z, Tong SY. Efficient Nitrate to Ammonia Conversion on Bifunctional IrCu 4 Alloy Nanoparticles. ACS NANO 2025; 19:4684-4693. [PMID: 39825843 DOI: 10.1021/acsnano.4c15234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Electrochemical nitrate reduction (NO3RR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu4 alloy nanoparticles as a bifunctional catalyst to achieve efficient NO3RR and OER while suppressing the unwanted HER. This is achieved by operating the NO3RR at positive potentials using the IrCu4 catalyst, which allows a Faradaic efficiency of 93.6% for NO3RR. When applied to OER catalysis, the IrCu4 alloy also shows excellent results, with a relatively low overpotential of 260 mV at 10 mA cm-2. Stable ammonia production can be achieved for 50 h in a 16 cm2 flow electrolyzer in simulated working conditions. Our research provides a pathway for optimizing NO3RR through bifunctional catalysts in a tandem approach.
Collapse
Affiliation(s)
- Ning He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhi Yuan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Chao Wu
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Shibo Xi
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Jingjing Xiong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Yucong Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zefan Du
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Laihao Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Dawei Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Shuk-Yin Tong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
10
|
Fan M, Liu L, Li Y, Gu F, He X, Chen H. Highly dispersed Ir nanoparticles on Ti 3C 2T x MXene nanosheets for efficient oxygen evolution in acidic media. J Colloid Interface Sci 2025; 679:676-685. [PMID: 39388953 DOI: 10.1016/j.jcis.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti3C2Tx MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO2/TiOx heterointerface is formed in situ on the Ir@Ti3C2Tx MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO2/TiOx heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti3C2Tx exhibits a mass activity that is 7 times greater than that of the benchmark IrO2 catalyst for OER in acidic media. In addition, the /Ti3C2Tx MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti3C2Tx MXene is about 2.4 times higher than that of the IrO2 catalyst.
Collapse
Affiliation(s)
- Meihong Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, PR China
| | - Lijia Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, PR China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Yue Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, PR China
| | - Fengyun Gu
- Jilin Province Product Quality Supervision and Inspection Institute, 2699 Yiju Street, Changchun 130103, PR China
| | - Xingquan He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130022, PR China.
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012, PR China.
| |
Collapse
|
11
|
Wang H, Li X, Zhang G, Gu Z, Chen H, Wei G, Shen S, Cheng J, Zhang J. Recent Progress in Balancing the Activity, Durability, and Low Ir Content for Ir-Based Oxygen Evolution Reaction Electrocatalysts in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410407. [PMID: 39711255 DOI: 10.1002/smll.202410407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations. Consequently, numerous studies have emerged aimed at reducing iridium content while maintaining high activity and durability. Furthermore, the research on the OER mechanism of Ir-based catalysts has garnered widespread attention due to differing views among researchers. The recent progress in balancing activity, durability, and low iridium content in Ir-based catalysts is summarized in this review, with a particular focus on the effects of catalyst morphology, heteroatom doping, substrate introduction, and novel structure development on catalyst performance from four perspectives. Additionally, the recent mechanistic studies on Ir-based OER catalysts is discussed, and both theoretical and experimental approaches is summarized to elucidate the Ir-based OER mechanism. Finally, the perspectives on the challenges and future developments of Ir-based OER catalysts is presented.
Collapse
Affiliation(s)
- Huimin Wang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Gu
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfang Cheng
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2025; 54:1027-1092. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
13
|
Zhang N, Wang Y, Wu R, Yang X, Wu Y, Wang F, Cui P, Liu G, Jiang W, Xie H. NiIr Nanowire Assembles as an Efficient Electrocatalyst Towards Oxygen Evolution Reaction in Both Acid and Alkaline Media. Chem Asian J 2025; 20:e202400851. [PMID: 39392563 DOI: 10.1002/asia.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Oxygen evolution reaction (OER) is the rate-limiting step in water electrolysis due to its sluggish kinetic, and it is challenging to develop an OER catalyst that could work efficiently in both acid and alkaline environment. Herein, NiIr nanowire assembles (NAs) with unique nanoflower morphology were prepared by a facile hydrothermal method. As a result, the NiIr NAs exhibited superior OER activity in both acid and alkaline media. Specifically, in 0.1 M HClO4, NiIr NAs presented a superior electrocatalytic performance with a low overpotential of merely 242 mV at 10 mA cm-2 and a Tafel slope of only 58.1 mV dec-1, surpassing that of commercial IrO2 and pure Ir NAs. And it achieved a significantly higher mass activity of 148.40 A/g at -1.5 V versus RHE. In 1.0 M KOH, NiIr NAs has an overpotential of 291 mV at 10 mA cm-2 and a Tafel slope of 42.1 mV dec-1. Such remarkable activity makes the NiIr NAs among the best of recently reported representative Ir-based OER electrocatalysts. Density functional theory (DFT) calculations confirmed alloying effect promotes surface bonding of NiIr with oxygen-containing reactants, resulting in excellent catalytic properties.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Yalun Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Ruxue Wu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Xianwen Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Yan Wu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Fangmu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Guigao Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, Zhejiang, 310003, P.R. China
| |
Collapse
|
14
|
Zhao J, Guo Y, Zhang Z, Zhang X, Ji Q, Zhang H, Song Z, Liu D, Zeng J, Chuang C, Zhang E, Wang Y, Hu G, Mushtaq MA, Raza W, Cai X, Ciucci F. Out-of-plane coordination of iridium single atoms with organic molecules and cobalt-iron hydroxides to boost oxygen evolution reaction. NATURE NANOTECHNOLOGY 2025; 20:57-66. [PMID: 39433919 PMCID: PMC11750697 DOI: 10.1038/s41565-024-01807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir1/(Co,Fe)-OH/MI). This Ir1/(Co,Fe)-OH/MI catalyst, which was prepared using a simple immersion method, delivers ultralow overpotentials of 179 mV at a current density of 10 mA cm-2 and 257 mV at 600 mA cm-2 as well as an ultra-small Tafel slope of 24 mV dec-1. Furthermore, Ir1/(Co,Fe)-OH/MI has a total mass activity exceeding that of commercial IrO2 by a factor of 58.4. Ab initio simulations indicate that the coordination of MI leads to electron redistribution around the Ir sites. This causes a positive shift in the d-band centre at adjacent Ir and Co sites, facilitating an optimal energy pathway for OER.
