1
|
Park SE, Choi S, Lim C, Lee SH, Jeong S, Joo JM. Merging directed sp 3 and nondirected sp 2 C-H functionalization for Pd-catalyzed polydeuteration of (hetero)arenes. Chem Sci 2025:d5sc01407g. [PMID: 40353192 PMCID: PMC12059772 DOI: 10.1039/d5sc01407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Polydeuteration has emerged as a key strategy in the development of pharmaceuticals and functional organic materials, advancing beyond monodeuteration and trideuteromethylation. We have developed methods for the polydeuteration of a wide range of organic compounds through Pd-catalyzed directed sp3 C-H activation and nondirected sp2 C-H activation, using readily available deuterium source, AcOH-d 4. This approach addresses the challenge of facilitating both directed and nondirected C-H functionalization of electronically and sterically diverse (hetero)aromatic compounds through the use of a versatile [2,2'-bipyridin]-6(1H)-one (BpyOH) ligand. This method demonstrates high functional group compatibility, readily applicable in the presence of directing functional groups such as carboxylic acids, amides, and azoles, as well as nondirecting electron-withdrawing groups such as nitro, sulfonamide, and ester groups. DFT calculations reveal that ligands influence intermediates and transition states by providing bidentate chelation, internal base, and hydrogen bonding. The Pd(BpyOH) complex exhibits well-balanced reactivity for C-H cleavage while readily forming complexes with substrates, which is relevant to other Pd-catalyzed C-H functionalization reactions. Our approach significantly broadens the scope of deuterated building blocks and late-stage deuteration, thereby facilitating evaluation of the deuterium effect in various applications across medicinal chemistry, materials science, and beyond.
Collapse
Affiliation(s)
- Soo Eun Park
- Department of Chemistry, College of Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Sungjun Choi
- Department of Chemistry, College of Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Chaewon Lim
- Department of Chemistry, College of Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Sang Hak Lee
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Siyeon Jeong
- Department of Chemistry, College of Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| | - Jung Min Joo
- Department of Chemistry, College of Sciences, Kyung Hee University Seoul 02447 Republic of Korea
| |
Collapse
|
2
|
Wu Y, Peng C, Zhan Q, Lou X, Liu S, Lin X, Han Y, Cao P, Cao T. Towards trans-dual deuterated cyclopropanes via photoredox synergistic deuteration with D 2O. Chem Sci 2025:d5sc00350d. [PMID: 40313521 PMCID: PMC12042209 DOI: 10.1039/d5sc00350d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
As the demand for deuterated compounds continues to rise in medicinal chemistry, various methods have been developed to incorporate deuterium atoms. Among these, achieving consecutive trans-dual deuteration remains a challenging task. We have designed a novel strategy to synthesize trans-dual deuterated cyclopropanes at adjacent carbon positions. This approach involves H/D exchange followed by a photocatalyzed deuteroaminomethylation of cyclopropenes, with deuterium oxide serving as the sole deuterium source. The reaction is carried out under mild conditions and exhibits a broad substrate scope, high diastereoselectivity, and promising potential for further applications, making it an attractive transformation for future studies.
Collapse
Affiliation(s)
- Yuanqing Wu
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Chuxiong Peng
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Qichen Zhan
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Xudong Lou
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Shijie Liu
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Xiaofeng Lin
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Yulin Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou Zhejiang 310015 China
| | - Peng Cao
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital Quzhou Zhejiang 324000 China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing Jiangsu 210028 China
- Gaoyou Hospital of Traditional Chinese Medicine Yangzhou Jiangsu 225600 China
| | - Tao Cao
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| |
Collapse
|
3
|
Suzuki A, Higashida K, Yoshino T, Matsunaga S. Multiple Deuterium Atom Transfer Perdeuteration of Unactivated Alkenes under Base-Assisted Cobalt/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2025; 64:e202500233. [PMID: 39916445 DOI: 10.1002/anie.202500233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Indexed: 04/17/2025]
Abstract
A radical approach for hydrogenative perdeuteration of unactivated alkenes under cobalt/photoredox dual catalysis is described. The addition of a suitable base plays a key role in controlling two competing pathways by switching the catalytic performance of cobalt/photoredox catalysis. Base-assisted cobalt/photoredox dual catalysis promoted a hydrogen isotope exchange reaction of alkenes to afford deuterated alkenes via multiple repeating deuterium atom transfer/hydrogen atom abstraction processes, while consecutive reductive deuteration of alkenes proceeded in the absence of a base to afford polydeuterated alkanes. One-pot hydrogenative perdeuteration and perdeutero-arylation were also developed, providing access to various polydeuterated aliphatic compounds.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita-ku, Sapporo, 060-0812, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kosuke Higashida
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuhiko Yoshino
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita-ku, Sapporo, 060-0812, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
4
|
Grover J, Sebastian AT, Maiti S, Bissember AC, Maiti D. Unified approaches in transition metal catalyzed C(sp 3)-H functionalization: recent advances and mechanistic aspects. Chem Soc Rev 2025; 54:2006-2053. [PMID: 39838813 DOI: 10.1039/d0cs00488j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In organic synthesis, C(sp3)-H functionalization is a revolutionary method that allows direct alteration of unactivated C-H bonds. It can obviate the need for pre-functionalization and provides access to streamlined and atom economical routes for the synthesis of complex molecules starting from simple starting materials. Many strategies have evolved, such as photoredox catalysis, organocatalysis, non-directed C-H activation, transiently directed C-H activation, and native functionality directed C-H activation. Together these advances have reinforced the importance of C(sp3)-H functionalization in synthetic chemistry. C(sp3)-H functionalization has direct applications in pharmacology, agrochemicals, and materials science, demonstrating its ability to transform synthetic approaches by creating new retrosynthetic disconnections and boost the efficiency of chemical processes. This review aims to provide an overview of current state of C(sp3)-H functionalization, focusing more on recent breakthroughs and associated mechanistic insights.
Collapse
Affiliation(s)
- Jagrit Grover
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | | | - Siddhartha Maiti
- VIT Bhopal University School of Biosciences Engineering & Technology, India
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
5
|
Iqubal A, Jash A, Halder P, Das P. Ex Situ Generation of D 2 for Reductive Deuteration: Scope and Application to Late-Stage Functionalization. J Org Chem 2025; 90:1571-1584. [PMID: 39837784 DOI: 10.1021/acs.joc.4c02602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
An efficient deuteration method through the ex situ generation of D2 for the reductive deuteration of biologically significant α-substituted acrylic acids and enamide derivatives is reported. This method was successfully applied to the synthesis of deuterated analogs of marketed NSAIDs such as ibuprofen, flurbiprofen, and naproxen. Additionally, it facilitates late-stage deuteration of enamides and N-vinylated drugs. Moreover, the method was extended to N-viny azoles, cinnamic acid derivatives, and other unsaturated substrates toward deuteration reaction. This technique utilizes D2O as a safe and economical deuterium source. Notably, the reaction is performed in a standard fume hood setup, ensuring ease of handling and enhanced practicality.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Arijit Jash
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
6
|
Jia Y, Jiang ZJ, Han J, Wang K, Xu SH, Bai JF, Chen J, Han Y, Gao Z. Mechanochemically facilitated silver-catalyzed direct H/D exchange on heteroarenes. Org Biomol Chem 2025; 23:297-302. [PMID: 39558832 DOI: 10.1039/d4ob01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Despite recent advances in H/D exchange, the effective deuteration of polyarenes remains challenging, due to their insolubility and hydrophobicity. This study presents a concept proofing of a mechanochemically facilitated direct H/D exchange. The silver-catalyzed deuteration of heteroarenes was promoted smoothly within 99 minutes of grinding, with heavy water as the deuterium source.
