1
|
Lee J, Park G, Kim GC, Yun JH, Kim J. Fe Wire-Based Metal-Organic Frameworks for Advanced Gas and Vapor Adsorption: Effect of Functional Compatibility on Hierarchical Pore Diffusivity and Atomic Simulation Insights. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40384017 DOI: 10.1021/acsami.5c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
This study introduces a novel method for synthesizing a Fe-based metal-organic framework (MOF), leveraging Fe wire as a substrate and an iron precursor source with which to grow MIL-88B(Fe) and MIL-88B(Fe)-NH2. This simple in situ approach requires only the addition of a ligand precursor for MOF formation, eliminating the need for an additional metal precursor. The adsorption performance of the developed MOF on the wire is evaluated using polar formaldehyde gas and nonpolar cyclohexane vapor as hazardous model gas/vapor (GV). The key discovery highlights the pivotal role of functional compatibility between a GV and MOF in governing GV diffusivity through mesopores (<20 nm) within the MOF, as validated through an experimental analysis and theoretical calculations. In contrast, interparticle diffusivity through larger pores (>20 nm) remains unaffected, demonstrating the unique influence of nanoscale interactions. Semiempirical atomic simulations support the experimental results, revealing stronger interactions and more adsorption sites for compatible GV-MOF pairs. This study establishes a sustainable pathway for designing advanced GV adsorbents, emphasizing the importance of micro-/meso-diffusivity in a hierarchical porous structure to maximize the overall adsorption capacity. A proof-of-concept for a multipurpose GV adsorbent is conceived by weaving MOF wires with different functionalities to achieve the simultaneous removal of polar and nonpolar GVs.
Collapse
Affiliation(s)
- Jinwook Lee
- Department of Fashion and Textiles, Seoul National University, Seoul 08826, Republic of Korea
| | - Geun Park
- Department of Fashion and Textiles, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyeong Chan Kim
- Department of Future Convergence Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Jung-Hoon Yun
- Department of Future Convergence Engineering, Kongju National University, Cheonan 31080, Republic of Korea
- Department of Mechanical and Automotive Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Jooyoun Kim
- Department of Fashion and Textiles, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Hou T, Wang H, Zhang YY, Di Z, Li CP. A High-Stability Co-MOF with Open Metal Sites for C 2H 2/CO 2/CH 4 Separation. Inorg Chem 2025; 64:4202-4208. [PMID: 39964100 DOI: 10.1021/acs.inorgchem.5c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
One-step purification of C2H2 from ternary mixtures (C2H2, CO2, and CH4) can significantly reduce the energy consumption of the separation process, but it is extremely challenging. A new Co-MOF (TNU-BTTB-1) with a three-dimensional (3D) framework was synthesized, which displays high thermal stability, retaining its structural integrity at temperatures up to 400 °C. The structure possesses rich accessible open metal sites in the porous walls and shows high uptake for C2H2 (37.4 cm3 g-1) and significant adsorption selectivity for C2H2 over CH4 (20.1) and CO2 (4.9) at 298 K and 100 kPa. Dynamic breakthrough studies show that it exhibits excellent C2H2 separation from C2H2/CO2/CH4 three-component mixtures.
Collapse
Affiliation(s)
- Tianyi Hou
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - He Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yuan-Yuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhengyi Di
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Cheng-Peng Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
3
|
He L, Li Y, Li L, Wang Z, Chen Y, Yuan F, Lan G, Chen C, Xiang S, Chen B, Zhang Z. A Microporous Hydrogen-Bonded Organic Framework with Open Pyrene Sites Isolated by Hydrogen-Bonded Helical Chains for Efficient Separation of Xenon and Krypton. Angew Chem Int Ed Engl 2025; 64:e202418917. [PMID: 39562827 DOI: 10.1002/anie.202418917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Achieving efficient xenon/krypton (Xe/Kr) separation in emerging hydrogen-bonded organic frameworks (HOFs) is highly challenging because of the lack of gas-binding sites on their pore surfaces. Herein, we report the first microporous HOF (HOF-FJU-168) based on hydrogen-bonded helical chains, which prevent self-aggregation of the pyrene core, thereby preserving open pyrene sites on the pore surfaces. Its activated form, HOF-FJU-168a is capable of separating Xe/Kr under ambient conditions while achieving an excellent balance between adsorption capacity and selectivity. At 296 K and 1 bar, the Xe adsorption capacity of HOF-FJU-168a reached 78.31 cm3/g, with an Xe/Kr IAST selectivity of 22.0; both values surpass those of currently known top-performing HOFs. Breakthrough experiments confirmed its superior separation performance with a separation factor of 8.6 and a yield of high-purity Kr (>99.5 %) of 184 mL/g. Furthermore HOF-FJU-168 exhibits excellent thermal and chemical stability, as well as renewability. Single-crystal X-ray diffraction and molecular modeling revealed that the unique electrostatic surface potential around the open pyrene sites creates a micro-electric field, exerting a stronger polarizing effect on Xe than on Kr, thereby enhancing host-Xe interactions.
Collapse
Affiliation(s)
- Lei He
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yunbin Li
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lu Li
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhitao Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yanting Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Furong Yuan
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Gaoyan Lan
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Chenxin Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Wang JX, Zhang TF, Pei J, Liu D, Wang YB, Gu XW, Qian G, Li B. An MOF-Based Single-Molecule Propylene Nanotrap for Benchmark Propylene Capture from Ethylene. CHEM & BIO ENGINEERING 2024; 1:952-959. [PMID: 39975569 PMCID: PMC11835284 DOI: 10.1021/cbe.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 02/21/2025]
Abstract
Highly selective capture and separation of propylene (C3H6) from ethylene (C2H4) presents one of the most crucial processes to obtain pure C2H4 in the petrochemical industry. The separation performance of current physisorbents is commonly limited by insufficient C3H6 binding affinity, resulting in poor low-pressure C3H6 uptakes or inadequate C3H6/C2H4 selectivities. Herein, we realize a unique single-molecule C3H6 nanotrap in an ultramicroporous MOF material (Co(pyz)[Pd(CN)4], ZJU-74a-Pd), exhibiting the benchmark C3H6 capture capacity at low-pressure regions. This MOF-based nanotrap features the sandwichlike strong multipoint binding sites and the perfect size match with C3H6 molecules, providing an ultrastrong C3H6 binding affinity with the maximal Q st value (55.8 kJ mol-1). This affords the nanotrap to exhibit one of the highest C3H6 uptakes at low pressures (60.5 and 103.8 cm3 cm-3 at 0.01 and 0.1 bar) and record-high C3H6/C2H4 selectivity (23.4). Theoretical calculations reveal that the perfectly size-matched pore cavities combined with sandwichlike multibinding sites enable this single-molecule C3H6 nanotrap to maximize the C3H6 binding affinity, mainly accounting for its record low-pressure C3H6 capture capacity and selectivity. Breakthrough experiments further confirm its excellent separation capacity for actual 1/99 and 50/50 C3H6/C2H4 mixtures, affording the remarkably high pure C2H4 productivities of 17.1 and 3.4 mol kg-1, respectively.
Collapse
Affiliation(s)
| | | | - Jiyan Pei
- State Key Laboratory of Silicon
and Advanced Semiconductor Materials, School of Materials Science
and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Liu
- State Key Laboratory of Silicon
and Advanced Semiconductor Materials, School of Materials Science
and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu-Bo Wang
- State Key Laboratory of Silicon
and Advanced Semiconductor Materials, School of Materials Science
and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon
and Advanced Semiconductor Materials, School of Materials Science
and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon
and Advanced Semiconductor Materials, School of Materials Science
and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Li
- State Key Laboratory of Silicon
and Advanced Semiconductor Materials, School of Materials Science
and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Yañez-Aulestia A, Trejos VM, Esparza-Schulz JM, Ibarra IA, Sánchez-González E. Chemically Modified HKUST-1(Cu) for Gas Adsorption and Separation: Mixed-Metal and Hierarchical Porosity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65581-65591. [PMID: 39531534 PMCID: PMC11615856 DOI: 10.1021/acsami.4c15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The archetypical metal-organic framework (MOF), HKUST-1, has been systematically modified in both its organic and inorganic building blocks to introduce diversity in the metal centers and create defects within the network, achieving a variety of bimetallic hierarchical structures. These modifications changed the affinity of the MOFs for acid gases. The introduction of bimetallic sites mostly affects CO2 adsorption, while the hierarchical structure generates an increase in SO2 uptake capacity, allowing better performance in the separation of binary mixtures of these gases near room temperature. Notably, the synthesized HH-Cu100 material exhibited an exceptionally high IAST SO2/CO2 (10:90) selectivity of 3420 at 298 K, outperforming benchmark MOFs with open metal sites.