Collapse
Affiliation(s)
- Jie Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Yue Guo
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhiqi Zhang
- Key Laboratory of Energy Thermal Conversion and Control (Ministry of Education), School of Energy and Environment, Southeast University, Nanjing, China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, China
| | - Qianqian Ji
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hua Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhaoqi Song
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chenghao Chuang
- Department of Physics, Tamkang University, New Taipei City, Taiwan
| | - Erhuan Zhang
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guangzhi Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | | | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Francesco Ciucci
- University of Bayreuth, Chair of Electrode Design for Electrochemical Energy Systems, Bayreuth, Germany.
- University of Bayreuth, Bavarian Center for Battery Technology (BayBatt), Bayreuth, Germany.
| |
Collapse
|
15
|
Deng Q, Li H, Pei K, Wong LW, Zheng X, Tsang CS, Chen H, Shen W, Ly TH, Zhao J, Fu Q. Strategic Design for High-Efficiency Oxygen Evolution Reaction (OER) Catalysts by Triggering Lattice Oxygen Oxidation in Cobalt Spinel Oxides. ACS NANO 2024; 18:33718-33728. [PMID: 39605163 DOI: 10.1021/acsnano.4c14158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
High-efficiency catalysts with refined electronic structures are highly desirable for promoting the kinetics of the oxygen evolution reaction (OER) and enhancing catalyst durability. This study comprehensively explores strategies involving metal doping and oxygen vacancies for enhancing the acidic OER catalytic activity of Co3O4. Through extensive screening of 3d and 4d transition metals using density functional theory (DFT) simulations, we demonstrate that the incorporation of metal dopants and oxygen vacancies into Co3O4 potentially triggers a transition from the adsorbate evolution mechanism (AEM) to the lattice oxygen oxidation mechanism (LOM) in the oxygen evolution reaction (OER). While the formation of the O-O bond in the intermediate *OOH poses challenges, a significantly reduced overpotential facilitates efficient conversion of O to O2 through the LOM in *OH and lattice oxygen. Additionally, we find that Mn doping can significantly improve the stability of the catalyst. Building upon the rationale above, we employed a dual doping strategy in subsequent experiments to enhance both the activity and stability. Our final design involved the codoping of Mn and Ru in Co3O4, along with an appropriate amount of oxygen vacancies. This catalyst demonstrates a low overpotential (η10 = 230 mV) compared to pure Co3O4 and maintains stable operation for over 120 h, representing a 12-fold increase. By exploring and harnessing the LOM, more efficient, stable, and cost-effective OER catalysts can be designed, providing crucial support for technologies such as water electrolysis in clean energy.
Collapse
Affiliation(s)
- Qingming Deng
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Hui Li
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Ke Pei
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Lok Wing Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Xiaodong Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chi Shing Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Honglin Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Wenqian Shen
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Qiang Fu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
16
|
Zeng L, Yuan B, Zhou Q. Enabling Efficient Oxygen Evolution via Anchoring Carbon-Layer-Confined RuO x on a Well-Matched Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24696-24705. [PMID: 39504472 DOI: 10.1021/acs.langmuir.4c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Oxygen evolution reaction (OER) is a multistep proton-coupled four-electron process with sluggish kinetics, which seriously limits the hydrogen production efficiency, thus it is of great importance to develop an efficient and stable OER catalyst. In this study, a two-step differential pyrolysis strategy is employed to design a three-dimensional porous microstructured material consisting of RuOx nanoparticles coated by a thin-layer carbon, where the active particles were isolated in separate chambers and the RuOx nanoparticles mainly existed in the form of a heterogeneous interface between RuO2 and partial metallic Ru. The preparation parameters of the catalysts are optimized via combining transient and steady-state polarization properties, and the target catalyst Cat-500-1.5t shows the best OER catalytic performance after ca. 60 h of a chronopotentiometry test in an acidic medium with a much smaller performance change than other samples. The unique design of adopting a carbon layer to form separate reaction chambers largely mitigates the excessive oxidation loss of the active components under strong oxidation potential. The suitability of the catalyst with the loaded substrate and test media is explored, and in an acidic medium, the carbon paper is much better than the titanium fiber, while in an alkaline medium, the titanium fiber is obviously superior to the carbon paper. On both carbon paper and titanium fiber, the performance in an alkaline medium outperforms that in an acidic medium, and the possible reasons for the performance difference are analyzed. Herein, to obtain the actual electrocatalytic performance, the optimal design of the catalyst structure and matching suitable conductive substrate in a specific medium are quite necessary, which provides a feasible strategy for the acquisition of efficient and stable electrocatalysts and the desirable presentation of performance.
Collapse
Affiliation(s)
- Liming Zeng
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bang Yuan
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qing Zhou
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
17
|
Edgington J, Vispute S, Li R, Deberghes A, Seitz LC. Quantification of electrochemically accessible iridium oxide surface area with mercury underpotential deposition. SCIENCE ADVANCES 2024; 10:eadp8911. [PMID: 39504370 PMCID: PMC11540024 DOI: 10.1126/sciadv.adp8911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Research drives development of sustainable electrocatalytic technologies, but efforts are hindered by inconsistent reporting of advances in catalytic performance. Iridium-based oxide catalysts are widely studied for electrocatalytic technologies, particularly for the oxygen evolution reaction (OER) for proton exchange membrane water electrolysis, but insufficient techniques for quantifying electrochemically accessible iridium active sites impede accurate assessment of intrinsic activity improvements. We develop mercury underpotential deposition and stripping as a reversible electrochemical adsorption process to robustly quantify iridium sites and consistently normalize OER performance of benchmark IrOx electrodes to a single intrinsic activity curve, where other commonly used normalization methods cannot. Through rigorous deconvolution of mercury redox and reproportionation reactions, we extract net monolayer deposition and stripping of mercury on iridium sites throughout testing using a rotating ring disk electrode. This technique is a transformative method to standardize OER performance across a wide range of iridium-based materials and quantify electrochemical iridium active sites.