Collapse
Affiliation(s)
- Yun Jia
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
| | - Jiawei Han
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kenan Wang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
| | - Si-Han Xu
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd, Ningbo, 315100, P. R. China
| | - Yifeng Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd, Ningbo, 315100, P. R. China
| |
Collapse
|
7
|
Su Y, Jiang ZJ, Han J, Duan L, Bai JF, Chen J, Gao Z. Copper(II)-Catalyzed Regioselective H/D Exchange Based on Reversible C-H Activation. Chemistry 2024; 30:e202403121. [PMID: 39415609 DOI: 10.1002/chem.202403121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Despite the increasing use of copper in C-H functionalizations, the Cu-catalyzed direct deuteration of C-H bonds remains a significant challenge due to its inherent low reactivity in inverse C-H bond reconstruction. In this paper, a novel strategy had been developed to reverse the copper-catalyzed concerted metalation-deprotonation process by inhibiting the unexpected disproportionation of Cu(II) to Cu(III). Picolinic acid was identified as a powerful ligand for facilitating this H/D exchange with D2O as deuterium source, and its inhibition activity was supported by preliminary control experiments and DFT studies.
Collapse
Affiliation(s)
- Yuhang Su
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
| | - Jiawei Han
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lujie Duan
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo, 315100, P. R. China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo, 315100, P. R. China
| |
Collapse
|
8
|
Cao Z, Li Z, Mooney M, Do C, Hong K, Rondeau-Gagné S, Xia W, Gu X. Uncovering Backbone Conformation for Rigid DPP-Based Donor-Acceptor Conjugated Polymer Using Deuterium Labeling and Neutron Scattering. Macromolecules 2024; 57:10379-10388. [PMID: 39552812 PMCID: PMC11562799 DOI: 10.1021/acs.macromol.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
The conjugated polymer's backbone conformation dictates the delocalization of electrons, ultimately affecting its optoelectronic properties. Most conjugated polymers can be viewed as semirigid rods with their backbone embedded among long alkyl side chains. Thus, it is challenging to experimentally quantify the conformation of a conjugated backbone. Here, we performed contrast variation neutron scattering on rigid conjugated donor-acceptor (D-A) diketopyrrolopyrrole (DPP) polymers with selectively deuterated side chains to measure the conjugated backbone conformation. We first synthesized DPP-based polymers with deuterated side chains, confirmed by NMR and FTIR. Using contrast variation neutron scattering, we found that the DPP-based conjugated polymers are much more rigid than poly(3-alkylthiophenes), with persistence length (L p) at 16-18 nm versus 2-3 nm. More importantly, in contrast to the relatively flexible poly(3-alkylthiophenes) whose backbone is more flexible than the whole polymer, we found that the backbone of DPP-based polymers has the same L p value compared to the whole polymer chain. This indicates that side chain interference on backbone conformation is not present for the semirigid polymer, which is further confirmed by coarse-grained molecular dynamics (CG-MD) simulations. Our work provides a novel protocol to probe polymer's backbone conformation and paradigm-shifting understanding of the backbone conformation of semirigid conjugated polymers.
Collapse
Affiliation(s)
- Zhiqiang Cao
- School
of Polymer Science and Engineering, Center for Optoelectronic Materials
and Devices, The University of Southern
Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhaofan Li
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Madison Mooney
- Department
of Chemistry and Biochemistry, University
of Windsor, Windsor, Ontario N9B3P4, Canada
| | - Changwoo Do
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Simon Rondeau-Gagné
- Department
of Chemistry and Biochemistry, University
of Windsor, Windsor, Ontario N9B3P4, Canada
| | - Wenjie Xia
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xiaodan Gu
- School
of Polymer Science and Engineering, Center for Optoelectronic Materials
and Devices, The University of Southern
Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
9
|
Zheng C, Xue J, Jiang ZJ, Han J, Wang J, Bai JF, Chen J, Gao Z. Geometric constraints regulated regioselectivity: Pd-catalyzed α-deuteration of pyridines with secondary phosphine oxide. Chem Commun (Camb) 2024; 60:10338-10341. [PMID: 39212444 DOI: 10.1039/d4cc03089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A Pd-catalyzed regioselective H/D exchange at the α-position of pyridines was achieved by employing secondary phosphine oxide as an internal base. The proposed five-membered structure enabled the reaction to overcome its conventional ortho-directing feature, allowing the efficient deuteration of pyridines and quinolines at adjacent sites of N-atoms.
Collapse
Affiliation(s)
- Chenxu Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiben Xue
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jiawei Han
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiaxin Wang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
| |
Collapse
|
10
|
Zhang J, Jiao M, Lu Z, Lu H, Wang M, Shi Z. Hydrodeuteroalkylation of Unactivated Olefins Using Thianthrenium Salts. Angew Chem Int Ed Engl 2024; 63:e202409862. [PMID: 38866703 DOI: 10.1002/anie.202409862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zheng Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Jiangsu Nata Opto-electronic Material Co., Ltd., Suzhou, 215126, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
11
|
Schäfer F, Lückemeier L, Glorius F. Improving reproducibility through condition-based sensitivity assessments: application, advancement and prospect. Chem Sci 2024:d4sc03017f. [PMID: 39263664 PMCID: PMC11382186 DOI: 10.1039/d4sc03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The fluctuating reproducibility of scientific reports presents a well-recognised issue, frequently stemming from insufficient standardisation, transparency and a lack of information in scientific publications. Consequently, the incorporation of newly developed synthetic methods into practical applications often occurs at a slow rate. In recent years, various efforts have been made to analyse the sensitivity of chemical methodologies and the variation in quantitative outcome observed across different laboratory environments. For today's chemists, determining the key factors that really matter for a reaction's outcome from all the different aspects of chemical methodology can be a challenging task. In response, we provide a detailed examination and customised recommendations surrounding the sensitivity screen, offering a comprehensive assessment of various strategies and exploring their diverse applications by research groups to improve the practicality of their methodologies.
