1
|
Xu K, Feng Y, Wen F, Xu X, Wang H, Shui QJ, Huang N. Topological Control Over Porphyrin-Based Covalent Organic Frameworks for Elucidating Electron Transfer Characteristics. Angew Chem Int Ed Engl 2025:e202506977. [PMID: 40263726 DOI: 10.1002/anie.202506977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) have emerged as promising functional materials due to their programmable architectures and tunable functionalities. Nevertheless, the structural diversity of porphyrin-based 2D COFs remains restricted by the prevalent use of sql topology, hindering comprehensive structure-property exploration. Herein, we systematically designed and synthesized porphyrinic 2D COFs featuring distinct sql and bex topological configurations. Comprehensive structural characterization confirmed precise control over lattice geometries, revealing monoporous structure in sql topology versus biporous architecture in bex topology. Electrochemical investigations uncovered topology-governed electron transport characteristics, with the unique coordination geometry of bex topology exhibiting enhanced electron transfer efficiency. Band structure analysis demonstrated that topological configuration and chemical composition collectively modulate electronic structures. Inspired by these findings, we developed nickel-incorporated bex-COFs for electrocatalytic oxygen evolution. The optimized Ni-BBFPP-TAPP-COF with bex topology demonstrated remarkable catalytic performance, achieving a low overpotential of 342 mV at 10 mA cm-2, which surpasses most reported porphyrin-based electrocatalysts. This study not only significantly expands the structural repertoire of porphyrinic COFs but also establishes explicit correlations between topological engineering and electrocatalytic performance, providing fundamental design principles for advanced energy conversion materials.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yaoqian Feng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hanwen Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qing-Jun Shui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Laboratory for Materials and Structures, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Wang YY, Li R, Cai Z, Weng S, Zhang B, Liao HT, Shahriar R, Himel MH, Shamsi E, Cronin SB. Investigating Surface p Ka and pH Using Surface-Enhanced Raman Scattering Spectroscopy with 4-Mercaptobenzoic Acid in Deionized Water and Sodium Bicarbonate Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17521-17529. [PMID: 39967234 DOI: 10.1021/acsami.4c21030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Our research presents spectroscopic measurements of the surface pKa at electrode/electrolyte interfaces using surface-enhanced Raman scattering spectroscopy of 4-mercaptobenzoic acid (4-MBA). As the electrochemical potential is varied from negative to positive, the Raman intensity of the -COOH functional group (at 1700 cm-1) decreases while the -COO- Raman intensity (at 1410 cm-1) increases. The protonation-deprotonation of this surface-bound molecule reflects an electrochemically induced shift to more acidic conditions at negative potentials and more basic conditions at positive potentials. By fitting the data to a normalized sigmoid function, we obtain the percentage of surface protonation/deprotonation, which can be related to the surface pKa of the system. The percentage of surface protonation, which gives a proxy of the two-dimensional surface pKa, follows the Fermi-Dirac distribution as a function of the applied potential. The electrolyte-electrode pH-neutral conditions at the interface are extracted by the linear fitted intercepts of -log(COO-/COOH) as a function of the applied potential based on the Nernst equation, which are 0.25, 0.07, 0.08, and -0.46 V for DI water and 0.5 M sodium bicarbonate solutions with and without CO2 purging, respectively. The shift of surface neutral conditions toward more positive voltages in the electrolytes with CO2 purging indicates that the bulk solutions dissolved in the CO2-dissolved form become more acidic. The 25% reduction of protonation at negative applied potentials in CO2-purged DI water suggests that the direct reduction of hydronium ions and/or carbonic acid increases the surface pKa in the microenvironment. Adding alkali cations (Na+) attracts more proton donors toward the working electrode, resulting in the protonation capacity near the electrode surface, approximately -1.9 V-1, being double that of DI water, which is around -1 V-1. Hydrogen evolution reaction pathways are not detected in neutral or basic conditions due to the low concentration of hydronium ions (<10-6 M). The independence of the carbonic acid concentration with applied negative potentials, as measured by the surface pKa in the Helmholtz plane, indicates that changes in the local pH/surface pKa under neutral or basic bulk conditions are governed by the acid-base equilibrium of water, carbonic acid, bicarbonate, and carbonate ions.
Collapse
Affiliation(s)
- Yu Yun Wang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ruoxi Li
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi Cai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Sizhe Weng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Boxin Zhang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Han-Ting Liao
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Rifat Shahriar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Mehedi Hasan Himel
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ehsan Shamsi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Long Z, Meng J, Weddle LR, Videla PE, Menzel JP, Cabral DGA, Liu J, Qiu T, Palasz JM, Bhattacharyya D, Kubiak CP, Batista VS, Lian T. The Impact of Electric Fields on Processes at Electrode Interfaces. Chem Rev 2025; 125:1604-1628. [PMID: 39818737 PMCID: PMC11826898 DOI: 10.1021/acs.chemrev.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates. In this review, we examine recent advances in experimental, computational, and theoretical studies of the interfacial electric field, the origin of the vibrational Stark effect of adsorbates on electrode surfaces, and the effects of electric fields on reactions at electrode/electrolyte interfaces. We also discuss recent advances in control of charge transfer and chemical reactions using magnetic fields. Finally, we outline perspectives on key areas for future studies.