Collapse
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Sejal Vispute
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ruihan Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Adrien Deberghes
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Linsey C. Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
18
|
Liu W, Long G, Xiang Z, Ren T, Piao J, Wan K, Fu Z, Liang Z. Extremely Active and Robust Ir-Mn Dual-Atom Electrocatalyst for Oxygen Evolution Reaction by Oxygen-Oxygen Radical Coupling Mechanism. Angew Chem Int Ed Engl 2024; 63:e202411014. [PMID: 39034426 DOI: 10.1002/anie.202411014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024]
Abstract
A novel Ir-Mn dual-atom electrocatalyst is synthesized by a facile ion-exchange method by incorporating Ir in SrMnO3, which yields an extremely high activity and stability for the oxygen evolution reaction (OER). The ion exchange process occurs in a self-limitation way, which favors the formation of Ir-Mn dual-atom in the IrMnO9 unit. The incorporation of Ir modulates the electronic structure of both Ir and Mn, thereby resulting in a shorter distance of the Ir-Mn dual-atom (2.41 Å) than the Mn-Mn dual-atom (2.49 Å). The modulated Ir-Mn dual-atom enables the same spin direction O (↑) of the adsorbed *O intermediates, thus facilitating the direct coupling of the two adsorbed *O intermediates to release O2 via the oxygen-oxygen radical coupling mechanism. Electrochemical tests reveal that the Ir-SrMnO3 exhibits a superior OER's activity with a low overpotential of 207 mV at 10 mA cm-2 and achieves a mass specific activity of 1100 A gIr -1 at 1.5 V. The proton-exchange-membrane water electrolyzer with the Ir-SrMnO3 catalyst exhibits a low electrolysis voltage of 1.63 V at 1.0 A cm-2 and a stable 2000-h operation with a decay of only 15 μV h-1 at 0.5 A cm-2.
Collapse
Affiliation(s)
- Wenbo Liu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530008, Nanning, P. R. China
| | - Zhipeng Xiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Tianlu Ren
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Kai Wan
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Zhiyong Fu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510641, Guangzhou, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, 522000, Jieyang, Guangdong, China
| |
Collapse
|
19
|
Bagdwal H, Sood P, Dhillon AK, Singh A, Singh M. Deciphering the work function induced local charge regulation towards activating an octamolybdate cluster-based solid for acidic water oxidation. NANOSCALE 2024; 16:16420-16429. [PMID: 39171964 DOI: 10.1039/d4nr02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The advancement of highly robust and efficient electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions is imperative for the sustainable production of green hydrogen. In accomplishing sustainable and sturdy electrocatalysts for oxygen evolution at low pH, the challenge is tough for non-iridium/ruthenium-based electrocatalysts. This study elaborates on the intrinsic alterations in electronic arrangements and structural disorder upon the precise activation of an octamolybdate cluster-based solid [{Cu(pz)4}2Mo8O26]·2H2O through room temperature grinding with rGO (reduced graphene oxide), resulting in enhanced conductivity, stability, and activity of the electrocatalyst towards the acidic OER without employing any benchmark metal ion (Ru or Ir). Additionally, the work function of the composites was found to be low compared to that of pristine polyoxometalates (POMs), indicative of the improved conducive behavior, which is lacking in the POM structure. The catalyst displays a notably reduced overpotential of 185 mV to achieve a current density of 10 mA cm-2, coupled with significant stability lasting 24 hours at a higher current density of 100 mA cm-2. These findings propose the manipulation of crystalline POMs with highly conductive non-metallic elements to facilitate superior water oxidation at lower pH levels which can help in the production of green hydrogen.
Collapse
Affiliation(s)
- Harshita Bagdwal
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Parul Sood
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Arshminder Kaur Dhillon
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Monika Singh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
20
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
21
|
Li Z, Li X, Wang M, Wang Q, Wei P, Jana S, Liao Z, Yu J, Lu F, Liu T, Wang G. KIr 4O 8 Nanowires with Rich Hydroxyl Promote Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402643. [PMID: 38718084 DOI: 10.1002/adma.202402643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Indexed: 05/18/2024]
Abstract
The sluggish kinetics for anodic oxygen evolution reaction (OER) and insufficient catalytic performance over the corresponding Ir-based catalysts are still enormous challenges in proton exchange membrane water electrolyzer (PEMWE). Herein, it is reported that KIr4O8 nanowires anode catalyst with more exposed active sites and rich hydroxyl achieves a current density of 1.0 A cm-2 at 1.68 V and possesses excellent catalytic stability with 1230 h in PEMWE. Combining in situ Raman spectroscopy and differential electrochemical mass spectroscopy results, the modified adsorbate evolution mechanism is proposed, wherein the rich hydroxyl in the inherent structure of KIr4O8 nanowires directly participates in the catalytic process for favoring the OER. Density functional theory calculation results further suggest that the enhanced proximity between Ir (d) and O (p) band center in KIr4O8 can strengthen the covalence of Ir-O, facilitate the electron transfer between adsorbents and active sites, and decrease the energy barrier of rate-determining step from OH* to O* during the OER.
Collapse
Affiliation(s)
- Zhenyu Li
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiang Li
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian Jiaotong University, Dalian, 116028, China
| | - Mengna Wang
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian Jiaotong University, Dalian, 116028, China
| | - Qi Wang
- Dalian Jiaotong University, Dalian, 116028, China
| | - Pengfei Wei
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Subhajit Jana
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Ziqi Liao
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- College of Energy, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jingcheng Yu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- College of Energy, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fang Lu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tianfu Liu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
22
|
Yang S, Chen XM, Shao T, Wei Z, Chen ZN, Cao R, Cao M. Engineering highly selective CO 2 electroreduction in Cu-based perovskites through A-site cation manipulation. Phys Chem Chem Phys 2024; 26:17769-17776. [PMID: 38873788 DOI: 10.1039/d4cp00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Perovskites exhibit considerable potential as catalysts for various applications, yet their performance modulation in the carbon dioxide reduction reaction (CO2RR) remains underexplored. In this study, we report a strategy to enhance the electrocatalytic carbon dioxide (CO2) reduction activity via Ce-doped La2CuO4 (LCCO) and Sr-doped La2CuO4 (LSCO) perovskite oxides. Specifically, compared to pure phase La2CuO4 (LCO), the Faraday efficiency (FE) for CH4 of LCCO at -1.4 V vs. RHE (reversible hydrogen electrode) is improved from 38.9% to 59.4%, and the FECO2RR of LSCO increased from 68.8% to 85.4%. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy spectra results indicate that the doping of A-site ions promotes the formation of *CHO and *HCOO, which are key intermediates in the production of CH4, compared to the pristine La2CuO4. X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and double-layer capacitance (Cdl) outcomes reveal that heteroatom-doped perovskites exhibit more oxygen vacancies and higher electrochemical active surface areas, leading to a significant improvement in the CO2RR performance of the catalysts. This study systematically investigates the effect of A-site ion doping on the catalytic activity center Cu and proposes a strategy to improve the catalytic performance of perovskite oxides.