Collapse
Affiliation(s)
- Ana Yañez-Aulestia
- Laboratorio
de Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa
(UAM-I), C.P. 09310, Ciudad de México, Mexico
| | - Víctor M. Trejos
- Laboratorio
de Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa
(UAM-I), C.P. 09310, Ciudad de México, Mexico
| | - J. Marcos Esparza-Schulz
- Laboratorio
de Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa
(UAM-I), C.P. 09310, Ciudad de México, Mexico
| | - Ilich A. Ibarra
- Laboratorio
de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad
Nacional Autónoma de México, 04510, Ciudad de México, Mexico
- On sabbatical
as “Catedra Dr Douglas Hugh Everett” at Departamento
de Química, Universidad Autónoma
Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Leyes de Reforma 1ra Seccion, Iztapalapa, C.P. 09310, Ciudad de México, Mexico
| | - Elí Sánchez-González
- Laboratorio
de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad
Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| |
Collapse
|
6
|
Gong W, Gao P, Gao Y, Xie Y, Zhang J, Tang X, Wang K, Wang X, Han X, Chen Z, Dong J, Cui Y. Modulator-Directed Counterintuitive Catenation Control for Crafting Highly Porous and Robust Metal-Organic Frameworks with Record High SO 2 Uptake Capacity. J Am Chem Soc 2024; 146:31807-31815. [PMID: 39511479 DOI: 10.1021/jacs.4c10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sulfur dioxide (SO2) is an important industrial feedstock that can be directly utilized or catalytically transformed to value-added chemicals such as sulfuric acid. The development of regenerable porous sorbents for the highly efficient storage and energy-minimal release of toxic SO2 operating under ambient conditions has attracted growing interest. Herein, we report the topology-guided construction of highly porous acs-type metal-organic frameworks (MOFs) through a counterintuitive modulator-directed catenation control approach. In contrast to the conventional modulator facilitated coordination competition that favors the thermodynamic catenated phase, we show that the elevation of modulator concentration can promote the formation of the noncatenated phase probably through a sublattice dissolution pathway. The assembly of a custom-designed trigonal prismatic triptycene-quinoxaline linker and trinuclear Fe3O cluster affords either the threefold catenated SJTU-219 or noncatenated SJTU-220 with desired acs net. Impressively, the synthetic approach is applicable to various metal ions, including Al3+, V3+, and even Ti4+. The noncatenated SJTU-220 exhibits an extraordinary SO2 sorption capacity of 29.6 mmol g-1 at 298 K and 1 bar, surpassing all reported solid sorbents. The uptake capacity can be further raised to 35.6 mmol g-1 via the replacement of Fe3+ with kinetically more inert Cr3+, resulting in a staggering ∼329-fold volume reduction compared with free ideal SO2 gas. Computational simulations suggest that unique Fe3+···S(SO2) interactions dominate the SO2 seeding process, facilitating the efficient packing of SO2 molecules in the large channels. Besides, the exceptionally low uptake at the low pressure region implies global weak framework-SO2 interactions, which offer great potential for practically implementing an "easy-on/easy-off" SO2 delivery system.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfu Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jingjing Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Xing Han
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Chu Z, Li J, Chen F, Cao Y, Chen L, Zhou F, Ma H, Yang Q, Zhang Z, Qiao K, Ren Q, Bao Z. Planar Group Functionalization of Quasi-Discrete Pores in Metal-Organic Frameworks for Enhanced Isomeric Separation in Simulated Moving Bed Processes. ACS CENTRAL SCIENCE 2024; 10:1861-1870. [PMID: 39463840 PMCID: PMC11503489 DOI: 10.1021/acscentsci.4c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
The efficient separation of 4-methyl-1-pentene (4MP1) from its structural isomers is crucial for industrial applications but remains challenging due to the similar physicochemical properties of these compounds. This study introduces a novel strategy using metal-organic frameworks (MOFs), specifically an engineered variant of ZIF-108, which demonstrates remarkable improvements in the thermodynamic and kinetic properties for 4MP1 separation. By substituting the methyl groups in ZIF-8 with planar nitro groups, we achieved a strategic resizing of the pore windows and cavity dimensions in ZIF-108. This adjustment not only enhanced the molecular affinity and selectivity toward 4MP1 but also facilitated a diffusion rate that is 164 times faster than that observed in ZIF-8. These properties significantly elevated the performance of ZIF-108 in simulated moving bed (SMB) processes, achieving up to 96.5% recovery of high-purity 4MP1, outperforming traditional adsorbents. Comprehensive characterization, including density functional theory (DFT) calculations and molecular dynamics (MD) simulations, provided insights into the interactions and the stability of the adsorption process. The findings suggest that the strategic modification of the pore architecture in MOFs holds significant potential for optimizing the separation processes of industrially relevant mixtures.
Collapse
Affiliation(s)
- Zhe Chu
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Jiaqi Li
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Fuqiang Chen
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yifeng Cao
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Lihang Chen
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Feng Zhou
- SINOPEC
(Dalian) Research Institute of Petroleum and Petrochemicals Co., Ltd., 96 Nankai Street, Lvshunkou District, Dalian 116045, P.R. China
| | - Huixia Ma
- SINOPEC
(Dalian) Research Institute of Petroleum and Petrochemicals Co., Ltd., 96 Nankai Street, Lvshunkou District, Dalian 116045, P.R. China
| | - Qiwei Yang
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kai Qiao
- SINOPEC
(Dalian) Research Institute of Petroleum and Petrochemicals Co., Ltd., 96 Nankai Street, Lvshunkou District, Dalian 116045, P.R. China
| | - Qilong Ren
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
8
|
Zhu X, Ke T, Han P, Zhang Z, Bao Z, Yang Y, Ren Q, Yang Q. Pore Chemistry and Architecture Control in Anionic Functional Ultramicroporous Materials for Record Dense Packing of Xenon. J Am Chem Soc 2024; 146:24956-24965. [PMID: 39102644 DOI: 10.1021/jacs.4c06354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Adsorptive separation of Xe and Kr is an industrially promising but challenging process because of their identical shape and similar physicochemical properties. Herein, we demonstrate a strategy through rationally designing the linkers of anionic functional ultramicroporous materials (FUMs) to finely regulate the pore chemistry and architecture, which creates unique stepped channels incorporating dense polar nanotraps to generate a larger effective pore space and enables dense packing of Xe. A new hydrolytically stable FUM (ZUL-530) was prepared, which for the first time achieves a Xe packing density exceeding the liquid Xe density at atmospheric conditions in metal-organic frameworks (MOFs) (based on experimental data), resulting in both excellent Xe uptake (2.55 mmol g-1 at 0.2 bar) and high IAST selectivity (20.5). GCMC and DFT-D calculations reveal the essential role of the stepped traps in the dense packing of Xe. Breakthrough experiments demonstrate remarkable productivities of both high-purity Kr (6.70 mmol g-1) and Xe (1.78 mmol g-1) for the Xe/Kr (20:80) mixture. In a model nuclear industry exhaust gas, ZUL-530 exhibits a top-class Xe dynamic capacity (28.8 mmol kg-1) for trace Xe, which proves it is one of the best candidates for Xe/Kr separation.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Pei Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| |
Collapse
|
9
|
Dong Y, Feng N, Liu P, Wei Q, Peng X, Jiang F, Chen Y. Dual-Track Multifunctional Bimetallic Metal-Organic Frameworks for Antibiotic Enrichment and Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309075. [PMID: 38597772 DOI: 10.1002/smll.202309075] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Indexed: 04/11/2024]
Abstract
The improper use and overuse of antibiotics have led to significant burdens and detrimental effects on the environment, food supply, and human health. Herein, a magnetic solid-phase extraction program and an optical immunosensor based on bimetallic Ce/Zr-UiO 66 for the detection of antibiotics are developed. A magnetic Fe3O4@SiO2@Ce/Zr-UiO 66 metal-organic framework (MOF) is prepared to extract and enrich chloramphenicol from fish, wastewater, and urine samples, and a horseradish peroxidase (HRP)-Ce/Zr-UiO 66@bovine serum protein-chloramphenicol probe is used for the sensitive detection of chloramphenicol based on the dual-effect catalysis of Ce and HRP. In this manner, the application of Ce/Zr-UiO 66 in integrating sample pretreatment and antibiotic detection is systematically investigated and the associated mechanisms are explored. It is concluded that Ce/Zr-UiO 66 is a versatile dual-track material exhibiting high enrichment efficiency (6.37 mg g-1) and high sensitivity (limit of detection of 51.3 pg mL-1) for chloramphenicol detection and serving as a multifunctional MOF for safeguarding public health and hygiene.