Collapse
Affiliation(s)
- Zhuoran Long
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lydia R. Weddle
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Pablo E. Videla
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jan Paul Menzel
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Delmar G. A. Cabral
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinchan Liu
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyin Qiu
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Joseph M. Palasz
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | | | - Clifford P. Kubiak
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S. Batista
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Jozeliūnaitė A, Guo S, Sakai N, Matile S. Electric-Field Catalysis on Carbon Nanotubes in Electromicrofluidic Reactors: Monoterpene Cyclizations. Angew Chem Int Ed Engl 2025; 64:e202417333. [PMID: 39387156 PMCID: PMC11753599 DOI: 10.1002/anie.202417333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
The control over the movement of electrons during chemical reactions with oriented external electric fields (OEEFs) has been predicted to offer a general approach to catalysis. Recently, we suggested that many problems to realize electric-field catalysis in practice under scalable bulk conditions could possibly be solved on multiwalled carbon nanotubes in electromicrofluidic reactors. Here, we selected monoterpene cyclizations to assess the scope of our system in organic synthesis. We report that electric-field catalysis can function by stabilizing both anionic and cationic transition states, depending on the orientation of the applied field. Moreover, electric-field catalysis can promote reactions which are barely accessible by general Brønsted and Lewis acids and field-free anion-π and cation-π interactions, and drive chemoselectivity toward intrinsically disfavored products without the need for pyrene interfacers attached to the substrate to prolong binding to the carbon nanotubes. Finally, interfacing with chiral organocatalysts is explored and evidence against contributions from redox chemistry is provided.
Collapse
Affiliation(s)
- Augustina Jozeliūnaitė
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Shen‐Yi Guo
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| |
Collapse
|
5
|
Chen X, Gao Y, Qi Y, Li J, Hu TY, Chen Z, Zhu JJ. Label-Free Raman Probing of the Intrinsic Electric Field for High-Efficiency Screening of Electricity-Producing Bacteria at the Single-Cell Level. Angew Chem Int Ed Engl 2025; 64:e202416011. [PMID: 39439277 DOI: 10.1002/anie.202416011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The fabrication of high-performance microbial fuel cells requires the evaluation of the activity of electrochemically active bacteria. However, this is challenging because of the time-consuming nature of biofilm formation and the invasive nature of labeling. To address this issue, we developed a fast, label-free, single-cell Raman spectroscopic method. This method involves investigating the "pure" linear Stark effect of endogenous CO in the silent region of biological samples, which allows for probing the intrinsic electric field in the outer-membrane cytochromes of live bacterial cells. We found that reduced outer-membrane cytochromes can generate an additional intrinsic electric field equivalent to an applied potential of +0.29 V. We also found that the higher the electrical activity of the cell, the larger the generated electric field. This was also reflected in the output current of the constructed microbial fuel cells. Raman spectroscopy was employed to facilitate the assessment of electrochemical activity at the single-cell level in highly-diluted bacterial samples. After analysis, inactive bacteria were ablated by laser heating, and 20 active cells were cultured for further testing. The rapid and high-throughput probing of the intrinsic electric field offers a promising platform for high-efficiency screening of electrochemically active bacterial cells for bioenergetic and photosynthetic research.
Collapse
Affiliation(s)
- Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Center for Cellular and Molecular Diagnostics and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA-70112, US
| | - Yan Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yongbing Qi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jinxiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA-70112, US
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | | |
Collapse
|
6
|
Jin Y, Yin X, Yu G, Sun Q, Wang J. Investigation of Electron Transfer Properties on Silicalite-1 Zeolite for Potential Electrocatalytic Applications. J Am Chem Soc 2024; 146:35109-35116. [PMID: 39474815 DOI: 10.1021/jacs.4c10258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
To develop high-performance electrocatalysts is critical to sustainable conversion and storage of renewable energy. Silicalite-1 (S-1) zeolite is considered promising for constructing electrocatalysts featuring uniform and precise porosity and a stable structural skeleton even at extreme potentials. However, its electrochemical properties remain poorly understood, particularly regarding the roles of internal pore channels. Herein, inner- and outer-sphere electron transfer (ISET/OSET) routes on the S-1 zeolite were investigated by classical redox probes. The results for the first time revealed that the ISET kinetics inside the pores of S-1 zeolite is more rapid than that on external surfaces, optimized by microporous scale channels and terminated hydroxyl groups. Conversely, the kinetics of the OSET did not closely depend on the porosity and surface properties of the S-1 zeolite. These electrochemical insights further initiated a lithium-ion-incorporated S-1 zeolite with rapid ISET kinetics for electrocatalysis of oxygen reduction. It demonstrated a high performance of 85% selectivity for H2O2 production in a neutral solution and a yield of 9.2 mol gcat-1 h-1 when configured in a flow cell.