Collapse
Affiliation(s)
- Felix Schäfer
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Lukas Lückemeier
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Frank Glorius
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
12
|
Zhu FY, Wu BD, Du MH, Yao JL, Abrahams BF, Gu H, Braunstein P, Lang JP. Tandem Protocol for Diversified Deuteration of Secondary Aliphatic Amines under Mild Conditions. J Org Chem 2024; 89:11414-11420. [PMID: 39102497 DOI: 10.1021/acs.joc.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Deuteration of amine compounds has been widely of concern because of its practical role in organic reaction mechanisms and drug research; however, only limited deuteration label methods are accessible with D2O as a deuterium source. Herein, we propose a convenient deuteration protocol, including preparing D2 by the AlGa activation method, using PtRu nanowires as catalysts, and utilizing the elementary step in the couple reaction involving an imine unit, to realize the rapid preparation of a secondary amine with a diversified deuteration label. The self-coupling between nitriles not only provides a symmetric secondary amine with four α-D atoms but also produces high-valued ND3 in an atomic-economic way.
Collapse
Affiliation(s)
- Feng-Yuan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Bao-De Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Ming-Hao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | | | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Pierre Braunstein
- Université de Strasbourg─CNRS, Institut de Chimie (UMR 7177 CNRS), 4 rue Blaise Pascal-CS 90032, Strasbourg 67081, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
13
|
González-Fernández E, Marinus N, Dhankhar J, Linden A, Čorić I. Control over Anion Coordination on Pd(II), Cu(I), and Ag(I) with Regioisomeric Phosphine-Carboxylate Ligands. Chemistry 2024; 30:e202401215. [PMID: 38688855 DOI: 10.1002/chem.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The coordination of anionic donors is involved at various stages of catalytic cycles in transition-metal catalysis, but control over the spatial positioning of anions around a metal center is a challenge in coordination chemistry. Here we show that regioisomeric phosphine-carboxylate ligands provide spatial anion control on palladium(II) centers by favoring either κ2, cis-κ1, or trans-κ1 coordination of the carboxylate donor. Additionally, the palladium(II) carboxylates, which contain a methyl donor, upon protonation, deliver metal-alkyl complexes that feature a coordinated carboxylic acid. Such complexes can be considered as models for the minima that follow the concerted metalation-deprotonation transition state for C-H activation. The predictability of the coordination modes is further demonstrated on silver(I) and copper(I) centers, for which less common structures of mononuclear and dinuclear complexes can be obtained by using spatial anion control. Our results demonstrate the potential for spatial control over carboxylate anions in coordination chemistry.
Collapse
Affiliation(s)
- Elisa González-Fernández
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Nittert Marinus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
14
|
Dey J, Kaltenberger S, van Gemmeren M. Palladium(II)-Catalyzed Nondirected Late-Stage C(sp 2)-H Deuteration of Heteroarenes Enabled Through a Multi-Substrate Screening Approach. Angew Chem Int Ed Engl 2024; 63:e202404421. [PMID: 38512005 DOI: 10.1002/anie.202404421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
The importance of deuterium labelling in a variety of applications, ranging from mechanistic studies to drug-discovery, has spurred immense interest in the development of new methods for its efficient incorporation in organic, and especially in bioactive molecules. The five-membered heteroarenes at the center of this work are ubiquitous motifs in bioactive molecules and efficient methods for the deuterium labelling of these compounds are therefore highly desirable. However, the profound differences in chemical properties encountered between different heteroarenes hamper the development of a single set of broadly applicable reaction conditions, often necessitating a separate optimization campaign for a given type of heteroarene. In this study we describe the use of a multi-substrate screening approach to identify optimal reaction conditions for different classes of heteroarenes from a minimal number of screening reactions. Using this approach, four sets of complementary reaction conditions derived from our dual ligand-based palladium catalysts for nondirected C(sp2)-H activation were identified, that together enable the deuteration of structurally diverse heteroarenes, including bioactive molecules.
Collapse
Affiliation(s)
- Jyotirmoy Dey
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| | - Simon Kaltenberger
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| |
Collapse
|
15
|
Zhuang Z, Sheng T, Qiao JX, Yeung KS, Yu JQ. Versatile Copper-Catalyzed γ-C(sp 3)-H Lactonization of Aliphatic Acids. J Am Chem Soc 2024; 146:17311-17317. [PMID: 38867480 DOI: 10.1021/jacs.4c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Site-selective C(sp3)-H oxidation is of great importance in organic synthesis and drug discovery. γ-C(sp3)-H lactonization of free carboxylic acids provides the most straightforward means to prepare biologically important lactone scaffolds from abundant and inexpensive carboxylic acids; however, a versatile catalyst for this transformation with a broad substrate scope remains elusive. Herein, we report a simple yet broadly applicable and scalable γ-lactonization reaction of free aliphatic acids enabled by a copper catalyst in combination with inexpensive Selectfluor as the oxidant. This lactonization reaction exhibits compatibility with tertiary, benzylic, allylic, methylene, and primary γ-C-H bonds, affording access to a wide range of structurally diverse lactones such as spiro, fused, and bridged lactones. Notably, exclusive γ-methylene C-H lactonization of cycloalkane carboxylic acids and cycloalkane acetic acids was observed, giving either fused or bridged γ-lactones that are difficult to access by other methods. δ-C-H lactonization was only favored in the presence of tertiary δ-C-H bonds. The synthetic utility of this methodology was demonstrated by the late-stage functionalization of amino acids, drug molecules, and natural products, as well as a two-step total synthesis of (iso)mintlactones (the shortest synthesis reported to date).
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X Qiao
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kap-Sun Yeung
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Zhao C, Gao R, Ma W, Li M, Li Y, Zhang Q, Guan W, Fu J. A facile synthesis of α,β-unsaturated imines via palladium-catalyzed dehydrogenation. Nat Commun 2024; 15:4329. [PMID: 38773128 PMCID: PMC11109338 DOI: 10.1038/s41467-024-48737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
The dehydrogenation adjacent to an electron-withdrawing group provides an efficient access to α,β-unsaturated compounds that serving as versatile synthons in organic chemistry. However, the α,β-desaturation of aliphatic imines has hitherto proven to be challenging due to easy hydrolysis and preferential dimerization. Herein, by employing a pre-fluorination and palladium-catalyzed dehydrogenation reaction sequence, the abundant simple aliphatic amides are amendable to the rapid construction of complex molecular architectures to produce α,β-unsaturated imines. Mechanistic investigations reveal a Pd(0)/Pd(II) catalytic cycle involving oxidative H-F elimination of N-fluoroamide followed by a smooth α,β-desaturation of the in-situ generated aliphatic imine intermediate. This protocol exhibits excellent functional group tolerance, and even the carbonyl groups are compatible without any competing dehydrogenation, allowing for late-stage functionalization of complex bioactive molecules. The synthetic utility of this transformation has been further demonstrated by a diversity-oriented derivatization and a concise formal synthesis of (±)-alloyohimbane.