Collapse
Affiliation(s)
- Shuaibing Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Xiao-Min Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Tao Shao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Zongnan Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minna Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Li M, Qi J, Zeng H, Chen J, Liu Z, Gu L, Wang J, Zhang Y, Wang M, Zhang Y, Lu X, Yang C. Structural impacts on the degradation behaviors of Ir-based electrocatalysts during water oxidation in acid. J Colloid Interface Sci 2024; 674:108-117. [PMID: 38917711 DOI: 10.1016/j.jcis.2024.06.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Large-scale hydrogen production by electrocatalytic water splitting still remains as a critical challenge due to the severe catalyst degradation during the oxygen evolution reaction (OER) in acidic media. In this study, we investigate the structural impacts on catalyst degradation behaviors using three iridium-based oxides, namely SrIrO3, Sr2IrO4, and Sr4IrO6 as model catalysts. These Ir oxides possess different connection configurations of [IrO6] octahedra units in their structure. Stable OER performance is observed on SrIrO3 and attributed to the edge-linked [IrO6] structure and rapid formation of a continuous IrOx layer on its surface, which functions not only as the "real" catalyst but also a shield preventing continuous cation leaching (with <1.0 at.% of Ir leaching). In comparison, both Sr2IrO4 and Sr4IrO6 catalysts demonstrate quick current fading with structure transformation to rutile IrO2 and formation of inconducive SrSO4 precipitates on surface, blocking the reactive sites. Nevertheless, over 60 at.% of Ir leaching is detected from the Sr4IrO6 catalyst due to its isolated [IrO6] structure configuration. Results of this work highlight the structural impacts on the catalyst stability in acidic OER conditions.
Collapse
Affiliation(s)
- Mengxian Li
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jun Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Huiyan Zeng
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiajun Chen
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhongfei Liu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Long Gu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianwen Wang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuying Zhang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
| | - Miaomiao Wang
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Yan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaoying Lu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China.
| | - Chunzhen Yang
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
24
|
Sun P, Qiao Z, Dong X, Jiang R, Hu ZT, Yun J, Cao D. Designing 3d Transition Metal Cation-Doped MRuO x As Durable Acidic Oxygen Evolution Electrocatalysts for PEM Water Electrolyzers. J Am Chem Soc 2024; 146:15515-15524. [PMID: 38785086 DOI: 10.1021/jacs.4c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The continuous dissolution and oxidation of active sites in Ru-based electrocatalysts have greatly hindered their practical application in proton exchange membrane water electrolyzers (PEMWE). In this work, we first used density functional theory (DFT) to calculate the dissolution energy of Ru in the 3d transition metal-doped MRuOx (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) to evaluate their stability for acidic oxygen evolution reaction (OER) and screen out ZnRuOx as the best candidate. To confirm the theoretical predictions, we experimentally synthesized these MRuOx materials and found that ZnRuOx indeed displays robust acidic OER stability with a negligible decay of η10 after 15 000 CV cycles. Of importance, using ZnRuOx as the anode, the PEMWE can run stably for 120 h at 200 mA cm-2. We also further uncover the stability mechanism of ZnRuOx, i.e., Zn atoms doped in the outside of ZnRuOx nanocrystal would form a "Zn-rich" shell, which effectively shortened average Ru-O bond lengths in ZnRuOx to strengthen the Ru-O interaction and therefore boosted intrinsic stability of ZnRuOx in acidic OER. In short, this work not only provides a new study paradigm of using DFT calculations to guide the experimental synthesis but also offers a proof-of-concept with 3d metal dopants as RuO2 stabilizer as a universal principle to develop high-durability Ru-based catalysts for PEMWE.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaobin Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhong-Ting Hu
- Institute of Environmental-Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao 266000, PR China
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
25
|
Zhang J, Ma Z, Wang L, Ni H, Yu J, Zhao B. N/P-doped NiFeV oxide nanosheets with oxygen vacancies as an efficient electrocatalyst for the oxygen evolution reaction. Dalton Trans 2024; 53:8756-8763. [PMID: 38712573 DOI: 10.1039/d4dt00943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Plasma treatment as an effective strategy can simultaneously achieve surface modification and heteroatom doping. Here, an N/P-doped NiFeV oxide nanosheet catalyst (N/P-NiFeVO) constructed by Ar/PH3 plasma treatment is used to drive the oxygen evolution reaction (OER). The introduction of V species leads to the formation of an ultrathin ordered nanostructure and exposure of more active sites. Compared to the 2D NiFeV LDH, the prepared N/P-NiFeVO by plasma treatment possesses multiple-valence Fe, V and Ni species, which regulate the intrinsic electronic structure and enable a superior catalytic activity for the OER in alkaline media. Specifically, the N/P-NiFeVO only require an overpotential of 273 mV to drive the current density of 100 mA cm-2. What's more, the electrode can maintain a stable current density in a long-term oxygen evolution reaction (∼120 h) under alkaline conditions. This work provides new insight for the rational design of mixed metal oxides for OER electrocatalysts.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhen Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Business development, Edwards Limited, Shanghai, China
| | - Lanqi Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hui Ni
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jianing Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Bin Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
26
|
Wang L, Du R, Liang X, Zou Y, Zhao X, Chen H, Zou X. Optimizing Edge Active Sites via Intrinsic In-Plane Iridium Deficiency in Layered Iridium Oxides for Oxygen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312608. [PMID: 38195802 DOI: 10.1002/adma.202312608] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Indexed: 01/11/2024]
Abstract
Improving catalytic activity of surface iridium sites without compromising catalytic stability is the core task of designing more efficient electrocatalysts for oxygen evolution reaction (OER) in acid. This work presents phase transition of a bulk layered iridate Na2IrO3 in acid solution at room temperature, and subsequent exfoliation to produce 2D iridium oxide nanosheets with around 4 nm thickness. The nanosheets consist of OH-terminated, honeycomb-type layers of edge-sharing IrO6 octahedral framework with intrinsic in-plane iridium deficiency. The nanosheet material is among the most active Ir-based catalysts reported for acidic OER and gives an iridium mass activity improvement up to a factor of 16.5 over rutile IrO2 nanoparticles. The material also exhibits good catalytic and structural stability and retains the catalytic activity for more than 1300 h. The combined experimental and theoretical results demonstrate that edge Ir sites of the layer are active centers for OER, with structural hydroxyl groups participating in the catalytic cycle of OER via a non-traditional adsorbate evolution mechanism. The existence of intrinsic in-plane iridium deficiency is the key to building a unique local environment of edge active sites that have optimal surface oxygen adsorption properties and thereby high catalytic activity.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruofei Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
27
|
Ding H, Su C, Wu J, Lv H, Tan Y, Tai X, Wang W, Zhou T, Lin Y, Chu W, Wu X, Xie Y, Wu C. Highly Crystalline Iridium-Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis. J Am Chem Soc 2024; 146:7858-7867. [PMID: 38457662 DOI: 10.1021/jacs.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing efficient bifunctional materials is highly desirable for overall proton membrane water splitting. However, the design of iridium materials with high overall acidic water splitting activity and durability, as well as an in-depth understanding of the catalytic mechanism, is challenging. Herein, we successfully developed subnanoporous Ir3Ni ultrathin nanocages with high crystallinity as bifunctional materials for acidic water splitting. The subnanoporous shell enables Ir3Ni NCs optimized exposure of active sites. Importantly, the nickel incorporation contributes to the favorable thermodynamics of the electrocatalysis of the OER after surface reconstruction and optimized hydrogen adsorption free energy in HER electrocatalysis, which induce enhanced intrinsic activity of the acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Together, the Ir3Ni nanocages achieve 3.72 A/mgIr(η=350 mV) and 4.47 A/mgIr(η=40 mV) OER and HER mass activity, which are 18.8 times and 3.3 times higher than that of commercial IrO2 and Pt, respectively. In addition, their highly crystalline identity ensures a robust nanostructure, enabling good catalytic durability during the oxygen evolution reaction after surface oxidation. This work provides a new revenue toward the structural design and insightful understanding of metal alloy catalytic mechanisms for the bifunctional acidic water splitting electrocatalysis.