Collapse
Affiliation(s)
- Yingying Jin
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, P. R. China
| | - Xichen Yin
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, P. R. China
| | - Guanghua Yu
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| | - Jiong Wang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Askins EJ, Sarkar A, Navabi P, Kumar K, Finkelmeyer SJ, Presselt M, Cabana J, Glusac KD. Interfacial Electrochemistry of Catalyst-Coordinated Graphene Nanoribbons. J Am Chem Soc 2024; 146:22360-22373. [PMID: 39087647 DOI: 10.1021/jacs.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The immobilization of molecular electrocatalysts on conductive electrodes is an appealing strategy for enhancing their overall activity relative to those of analogous molecular compounds. In this study, we report on the interfacial electrochemistry of self-assembled two-dimensional nanosheets of graphene nanoribbons (GNR-2DNS) and analogs containing a Rh-based hydrogen evolution reaction (HER) catalyst (RhGNR-2DNS) immobilized on conductive electrodes. Proton-coupled electron transfer (PCET) taking place at N-centers of the nanoribbons was utilized as an indirect reporter of the interfacial electric fields experienced by the monolayer nanosheet located within the electric double layer. The experimental Pourbaix diagrams were compared with a theoretical model, which derives the experimental Pourbaix slopes as a function of parameter f, a fraction of the interfacial potential drop experienced by the redox-active group. Interestingly, our study revealed that GNR-2DNS was strongly coupled to glassy carbon electrodes (f = 1), while RhGNR-2DNS was not (f = 0.15). We further investigated the HER mechanism by RhGNR-2DNS using electrochemical and X-ray absorption spectroelectrochemical methods and compared it to homogeneous molecular model compounds. RhGNR-2DNS was found to be an active HER electrocatalyst over a broader set of aqueous pH conditions than its molecular analogs. We find that the improved HER performance in the immobilized catalyst arises due to two factors. First, redox-active bipyrimidine-based ligands were shown to dramatically alter the activity of Rh sites by increasing the electron density at the active Rh center and providing RhGNR-2DNS with improved catalysis. Second, catalyst immobilization was found to prevent catalyst aggregation that was found to occur for the molecular analog in the basic pH. Overall, this study provides valuable insights into the mechanism by which catalyst immobilization can affect the overall electrocatalytic performance.
Collapse
Affiliation(s)
- Erik J Askins
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Abdul Sarkar
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Pouyan Navabi
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Khagesh Kumar
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Sarah Jasmin Finkelmeyer
- Leibniz Institute of Photonic Technology (IPHT), Jena 07745, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Jena 07745, Germany
- SciClus GmbH & Co. KG, Jena 07745, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany
| | - Jordi Cabana
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Liu X, Long J, Fu Y, Wu L, Chen H, Xie X, Wang Z, Wu J, Xiang K, Liu H. Electric Field Generated at the Millisecond Pulse-Polarized Interface Facilitates the Electrolytic Conversion of SO 2 into H 2S. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37298-37307. [PMID: 38970147 DOI: 10.1021/acsami.4c07431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Interfacial electric field holds significant importance in determining both the polar molecular configuration and surface coverage during electrocatalysis. This study introduces a methodology leveraging the varying electric dipole moment of SO2 under distinct interfacial electric field strengths to enhance the selectivity of the SO2 electroreduction process. This approach presented the first attempt to utilize pulsed voltage application to the Au/PTFE membrane electrode for the control of the molecular configuration and coverage of SO2 on the electrode surface. Remarkably, the modulation of pulse duration resulted in a substantial inhibition of the hydrogen evolution reaction (HER) (FEH2 < 3%) under millisecond pulse conditions (ta = 10 ms, tc = 300 ms, Ea = -0.8 V (vs Hg/Hg2SO4), Ec = -1.8 V (vs Hg/Hg2SO4)), concomitant with a noteworthy enhancement in H2S selectivity (FEH2S > 97%). A comprehensive analysis, incorporating in situ Raman spectroscopy, electrochemical quartz crystal microbalance, COMSOL simulations, and DFT calculations, corroborated the increased selectivity of H2S products was primarily associated with the inherently large dipole moment of the SO2 molecule. The enhancement of the interfacial electric field induced by millisecond pulses was instrumental in amplifying SO2 coverage, activating SO2, facilitating the formation of the pivotal intermediate product *SOH, and effectively reducing the reaction energy barrier in the SO2 reduction process. These findings provide novel insights into the influences of ion and molecular transport dynamics, as well as the temporal intricacies of competitive pathways during the SO2 electroreduction process. Moreover, it underscores the intrinsic correlation between the electric dipole moment and surface-molecule interaction of the catalyst.
Collapse
Affiliation(s)
- Xudong Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jiaqi Long
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yingxue Fu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Lin Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hao Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaofeng Xie
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhujiang Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jun Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Kaisong Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
9
|
Hsu YS, Rathnayake ST, Waegele MM. Cation effects in hydrogen evolution and CO2-to-CO conversion: A critical perspective. J Chem Phys 2024; 160:160901. [PMID: 38651806 DOI: 10.1063/5.0201751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
The rates of many electrocatalytic reactions can be strongly affected by the structure and dynamics of the electrochemical double layer, which in turn can be tuned by the concentration and identity of the supporting electrolyte's cation. The effect of cations on an electrocatalytic process depends on a complex interplay between electrolyte components, electrode material and surface structure, applied electrode potential, and reaction intermediates. Although cation effects remain insufficiently understood, the principal mechanisms underlying cation-dependent reactivity and selectivity are beginning to emerge. In this Perspective, we summarize and critically examine recent advances in this area in the context of the hydrogen evolution reaction (HER) and CO2-to-CO conversion, which are among the most intensively studied and promising electrocatalytic reactions for the sustainable production of commodity chemicals and fuels. Improving the kinetics of the HER in base and enabling energetically efficient and selective CO2 reduction at low pH are key challenges in electrocatalysis. The physical insights from the recent literature illustrate how cation effects can be utilized to help achieve these goals and to steer other electrocatalytic processes of technological relevance.