Collapse
Affiliation(s)
- Chunyang Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rongwan Gao
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wenxuan Ma
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Miao Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yifei Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Junkai Fu
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
17
|
Schrader ML, Schäfer FR, Schäfers F, Glorius F. Bridging the information gap in organic chemical reactions. Nat Chem 2024; 16:491-498. [PMID: 38548884 DOI: 10.1038/s41557-024-01470-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/02/2024] [Indexed: 04/07/2024]
Abstract
The varying quality of scientific reports is a well-recognized problem and often results from a lack of standardization and transparency in scientific publications. This situation ultimately leads to prominent complications such as reproducibility issues and the slow uptake of newly developed synthetic methods for pharmaceutical and agrochemical applications. In recent years, various impactful approaches have been advocated to bridge information gaps and to improve the quality of experimental protocols in synthetic organic publications. Here we provide a critical overview of these strategies and present the reader with a versatile set of tools to augment their standard procedures. We formulate eight principles to improve data management in scientific publications relating to data standardization, reproducibility and evaluation, and encourage scientists to go beyond current publication standards. We are aware that this is a substantial effort, but we are convinced that the resulting improved data situation will greatly benefit the progress of chemistry.
Collapse
Affiliation(s)
- Malte L Schrader
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix R Schäfer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix Schäfers
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
18
|
Shim SY. Late-Stage C-H Activation of Drug (Derivative) Molecules with Pd(ll) Catalysis. Chemistry 2023; 29:e202302620. [PMID: 37846586 DOI: 10.1002/chem.202302620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This review comprehensively analyses representative examples of Pd(II)-catalyzed late-stage C-H activation reactions and demonstrates their efficacy in converting C-H bonds at multiple positions within drug (derivative) molecules into diverse functional groups. These transformative reactions hold immense potential in medicinal chemistry, enabling the efficient and selective functionalization of specific sites within drug molecules, thereby enhancing their pharmacological activity and expanding the scope of potential drug candidates. Although notable articles have focused on late-stage C-H functionalization reactions of drug-like molecules using transition-metal catalysts, reviews specifically focusing on late-stage C-H functionalization reactions of drug (derivative) molecules using Pd(II) catalysts are required owing to their prominence as the most widely utilized metal catalysts for C-H activation and their ability to introduce a myriad of functional groups at specific C-H bonds. The utilization of Pd-catalyzed C-H activation methodologies demonstrates impressive success in introducing various functional groups, such as cyano (CN), fluorine (F), chlorine (Cl), aromatic rings, olefin, alkyl, alkyne, and hydroxyl groups, to drug (derivative) molecules with high regioselectivity and functional-group tolerance. These breakthroughs in late-stage C-H activation reactions serve as invaluable tools for drug discovery and development, thereby offering strategic options to optimize drug candidates and drive the exploration of innovative therapeutic solutions.
Collapse
Affiliation(s)
- Su Yong Shim
- Infectious Diseases Therapeutic Research Center Division of Medicinal Chemistry and Pharmacology Korea Research Institute of Chemical Technology (KRICT) KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
19
|
Hoque ME, Yu JQ. Ligand-Enabled Double γ-C(sp 3 )-H Functionalization of Aliphatic Acids: One-Step Synthesis of γ-Arylated γ-Lactones. Angew Chem Int Ed Engl 2023; 62:e202312331. [PMID: 37851865 PMCID: PMC11221842 DOI: 10.1002/anie.202312331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
γ-methylene C(sp3 )-H functionalization of linear free carboxylic acids remains a significant challenge. Here in we report a Pd(II)-catalyzed tandem γ-arylation and γ-lactonization of aliphatic acids enabled by a L,X-type CarboxPyridone ligand. A wide range of γ-arylated γ-lactones are synthesized in a single step from aliphatic acids in moderate to good yield. Arylated lactones can readily be converted into disubstituted tetrahydrofurans, a prominent scaffold amongst bioactive molecules.
Collapse
Affiliation(s)
- Md Emdadul Hoque
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| |
Collapse
|
20
|
Luo J, Lu L, Montag M, Liang Y, Milstein D. Hydrogenative alkene perdeuteration aided by a transient cooperative ligand. Nat Chem 2023; 15:1384-1390. [PMID: 37667011 DOI: 10.1038/s41557-023-01313-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
Deuterogenation of unsaturated organic compounds is an attractive route for installing C(sp3)-D bonds, but the existing methods typically use expensive D2 and introduce only two deuterium atoms per unsaturation. Herein we report the hydrogenative perdeuteration of alkenes using readily available H2 and D2O instead of D2, catalysed by an acridanide-based ruthenium pincer complex and resulting in the incorporation of up to 4.9 D atoms per C=C double bond in a single synthetic step. Importantly, adding a catalytic amount of thiol, which serves as a transient cooperative ligand, ensures the incorporation of deuterium rather than protium by balancing the rates of two sequential deuteration processes. The current method opens an avenue for installing perdeuteroalkyl groups at specific sites from widely available alkenes under mild conditions.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lijun Lu
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Kramp H, Weck R, Sandvoss M, Sib A, Mencia G, Fazzini PF, Chaudret B, Derdau V. In situ Generated Iridium Nanoparticles as Hydride Donors in Photoredox-Catalyzed Hydrogen Isotope Exchange Reactions with Deuterium and Tritium Gas. Angew Chem Int Ed Engl 2023; 62:e202308983. [PMID: 37453077 DOI: 10.1002/anie.202308983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
We have studied the photoredox-catalyzed hydrogen isotope exchange (HIE) reaction with deuterium or tritium gas as isotope sources and in situ formed transition metal nanoparticles as hydrogen atom transfer pre-catalysts. By this means we have found synergistic reactivities applying two different HIE mechanisms, namely photoredox-catalyzed and CH-functionalization HIE leading to the synthesis of highly deuterated complex molecules. Finally, we adopted these findings successfully to tritium chemistry.
Collapse
Affiliation(s)
- Henrik Kramp
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Remo Weck
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Martin Sandvoss
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Gabriel Mencia
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Okamoto K, Higuma R, Muta K, Fukumoto K, Tsuchihashi Y, Ashikari Y, Nagaki A. External Flash Generation of Carbenoids Enables Monodeuteration of Dihalomethanes. Chemistry 2023; 29:e202301738. [PMID: 37300319 DOI: 10.1002/chem.202301738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In this study, incorporation of one deuterium atom was achieved by H-D exchange of one of the two identical methylene protons in various dihalomethanes (halogen=Cl, Br, and I) through a rapid-mixing microflow reaction of lithium diisopropylamide as a strong base and deuterated methanol as a deuteration reagent. Generation of highly unstable carbenoid intermediate and suppression of its decomposition were successfully controlled under high flow-rate conditions. Monofunctionalization of diiodomethane afforded various building blocks composed of boryl, stannyl, and silyl groups. The monodeuterated diiodomethane, which served as a deuterated C1 source, was subsequently subjected to diverted functionalization methods to afford various products including biologically important molecules bearing isotope labelling at specific positions and homologation products with monodeuteration.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kensuke Muta
- Fundamental Chemical Research Center, Central Glass Co., Ltd., 17-5, Nakadai 2-chome, Kawagoe City, Saitama, 350-1159, Japan
| | - Keita Fukumoto
- Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Tsuchihashi
- Taiyo Nippon Sanso Corp., 10 Okubo, Tsukuba-shi, Ibaraki, 300-2611, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
23
|
Hu L, Meng G, Chen X, Yoon JS, Shan JR, Chekshin N, Strassfeld DA, Sheng T, Zhuang Z, Jazzar R, Bertrand G, Houk KN, Yu JQ. Enhancing Substrate-Metal Catalyst Affinity via Hydrogen Bonding: Pd(II)-Catalyzed β-C(sp 3)-H Bromination of Free Carboxylic Acids. J Am Chem Soc 2023. [PMID: 37487009 DOI: 10.1021/jacs.3c04223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The achievement of sufficient substrate-metal catalyst affinity is a fundamental challenge for the development of synthetically useful C-H activation reactions of weakly coordinating native substrates. While hydrogen bonding has been harnessed to bias site selectivity in existing C(sp2)-H activation reactions, the potential for designing catalysts with hydrogen bond donors (HBDs) to enhance catalyst-substrate affinity and, thereby, facilitate otherwise unreactive C(sp3)-H activation remains to be demonstrated. Herein, we report the discovery of a ligand scaffold containing a remote amide motif that can form a favorable meta-macrocyclic hydrogen bonding interaction with the aliphatic acid substrate. The utility of this ligand scaffold is demonstrated through the development of an unprecedented C(sp3)-H bromination of α-tertiary and α-quaternary free carboxylic acids, which proceeds in exceedingly high mono-selectivity. The geometric relationship between the NHAc hydrogen bond donor and the coordinating quinoline ligand is crucial for forming the meta-macrocyclophane-like hydrogen bonding interaction, which provides a guideline for the future design of catalysts employing secondary interactions.