Collapse
Affiliation(s)
- Hui Ding
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Caijie Su
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Jiabao Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Haifeng Lv
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yi Tan
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Xiaolin Tai
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Wenjie Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230029, P. R. China
| | - Tianpei Zhou
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yue Lin
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230031, P. R. China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230031, P. R. China
| |
Collapse
|
28
|
Wu J, Qiu Z, Zhang J, Song H, Cui Z, Du L. Stabilizing Highly Active Ru Sites by Electron Reservoir in Acidic Oxygen Evolution. Molecules 2024; 29:785. [PMID: 38398537 PMCID: PMC10892467 DOI: 10.3390/molecules29040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Proton exchange membrane water electrolysis is hindered by the sluggish kinetics of the anodic oxygen evolution reaction. RuO2 is regarded as a promising alternative to IrO2 for the anode catalyst of proton exchange membrane water electrolyzers due to its superior activity and relatively lower cost compared to IrO2. However, the dissolution of Ru induced by its overoxidation under acidic oxygen evolution reaction (OER) conditions greatly hinders its durability. Herein, we developed a strategy for stabilizing RuO2 in acidic OER by the incorporation of high-valence metals with suitable ionic electronegativity. A molten salt method was employed to synthesize a series of high-valence metal-substituted RuO2 with large specific surface areas. The experimental results revealed that a high content of surface Ru4+ species promoted the OER intrinsic activity of high-valence doped RuO2. It was found that there was a linear relationship between the ratio of surface Ru4+/Ru3+ species and the ionic electronegativity of the dopant metals. By regulating the ratio of surface Ru4+/Ru3+ species, incorporating Re, with the highest ionic electronegativity, endowed Re0.1Ru0.9O2 with exceptional OER activity, exhibiting a low overpotential of 199 mV to reach 10 mA cm-2. More importantly, Re0.1Ru0.9O2 demonstrated outstanding stability at both 10 mA cm-2 (over 300 h) and 100 mA cm-2 (over 25 h). The characterization of post-stability Re0.1Ru0.9O2 revealed that Re promoted electron transfer to Ru, serving as an electron reservoir to mitigate excessive oxidation of Ru sites during the OER process and thus enhancing OER stability. We conclude that Re, with the highest ionic electronegativity, attracted a mass of electrons from Ru in the pre-catalyst and replenished electrons to Ru under the operating potential. This work spotlights an effective strategy for stabilizing cost-effective Ru-based catalysts for acidic OER.
Collapse
Affiliation(s)
| | | | - Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (Z.Q.); (H.S.); (Z.C.)
| | | | | | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (Z.Q.); (H.S.); (Z.C.)
| |
Collapse
|
29
|
Chen K, Qian J, Xu W, Li TT. Hierarchical Superhydrophilic/Superaerophobic Ni(OH) 2@NiFe-PBA Nanoarray Supported on Nickel Foam for Boosting the Oxygen Evolution Reaction. Inorg Chem 2024; 63:642-652. [PMID: 38131603 DOI: 10.1021/acs.inorgchem.3c03542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The design of hierarchical electrocatalysts with plentiful active sites and high mass transfer efficiency is critical to efficiently and sustainably carrying out the oxygen evolution reaction (OER), which presents a challenging and pressing need. In this study, a hierarchical Ni(OH)2@NiFe-Prussian blue analogue nanoarray grown on nickel foam (NF) [labeled as Ni(OH)2@NiFe-PBA/NF] was synthesized by combining a mild electrodeposition method with an ion-exchange strategy. The resultant Ni(OH)2@NiFe-PBA/NF displays superhydrophilic/superaerophobic properties that optimize the contact with the electrolyte, improve mass transfer efficiency, and expedite detachment of O2 bubbles during the electrocatalytic OER. Specifically, Ni(OH)2@NiFe-PBA/NF exhibits exceptional capability in the OER with low overpotentials of 224 and 240 mV at the current densities of 50 and 100 mA cm-2, respectively, accompanied by a low Tafel slope of 37.1 mV dec-1 and outstanding stability over 100 h at a fixed potential of 1.78 V vs reversible hydrogen electrode (RHE). Furthermore, Ni(OH)2@NiFe-PBA/NF demonstrates remarkable OER performance even in alkaline simulated seawater. During the OER process, active metal-OOH intermediates were formed by the partial self-reconstruction of NiFe-PBA in the heterostructure, as revealed by in situ Raman spectroscopy.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
30
|
Zheng X, Yang J, Li P, Wang Q, Wu J, Zhang E, Chen S, Zhuang Z, Lai W, Dou S, Sun W, Wang D, Li Y. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. SCIENCE ADVANCES 2023; 9:eadi8025. [PMID: 37851800 PMCID: PMC10584348 DOI: 10.1126/sciadv.adi8025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
The anode corrosion induced by the harsh acidic and oxidative environment greatly restricts the lifespan of catalysts. Here, we propose an antioxidation strategy to mitigate Ir dissolution by triggering strong electronic interaction via elaborately constructing a heterostructured Ir-Sn pair-site catalyst. The formation of Ir-Sn dual-site at the heterointerface and the resulting strong electronic interactions considerably reduce d-band holes of Ir species during both the synthesis and the oxygen evolution reaction processes and suppress their overoxidation, enabling the catalyst with substantially boosted corrosion resistance. Consequently, the optimized catalyst exhibits a high mass activity of 4.4 A mgIr-1 at an overpotential of 320 mV and outstanding long-term stability. A proton-exchange-membrane water electrolyzer using this catalyst delivers a current density of 2 A cm-2 at 1.711 V and low degradation in an accelerated aging test. Theoretical calculations unravel that the oxygen radicals induced by the π* interaction between Ir 5d-O 2p might be responsible for the boosted activity and durability.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng Li
- School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Qishun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weihong Lai
- Institute for Superconducting and Electronic Materials, Australia Institute for Innovation Material, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
31
|