Collapse
Affiliation(s)
- Yu-Shen Hsu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sachinthya T Rathnayake
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Matthias M Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
10
|
Westendorff KS, Hülsey MJ, Wesley TS, Román-Leshkov Y, Surendranath Y. Electrically driven proton transfer promotes Brønsted acid catalysis by orders of magnitude. Science 2024; 383:757-763. [PMID: 38359117 DOI: 10.1126/science.adk4902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Electric fields play a key role in enzymatic catalysis and can enhance reaction rates by 100,000-fold, but the same rate enhancements have yet to be achieved in thermochemical heterogeneous catalysis. In this work, we probe the influence of catalyst potential and interfacial electric fields on heterogeneous Brønsted acid catalysis. We observed that variations in applied potential of ~380 mV led to a 100,000-fold rate enhancement for 1-methylcyclopentanol dehydration, which was catalyzed by carbon-supported phosphotungstic acid. Mechanistic studies support a model in which the interfacial electrostatic potential drop drives quasi-equilibrated proton transfer to the adsorbed substrate prior to rate-limiting C-O bond cleavage. Large increases in rate with potential were also observed for the same reaction catalyzed by Ti/TiOyHx and for the Friedel Crafts acylation of anisole with acetic anhydride by carbon-supported phosphotungstic acid.
Collapse
Affiliation(s)
- Karl S Westendorff
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Max J Hülsey
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thejas S Wesley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yogesh Surendranath
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Chen QC, Kress S, Molinelli R, Wuttig A. Interfacial Tuning of Electrocatalytic Ag Surfaces for Fragment-Based Electrophile Coupling. Nat Catal 2024; 7:120-131. [PMID: 38434422 PMCID: PMC10906991 DOI: 10.1038/s41929-023-01073-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/02/2023] [Indexed: 03/05/2024]
Abstract
Construction of C‒C bonds in medicinal chemistry frequently draws on the reductive coupling of organic halides with ketones or aldehydes. Catalytic C(sp3)‒C(sp3) bond formation, however, is constrained by the competitive side reactivity of radical intermediates following sp3 organic halide activation. Here, an alternative paradigm deploys catalytic Ag surfaces for reductive fragment-based electrophile coupling compatible with sp3 organic halides. We use in-situ spectroscopy, electrochemical analyses, and simulation to uncover the catalytic interfacial structure and guide reaction development. Specifically, Mg(OAc)2 outcompetes the interaction between Ag and the aldehyde, thereby tuning the Ag surface for selective product formation. Data are consistent with an increased population of Mg-bound aldehyde facilitating the addition of a carbon-centered radical (product of Ag-electrocatalyzed organic halide reduction) to the carbonyl. Electron transfer from Ag to the resultant alkoxy radical yields the desired alcohol. Molecular interfacial tuning at reusable catalytic electrodes will accelerate development of sustainable organic synthetic methods.
Collapse
Affiliation(s)
- Qiu-Cheng Chen
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Sarah Kress
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Rocco Molinelli
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| |
Collapse
|
12
|
Yang YX, Yang XH, Huang ML, Wu LW, Liu Z, Cheng J, Huang YF. In Situ Spectroscopic Elucidation of the Electrochemical Potential Drop at Polyelectrolytes/Au Interfaces. J Phys Chem Lett 2024; 15:701-706. [PMID: 38214464 DOI: 10.1021/acs.jpclett.3c03111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Polyelectrolytes have been widely applied in electrochemical devices. Understanding the polyelectrolyte/electrode interfaces is pivotal for polyelectrolyte-based applications. Here, we measured the electrochemical potential drop and the local activity of the mobile ion of H+ or OH- at the polyelectrolytes/Au interfaces by in situ electrochemical surface-enhanced Raman spectroscopy and voltammetry in three-electrode cells. We found that the potential dependences of the electrochemical potential drop in polyelectrolytes were smaller than that in conventional electrolyte solutions. The interfacial activity of H+ or OH- was much lower than that of bulk polyelectrolytes. The potential-dependent molecular dynamics simulations showed that the mobility of ionomers of polyelectrolytes in an electrostatic field was limited by a polymer matrix. These results suggested a characteristically thicker compact layer in the electrical double layer of a polyelectrolyte/electrode interface due to the accumulation of mobile H+ or OH- with a thicker hydration layer and immobile ionomers.
Collapse
Affiliation(s)
- Yun-Xiao Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Xiao-Hui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Mo-Li Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Li-Wen Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
13
|
Gutiérrez López MÁ, Tan ML, Renno G, Jozeliūnaitė A, Nué-Martinez JJ, Lopez-Andarias J, Sakai N, Matile S. Anion-π catalysis on carbon allotropes. Beilstein J Org Chem 2023; 19:1881-1894. [PMID: 38116243 PMCID: PMC10729121 DOI: 10.3762/bjoc.19.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Anion-π catalysis, introduced in 2013, stands for the stabilization of anionic transition states on π-acidic aromatic surfaces. Anion-π catalysis on carbon allotropes is particularly attractive because high polarizability promises access to really strong anion-π interactions. With these expectations, anion-π catalysis on fullerenes has been introduced in 2017, followed by carbon nanotubes in 2019. Consistent with expectations from theory, anion-π catalysis on carbon allotropes generally increases with polarizability. Realized examples reach from enolate addition chemistry to asymmetric Diels-Alder reactions and autocatalytic ether cyclizations. Currently, anion-π catalysis on carbon allotropes gains momentum because the combination with electric-field-assisted catalysis promises transformative impact on organic synthesis.