Collapse
Affiliation(s)
- Yiming Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Niu Feng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Puyue Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiaoling Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xuewen Peng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Feng Jiang
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan, Hubei, 430075, China
| | - Yiping Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
10
|
Zhou K, Zhang J, Geng Y, Gao P, Xie Y, Dong J, Shang Y, Cui Y, Gong W. Water-Resistant, Scalable, and Inexpensive Chiral Metal-Organic Framework Featuring Global Negative Electrostatic Potentials for Efficient Acetylene Separation. CHEM & BIO ENGINEERING 2024; 1:349-356. [PMID: 39974468 PMCID: PMC11835167 DOI: 10.1021/cbe.3c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/21/2025]
Abstract
Physical separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) on metal-organic frameworks (MOFs) is crucial for achieving high-purity feed gases with minimal energy penalty. However, such processes are exceptionally challenging due to their close physical properties and are also critically restricted by the high cost of large-scale MOF synthesis. Here, we demonstrate the readily scalable synthesis of a highly water-resistant chiral Cu-MOF (TAMOF-1) based on an inexpensive proteogenic amino acid derivative bearing rich N/O sites. Notably, the unique coordination in this ultramicroporous MOF has resulted in the generation of rare global negative electrostatic potentials, which greatly facilitate the electrostatic interactions with C2H2 molecules, thus leading to their efficient separation from C2H2/CO2 and C2H2/C2H4 mixtures under ambient conditions. The separation efficiency and mechanism are unequivocally validated by breakthrough experiments and computational simulations. This work not only highlights the pivotal role of creating a negative electro-environment in confined spaces for boosting C2H2 capture and separation but also opens up new ways of employing cheap amino acid derivatives bearing rich electro-negative N and O sites as organic linkers to constructing high-performing MOF materials for gas separation purposes.
Collapse
Affiliation(s)
- Kaiyuan Zhou
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecule-Based Materials (State Key Laboratory
Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jingjing Zhang
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Geng
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfu Gao
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Department
of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jinqiao Dong
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjia Shang
- Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecule-Based Materials (State Key Laboratory
Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yong Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Gong
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Li W, Cheng C, Gao G, Xu H, Huang W, Qu Z, Yan N. Trace SO 2 capture within the engineered pore space using a highly stable SnF 62--pillared MOF. MATERIALS HORIZONS 2024; 11:1889-1898. [PMID: 38372122 DOI: 10.1039/d3mh02222f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Developing reliable solid sorbents for efficient capture and removal of trace sulfur dioxide (SO2) under ambient conditions is critical for industrial desulfurization operations, but poses a great challenge. Herein, we focus on SNFSIX-Cu-TPA, a highly stable fluorinated MOF that utilizes SnF62- as pillars, for effectively capturing SO2 at extremely low pressures. The exceptional affinity of SNFSIX-Cu-TPA towards SO2 over CO2 and N2 was demonstrated through single-component isotherms and corroborated by computational simulations. At 298 K and 0.002 bar, this material displays a remarkable gas uptake of 2.22 mmol g-1. Among various anion fluorinated MOFs, SNFSIX-Cu-TPA shows the highest SO2/MF62- of 1.39 mmol mmol-1 and exhibits a low Qst of 58.81 kJ mol-1. Additionally, SNFSIX-Cu-TPA displays excellent potential for SO2/CO2 separation, as evidenced by its ideal adsorbed solution theory (IAST) selectivity of 148 at a molar fraction of SO2 of 0.01. Dynamic breakthrough curves were obtained to reveal the effective removal of trace SO2 from simulated flue gas (SO2/CO2/N2; v/v/v 0.2/10/89.8) with a high dynamic capacity of up to 1.52 mmol g-1. Furthermore, in situ TGA demonstrated the efficient and reversible capture of 500 ppm SO2 over 20 adsorption-desorption tests. This durable material presents a rare combination of exceptional SO2 capturing performance, good adsorption selectivity, and mild regeneration, thus making it a good candidate for a realistic desulfurization process.
Collapse
Affiliation(s)
- Weiwei Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Can Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
12
|
Hu L, Wu W, Hu M, Jiang L, Lin D, Wu J, Yang K. Double-walled Al-based MOF with large microporous specific surface area for trace benzene adsorption. Nat Commun 2024; 15:3204. [PMID: 38615115 PMCID: PMC11016061 DOI: 10.1038/s41467-024-47612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Double-walled metal-organic frameworks (MOFs), synthesized using Zn and Co, are potential porous materials for trace benzene adsorption. Aluminum is with low-toxicity and abundance in nature, in comparison with Zn and Co. Therefore, a double-walled Al-based MOF, named as ZJU-520(Al), with large microporous specific surface area of 2235 m2 g-1, pore size distribution in the range of 9.26-12.99 Å and excellent chemical stability, was synthesized. ZJU-520(Al) is consisted by helical chain of AlO6 clusters and 4,6-Di(4-carboxyphenyl)pyrimidine ligands. Trace benzene adsorption of ZJU-520(Al) is up to 5.98 mmol g-1 at 298 K and P/P0 = 0.01. Adsorbed benzene molecules are trapped on two types of sites. One (site I) is near the AlO6 clusters, another (site II) is near the N atom of ligands, using Grand Canonical Monte Carlo simulations. ZJU-520(Al) can effectively separate trace benzene from mixed vapor flow of benzene and cyclohexane, due to the adsorption affinity of benzene higher than that of cyclohexane. Therefore, ZJU-520(Al) is a potential adsorbent for trace benzene adsorption and benzene/cyclohexane separation.
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Jian Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| |
Collapse
|
13
|
Xi XJ, Li Y, Lang F, Pang J, Bu XH. Reticular synthesis of 8-connected carboxyl hydrogen-bonded organic frameworks for white-light-emission. Chem Sci 2024; 15:4529-4537. [PMID: 38516073 PMCID: PMC10952064 DOI: 10.1039/d3sc06410g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/23/2024] Open
Abstract
The rational design and construction of hydrogen-bonded organic frameworks (HOFs) are crucial for enabling their practical applications, but controlling their structure and preparation as intended remains challenging. Inspired by reticular chemistry, two novel blue-emitting NKM-HOF-1 and NKM-HOF-2 were successfully constructed based on two judiciously designed peripherally extended pentiptycene carboxylic acids, namely H8PEP-OBu and H8PEP-OMe, respectively. The large pores within these two HOFs can adsorb fluorescent molecules such as diketopyrrolopyrrole (DPP) and 9-anthraldehyde (AnC) to form HOFs ⊃ DPP/AnC composites, subsequently used in the fabrication of white-light-emitting devices (WLEDs). Specifically, two WLEDs were assembled by coating NKM-HOF-1 ⊃ DPP-0.13/AnC-3.5 and NKM-HOF-2 ⊃ DPP-0.12/AnC-3 on a 330 nm ultraviolet LED bulb, respectively. The corresponding CIE coordinates were (0.29, 0.33) and (0.32, 0.34), along with corresponding color temperatures of 7815 K and 6073 K. This work effectively demonstrates the feasibility of employing reticular chemistry strategies to predict and design HOFs with specific topologies for targeted applications.
Collapse
Affiliation(s)
- Xiao-Juan Xi
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yang Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Xian-He Bu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300350 P. R. China
| |
Collapse
|
14
|
Zeng DM, Huang L, Fu XP, Wang YL, Chen J, Liu QY. Metal-Organic Frameworks Possessing Suitable Pores for Xe/Kr Separation. Inorg Chem 2024; 63:5151-5157. [PMID: 38446757 DOI: 10.1021/acs.inorgchem.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Adsorption separation of the Xe/Kr mixture remains a tough issue since Xe and Kr have an inert nature and similar sizes. Here we present a chlorinated metal-organic framework (MOF) [JXNU-19(Cl)] and its nonchlorinated analogue (JXNU-19) for Xe/Kr separation. The two isostructural MOFs constructed from the heptanuclear cobalt-hydroxyl clusters bridged by organic ligands are three-dimensional structures. Detailed contrast of the Xe/Kr adsorption separation properties of the MOF shows that significantly enhanced Xe uptakes and Xe/Kr adsorption selectivity (17.1) are observed for JXNU-19 as compared to JXNU-19(Cl). The main binding sites for Xe in the MOF revealed by computational simulations are far away from the chlorine sites, suggesting that the introduction of the chlorine groups results in the unfavorable Xe adsorption for JXNU-19(Cl). The optimal pores, high surface area, and multiple strong Xe-framework interactions facilitate the effective Xe/Kr separation for JXNU-19.