Collapse
Affiliation(s)
- Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Joseph S Yoon
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Daniel A Strassfeld
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Wang S, Chen K, Guo F, Zhu W, Liu C, Dong H, Yu JQ, Lei X. C-H Glycosylation of Native Carboxylic Acids: Discovery of Antidiabetic SGLT-2 Inhibitors. ACS CENTRAL SCIENCE 2023; 9:1129-1139. [PMID: 37396867 PMCID: PMC10311666 DOI: 10.1021/acscentsci.3c00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 07/04/2023]
Abstract
C-Glycosides are critical motifs embedded in many bioactive natural products. The inert C-glycosides are privileged structures for developing therapeutic agents owing to their high chemical and metabolic stability. Despite the comprehensive strategies and tactics established in the past few decades, highly efficient C-glycoside syntheses via C-C coupling with excellent regio-, chemo-, and stereoselectivity are still needed. Here, we report the efficient Pd-catalyzed glycosylation of C-H bonds promoted by weak coordination with native carboxylic acids without external directing groups to install various glycals to the structurally diverse aglycon parts. Mechanistic evidence points to the participation of a glycal radical donor in the C-H coupling reaction. The method has been applied to a wide range of substrates (over 60 examples), including many marketed drug molecules. Natural product- or drug-like scaffolds with compelling bioactivities have been constructed using a late-stage diversification strategy. Remarkably, a new potent sodium-glucose cotransporter-2 inhibitor with antidiabetic potential has been discovered, and the pharmacokinetic/pharmacodynamic profiles of drug molecules have been changed using our C-H glycosylation approach. The method developed here provides a powerful tool for efficiently synthesizing C-glycosides to facilitate drug discovery.
Collapse
Affiliation(s)
- Sanshan Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kaiqi Chen
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fusheng Guo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wenneng Zhu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chendi Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haoran Dong
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Quan Yu
- Department
of Chemistry, The Scripps Research Institute,10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
- Institute
for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
25
|
Yun SJ, Kim J, Kang E, Jung H, Kim HT, Kim M, Joo JM. Nondirected Pd-Catalyzed C–H Perdeuteration and meta-Selective Alkenylation of Arenes Enabled by Pyrazolopyridone Ligands. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Seo Jin Yun
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jisu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Minkyu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
26
|
Wennerberg J, Dreisch K. A practical and environmentally friendly protocol for synthesis of α-deuterated carboxylic acids. J Labelled Comp Radiopharm 2023; 66:138-144. [PMID: 36823686 DOI: 10.1002/jlcr.4021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
α-deuterated carboxylic acids have been synthesized from the corresponding malonic acids via hydrogen/deuterium exchange and decarboxylation in presence of D2 O. The method is general, mild and efficient and does not require organic solvents or other additives. Yields range between 83% and 94% and purification was not necessary. Starting materials were easy accessible and the α-deuterated carboxylic acids may easily be transformed to other labeled compounds such as alcohols, aldehydes, esters, and amides. Characterization with NMR confirmed purity and isotopic purity.
Collapse
Affiliation(s)
- Johan Wennerberg
- Red Glead Discovery, Lund, Sweden.,Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
27
|
Du HZ, Fan JZ, Wang ZZ, Strotman NA, Yang H, Guan BT. Cesium Amide-Catalyzed Selective Deuteration of Benzylic C-H Bonds with D 2 and Application for Tritiation of Pharmaceuticals. Angew Chem Int Ed Engl 2023; 62:e202214461. [PMID: 36289047 DOI: 10.1002/anie.202214461] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Hydrogen isotope exchange (HIE) represents one of the most attractive labeling methods to synthesize deuterium- and tritium-labeled compounds. Catalytic HIE methods that enable site-selective C-H bond activation and exchange labeling with gaseous isotopes D2 and T2 are of vital importance, in particular for high-specific-activity tritiation of pharmaceuticals. As part of our interest in exploring s-block metals for catalytic transformations, we found CsN(SiMe3 )2 to be an efficient catalyst for selective HIE of benzylic C-H bonds with D2 gas. The reaction proceeds through a kinetic deprotonative equilibrium that establishes an exchange pathway between C-H bonds and D2 gas. By virtue of multiple C-H bonds activation and high activity (isotope enrichment up to 99 %), the simple cesium amide catalyst provided a very powerful and practically convenient labeling protocol for synthesis of highly deuterated compounds and high-specific-activity tritiation of pharmaceuticals.
Collapse
Affiliation(s)
- Hui-Zhen Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun-Zhen Fan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zhong-Zhen Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Neil A Strotman
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Haifeng Yang
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
28
|
Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Org Chem Front 2023. [DOI: 10.1039/d2qo01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-free, photoinduced asymmetric deuterosilylation of exocyclic olefins has been achieved using a mannose-derived thiol catalyst.