Collapse
Affiliation(s)
| | - Mei-Ling Tan
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Giacomo Renno
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Lake WR, Meng J, Dawlaty JM, Lian T, Hammes-Schiffer S. Electro-inductive Effect Dominates Vibrational Frequency Shifts of Conjugated Probes on Gold Electrodes. J Am Chem Soc 2023; 145:22548-22554. [PMID: 37795975 DOI: 10.1021/jacs.3c07489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Interfacial electric fields play a critical role in electrocatalysis and are often characterized by using vibrational probes attached to an electrode surface. Understanding the physical principles dictating the impact of the applied electrode potential on the vibrational probe frequency is important. Herein, a comparative study is performed for two molecular probes attached to a gold electrode. Both probes contain a nitrile (CN) group, but 4-mercaptobenzonitrile (4-MBN) exhibits continuous conjugation from the electrode through the nitrile group, whereas this conjugation is interrupted for 2-(4-mercaptophenyl)acetonitrile (4-MPCN). Periodic density functional theory calculations predict that the CN vibrational frequency shift of the 4-MBN system is dominated by induction, which is a through-bond polarization effect, leading to a strong potential dependence that does not depend significantly on the orientation of the CN bond relative to the surface. In contrast, the CN vibrational frequency shift of the 4-MPCN system is influenced less by induction and more by through-space electric field effects, leading to a weaker potential dependence and a greater orientation dependence. These theoretical predictions were confirmed by surface-enhanced Raman spectroscopy experiments. Balancing through-bond and through-space electrostatic effects may assist in the fundamental understanding and design of electrocatalytic systems.
Collapse
Affiliation(s)
- William R Lake
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
15
|
Gutiérrez López MÁ, Ali R, Tan ML, Sakai N, Wirth T, Matile S. Electric field-assisted anion-π catalysis on carbon nanotubes in electrochemical microfluidic devices. SCIENCE ADVANCES 2023; 9:eadj5502. [PMID: 37824606 PMCID: PMC10569703 DOI: 10.1126/sciadv.adj5502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
The vision to control the charges migrating during reactions with external electric fields is attractive because of the promise of general catalysis, emergent properties, and programmable devices. Here, we explore this idea with anion-π catalysis, that is the stabilization of anionic transition states on aromatic surfaces. Catalyst activation by polarization of the aromatic system is most effective. This polarization is induced by electric fields. The use of electrochemical microfluidic reactors to polarize multiwalled carbon nanotubes as anion-π catalysts emerges as essential. These reactors provide access to high fields at low enough voltage to prevent electron transfer, afford meaningful effective catalyst/substrate ratios, and avoid interference from additional electrolytes. Under these conditions, the rate of pyrene-interfaced epoxide-opening ether cyclizations is linearly voltage-dependent at positive voltages and negligible at negative voltages. While electromicrofluidics have been conceived for redox chemistry, our results indicate that their use for supramolecular organocatalysis has the potential to noncovalently electrify organic synthesis in the broadest sense.
Collapse
Affiliation(s)
- M. Ángeles Gutiérrez López
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Rojan Ali
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Mei-Ling Tan
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
16
|
Hao Y, Kang Y, Wang S, Chen Z, Lei C, Cao X, Chen L, Li Y, Liu Z, Gong M. Electrode/Electrolyte Synergy for Concerted Promotion of Electron and Proton Transfers toward Efficient Neutral Water Oxidation. Angew Chem Int Ed Engl 2023; 62:e202303200. [PMID: 37278979 DOI: 10.1002/anie.202303200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Neutral water oxidation is a crucial half-reaction for various electrochemical applications requiring pH-benign conditions. However, its sluggish kinetics with limited proton and electron transfer rates greatly impacts the overall energy efficiency. In this work, we created an electrode/electrolyte synergy strategy for simultaneously enhancing the proton and electron transfers at the interface toward highly efficient neutral water oxidation. The charge transfer was accelerated between the iridium oxide and in situ formed nickel oxyhydroxide on the electrode end. The proton transfer was expedited by the compact borate environment that originated from hierarchical fluoride/borate anions on the electrolyte end. These concerted promotions facilitated the proton-coupled electron transfer (PCET) events. Due to the electrode/electrolyte synergy, Ir-O and Ir-OO- intermediates could be directly detected by in situ Raman spectroscopy, and the rate-limiting step of Ir-O oxidation was determined. This synergy strategy can extend the scope of optimizing electrocatalytic activities toward more electrode/electrolyte combinations.
Collapse
Affiliation(s)
- Yaming Hao
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Yikun Kang
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Shaoyan Wang
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Zhe Chen
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Can Lei
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Xueting Cao
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Lin Chen
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Yefei Li
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Zhipan Liu
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Ming Gong
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| |
Collapse
|
17
|
Menachekanian S, Mora Perez C, Pennathur AK, Voegtle MJ, Blauth D, Prezhdo OV, Dawlaty JM. Phenol as a Tethering Group to Gold Surfaces: Stark Response and Comparison to Benzenethiol. J Phys Chem Lett 2023; 14:8353-8359. [PMID: 37702751 PMCID: PMC10518863 DOI: 10.1021/acs.jpclett.3c02058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Understanding the adsorption of organic molecules on metals is important in numerous areas of surface science, including electrocatalysis, electrosynthesis, and biosensing. While thiols are commonly used to tether organic molecules on metals, it is desirable to broaden the range of anchoring groups. In this study, we use a combined spectroelectrochemical and computational approach to demonstrate the adsorption of 4-cyanophenols (CPs) on polycrystalline gold. Using the nitrile stretching vibration as a marker, we confirm the adsorption of CP on the gold electrode and compare our results with those obtained for the thiol counterpart, 4-mercaptobenzonitirle (MBN). Our results reveal that CP adsorbs on the gold electrode via the OH linker, as evidenced by the similarity in the direction and magnitude of the nitrite Stark shifts for CP and MBN. This finding paves the way for exploring new approaches to modify electrode surfaces for controlled reactivity. Furthermore, it highlights adsorption on metals as an important step in the electroreactivity of phenols.