Collapse
Affiliation(s)
- Dong-Mei Zeng
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Lian Huang
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Xing-Ping Fu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, Fujian, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Junmin Chen
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, National Engineering Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, Fujian, P. R. China
| |
Collapse
|
15
|
Chuprin AS, Belova SA, Vologzhanina AV, Dorovatovskii PV, Voloshin YZ. Preparation, X-ray Characterization, and Reactivity of the Rod-like and Angular Germanium- and Titanium(IV)-Capped Iron(II) Bis-Clathrochelates and Their Mono- and Bis-Capped (Semi)clathrochelate Precursors. Inorg Chem 2024; 63:4299-4311. [PMID: 38364313 DOI: 10.1021/acs.inorgchem.3c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Transmetalation of the bis{triethylantimony(V)}-capped iron(II) tris-α-dioximate with n-butylboronic acid afforded the mixed antimony, boron cross-linked clathrochelate with single reactive antimony(V)-based apical fragment. This macrobicyclic precursor easily underwent the transmetalation reactions with germanium and titanium(IV) alkoxides to give the rod-like and angular FeII2MIV-trinuclear bis-clathrochelates. Those of the aforementioned diantimony(V)-capped complex with 3- and 4-carboxyphenylboronic acids afforded the monoboron-capped iron(II) semiclathrochelates, undergoing a double-cyclization (macrobicyclization) with germanium- and titanium(IV)-based capping agents. The reactions in the low-temperature range unexpectedly gave the stable 2:1 associates, formed by the bridging of two carboxyl-terminated macrobicyclic molecules of the mixed carboxylboron, triethylantimony-capped iron(II) clathrochelate with a triethylantimony(V)-based linker fragment. The obtained complexes were characterized using elemental analysis, MALDI-TOF, 1H and 13C{1H} NMR and UV-vis spectra, and single-crystal XRD experiments. The encapsulated iron(II) ion in their 3D-molecules is situated almost in the center of its FeN6-coordination polyhedron possessing a truncated trigonal-pyramidal geometry. Fe-N distances fall in the range 1.887(7)-1.945(4) Å characteristic of the low-spin iron(II) complexes. The cross-linking titanium and germanium(IV) ions in the corresponding bis-clathrochelate molecules form the octahedral MIVO6-coordination polyhedra, the MIV-O distances of which vary from 1.946(2) to 1.964(2) Å and from 1.879(7) to 1.907(6) Å, respectively.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098 Moscow, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| |
Collapse
|
16
|
An Y, Wang L, Jiang W, Yuan G, Qiu Z, Lv X, Sun Y, Hang X, Pang H. Composites of (NH 2)-MIL-53(Al) and CBB as bifunctional electrocatalysts for overall electrochemical water splitting in all pH solutions. J Colloid Interface Sci 2024; 657:811-818. [PMID: 38081115 DOI: 10.1016/j.jcis.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Electrochemical water splitting is one of the most active areas of energy research, yet the benchmark electrocatalysts used for this area are based on expensive noble metals and transition metals, thus mainly reactions in alkaline solution. MOFs and halide perovskite are novel electrochemical catalysts but unstable in water basically. Here we report a study on composites of (NH2)-MIL-53(Al) MOFs and CBB halide perovskite (Cs3Bi2Br9), which exhibit obvious activity for overall electrochemical water splitting for long-term stability with little deactivation after 10 h in all pH solutions.
Collapse
Affiliation(s)
- Yang An
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Lingling Wang
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Weiyi Jiang
- Institute of Technology for Carbon Neutrality, College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Guoqiang Yuan
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinling Lv
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinxin Hang
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
17
|
Zhang L, Zhang H, Zhao Z, Meng T, Ma X, Li X, Liu R, Han X, Zhao X, Hao H, Yan H. Molecular Dynamics Simulation of the Adsorption and Diffusion of C 8 Aromatic Isomers in MIL-47(V). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2385-2395. [PMID: 38237570 DOI: 10.1021/acs.langmuir.3c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The separation of C8 aromatic isomers (oX: o-xylene, pX: p-xylene, mX: m-xylene, and EB: ethylbenzene) remains an enormous challenge in industrial production due to their similar molecular structures and physical properties. Porous materials with suitable pore structures and selective recognition sites to discriminate the slight structural differences of isomers are imminently needed. In this paper, MIL-47(V) with a three-dimensional (3D) grid structure of 10.5 × 10.5 Å2 and a one-dimensional (1D) diamond channel was selected as the adsorbent. However, the mechanism of the adsorption and separation of C8 aromatic isomers in porous materials still needs to be understood. Given the importance of C8 aromatic isomers' confinement in MIL-47(V) for adsorption and diffusion applications, it is important to understand C8 aromatic isomers' behavior in MIL-47(V). Here, we demonstrated from a simulation perspective that metal-organic frameworks MIL-47(V) with one-dimensional (1D) diamond channels can identify C8 aromatic isomers. Molecular dynamics (MD) simulations have shown that organic ligands with guest response sites of MIL-47(V) can effectively distinguish between C8 aromatic isomers by adaptation to the shape of a specific isomer. MIL-47(V) has high adsorption and an excellent separation sequence between C8 aromatic isomers: oX > pX ≈ mX > EB. Significant differences exist in π-π superposition interactions between C8 aromatic isomers and between C8 aromatic isomers and the skeletons. This phenomenon is mainly caused by the unique pore structure and guest response characteristics of MIL-47(V). This work is identified as a supplementary instruction to experimental research and is expected to provide profound insights into research on developing C8 aromatic isomers' adsorption and separation and theoretical support.
Collapse
Affiliation(s)
- Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hao Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zhen Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Tong Meng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xueke Han
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
18
|
Yue Y, Ji D, Liu Y, Wei D. Chemical Sensors Based on Covalent Organic Frameworks. Chemistry 2024; 30:e202302474. [PMID: 37843045 DOI: 10.1002/chem.202302474] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
19
|
Das A, Roy D, Erukula K, De S. Synthesis of pH responsive malononitrile functionalized metal organic framework MIL-100(Fe) for efficient adsorption of uranium U(VI) from real-life alkaline leach liquor. CHEMOSPHERE 2024; 348:140780. [PMID: 38006916 DOI: 10.1016/j.chemosphere.2023.140780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The porous framework of MIL-100(Fe) was functionalized using malononitrile (MN), through an in-situ Knoevenagel condensation reaction to introduce abundant -CN groups on the surface of the developed adsorbent. The resultant MN-functionalized MIL-100(Fe) exhibited excellent Uranium (U(VI)) removal capacity (i.e., 270 mg/g) at highly alkaline pH (⁓ 10). Different coexisting cations and anions show negligible influence on the U-removal and it was 92.1-99.7 % in presence of different co-ions, with the concentration from 10 to 50 mg/L. Moreover, MIL-100(Fe)_MN showed extremely selective U removal from the actual alkaline leach liquor (⁓ 97 %), without any pH adjustment and leaching of the constituent Fe. The surface-grafted -CN groups were predominantly active towards the coordinative interactions with the U(VI) ionic moieties, as evident from the XPS and FTIR analysis. The MIL-100(Fe)_MN adsorbent was also subjected to five consecutive adsorption-desorption cycles, with >90 % U removal after 5th cycle. Moreover, the regenerated MIL-100(Fe)_MN was structurally and functionally resilient, as observed from the morphological and crystallographic analysis. A convection-pore diffusion based transport model was used to analyze the optimized mass transfer parameters. Overall, the present study highlights the simple design and development of malononitrile-functionalized MIL-100(Fe) as an efficient and selective adsorbent for U(VI) removal from U-rich alkaline leach liquor.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debashis Roy
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Karthik Erukula
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
20
|
Huang J, Li Y, Zhang H, Yuan Z, Xiang S, Chen B, Zhang Z. A Microporous Hydrogen-Bonded Organic Framework Based on Hydrogen-Bonding Tetramers for Efficient Xe/Kr Separation. Angew Chem Int Ed Engl 2023; 62:e202315987. [PMID: 37961032 DOI: 10.1002/anie.202315987] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have been emerging as a new type of very promising microporous materials for gas separation and purification, but few HOFs structures constructed through hydrogen-bonding tetramers have been explored in this field. Herein, we report the first microporous HOF (termed as HOF-FJU-46) afforded by hydrogen-bonding tetramers with 4-fold interpenetrated diamond networks, which shows excellent chemical and thermal stability. What's more, activated HOF-FJU-46 exhibits the highest xenon (Xe) uptake of 2.51 mmol g-1 and xenon/krypton (Kr) selectivity of 19.9 at the ambient condition among the reported HOFs up to date. Dynamic breakthrough tests confirmed the excellent Xe/Kr separation of HOF-FJU-46a, showing high Kr productivity (110 mL g-1 ) and Xe uptake (1.29 mmol g-1 ), as well as good recyclability. The single crystal X-ray diffraction and the molecular simulations revealed that the abundant accessible aromatic and pyrazole rings in the pore channels of HOF-FJU-46a can provide the multiple strong C-H⋅⋅⋅Xe interactions with Xe atoms.