Galyamin D, Tolosana-Moranchel Á, Retuerto M, Rojas S. Unraveling the Most Relevant Features for the Design of Iridium Mixed Oxides with High Activity and Durability for the Oxygen Evolution Reaction in Acidic Media. JACS AU 2023; 3:2336-2355. [PMID: 37772191 PMCID: PMC10523372 DOI: 10.1021/jacsau.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/30/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) is the technology of choice for the large-scale production of green hydrogen from renewable energy. Current PEMWEs utilize large amounts of critical raw materials such as iridium and platinum in the anode and cathode electrodes, respectively. In addition to its high cost, the use of Ir-based catalysts may represent a critical bottleneck for the large-scale production of PEM electrolyzers since iridium is a very expensive, scarce, and ill-distributed element. Replacing iridium from PEM anodes is a challenging matter since Ir-oxides are the only materials with sufficient stability under the highly oxidant environment of the anode reaction. One of the current strategies aiming to reduce Ir content is the design of advanced Ir-mixed oxides, in which the introduction of cations in different crystallographic sites can help to engineer the Ir active sites with certain characteristics, that is, environment, coordination, distances, oxidation state, etc. This strategy comes with its own problems, since most mixed oxides lack stability during the OER in acidic electrolyte, suffering severe structural reconstruction, which may lead to surfaces with catalytic activity and durability different from that of the original mixed oxide. Only after understanding such a reconstruction process would it be possible to design durable and stable Ir-based catalysts for the OER. In this Perspective, we highlight the most successful strategies to design Ir mixed oxides for the OER in acidic electrolyte and discuss the most promising lines of evolution in the field.
Collapse
Affiliation(s)
| | | | - María Retuerto
- Grupo de Energía y
Química Sostenibles. Instituto de
Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y
Química Sostenibles. Instituto de
Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
32
|
Hu C, Yue K, Han J, Liu X, Liu L, Liu Q, Kong Q, Pao CW, Hu Z, Suenaga K, Su D, Zhang Q, Wang X, Tan Y, Huang X. Misoriented high-entropy iridium ruthenium oxide for acidic water splitting. SCIENCE ADVANCES 2023; 9:eadf9144. [PMID: 37713495 PMCID: PMC10881077 DOI: 10.1126/sciadv.adf9144] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Designing an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO2) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M H2SO4. Microstructural analyses, density functional calculations, and isotope-labeled differential electrochemical mass spectroscopy measurements collectively reveal that the integration of foreign metal elements and GB is responsible for the enhancement of activity and stability of RuO2 toward OER. A PEMWE using M-RuIrFeCoNiO2 catalyst can steadily operate at a large current density of 1 ampere per square centimeter for over 500 hours. This work demonstrates a pathway to design high-performance OER electrocatalysts by integrating the advantages of various components and GB, which breaks the limits of thermodynamic solubility for different metal elements.
Collapse
Affiliation(s)
- Chun Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaihang Yue
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiajia Han
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Qiunan Liu
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, St-Aubin, 91192 Gif-sur-Yvette CEDEX, France
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xianying Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuanzhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
33
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Kiens EM, Choi MJ, Wei L, Lu Q, Wang L, Baeumer C. Deeper mechanistic insights into epitaxial nickelate electrocatalysts for the oxygen evolution reaction. Chem Commun (Camb) 2023; 59:4562-4577. [PMID: 36920360 PMCID: PMC10100650 DOI: 10.1039/d3cc00325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Mass production of green hydrogen via water electrolysis requires advancements in the performance of electrocatalysts, especially for the oxygen evolution reaction. In this feature article, we highlight how epitaxial nickelates act as model systems to identify atomic-level composition-structure-property-activity relationships, capture dynamic changes under operating conditions, and reveal reaction and failure mechanisms. These insights guide advanced electrocatalyst design with tailored functionality and superior performance. We conclude with an outlook for future developments via operando characterization and multilayer electrocatalyst design.
Collapse
Affiliation(s)
- Ellen M Kiens
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Min-Ju Choi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Luhan Wei
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China.
| | - Qiyang Lu
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China.
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, P. R. China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Christoph Baeumer
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| |
Collapse
|
35
|
Liu Y, Chen Y, Mu X, Wu Z, Jin X, Li J, Xu Y, Yang L, Xi X, Jang H, Lei Z, Liu Q, Jiao S, Yan P, Li X, Cao R. Spinel-Anchored Iridium Single Atoms Enable Efficient Acidic Water Oxidation via Intermediate Stabilization Effect. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yawei Chen
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xulin Mu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Zhongyi Wu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xu Jin
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Yanzhi Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiaoke Xi
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, 4726, Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Zhanwu Lei
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Shuhong Jiao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengfei Yan
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Xiyu Li
- University of Science and Technology of China, Hefei 230026, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
36
|
Yang L, Shi L, Chen H, Liang X, Tian B, Zhang K, Zou Y, Zou X. A Highly Active, Long-Lived Oxygen Evolution Electrocatalyst Derived from Open-Framework Iridates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208539. [PMID: 36586400 DOI: 10.1002/adma.202208539] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The acidic oxygen evolution reaction underpins several important electrical-to-chemical energy conversions, and this energy-intensive process relies industrially on iridium-based electrocatalysts. Here, phase-selective synthesis of metastable strontium iridates with open-framework structure and their unexpected transformation into a highly active, ultrastable oxygen evolution nano-electrocatalyst are presented. This transformation involves two major steps: Sr2+ /H+ ion exchange in acid and in situ structural rearrangement under electrocatalysis conditions. Unlike its dense perovskite-structured polymorphs, the open-framework iridates have the ability to undergo rapid proton exchange in acid without framework amorphization. The resulting protonated iridates further reconstruct into ultrasmall, surface-hydroxylated, (200) crystal plane-oriented rutile nanocatalyst, instead of the common amorphous IrOx Hy phase, during acidic oxygen evolution. Such microstructural characteristics are found to benefit both the oxidation of hydroxyls and the formation of OO bonds in electrocatalytic cycle. As a result, the open-framework iridate derived nanocatalyst gives a comparable catalytic activity to the most active iridium-based oxygen evolution electrocatalysts in acid, and retains its catalytic activity for more than 1000 h.