Collapse
Affiliation(s)
- Sevan Menachekanian
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Theoretical
Physics and Chemistry of Materials, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anuj K. Pennathur
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mattew J. Voegtle
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Drew Blauth
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M. Dawlaty
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
18
|
Badgurjar D, Huynh M, Masters B, Wuttig A. Non-Covalent Interactions Mimic the Covalent: An Electrode-Orthogonal Self-Assembled Layer. J Am Chem Soc 2023; 145:17734-17745. [PMID: 37548952 PMCID: PMC10436282 DOI: 10.1021/jacs.3c04387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/08/2023]
Abstract
Charge-transfer events central to energy conversion and storage and molecular sensing occur at electrified interfaces. Synthetic control over the interface is traditionally accessed through electrode-specific covalent tethering of molecules. Covalent linkages inherently limit the scope and the potential stability window of molecularly tunable electrodes. Here, we report a synthetic strategy that is agnostic to the electrode's surface chemistry to molecularly define electrified interfaces. We append ferrocene redox reporters to amphiphiles, utilizing non-covalent electrostatic and van der Waals interactions to prepare a self-assembled layer stable over a 2.9 V range. The layer's voltammetric response and in situ infrared spectra mimic those reported for analogous covalently bound ferrocene. This design is electrode-orthogonal; layer self-assembly is reversible and independent of the underlying electrode material's surface chemistry. We demonstrate that the design can be utilized across a wide range of electrode material classes (transition metal, carbon, carbon composites) and morphologies (nanostructured, planar). Merging atomically precise organic synthesis of amphiphiles with in situ non-covalent self-assembly at polarized electrodes, our work sets the stage for predictive and non-fouling synthetic control over electrified interfaces.
Collapse
Affiliation(s)
| | | | - Benjamin Masters
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Kim JH, Kim D, Yang W, Baik MH. Fractional Charge Density Functional Theory and Its Application to the Electro-inductive Effect. J Phys Chem Lett 2023; 14:3329-3334. [PMID: 36989527 DOI: 10.1021/acs.jpclett.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We employed the chemical potential equalization principle to demonstrate that fractional electrons are involved in the electro-inductive effect as well as the vibrational Stark effect. By the chemical potential model, we were able to deduce that the frontier molecular orbitals of immobilized molecules can provide valuable insight into these effects. To further understand and quantify these findings, we introduced fractional charge density functional theory (FC-DFT), a canonical ensemble approach for open systems. This method allows for the calculation of electronic energies, nuclear gradients, and the Hessian matrix of fractional electronic systems. To correct the spurious delocalization error commonly found in approximate density functionals for small systems, we imposed the Perdew-Parr-Levy-Balduz (PPLB) condition through linear interpolation of two adjacent integer points (LI-FC-DFT). Although this approach is relatively simple in terms of molecular modeling, the results obtained through LI-FC-DFT calculations predict the same trend seen in experimental reactivity and the frequency change of immobilized molecules.
Collapse
Affiliation(s)
- Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Dongju Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Menachekanian S, Voegtle MJ, Warburton RE, Hammes-Schiffer S, Dawlaty JM. Inductive Effect Alone Cannot Explain Lewis Adduct Formation and Dissociation at Electrode Interfaces. J Am Chem Soc 2023; 145:5759-5768. [PMID: 36862607 DOI: 10.1021/jacs.2c12370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Understanding breaking and formation of Lewis bonds at an electrified interface is relevant to a large range of phenomena, including electrocatalysis and electroadsorption. The complexities of interfacial environments and associated reactions often impede a systematic understanding of this type of bond at interfaces. To address this challenge, we report the creation of a main group classic Lewis acid-base adduct on an electrode surface and its behavior under varying electrode potentials. The Lewis base is a self-assembled monolayer of mercaptopyridine and the Lewis acid is BF3, forming a Lewis bond between nitrogen and boron. The bond is stable at positive potentials but cleaves at potentials more negative of approximately -0.3 V vs Ag/AgCl without an associated current. We also show that if the Lewis acid BF3 is supplied from a reservoir of Li+BF4- electrolyte, the cleavage is completely reversible. We propose that the N-B Lewis bond is affected both by the field-induced intramolecular polarization (electroinduction) and by the ionic structures and ionic equilibria near the electrode. Our results indicate that the second effect is responsible for the Lewis bond cleavage at negative potentials. This work is relevant to understanding the fundamentals of electrocatalytic and electroadsorption processes.