Collapse
Affiliation(s)
- Jiali Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
21
|
Xie Y, Ding X, Wang J, Ye G. Hydrogen-Bonding Assembly Meets Anion Coordination Chemistry: Framework Shaping and Polarity Tuning for Xenon/Krypton Separation. Angew Chem Int Ed Engl 2023; 62:e202313951. [PMID: 37877955 DOI: 10.1002/anie.202313951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Hybrid hydrogen-bonded (H-bonded) frameworks built from charged components or metallotectons offer diverse guest-framework interactions for target-specific separations. We present here a study to systematically explore the coordination chemistry of monovalent halide anions, i.e., F- , Cl- , Br- , and I- , with the aim to develop hybrid H-bond synthons that enable the controllable construction of microporous H-bonded frameworks exhibiting fine-tunable surface polarity within the adaptive cavities for realistic xenon/krypton (Xe/Kr) separation. The spherical halide anions, especially Cl- , Br- , and I- , are found to readily participate in the charge-assisted H-bonding assembly with well-defined coordination behaviors, resulting in robust frameworks bearing open halide anions within the distinctive 1D pore channels. The activated frameworks show preferential binding towards Xe (IAST Xe/Kr selectivity ca. 10.5) because of the enhanced polarizability and the pore confinement effect. Specifically, dynamic column Xe/Kr separation with a record-high separation factor (SF=7.0) among H-bonded frameworks was achieved, facilitating an efficient Xe/Kr separation in dilute, CO2 -containing gas streams exactly mimicking the off-gas of spent nuclear fuel (SNF) reprocessing.
Collapse
Affiliation(s)
- Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Jianchen Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
22
|
Wu X, Liu Y. Predicting Gas Adsorption without the Knowledge of Pore Structures: A Machine Learning Method Based on Classical Density Functional Theory. J Phys Chem Lett 2023; 14:10094-10102. [PMID: 37921618 DOI: 10.1021/acs.jpclett.3c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Predicting gas adsorption from the pore structure is an intuitive and widely used methodology in adsorption. However, in real-world systems, the structural information is usually very complicated and can only be approximately obtained from the characterization data. In this work, we developed a machine learning (ML) method to predict gas adsorption form the raw characterization data of N2 adsorption. The ML method is modeled by a convolutional neural network and trained by a large number of data that are generated from a classical density functional theory, and the model gives a very accurate prediction of Ar adsorption. Though the training set is limited to modeling slit pores, the model can be applied to three-dimensional structured pores and real-world materials. The good agreements suggest that there is a universal relationship among adsorption isotherms of different adsorbates, which could be captured by the ML model.
Collapse
Affiliation(s)
- Xiangkun Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yu Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
23
|
Corcho-Valdes AL, Ponce de Leon-Cabrera J, Padron-Ramirez I, Chao-Mujica FJ, Lebed E, Gutierrez-Quintanilla A, Desdin-Garcia LF, Voloshin Y, Antuch M. Precise Fingerprint Determination of Vibrational Infrared Spectra in a Series of Co(II) Clathrochelates through Experimental and Theoretical Analyses. J Phys Chem A 2023; 127:9419-9429. [PMID: 37935045 DOI: 10.1021/acs.jpca.3c04161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The energetic demands of modern society for clean energy vectors, such as H2, have caused a surge in research associated with homogeneous and immobilized electrocatalysts that may replace Pt. In particular, clathrochelates have shown excellent electrocatalytic properties for the hydrogen evolution reaction (HER). However, the actual mechanism for the HER catalyzed by these d-metal complexes remains an open debate, which may be addressed via Operando spectroelectrochemistry. The prediction of electrochemical properties via density functional theory (DFT) needs access to thermodynamic functions, which are only available after Hessian calculations. Unfortunately, there is a notable lack in the current literature regarding the precise evaluation of vibrational spectra of such complexes, given their structural complexity and the associated tangled IR spectra. In this work, we have performed a detailed theoretical and experimental analysis in a family of Co(II) clathrochelates, in order to establish univocally their IR pattern, and also the calculation methodology that is adequate for such predictions. In summary, we have observed the presence of multiple common bands shared by this clathrochelate family, using the B3LYP functional, the LANL2DZ basis, and effective core potentials (ECP) for heavy atoms. The most important issue addressed in this article was therefore related to the detailed assignment of the fingerprint associated with cobalt(II) clathrochelates, which is a challenging endeavor due to the crowded nature of their spectra.
Collapse
Affiliation(s)
- Angel Luis Corcho-Valdes
- Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), No. 502, Calle 30 y 5ta Ave., Miramar, C.P. 11300 La Habana, Cuba
| | - Josue Ponce de Leon-Cabrera
- Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), No. 502, Calle 30 y 5ta Ave., Miramar, C.P. 11300 La Habana, Cuba
| | - Ivan Padron-Ramirez
- Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), No. 502, Calle 30 y 5ta Ave., Miramar, C.P. 11300 La Habana, Cuba
| | - Frank Justo Chao-Mujica
- Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), No. 502, Calle 30 y 5ta Ave., Miramar, C.P. 11300 La Habana, Cuba
| | - Ekaterina Lebed
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | | | - Luis Felipe Desdin-Garcia
- Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), No. 502, Calle 30 y 5ta Ave., Miramar, C.P. 11300 La Habana, Cuba
| | - Yan Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Manuel Antuch
- Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), No. 502, Calle 30 y 5ta Ave., Miramar, C.P. 11300 La Habana, Cuba
| |
Collapse
|
24
|
Liu Z, Xia Q, Huang B, Yi H, Yan J, Chen X, Xu F, Xi H. Prediction of Xe/Kr Separation in Metal-Organic Frameworks by a Precursor-Based Neural Network Synergistic with a Polarizable Adsorbate Model. Molecules 2023; 28:7367. [PMID: 37959783 PMCID: PMC10648455 DOI: 10.3390/molecules28217367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Adsorption and separation of Xe/Kr are significant for making high-density nuclear energy environmentally friendly and for meeting the requirements of the gas industry. Enhancing the accuracy of the adsorbate model for describing the adsorption behaviors of Xe and Kr in MOFs and the efficiency of the model for predicting the separation potential (SP) value of Xe/Kr separation in MOFs helps in searching for promising MOFs for Xe/Kr adsorption and separation within a short time and at a low cost. In this work, polarizable and transferable models for mimic Xe and Kr adsorption behaviors in MOFs were constructed. Using these models, SP values of 38 MOFs at various temperatures and pressures were calculated. An optimal neural network model called BPNN-SP was designed to predict SP value based on physical parameters of metal center (electronegativity and radius) and organic linker (three-dimensional size and polarizability) combined with temperature and pressure. The regression coefficient value of the BPNN-SP model for each data set is higher than 0.995. MAE, MBE, and RMSE of BPNN-SP are only 0.331, -0.002, and 0.505 mmol/g, respectively. Finally, BPNN-SP was validated by experiment data from six MOFs. The transferable adsorbate model combined with the BPNN-SP model would highly improve the efficiency for designing MOFs with high performance for Xe/Kr adsorption and separation.
Collapse
Affiliation(s)
- Zewei Liu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; (Z.L.); (J.Y.); (X.C.)
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Bichun Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China;
| | - Hao Yi
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China;
| | - Jian Yan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; (Z.L.); (J.Y.); (X.C.)
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; (Z.L.); (J.Y.); (X.C.)
| | - Feng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; (Z.L.); (J.Y.); (X.C.)