Collapse
Affiliation(s)
- Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz Peñín
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Barranco S, Pérez-Temprano MH. Merging homogeneous transition metal catalysis and hydrogen isotope exchange. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
30
|
Jansen-van Vuuren RD, Jedlovčnik L, Košmrlj J, Massey TE, Derdau V. Deuterated Drugs and Biomarkers in the COVID-19 Pandemic. ACS OMEGA 2022; 7:41840-41858. [PMID: 36440130 PMCID: PMC9685803 DOI: 10.1021/acsomega.2c04160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/18/2022] [Indexed: 06/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initially identified in Wuhan (China) in December 2019, COVID-19 rapidly spread globally, resulting in the COVID-19 pandemic. Carriers of the SARS-CoV-2 can experience symptoms ranging from mild to severe (or no symptoms whatsoever). Although vaccination provides extra immunity toward SARS-CoV-2, there has been an urgent need to develop treatments for COVID-19 to alleviate symptoms for carriers of the disease. In seeking a potential treatment, deuterated compounds have played a critical role either as therapeutic agents or as internal MS standards for studying the pharmacological properties of new drugs by quantifying the parent compounds and metabolites. We have identified >70 examples of deuterium-labeled compounds associated with treatment of COVID-19. Of these, we found 9 repurposed drugs and >20 novel drugs studied for potential therapeutic roles along with a total of 38 compounds (drugs, biomarkers, and lipids) explored as internal mass spectrometry standards. This review details the synthetic pathways and modes of action of these compounds (if known), and a brief analysis of each study.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Luka Jedlovčnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thomas E. Massey
- Department
of Biomedical and Molecular Sciences, School of Medicine, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Volker Derdau
- Research
& Development, Integrated Drug Discovery, Isotope Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst G876, Frankfurt/Main 65926, Germany
| |
Collapse
|
31
|
Yu JQ, Hu L, Meng G. Ligand-Enabled Pd(II)-Catalyzed β-Methylene C(sp 3)-H Arylation of Free Aliphatic Acids. J Am Chem Soc 2022; 144:20550-20553. [PMID: 36342466 PMCID: PMC10243520 DOI: 10.1021/jacs.2c09205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ligand development has enabled rapid advances in Pd(II)-catalyzed β-methyl C(sp3)-H activation of free carboxylic acids. However, there are only a handful of reports of free-acid-directed β-methylene C(sp3)-H activation, all of which are limited to intramolecular reactions. Herein, we report the first Pd(II)-catalyzed intermolecular β-methylene C(sp3)-H arylation of free aliphatic acids, which is enabled by bidentate pyridine-pyridone ligands. The bite angle of this ligand has been discovered to play a key role in promoting β-methylene C-H activation of free carboxylic acid. This new transformation provides a disconnection for alkylation of arenes with simple aliphatic acids. A variety of free aliphatic acids, including the antiasthmatic drug seratrodast, were compatible with the reported protocol.
Collapse
Affiliation(s)
- Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
32
|
Dong ZY, Zhao JH, Wang P, Yu JQ. MPAI-Ligand Accelerated Pd-Catalyzed C( sp3)-H Arylation of Free Aliphatic Acids. Org Lett 2022; 24:7732-7736. [PMID: 36259989 DOI: 10.1021/acs.orglett.2c02933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report the development of a class of bifunctional monoprotected amino-imidazoline (MPAI) ligands and their applications in Pd-catalyzed C(sp3)-H arylation of free aliphatic acids. The newly developed MPAI ligand allows the use of 1.0 equiv of aliphatic acids containing an alpha hydrogen for the first time.
Collapse
Affiliation(s)
- Zi-Yu Dong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia-Hui Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
33
|
Itoga M, Yamanishi M, Udagawa T, Kobayashi A, Maekawa K, Takemoto Y, Naka H. Iridium-catalyzed α-selective deuteration of alcohols. Chem Sci 2022; 13:8744-8751. [PMID: 35975159 PMCID: PMC9350590 DOI: 10.1039/d2sc01805e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The development of chemoselective C(sp3)-H deuteration is of particular interest in synthetic chemistry. We herein report the α-selective, iridium(iii)-bipyridonate-catalyzed hydrogen(H)/deuterium(D) isotope exchange of alcohols using deuterium oxide (D2O) as the primary deuterium source. This method enables the direct, chemoselective deuteration of primary and secondary alcohols under basic or neutral conditions without being affected by coordinative functional groups such as imidazole and tetrazole. Successful substrates for deuterium labelling include the pharmaceuticals losartan potassium, rapidosept, guaifenesin, and diprophylline. The deuterated losartan potassium shows higher stability towards the metabolism by CYP2C9 than the protiated analogue. Kinetic and DFT studies indicate that the direct deuteration proceeds through dehydrogenation of alcohol to the carbonyl intermediate, conversion of [IrIII-H] to [IrIII-D] with D2O, and deuteration of the carbonyl intermediate to give the α-deuterated product.
Collapse
Affiliation(s)
- Moeko Itoga
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Masako Yamanishi
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido 1-1 Gifu 501-1193 Japan
| | - Ayane Kobayashi
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts Kodo, Kyotanabe Kyoto 610-0395 Japan
| | - Keiko Maekawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts Kodo, Kyotanabe Kyoto 610-0395 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Hiroshi Naka
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| |
Collapse
|
34
|
Li N, Li J, Qin M, Li J, Han J, Zhu C, Li W, Xie J. Highly selective single and multiple deuteration of unactivated C(sp 3)-H bonds. Nat Commun 2022; 13:4224. [PMID: 35869077 PMCID: PMC9307835 DOI: 10.1038/s41467-022-31956-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
Selective deuteration of unactivated C(sp3)-H bonds is a highly attractive but challenging subject of research in pharmaceutical chemistry, material science and synthetic chemistry. Reported herein is a practical, highly selective and economical efficient hydrogen/deuterium (H/D) exchange of unactivated C(sp3)-H bonds by synergistic photocatalysis and hydrogen atom transfer (HAT) catalysis. With the easily prepared PMP-substituted amides as nitrogen-centered radical precursors, a wide range of structurally diverse amides can undergo predictable radical H/D exchange smoothly with inexpensive D2O as the sole deuterium source, giving rise to the distal tertiary, secondary and primary C(sp3)-H bonds selectively deuterated products in yields of up to 99% and excellent D-incorporations. In addition to precise monodeuteration, this strategy can also achieve multideuteration of the substrates contain more than one remote C(sp3)-H bond, which opens a method to address multi-functionalization of distal unactivated C(sp3)-H bonds.
Collapse
Affiliation(s)
- Nian Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinhang Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mingzhe Qin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiajun Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
35
|
Sheng T, Zhuang Z, Wang Z, Hu L, Herron AN, Qiao JX, Yu JQ. One-Step Synthesis of β-Alkylidene-γ-lactones via Ligand-Enabled β,γ-Dehydrogenation of Aliphatic Acids. J Am Chem Soc 2022; 144:12924-12933. [PMID: 35802794 DOI: 10.1021/jacs.2c04779] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ligand-enabled Pd-catalyzed regioselective α,β-dehydrogenation of carbonyl compounds via β-methylene C-H activation has recently emerged as a promising transformation. Herein, we report the realization of β,γ-dehydrogenation and subsequent vinyl C-H olefination reactions of free carboxylic acids, thus providing a unique method for the structural diversification of aliphatic acids containing α-quaternary centers through sequential functionalizations of two β-C-H bonds and one γ-C-H bond. This tandem dehydrogenation-olefination-lactonization reaction offers a one-step preparation of β-alkylidene-γ-lactones, which are often difficult to prepare through conventional methods, from inexpensive and abundant free aliphatic acids. A variety of free aliphatic acids, such as isosteviol and grandiflorolic acid natural products, and olefins are compatible with the reported protocol. The newly designed bidentate oxime ether-pyridone and morpholine-pyridone ligands are crucial for this tandem reaction to proceed. Notably, these ligands also enable preferential methylene C-H activation over the previously reported, competing process of methyl C-H bond olefination.