Collapse
Affiliation(s)
- Sevan Menachekanian
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew J Voegtle
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
21
|
Yang N, Ryan MJ, Son M, Mavrič A, Zanni MT. Voltage-Dependent FTIR and 2D Infrared Spectroscopies within the Electric Double Layer Using a Plasmonic and Conductive Electrode. J Phys Chem B 2023; 127:2083-2091. [PMID: 36821845 DOI: 10.1021/acs.jpcb.2c08431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Strong electric fields exist between the electric double layer and charged surfaces. These fields impact molecular structures and chemistry at interfaces. We have developed a transparent electrode with infrared plasmonic enhancement sufficient to measure FTIR and two-dimensional infrared spectra at submonolayer coverages on the surface to which a voltage can be applied. Our device consists of an infrared transparent substrate, a 10-20 nm layer of conductive indium tin oxide (ITO), an electrically resistive layer of 3-5 nm Al2O3, and a 3 nm layer of nonconductive plasmonic gold. The materials and thicknesses are set to maximize the surface number density of the monolayer molecules, electrical conductivity, and plasmonic enhancement while minimizing background signals and avoiding Fano line shape distortions. The design was optimized by iteratively characterizing the material roughness and thickness with atomic force microscopy and electron microscopy and by monitoring the plasmon resonance enhancement with spectroscopy. The design is robust to repeated fabrication. This new electrode is tested on nitrile functional groups using a monolayer of 4-mercaptobenzonitrile as well as on CO and CC stretching modes using 4-mercaptobenzoic acid methyl ester. A voltage-dependent Stark shift is observed on both monolayers. We also observe that the transition dipole strength of the CN mode scales linearly with the applied voltage, providing a second way of measuring the surface electric field strength. We anticipate that this cell will enable many new voltage-dependent infrared experiments under applied voltages.
Collapse
Affiliation(s)
- Nan Yang
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Matthew J Ryan
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Minjung Son
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Andraž Mavrič
- University of Nova Gorica, Materials Research Laboratory, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Xiong H, Sun Q, Chen K, Xu Y, Chang X, Lu Q, Xu B. Correlating the Experimentally Determined CO Adsorption Enthalpy with the Electrochemical CO Reduction Performance on Cu Surfaces. Angew Chem Int Ed Engl 2023; 62:e202218447. [PMID: 36655721 DOI: 10.1002/anie.202218447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
CO binding energy has been widely employed as a descriptor for effective catalysts in the electrochemical CO2 and CO reduction reactions (CO(2) RR), however, it has yet to be determined experimentally at electrochemical interfaces due to the lack of suitable techniques. In this work, we developed a method to determine the standard adsorption enthalpy of CO on Cu surfaces with quantitative surface enhanced infrared absorption spectroscopy. On dendritic Cu at -0.75 V vs. SHE, the standard adsorption enthalpy, entropy and Gibbs free energy were determined to 1.5±0.5 kJ mol-1 , ≈37.9±13.4 J/(mol K), and ≈-9.8±4.0 kJ mol-1 , respectively. Comparison of the standard adsorption enthalpy of oxide-derived Cu and dendritic Cu, as well as their CORR activities, suggests the presence of stronger binding sites on OD Cu, which could favor multicarbon products. The method developed in this work will help establish the correlation between the CO binding energy and the CO(2) RR activity.
Collapse
Affiliation(s)
- Haocheng Xiong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiwen Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kedang Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yifei Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
23
|
Hanaway D, Kennedy CR. Automated Variable Electric-Field DFT Application for Evaluation of Optimally Oriented Electric Fields on Chemical Reactivity. J Org Chem 2023; 88:106-115. [PMID: 36507909 PMCID: PMC9830642 DOI: 10.1021/acs.joc.2c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent theoretical work and experiments at molecular junctions have provided a strong conceptualization for the effects of oriented electric fields (OEFs) on organic reactions. Depending on the axis of application, OEFs can increase (or decrease) the reaction rate or distinguish between isomeric pathways. Despite the conceptual elegance of OEFs, which may be applied externally or induced locally, as tools for catalyzing organic reactions, implementation in synthetically relevant systems has been hampered by inefficiencies in evaluating reaction sensitivity to field effects. Herein, we describe the development of the Automated Variable Electric-Field DFT Application (A.V.E.D.A.) for streamlined evaluation of a reaction's susceptibility to OEFs. This open-source software was designed to be accessible for nonexpert users of computational and programming tools. Following initiation by a single command (and with no subsequent intervention) the Linux workflow manages a series of density functional theory calculations and mathematical manipulations to optimize local-minimum and transition-state structures in oriented electric fields of increasing magnitude. The resulting molecular and reaction dipole moments, field-perturbed geometries, and net effective activation energies are compiled for user interpretation. Ten representative pericyclic reactions that showcase the development and evaluation of A.V.E.D.A. are described.
Collapse
|
24
|
Su HS, Chang X, Xu B. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Stone IB, Starr RL, Hoffmann N, Wang X, Evans AM, Nuckolls C, Lambert TH, Steigerwald ML, Berkelbach TC, Roy X, Venkataraman L. Interfacial electric fields catalyze Ullmann coupling reactions on gold surfaces. Chem Sci 2022; 13:10798-10805. [PMID: 36320717 PMCID: PMC9491086 DOI: 10.1039/d2sc03780g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 10/21/2023] Open
Abstract
The electric fields created at solid-liquid interfaces are important in heterogeneous catalysis. Here we describe the Ullmann coupling of aryl iodides on rough gold surfaces, which we monitor in situ using the scanning tunneling microscope-based break junction (STM-BJ) and ex situ using mass spectrometry and fluorescence spectroscopy. We find that this Ullmann coupling reaction occurs only on rough gold surfaces in polar solvents, the latter of which implicates interfacial electric fields. These experimental observations are supported by density functional theory calculations that elucidate the roles of surface roughness and local electric fields on the reaction. More broadly, this touchstone study offers a facile method to access and probe in real time an increasingly prominent yet incompletely understood mode of catalysis.