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China;
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
25
|
Li X, Ding Q, Liu J, Dong L, Qin X, Zhou L, Zhao Z, Ji H, Zhang S, Chai K. One-step ethylene purification from ternary mixtures by an ultramicroporous material with synergistic binding centers. MATERIALS HORIZONS 2023; 10:4463-4469. [PMID: 37526614 DOI: 10.1039/d3mh00697b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Developing advanced porous materials with industrial potential to separate multicomponent gas mixtures that are structurally similar is a crucial but challenging task. Here, we report the efficient one-step separation of ethylene (C2H4) from acetylene (C2H2) and carbon dioxide (CO2) using an ultramicroporous metal-organic framework UTSA-16. The synergistic effect of the polarized carboxyl groups and coordinated water molecules in its pore channel enables the material to have high uptakes for C2H2 and CO2 due to electrostatic potential matching, as well as excellent separation selectivity against C2H4. Breakthrough experiments suggest that UTSA-16 can efficiently separate 99.9% pure C2H4 from ternary mixtures with a high productivity of 403 L kg-1. Moreover, the preparation cost of UTSA-16 is significantly lower than other related adsorbents by 40-2000 times, indicating its unique potential for industrial applications.
Collapse
Affiliation(s)
- Xingye Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Qi Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jia Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Lihui Dong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xingzhen Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Liqin Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zhenxia Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
26
|
Manna K, Kumar R, Sundaresan A, Natarajan S. Fixing CO 2 under Atmospheric Conditions and Dual Functional Heterogeneous Catalysis Employing Cu MOFs: Polymorphism, Single-Crystal-to-Single-Crystal (SCSC) Transformation and Magnetic Studies. Inorg Chem 2023; 62:13738-13756. [PMID: 37586090 DOI: 10.1021/acs.inorgchem.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
New copper compounds, [Cu(C14H8O6)(C10H8N2)(H2O)] (1), [Cu(C14H8O6)(C10H8N2)(H2O)]·(C3H7ON)2 (2), [Cu(C14H8O6)(C10H8N2)(H2O)2]·(C3H7ON) (3), [Cu(C14H8O6)(C10H8N4)] (4), and [Cu(C14H8O6)(C10H8N4)]·(H2O) (5), were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as the primary ligand and 4,4'-bipyridine (1-3) and 4,4'-azopyridine (4-5) as the secondary ligands. Single-crystal studies indicated that compounds 1-4 have two-dimensional layer structures and compound 5 has a three-dimensional structure. Compounds 1-3 were isolated from the same reaction mixture but by varying the time of reaction. The framework structures of compounds 1-3 are similar and may be considered as polymorphic structures. Compounds 4 and 5 can also be considered polymorphic with a change in dimensionality of the structure. Compounds 1-3 can be formed through a single-crystal-to-single-crystal transformation under a suitable solvent mixture. The Cu center was explored for the Lewis acid-catalyzed cycloaddition reaction of epoxide and CO2 under ambient conditions in a solventless condition and also for the synthesis of propargylamine derivatives by three-component coupling reactions (A3 coupling) in a DCM medium. The Lewis basic functionality of the MOF (-N═N- group) has been explored for the Henry reaction (aldol condensation) in a solventless condition. In all of the catalytic reactions, good yields and recyclability were observed. The magnetic studies indicated that compounds 1 and 4 have antiferromagnetic interactions and compound 5 has ferromagnetic interactions. The present studies illustrated the rich diversity that the copper-containing compounds exhibit in extended framework structures.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| | - Rahul Kumar
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Athinarayanan Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Wu Y, Tang M, Wang Z, Shi L, Xiong Z, Chen Z, Sessler JL, Huang F. Pillararene incorporated metal-organic frameworks for supramolecular recognition and selective separation. Nat Commun 2023; 14:4927. [PMID: 37582786 PMCID: PMC10427641 DOI: 10.1038/s41467-023-40594-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Crystalline frameworks containing incorporated flexible macrocycle units can afford new opportunities in molecular recognition and selective separation. However, such functionalized frameworks are difficult to prepare and challenging to characterize due to the flexible nature of macrocycles, which limits the development of macrocycle-based crystalline frameworks. Herein, we report the design and synthesis of a set of metal-organic frameworks (MOFs) containing pillar[5]arene units. The pillar[5]arene units were uniformly embedded in the periodic frameworks. Single crystal X-ray diffraction analysis revealed an interpenetrated network that appears to hinder the rotation of the pillar[5]arene repeating units in the frameworks, and it therefore resulted in the successful determination of the precise pillar[5]arene host structure in a MOF crystal. These MOFs can recognize paraquat and 1,2,4,5-tetracyanobenzene in solution and selectively remove trace pyridine from toluene with relative ease. The work presented here represents a critical step towards the synthesis of macrocycle-incorporated crystalline frameworks with well-defined structures and functional utility.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhangyi Xiong
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China.
| |
Collapse
|
28
|
Kim H, Choe JH, Kang M, Kang DW, Yun H, Youn J, Lee WG, Lee JH, Hong CS. Switchable Xe/Kr Selectivity in a Hofmann-Type Metal-Organic Framework via Temperature-Responsive Rotational Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301905. [PMID: 37093175 DOI: 10.1002/smll.202301905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The development of adsorbents for Kr and Xe separation is essential to meet industrial demands and for energy conservation. Although a number of previous studies have focused on Xe-selective adsorbents, stimuli-responsive Xe/Kr-selective adsorbents still remain underdeveloped. Herein, a Hofmann-type framework Co(DABCO)[Ni(CN)4 ] (referred to as CoNi-DAB; DABCO = 1,4-diazabicyclo[2,2,2]octane) that provides a temperature-dependent switchable Xe/Kr separation performance is reported. CoNi-DAB showed high Kr/Xe (0.8/0.2) selectivity with significant Kr adsorption at 195 K as well as high Xe/Kr (0.2/0.8) selectivity with superior Xe adsorption at 298 K. Such adsorption features are associated with the temperature-dependent rotational configuration of the DABCO ligand, which affects the kinetic gate-opening temperature of Xe and Kr. The packing densities of Xe (2.886 g cm-3 at 298 K) and Kr (2.399 g cm-3 at 195 K) inside the framework are remarkable and comparable with those of liquid Xe (3.057 g cm-3 ) and liquid Kr (2.413 g cm-3 ), respectively. Breakthrough experiments confirm the temperature-dependent reverse separation performance of CoNi-DAB at 298 K under dry and wet (88% relative humidity) conditions and at 195 K under dry conditions. The unique adsorption behavior is also verified through van der Waals (vdW)-corrected density functional theory (DFT) calculations and nudged elastic band (NEB) simulations.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongwon Youn
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Weon-Gyu Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
29
|
Baig N, Shetty S, Bargakshatriya R, Pramanik SK, Alameddine B. Efficient Removal of Carcinogenic Azo Dyes from Water Using Iron(II) Clathrochelate Derived Metalorganic Copolymers Made from a Copper-Catalyzed [4 + 2] Cyclobenzannulation Reaction. Polymers (Basel) 2023; 15:2948. [PMID: 37447593 DOI: 10.3390/polym15132948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
A novel synthetic strategy is disclosed to prepare a new class of metalorganic copolymers that contain iron(II) clathrochelate building blocks by employing a mild and cost-effective copper-catalyzed [4 + 2] cyclobenzannulation reaction, using three specially designed diethynyl iron(II) clathrochelate synthons. The target copolymers CBP1-3 were isolated in high purity and excellent yields as proven by their structural and photophysical characterization, namely, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and UV-VIS absorption and emission spectroscopies. The thermogravimetric analysis (TGA) of CBP1-3 revealed an excellent chemical stability. Investigation of the adsorption properties of the target copolymers towards the carcinogenic methyl red dye from aqueous solution revealed a quantitative uptake in 30 min. Isothermal adsorption studies disclosed that methyl red uptake from aqueous solution followed the Langmuir model for all of the target copolymers, reaching a maximum adsorption capacity (qm) of 431 mg g-. Kinetic investigation revealed that the adsorption followed pseudo-first-order with an equilibrium adsorption capacity (qe,cal) of 79.35 mg g- and whose sorption property was sustained even after its reuse several times.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
30
|