Collapse
Affiliation(s)
- Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X Qiao
- Discovery Chemistry, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
36
|
Bourriquen F, Rockstroh N, Bartling S, Junge K, Beller M. Manganese‐Catalysed Deuterium Labelling of Anilines and Electron‐Rich (Hetero)Arenes. Angew Chem Int Ed Engl 2022; 61:e202202423. [PMID: 35484978 PMCID: PMC9322005 DOI: 10.1002/anie.202202423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/18/2022]
Abstract
There is a constant need for deuterium‐labelled products for multiple applications in life sciences and beyond. Here, a new class of heterogeneous catalysts is reported for practical deuterium incorporation in anilines, phenols, and heterocyclic substrates. The optimal material can be conveniently synthesised and allows for high deuterium incorporation using deuterium oxide as isotope source. This new catalyst has been fully characterised and successfully applied to the labelling of natural products as well as marketed drugs.
Collapse
Affiliation(s)
- Florian Bourriquen
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
37
|
Watanabe A, Hama K, Watanabe K, Fujiwara Y, Yokoyama K, Murata S, Takita R. Controlled Tetradeuteration of Straight‐Chain Fatty Acids: Synthesis, Application, and Insight into the Metabolism of Oxidized Linoleic Acid. Angew Chem Int Ed Engl 2022; 61:e202202779. [PMID: 35411582 PMCID: PMC9324819 DOI: 10.1002/anie.202202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ayako Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kotaro Hama
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
- Advanced Comprehensive Research Organization (ACRO) Teikyo University Japan
| | - Kohei Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yuko Fujiwara
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
| | - Shigeo Murata
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
38
|
Chan HSS, Yang JM, Yu JQ. Catalyst-controlled site-selective methylene C-H lactonization of dicarboxylic acids. Science 2022; 376:1481-1487. [PMID: 35617373 DOI: 10.1126/science.abq3048] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Catalyst-controlled site-selective activation of β- and γ-methylene C-H bonds of free carboxylic acids is a long-standing challenge. Here we show that with a pair of palladium catalysts assembled with quinoline-pyridone ligands of different chelate ring sizes, it is possible to perform highly site-selective monolactonization reactions with a wide range of dicarboxylic acids, generating structurally diverse and synthetically useful γ- and δ-lactones via site-selective β- or γ-methylene C-H activation. The remaining carboxyl group serves as a versatile linchpin for further synthetic applications as demonstrated by the total synthesis of two natural products, myrotheciumone A and pedicellosine, from abundant dicarboxylic acids.
Collapse
Affiliation(s)
- Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ji-Min Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Bourriquen F, Rockstroh N, Bartling S, Junge K, Beller M. Manganese Catalysed Deuterium Labelling of Anilines and Electron‐Rich (Hetero)Arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Nils Rockstroh
- LIKAT: Leibniz-Institut fur Katalyse eV Analytics GERMANY
| | | | - Kathrin Junge
- LIKAT: Leibniz-Institut fur Katalyse eV Applied Chemistry GERMANY
| | - Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a 18059 Rostock GERMANY
| |
Collapse
|
40
|
Watanabe A, Hama K, Watanabe K, Fujiwara Y, Yokoyama K, Murata S, Takita R. Controlled Tetradeuteration of Straight‐Chain Fatty Acids: Synthesis, Application, and Insight into the Metabolism of Oxidized Linoleic Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ayako Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kotaro Hama
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
- Advanced Comprehensive Research Organization (ACRO) Teikyo University Japan
| | - Kohei Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yuko Fujiwara
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
| | - Shigeo Murata
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
41
|
Levernier E, Tatoueix K, Garcia-Argote S, Pfeifer V, Kiesling R, Gravel E, Feuillastre S, Pieters G. Easy-to-Implement Hydrogen Isotope Exchange for the Labeling of N-Heterocycles, Alkylkamines, Benzylic Scaffolds, and Pharmaceuticals. JACS AU 2022; 2:801-808. [PMID: 35557763 PMCID: PMC9088292 DOI: 10.1021/jacsau.1c00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 06/07/2023]
Abstract
Facilitating access to deuterated and tritiated complex molecules is of paramount importance due to the fundamental role of isotopically labeled compounds in drug discovery and development. Deuterated analogues of drugs are extensively used as internal standards for quantification purposes or as active pharmaceutical ingredients, whereas tritiated drugs are essential for preclinical ADME studies. In this report, we describe the labeling of prevalent substructures in FDA-approved drugs such as azines, indoles, alkylamine moieties, or benzylic carbons by the in situ generation of Rh nanoparticles able to catalyze both C(sp2)-H and C(sp3)-H activation processes. In this easy-to-implement labeling process, Rh nanocatalysts are formed by decomposition of a commercially available rhodium dimer under a deuterium or tritium gas atmosphere (1 bar or less), using the substrate itself as a surface ligand to control the aggregation state of the resulting metallic clusters. It is noteworthy that the size of the nanoparticles observed is surprisingly independent of the substrate used and is homogeneous, as evidenced by transmission electron microscopy experiments. This method has been successfully applied to the one-step synthesis of (1) deuterated pharmaceuticals usable as internal standards for MS quantification and (2) tritiated drug analogues with very high molar activities (up to 113 Ci/mmol).
Collapse
Affiliation(s)
- Etienne Levernier
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Kevin Tatoueix
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Sébastien Garcia-Argote
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Viktor Pfeifer
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Ralf Kiesling
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Edmond Gravel
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Sophie Feuillastre
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Grégory Pieters
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
42
|
Prakash G, Paul N, Oliver GA, Werz DB, Maiti D. C-H deuteration of organic compounds and potential drug candidates. Chem Soc Rev 2022; 51:3123-3163. [PMID: 35320331 DOI: 10.1039/d0cs01496f] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C-H deuteration has been intricately developed to satisfy the urgent need for site-selectively deuterated organic frameworks. Deuteration has been primarily used to study kinetic isotope effects of reactions but recently its significance in pharmaceutical chemistry has been discovered. Deuterium labelled compounds have stolen the limelight since the inception of the first FDA-approved deuterated drug, for the treatment of chorea-associated Huntington's disease, and their pharmacological importance was realised by chemists, although surprisingly very late. Various approaches were developed to carry out site-selective deuteration. However, the most common and efficient method is hydrogen isotope exchange (HIE). This review summarises deuteration methods of various organic motifs containing C(sp2)-H and C(sp3)-H bonds utilizing C-H bond functionalisation as a key step along with a variety of catalysts, and exemplifies their biological relevance.