Collapse
Affiliation(s)
- Ilana B Stone
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Rachel L Starr
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Norah Hoffmann
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Xiao Wang
- Center for Computational Quantum Physics, Flatiron Institute New York New York 10010 USA
| | - Austin M Evans
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | | | - Timothy C Berkelbach
- Department of Chemistry, Columbia University New York New York 10027 USA
- Center for Computational Quantum Physics, Flatiron Institute New York New York 10010 USA
| | - Xavier Roy
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Latha Venkataraman
- Department of Chemistry, Columbia University New York New York 10027 USA
- Department of Applied Physics, Columbia University New York New York 10027 USA
| |
Collapse
|
26
|
Bhattacharyya D, Videla PE, Palasz JM, Tangen I, Meng J, Kubiak CP, Batista VS, Lian T. Sub-Nanometer Mapping of the Interfacial Electric Field Profile Using a Vibrational Stark Shift Ruler. J Am Chem Soc 2022; 144:14330-14338. [PMID: 35905473 DOI: 10.1021/jacs.2c05563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characterization of electrical double layers is important since the interfacial electric field and electrolyte environment directly affect the reaction mechanisms and catalytic rates of electrochemical processes. In this work, we introduce a spectroscopic method based on a Stark shift ruler that enables mapping the electric field strength across the electric double layer of electrode/electrolyte interfaces. We use the tungsten-pentacarbonyl(1,4-phenelenediisocyanide) complex attached to the gold surface as a molecular ruler. The carbonyl (CO) and isocyanide (NC) groups of the self-assembled monolayer (SAM) provide multiple vibrational reporters situated at different distances from the electrode. Measurements of Stark shifts under operando electrochemical conditions and direct comparisons to density functional theory (DFT) simulations reveal distance-dependent electric field strength from the electrode surface. This electric field profile can be described by the Gouy-Chapman-Stern model with Stern layer thickness of ∼4.5 Å, indicating substantial solvent and electrolyte penetration within the SAM. Significant electro-induction effect is observed on the W center that is ∼1.2 nm away from the surface despite rapid decay of the electric field (∼90%) within 1 nm. The applied methodology and reported findings should be particularly valuable for the characterization of a wide range of microenvironments surrounding molecular electrocatalysts at electrode interfaces and the positioning of electrocatalysts at specific distances from the electrode surface for optimal functionality.
Collapse
Affiliation(s)
- Dhritiman Bhattacharyya
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Pablo E Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Joseph M Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, San Diego, California 92093, United States
| | - Isaac Tangen
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, San Diego, California 92093, United States
| | - Victor S Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
27
|
Weaver JB, Kozuch J, Kirsh JM, Boxer SG. Nitrile Infrared Intensities Characterize Electric Fields and Hydrogen Bonding in Protic, Aprotic, and Protein Environments. J Am Chem Soc 2022; 144:7562-7567. [PMID: 35467853 PMCID: PMC10082610 DOI: 10.1021/jacs.2c00675] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitriles are widely used vibrational probes; however, the interpretation of their IR frequencies is complicated by hydrogen bonding (H-bonding) in protic environments. We report a new vibrational Stark effect (VSE) that correlates the electric field projected on the -C≡N bond to the transition dipole moment and, by extension, the nitrile peak area or integrated intensity. This linear VSE applies to both H-bonding and non-H-bonding interactions. It can therefore be generally applied to determine electric fields in all environments. Additionally, it allows for semiempirical extraction of the H-bonding contribution to the blueshift of the nitrile frequency. Nitriles were incorporated at H-bonding and non-H-bonding protein sites using amber suppression, and each nitrile variant was structurally characterized at high resolution. We exploited the combined information available from variations in frequency and integrated intensity and demonstrate that nitriles are a generally useful probe for electric fields.
Collapse
Affiliation(s)
- Jared Bryce Weaver
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Jacek Kozuch
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jacob M Kirsh
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
28
|
Senechal V, Rodriguez-Hernandez J, Drummond C. Electroresponsive Weak Polyelectrolyte Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Carlos Drummond
- CNRS, CRPP, UMR 5031, Univ. Bordeaux, F-33600 Pessac, France
| |
Collapse
|
29
|
Warburton RE, Soudackov AV, Hammes-Schiffer S. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chem Rev 2022; 122:10599-10650. [PMID: 35230812 DOI: 10.1021/acs.chemrev.1c00929] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton-coupled electron transfer (PCET) plays an essential role in a wide range of electrocatalytic processes. A vast array of theoretical and computational methods have been developed to study electrochemical PCET. These methods can be used to calculate redox potentials and pKa values for molecular electrocatalysts, proton-coupled redox potentials and bond dissociation free energies for PCET at metal and semiconductor interfaces, and reorganization energies associated with electrochemical PCET. Periodic density functional theory can also be used to compute PCET activation energies and perform molecular dynamics simulations of electrochemical interfaces. Various approaches for maintaining a constant electrode potential in electronic structure calculations and modeling complex interactions in the electric double layer (EDL) have been developed. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET spanning the adiabatic, nonadiabatic, and solvent-controlled regimes have been developed and provide analytical expressions for the rate constants and current densities as functions of applied potential. The quantum mechanical treatment of the proton and inclusion of excited vibronic states have been shown to be critical for describing experimental data, such as Tafel slopes and potential-dependent kinetic isotope effects. The calculated rate constants can be used as input to microkinetic models and voltammogram simulations to elucidate complex electrocatalytic processes.
Collapse
Affiliation(s)
- Robert E Warburton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|