Gong W, Chen X, Fahy KM, Dong J, Liu Y, Farha OK, Cui Y. Reticular Chemistry in Its Chiral Form: Axially Chiral Zr(IV)-Spiro Metal-Organic Framework as a Case Study. J Am Chem Soc 2023. [PMID: 37311062 DOI: 10.1021/jacs.3c03036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interplay of primary organic ligands and inorganic secondary building units (SBUs) has led to a continual boom of reticular chemistry, particularly metal-organic frameworks (MOFs). Subtle variations of organic ligands can have a significant impact on the ultimate structural topology and consequently, the material's function. However, the role of ligand chirality in reticular chemistry has rarely been explored. In this work, we report the organic ligand chirality-controlled synthesis of two zirconium-based MOFs (Spiro-1 and Spiro-3) with distinct topological structures as well as a temperature-controlled formation of a kinetically stable phase (Spiro-4) based on the carboxylate-functionalized inherently axially chiral 1,1'-spirobiindane-7,7'-phosphoric acid ligand. Specifically, Spiro-1 is a homochiral framework comprising only enantiopure S-spiro ligands and has a unique 4,8-connected sjt topology with large 3D interconnected cavities, while Spiro-3 contains equal amounts of S- and R-spiro ligands, resulting in a racemic framework of 6,12-connected edge-transitive alb topology with narrow channels. Interestingly, the kinetic product Spiro-4 obtained with racemic spiro ligands is built of both hexa- and nona-nuclear zirconium clusters acting as 9- and 6-connected nodes, respectively, giving rise to a newly discovered azs net. Notably, the preinstalled highly hydrophilic phosphoric acid groups combined with large cavity, high porosity, and outstanding chemical stability endow Spiro-1 with remarkable water vapor sorption performance, whereas Spiro-3 and Spiro-4 show poor performances due to inappropriate pore systems and structural fragility upon the water adsorption/desorption process. This work highlights the important role of ligand chirality in manipulating the framework topology and function and would further enrich the development of reticular chemistry.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinfa Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kira M Fahy
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
31
|
Song X, Huang Q, Liu J, Xie H, Idrees KB, Hou S, Yu L, Wang X, Liu F, Qiao Z, Wang H, Chen Y, Li Z, Farha OK. Reticular Chemistry in Pore Engineering of a Y-Based Metal-Organic Framework for Xenon/Krypton Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18229-18235. [PMID: 36996577 DOI: 10.1021/acsami.3c01229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The fine-tuning of metal-organic framework (MOF) pore structures is of critical importance in developing energy-efficient xenon/krypton (Xe/Kr) separation techniques. Capitalizing on reticular chemistry, we constructed a robust Y-based MOF (NU-1801) that is isoreticular to NPF-500 with a shortened organic ligand and a larger metal radius while maintaining the 4,8-connected flu topology, giving rise to a narrowed pore structure for the efficient separation of a Xe/Kr mixture. At 298 K and 1 bar, NU-1801 possessed a moderate Xe uptake of 2.79 mmol/g but exhibited a high Xe/Kr selectivity of 8.2 and an exceptional Xe/Kr uptake ratio of about 400%. NU-1801 could efficiently separate a Xe/Kr mixture (20:80, v/v), as validated by breakthrough experiments, due to the outstanding discrimination in van der Waals interactions of Xe and Kr toward the framework confirmed by grand canonical Monte Carlo simulations. This work highlights the importance of reticular chemistry in designing structure-specific MOFs for gas separation.
Collapse
Affiliation(s)
- Xiyu Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Qiuhong Huang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shujing Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China
| | - Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Chuprin AS, Pavlov AA, Vologzhanina AV, Dorovatovskii PV, Makarenkov AV, Ol'shevskaya VA, Dudkin SV, Voloshin YZ. Multistep synthesis and X-ray structures of carboxyl-terminated hybrid iron(II) phthalocyaninatoclathrochelates and their postsynthetic transformation into polytopic carboranyl-containing derivatives. Dalton Trans 2023; 52:3884-3895. [PMID: 36877091 DOI: 10.1039/d3dt00076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate. The direct one-pot template condensation of the suitable chelating and cross-linking ligand synthons on the Fe2+ ion as a matrix was also used for its preparation. Further amide condensation of the aforementioned semiclathrochelate and hybrid complexes with propargylamine in the presence of carbonyldiimidazole gave the (pseudo)cage derivatives with a terminal CC bond. Their "click" reaction with an appropriate carboranylmethyl azide afforded the ditopic carboranosemiclathrochelates and the tritopic carboranyl-containing phthalocyaninatoclathrochelates with a flexible spacer fragment between their polyhedral entities. The obtained new complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, multinuclear NMR, and UV-vis spectroscopy, and by single crystal X-ray diffraction experiments. Their FeN6-coordination polyhedra show a truncated trigonal-pyramidal geometry, while the cross-linking heptacoordinate Zr4+ or Hf4+ cations in the hybrid compounds form the MIVN4O3-coordination polyhedra with the geometry of a capped trigonal prism.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098, Moscow, Russia
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
33
|
Hu L, Wu W, Gong L, Zhu H, Jiang L, Hu M, Lin D, Yang K. A Novel Aluminum-Based Metal-Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angew Chem Int Ed Engl 2023; 62:e202215296. [PMID: 36698285 DOI: 10.1002/anie.202215296] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Metal-organic frameworks (MOFs) are potential porous adsorbents for benzene, toluene, ethylbenzene and xylene (BTEX). A novel MOF, using low toxic aluminum (Al) as the metal, named as ZJU-620(Al), with uniform micropore size of 8.37±0.73 Å and specific surface area of 1347 m2 g-1 , was synthesized. It is constructed by one-dimensional rod-shaped AlO6 clusters, formate ligands and 4,4',4''-(2,4,6-trimethylbenzene-1,3,5-triyl) tribenzoic ligands. ZJU-620(Al) exhibits excellent chemical-thermal stability and adsorption for trace BTEX, e.g., benzene adsorption of 3.80 mmol g-1 at P/P0 =0.01 and 298 K, which is the largest one reported. Using Grand Canonical Monte Carlo simulations and Single-crystal X-ray diffraction analyses, it was observed that the excellent adsorption could be attributed to the high affinity of BTEX molecules in ZJU-620(Al) micropores because the kinetic diameters of BTEX are close up to the pore size of ZJU-620(Al).
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Li Gong
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China.,Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China
| |
Collapse
|
34
|
Gong W, Xie Y, Wang X, Kirlikovali KO, Idrees KB, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha OK. Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal-Organic Framework to Boost Xe/Kr Separation. J Am Chem Soc 2023; 145:2679-2689. [PMID: 36652593 DOI: 10.1021/jacs.2c13171] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
35
|
Boosting Xe/Kr separation by a Mixed-linker strategy in Radiation-Resistant Aluminum-Based Metal−Organic Frameworks. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Zhang YZ, Kong XJ, Zhou WF, Li CH, Hu H, Hou H, Liu Z, Geng L, Huang H, Zhang X, Zhang DS, Li JR. Pore Environment Optimization of Microporous Metal-Organic Frameworks with Huddled Pyrazine Pillars for C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4208-4215. [PMID: 36625524 DOI: 10.1021/acsami.2c19779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xiang-Jing Kong
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wen-Feng Zhou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Chun-Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hui Hu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hengnuo Hou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Xiuling Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Da-Shuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
37
|
Belov AS, Novikov VV, Vologzhanina AV, Pavlov AA, Bogomyakov AS, Zubavichus YV, Svetogorov RD, Zelinskii GE, Voloshin YZ. Synthesis, crystal polymorphism and spin crossover behavior of adamantylboron-capped cobalt(II) hexachloroclathrochelate and its transformation into the Co IIICo IICo III-bis-macrobicyclic derivative. Dalton Trans 2023; 52:347-359. [PMID: 36511081 DOI: 10.1039/d2dt03300c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Fast crystallization of the monoclathrochelate cobalt(II) intracomplex [Co(Cl2Gm)3(BAd)2] (where Cl2Gm2- is a dichloroglyoxime dianion and BAd is an adamantylboron capping group, 1), initially obtained by the direct template condensation of the corresponding chelating α-dioximate and cross-linking ligand synthons on the Co2+ ion as a matrix, from benzene or dichloromethane afforded its structural triclinic and hexagonal polymorphs. Its prolonged recrystallization from dichloromethane under air atmosphere and sunlight irradiation unexpectedly gave the crystals of the CoIIICoIICoIII-trinuclear dodecachloro-bis-clathrochelate intracomplex [[CoIII(Cl2Gm)3(BAd)]2CoII] (2), the molecule of which consists of two macrobicyclic frameworks with encapsulated low-spin (LS) Co3+ ions, which are cross-linked by a μ3-bridging Co2+ ion as a bifunctional Lewis-acidic center. The most plausible pathway of such a 1 → 2 transformation is based on the photoinitiated radical oxidation of dichloromethane with air oxygen giving the reactive species. Cobalt(II) monoclathrochelate 1 was found to undergo a temperature-induced spin crossover (SCO) both in its solutions and in the solid state. In spite of the conformational rigidity of the corresponding quasiaromatic diboron-capped tris-α-dioximate framework, the main parameters of this SCO transition (i.e., its completeness and gradual character) are strongly affected by the nature of the used solvent (in the case of its solutions) and by the structural polymorphism of its crystals (in the solid state). In the latter case, the LS state (S = 1/2) of this complex is more thermally stable and, therefore, the cobalt(II)-centered 1/2 → 3/2 SCO is more gradual than that in solutions.