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Boyuan Tian
- State Key Laboratory of Advanced Transmission Technology, State Grid Smart Grid Research Institute Co., Ltd, Changping District, Beijing, 102209, P. R. China
| | - Kexin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
37
|
Shi Z, Li J, Wang Y, Liu S, Zhu J, Yang J, Wang X, Ni J, Jiang Z, Zhang L, Wang Y, Liu C, Xing W, Ge J. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat Commun 2023; 14:843. [PMID: 36792586 PMCID: PMC9932065 DOI: 10.1038/s41467-023-36380-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The poor stability of Ru-based acidic oxygen evolution (OER) electrocatalysts has greatly hampered their application in polymer electrolyte membrane electrolyzers (PEMWEs). Traditional understanding of performance degradation centered on influence of bias fails in describing the stability trend, calling for deep dive into the essential origin of inactivation. Here we uncover the decisive role of reaction route (including catalytic mechanism and intermediates binding strength) on operational stability of Ru-based catalysts. Using MRuOx (M = Ce4+, Sn4+, Ru4+, Cr4+) solid solution as structure model, we find the reaction route, thereby stability, can be customized by controlling the Ru charge. The screened SnRuOx thus exhibits orders of magnitude lifespan extension. A scalable PEMWE single cell using SnRuOx anode conveys an ever-smallest degradation rate of 53 μV h-1 during a 1300 h operation at 1 A cm-2.
Collapse
Affiliation(s)
- Zhaoping Shi
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Ji Li
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yibo Wang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Shiwei Liu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jianbing Zhu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Jiahao Yang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Xian Wang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Jing Ni
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Zheng Jiang
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.9227.e0000000119573309Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201204 China
| | - Lijuan Zhang
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.9227.e0000000119573309Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201204 China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Changpeng Liu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
38
|
Retuerto M, Pascual L, Torrero J, Salam MA, Tolosana-Moranchel Á, Gianolio D, Ferrer P, Kayser P, Wilke V, Stiber S, Celorrio V, Mokthar M, Sanchez DG, Gago AS, Friedrich KA, Peña MA, Alonso JA, Rojas S. Highly active and stable OER electrocatalysts derived from Sr 2MIrO 6 for proton exchange membrane water electrolyzers. Nat Commun 2022; 13:7935. [PMID: 36566246 PMCID: PMC9789951 DOI: 10.1038/s41467-022-35631-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Proton exchange membrane water electrolysis is a promising technology to produce green hydrogen from renewables, as it can efficiently achieve high current densities. Lowering iridium amount in oxygen evolution reaction electrocatalysts is critical for achieving cost-effective production of green hydrogen. In this work, we develop catalysts from Ir double perovskites. Sr2CaIrO6 achieves 10 mA cm-2 at only 1.48 V. The surface of the perovskite reconstructs when immersed in an acidic electrolyte and during the first catalytic cycles, resulting in a stable surface conformed by short-range order edge-sharing IrO6 octahedra arranged in an open structure responsible for the high performance. A proton exchange membrane water electrolysis cell is developed with Sr2CaIrO6 as anode and low Ir loading (0.4 mgIr cm-2). The cell achieves 2.40 V at 6 A cm-2 (overload) and no loss in performance at a constant 2 A cm-2 (nominal load). Thus, reducing Ir use without compromising efficiency and lifetime.
Collapse
Affiliation(s)
- María Retuerto
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| | - Laura Pascual
- Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Jorge Torrero
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Álvaro Tolosana-Moranchel
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Paula Kayser
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Vincent Wilke
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Svenja Stiber
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Verónica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mohamed Mokthar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Daniel García Sanchez
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Aldo Saul Gago
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Kaspar Andreas Friedrich
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Miguel Antonio Peña
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - José Antonio Alonso
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
39
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
40
|
Gao J, Liu Y, Liu B, Huang KW. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. ACS NANO 2022; 16:17761-17777. [PMID: 36355040 DOI: 10.1021/acsnano.2c08519] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The water oxidation reaction (or oxygen evolution reaction, OER) plays a critical role in green hydrogen production via water splitting, electrochemical CO2 reduction, and nitrogen fixation. The four-electron and four-proton transfer OER process involves multiple reaction intermediates and elementary steps that lead to sluggish kinetics; therefore, a high overpotential is necessary to drive the reaction. Among the different water-splitting electrolyzers, the proton exchange membrane type electrolyzer has greater advantages, but its anode catalysts are limited to iridium-based materials. The iridium catalyst has been extensively studied in recent years due to its balanced activity and stability for acidic OER, and many exciting signs of progress have been made. In this review, the surface and bulk Pourbaix diagrams of iridium species in an aqueous solution are introduced. The iridium-based catalysts, including metallic or oxides, amorphous or crystalline, single crystals, atomically dispersed or nanostructured, and iridium compounds for OER, are then elaborated. The latest progress of active sites, reaction intermediates, reaction kinetics, and elementary steps is summarized. Finally, future research directions regarding iridium catalysts for acidic OER are discussed.