Collapse
Affiliation(s)
- Gaurav Prakash
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Nilanjan Paul
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Gwyndaf A Oliver
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
43
|
Chilamari M, Immel JR, Chen PH, Alghafli BM, Bloom S. Flavin Metallaphotoredox Catalysis: Synergistic Synthesis in Water. ACS Catal 2022; 12:4175-4181. [DOI: 10.1021/acscatal.2c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Jacob R. Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Pei-Hsuan Chen
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Bayan M. Alghafli
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
44
|
Kang QK, Li Y, Chen K, Zhu H, Wu WQ, Lin Y, Shi H. Rhodium-Catalyzed Stereoselective Deuteration of Benzylic C-H Bonds via Reversible η 6 -Coordination. Angew Chem Int Ed Engl 2022; 61:e202117381. [PMID: 35006640 DOI: 10.1002/anie.202117381] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/15/2022]
Abstract
We report a convenient method for benzylic H/D exchange of a wide variety of substrates bearing primary, secondary, or tertiary C-H bonds via a reversible η6 -coordination strategy. A doubly cationic [CpCF3 RhIII ]2+ catalyst that serves as an arenophile facilitates deprotonation of inert benzylic hydrogen atoms (pKa >40 in DMSO) without affecting other hydrogen atoms, such as those on aromatic rings or in α-positions of carboxylate groups. Notably, the H/D exchange reactions feature high stereoretention. We demonstrated the potential utility of this method by using it for deuterium labeling of ten pharmaceuticals and their analogues.
Collapse
Affiliation(s)
- Qi-Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kai Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hui Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wen-Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
45
|
Dutta S, Bhattacharya T, Geffers FJ, Bürger M, Maiti D, Werz DB. Pd-catalysed C-H functionalisation of free carboxylic acids. Chem Sci 2022; 13:2551-2573. [PMID: 35340865 PMCID: PMC8890104 DOI: 10.1039/d1sc05392b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Pd-catalysed C-H functionalisation of free carboxylic acids has drawn significant attention over the last few years due to the predominance of carboxylic acid moieties in pharmaceuticals and agrochemicals. But their coordinating ability was overlooked and masked by exogenous directing groups for a long time. Even other crucial roles of carboxylic acids as additives and steric inducers that directly influence the mode of a reaction have been widely neglected. This review aims to embrace all of the diverse aspects of carboxylic acids except additive and steric effects by concisely and systematically describing their versatile role in Pd-catalysed proximal and distal C-H activation reactions that could be implemented in the pharmaceutical and agrochemical industries. In addition, the mechanistic perspectives along with several recent strategies developed in the last few years discussed here will serve as educational resources for future research.
Collapse
Affiliation(s)
- Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Finn J Geffers
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| | - Marcel Bürger
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India https://www.dmaiti.com
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany https://www.werzlab.de
| |
Collapse
|
46
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
47
|
Lucas EL, Lam NYS, Zhuang Z, Chan HSS, Strassfeld DA, Yu JQ. Palladium-Catalyzed Enantioselective β-C(sp 3)-H Activation Reactions of Aliphatic Acids: A Retrosynthetic Surrogate for Enolate Alkylation and Conjugate Addition. Acc Chem Res 2022; 55:537-550. [PMID: 35076221 PMCID: PMC9129890 DOI: 10.1021/acs.accounts.1c00672] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enolate alkylation and conjugate addition into an α,β-unsaturated system have served as long-standing strategic disconnections for the installation of α- or β-substituents on carbonyl-containing compounds. At the onset of our efforts to develop C-H activation reactions for organic synthesis, we set our eye toward developing asymmetric β-C-H activation reactions of aliphatic acids with the perspective that this bond-forming event could serve as a more flexible retrosynthetic surrogate for both canonical carbonyl-related asymmetric transformations.In this Account, we describe our early efforts using strongly coordinating chiral oxazolines to probe reaction mechanism and the stereochemical nature of the C-H cleavage transition state. The characterization of key reactive intermediates through X-ray crystallography and computational studies suggested a transition state with C-H and Pd-OAc bonds being approximately coplanar for optimum interaction. We then moved forward to develop more practical, weakly coordinating monodentate amide directing groups, a necessary advance toward achieving the β-C-H activation of weakly coordinating native carboxylic acids. Throughout this journey, gradual deconvolution between a substrate's directing effect and its intimate interplay with ligand properties has culminated in the design of new ligand classes that ultimately allowed the competency of native carboxylic acids in β-C-H activation. These efforts established the importance of ligand acceleration in Pd-catalyzed C-H activation, where the substrate's weak coordination is responsible for positioning the catalyst for C-H cleavage, while the direct participation from the bifunctional ligand is responsible for enthalpically stabilizing the C-H cleavage transition state.Building upon these principles, we developed five classes of chiral ligands (MPAA, MPAQ, MPAO, MPAThio, MPAAM) to enable enantioselective β-C-H activation reactions, including carbon-carbon and carbon-heteroatom bond formation. The accumulated data from our developed enantioselective C-H activation reactions indicate that ligands possessing point chirality are most effective for imparting stereoinduction in the C-H activation step, the application of which enabled the desymmetrization and subsequent C-H functionalization of enantiotopic carbon and protons across a range of weakly coordinating arylamides and, more recently, free carboxylic acids. Progress in ligand design, in conjunction with the enabling nature of alkali metal countercations, led to the realization of a suite of β-methyl and now methylene C(sp3)-H activation reactions. These advancements also enabled the use of economical oxidants, such as peroxides and molecular oxygen, to facilitate catalyst turnover. In the future, continued progress in designing more efficient bifunctional chiral ligands is likely to provide a myriad of enantioselective β-C-H activation reactions of readily available native substrates.
Collapse
Affiliation(s)
- Erika L Lucas
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nelson Y S Lam
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Daniel A Strassfeld
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
48
|
Kang QK, Li Y, Chen K, Zhu H, Wu WQ, Lin Y, Shi H. Rhodium‐Catalyzed Stereoselective Deuteration of Benzylic C–H Bonds via Reversible η6‐Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi-Kai Kang
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Yuntong Li
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Kai Chen
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Hui Zhu
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Wen-Qiang Wu
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Yunzhi Lin
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Hang Shi
- Westlake University School of Science 18 Shilongshan Road 310024 Hangzhou CHINA
| |
Collapse
|
49
|
Park K, Oka N, Sawama Y, Ikawa T, Yamada T, Sajiki H. Platinum on Carbon-Catalysed Site-Selective H-D Exchange Reaction of Allylic Alcohols Using Alkyl Amines as a Hydrogen Source. Org Chem Front 2022. [DOI: 10.1039/d2qo00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed platinum on carbon-catalysed deuteration reaction of tert-allylic alcohols using deuterium oxide as a deuterium source. Amylamine was dehydrogenated by platinum on carbon to generate an appropriate amount of...
Collapse
|
50
|
Hu H, wang C, Wu X, Liu Y, Yue G, su G, Feng J. Boron-Catalyzed alfa-C-H Fluorination of Aryl Acetic Acids. Org Chem Front 2022. [DOI: 10.1039/d1qo01814k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic alfa-C-H fluorination of aryl acetic acid was achieved with good functional tolerance in the presence of a boron catalyst. A series of alfa-fluoro aryl acetic acids was obtained...
Collapse
|