Collapse
Affiliation(s)
- Alexander S Belov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.,National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 630559 Koltsovo, Russia
| | | | - Genrikh E Zelinskii
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Yan Z Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| |
Collapse
|
38
|
Zhang Q, Lian X, Krishna R, Yang SQ, Hu TL. An ultramicroporous metal-organic framework based on octahedral-like cages showing high-selective methane purification from a six-component C1/C2/C3 hydrocarbons mixture. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Liu S, Zeng Y, Liu J, Li J, Peng H, Xie H, Zou H, Xiao C, Hua X, Bao J, Xian L, Li Y, Chi F. Efficient capture and stable storage of radioactive iodine by bismuth-based ZIF-8 derived carbon materials as adsorbents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Zhao Z, Wu K, Peng Y, Liu Y, Deng Z, Han X, Chen S, Chen J, Deng S, Wang J. Microporous carbon granules with narrow pore size distribution and rich oxygen functionalities for Xe/Kr separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Synthesis and Iodine Adsorption Properties of Organometallic Copolymers with Propeller-Shaped Fe(II) Clathrochelates Bridged by Different Diaryl Thioether and Their Oxidized Sulfone Derivatives. Polymers (Basel) 2022; 14:polym14224818. [PMID: 36432945 PMCID: PMC9697507 DOI: 10.3390/polym14224818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Three organometallic copolymers, ICP1-3, containing iron(II) clathrochelate units with cyclohexyl lateral groups and interconnected by various thioether derivatives were synthesized. The reaction of the latter into their corresponding OICP1-3 sulfone derivatives was achieved quantitatively using mild oxidation reaction conditions. The target copolymers, ICP1-3 and OICP1-3, were characterized by various instrumental analysis techniques, and their iodine uptake studies disclosed excellent iodine properties, reaching a maximum of 360 wt.% (qe = 3600 mg g-1). The adsorption mechanisms of the copolymers were explored using pseudo-first-order and pseudo-second-order kinetic models. Furthermore, regeneration tests confirmed the efficiency of the target copolymers for their iodine adsorption even after several adsorption-desorption cycles.
Collapse
|
42
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
43
|
Liu J, Huang J, Zhang MM, KongYang ZL, Liang QR, Chen SS. Two Cu(II) microporous frameworks based on a bifunctional linker and selective gas adsorption properties for CO2. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Wu X, Che Y, Chen L, Amigues EJ, Wang R, He J, Dong H, Ding L. Mapping the Porous and Chemical Structure-Function Relationships of Trace CH 3I Capture by Metal-Organic Frameworks using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47209-47221. [PMID: 36197758 DOI: 10.1021/acsami.2c10861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large-scale computational screening has become an indispensable tool for functional materials discovery. It, however, remains a challenge to adequately interrogate the large amount of data generated by a screening study. Here, we computationally screened 1087 metal-organic frameworks (MOFs), from the CoRE MOF 2014 database, for capturing trace amounts (300 ppmv) of methyl iodide (CH3I); as a primary representative of organic iodides, CH3129I is one of the most difficult radioactive contaminants to separate. Furthermore, we demonstrate a simple and general approach for mapping and interrogating the high-dimensional structure-function data obtained by high-throughput screening; this involves learning two-dimensional embeddings of the high-dimensional data by applying unsupervised learning to encoded structural and chemical features of MOFs. The resulting various porous and chemical structure-function maps are human-interpretable, revealing not only top-performing MOFs but also complex structure-function correlations that are hidden when inspecting individual MOF features. These maps also alleviate the need of laborious visual inspection of a large number of MOFs by clustering similar MOFs, per the encoding features, into defined regions on the map. We also show that these structure-function maps are amenable to supervised classification of the performances of MOFs for trace CH3I capture. We further show that the machine-learning models trained on the 1087 CoRE MOFs can be used to predict an unseen set of 250 MOFs randomly selected from a different MOF database, achieving high prediction accuracies.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Yu Che
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Linjiang Chen
- School of Chemistry and School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Eric Jean Amigues
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| | - Ruiyao Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, P. R. China
| | - Lifeng Ding
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
45
|
Theoretical studies of metal-organic frameworks: Calculation methods and applications in catalysis, gas separation, and energy storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
A ternary mechanism for the facilitated transfer of metal ions onto metal—organic frameworks: implications for the “versatility” of these materials as solid sorbents. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Baig N, Shetty S, Habib SS, Husain AA, Al-Mousawi S, Alameddine B. Synthesis of Iron(II) Clathrochelate-Based Poly(vinylene sulfide) with Tetraphenylbenzene Bridging Units and Their Selective Oxidation into Their Corresponding Poly(vinylene sulfone) Copolymers: Promising Materials for Iodine Capture. Polymers (Basel) 2022; 14:polym14183727. [PMID: 36145872 PMCID: PMC9504420 DOI: 10.3390/polym14183727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
The development of a simple and efficient synthetic methodology to engineer functional polymer materials for gas adsorption is necessary due to its relevance for various applications. Herein, we report the synthesis of metalorganic poly(vinylene sulfide) copolymers CTP1-3 with iron(II) clathrochelate of various side groups connected by tetraphenylbenzene units. CTP1-3 were subsequently oxidized into their respective poly(vinylene sulfone) copolymers CTP4-6 under green reaction conditions. The target copolymers CTP1-6 were characterized using various instrumental analysis techniques. Examination of the iodine adsorption properties of the copolymers revealed high iodine uptake properties, reaching 2360 mg g−1 for CTP2, and whose reusability tests proved its efficient regeneration, thus proving the importance of iron(II) clathrochelate polymers in iodine capture.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Sameh S. Habib
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Ali A. Husain
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Saleh Al-Mousawi
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| |
Collapse
|
48
|
Synthesis of Metalorganic Copolymers Containing Various Contorted Units and Iron(II) Clathrochelates with Lateral Butyl Chains: Conspicuous Adsorbents of Lithium Ions and Methylene Blue. Polymers (Basel) 2022; 14:polym14163394. [PMID: 36015650 PMCID: PMC9412635 DOI: 10.3390/polym14163394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of three highly soluble metalorganic copolymers, TCP1-3, that were made from a one-pot complexation of iron(II) clathrochelate units that are interconnected by various thioether-containing contorted groups. TCP1-3 were converted into their poly(vinyl sulfone) derivatives OTCP1-3 quantitatively via the selective oxidation of the thioether moieties into their respective sulfones. All of the copolymers, TCP1-3 and OTCP1-3, underwent structural analysis by various techniques; namely, 1H- and 13C-nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The copolymers were tested as potent lithium ions adsorbents revealing a maximum adsorption (qm) value of 2.31 mg g-1 for OTCP2. Furthermore, this same copolymer was found to be a promising adsorbent of methylene blue (MEB); an isothermal adsorption study divulged that OTCP2's uptake of MEB from an aqueous solution (following the Langmuir model) was, at maximum adsorption capacity, (qm) of 480.77 mg g-1; whereas the kinetic study divulged that the adsorption follows pseudo second-order kinetics with an equilibrium adsorption capacity (qe,cal) of 45.40 mg g-1.
Collapse
|
49
|
Shetty S, Baig N, Al‐Mousawi S, Alameddine B. Removal of anionic and cationic dyes using porous copolymer networks made from a
S
onogashira cross‐coupling reaction of diethynyl iron (
II
) clathrochelate with various arylamines. J Appl Polym Sci 2022. [DOI: 10.1002/app.52966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| |
Collapse
|
50
|
Firooz SK, Armstrong DW. Metal-organic frameworks in separations: A review. Anal Chim Acta 2022; 1234:340208. [DOI: 10.1016/j.aca.2022.340208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/01/2022]
|