Collapse
Affiliation(s)
- Jiajian Gao
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
| | - Yan Liu
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore637459
| | - Kuo-Wei Huang
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
- KAUST Catalysis Center and Division of Science and Engineering, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
- Agency for Science, Technology, and Research, Institute of Materials Research and Engineering, Singapore138634
| |
Collapse
|
41
|
Li N, Cai L, Gao G, Liu Y, Wang C, Liu Z, Ji Q, Duan H, Wang LW, Yan W. Origin of Surface Amorphization and Catalytic Stability of Ca 2–xIrO 4 Nanocrystals for Acidic Oxygen Evolution: Critical Roles of Acid Anions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Liang Cai
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Guoping Gao
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Ziyi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
42
|
Chen H, Chen S, Zhang Z, Sheng L, Zhao J, Fu W, Xi S, Si R, Wang L, Fan M, Yang B. Single-Atom-Induced Adsorption Optimization of Adjacent Sites Boosted Oxygen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huihuang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Shaoqing Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, P. R. China
| | - Zhirong Zhang
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, P. R. China
| | - Li Sheng
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, P. R. China
| | - Jiankang Zhao
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, P. R. China
| | - Weng Fu
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Jurong Island, Singapore627833, Singapore
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201204, P. R. China
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming82071, United States
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, P. R. China
| |
Collapse
|
43
|
Li N, Cai L, Gao G, Lin Y, Wang C, Liu H, Liu Y, Duan H, Ji Q, Hu W, Tan H, Qi Z, Wang LW, Yan W. Operando Direct Observation of Stable Water-Oxidation Intermediates on Ca 2-xIrO 4 Nanocrystals for Efficient Acidic Oxygen Evolution. NANO LETTERS 2022; 22:6988-6996. [PMID: 36005477 DOI: 10.1021/acs.nanolett.2c01777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report Ca2-xIrO4 nanocrystals exhibit record stability of 300 h continuous operation and high iridium mass activity (248 A gIr-1 at 1.5 VRHE) that is about 62 times that of benchmark IrO2. Lattice-resolution images and surface-sensitive spectroscopies demonstrate the Ir-rich surface layer (evolved from one-dimensional connected edge-sharing [IrO6] octahedrons) with high relative content of Ir5+ sites, which is responsible for the high activity and long-term stability. Combining operando infrared spectroscopy with X-ray absorption spectroscopy, we report the first direct observation of key intermediates absorbing at 946 cm-1 (Ir6+═O site) and absorbing at 870 cm-1 (Ir6+OO- site) on iridium-based oxides electrocatalysts, and further discover the Ir6+═O and Ir6+OO- intermediates are stable even just from 1.3 VRHE. Density functional theory calculations indicate the catalytic activity of Ca2IrO4 is enhanced remarkably after surface Ca leaching, and suggest IrOO- and Ir═O intermediates can be stabilized on positive charged active sites of Ir-rich surface layer.
Collapse
Affiliation(s)
- Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Liang Cai
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - Guoping Gao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Wei Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| |
Collapse
|
44
|
Chen H, Shi L, Sun K, Zhang K, Liu Q, Ge J, Liang X, Tian B, Huang Y, Shi Z, Wang Z, Zhang W, Liu M, Zou X. Protonated Iridate Nanosheets with a Highly Active and Stable Layered Perovskite Framework for Acidic Oxygen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ke Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Kexin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Boyuan Tian
- State Key Laboratory of Advanced Transmission Technology (State Grid Smart Grid Research Institute Company Limited), Beijing 102209, China
| | - Yalan Huang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zizhun Wang
- Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
45
|
Liu H, Zhang Z, Li M, Wang Z, Zhang X, Li T, Li Y, Tian S, Kuang Y, Sun X. Iridium Doped Pyrochlore Ruthenates for Efficient and Durable Electrocatalytic Oxygen Evolution in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202513. [PMID: 35780475 DOI: 10.1002/smll.202202513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Developing highly active, durable, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is of prime importance in proton exchange membrane (PEM) water electrolysis techniques. Ru-based catalysts have high activities but always suffer from severe fading and dissolution issues, which cannot satisfy the stability demand of PEM. Herein, a series of iridium-doped yttrium ruthenates pyrochlore catalysts is developed, which exhibit better activity and much higher durability than commercial RuO2 , IrO2 , and most of the reported Ru or Ir-based OER electrocatalysts. Typically, the representative Y2 Ru1.2 Ir0.8 O7 OER catalyst demands a low overpotential of 220 mV to achieve 10 mA cm-2 , which is much lower than that of RuO2 (300 mV) and IrO2 (350 mV). In addition, the catalyst does not show obvious performance decay or structural degradation over a 2000 h stability test. EXAFS and XPS co-prove the reduced valence state of ruthenium and iridium in pyrochlore contributes to the improved activity and stability. Density functional theory reveals that the potential-determining steps barrier of OOH* formation is greatly depressed through the synergy effect of Ir and Ru sites by balancing the d band center and oxygen intermediates binding ability.
Collapse
Affiliation(s)
- Hai Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuang Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mengxuan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhaolei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xingheng Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianshui Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
46
|
Hirai S, Yagi S, Oh HC, Sato Y, Liu W, Liu EP, Chen WT, Miura A, Nagao M, Ohno T, Matsuda T. Highly active and stable surface structure for oxygen evolution reaction originating from balanced dissolution and strong connectivity in BaIrO 3 solid solutions. RSC Adv 2022; 12:24427-24438. [PMID: 36128544 PMCID: PMC9415035 DOI: 10.1039/d2ra04624e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Catalysts for the oxygen evolution reaction (OER) are receiving great interest since OER remains the bottleneck of water electrolyzers for hydrogen production. Especially, OER in acidic solutions is crucial since it produces high current densities and avoids precipitation of carbonates. However, even the acid stable iridates undergo severe dissolution during the OER. BaIrO3 has the strongest IrO6 connectivity and stable surface structure, yet it suffers from lattice collapse after OER cycling, making it difficult to improve the OER durability. In the present study, we have successfully developed an OER catalyst with both high intrinsic activity and stability under acidic conditions by preventing the lattice collapse after repeated OER cycling. Specifically, we find that the substitution of Ir-site with Mn for BaIrO3 in combination with OER cycling leads to a remarkable activity enhancement by a factor of 28 and an overall improvement in stability. This dual enhancement of OER performance was accomplished by the novel strategy of slightly increasing the Ir-dissolution and balancing the elemental dissolution in BaIr1−xMnxO3 to reconstruct a rigid surface with BaIrO3-type structure. More importantly, the mass activity for BaIr0.8Mn0.2O3 reached ∼73 times of that for IrO2, making it a sustainable and promising OER catalyst for energy conversion technologies. We have prevented lattice collapse and developed an OER catalyst with both high activity and stability by slightly increasing Ir-dissolution and balancing the elemental dissolution in BaIr1−xMnxO3 for reconstructing the rigid catalytic surface.![]()
Collapse
Affiliation(s)
- Shigeto Hirai
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Shunsuke Yagi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - He-Chan Oh
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Yoshiki Sato
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Wei Liu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - En-Pei Liu
- Center for Condensed Matter Sciences and Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tin Chen
- Center for Condensed Matter Sciences and Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei 10622, Taiwan
| | - Akira Miura
- Graduate School of Chemical Sciences and Engineering and Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Masanori Nagao
- University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-0021, Japan
| | - Tomoya Ohno
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Takeshi Matsuda
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| |
Collapse
|