1
|
Ding PC, Yang HX, Li WB, Zhang Y, Lin HY, Wang MM, Tang YY, Li WJ, Yuan HY, Wang XL, Dai S, Liu PF, Yang HG. Palladium Hydride Anchored on SrTiO 3 with Efficient Charge Separation and Surface Reaction Kinetics for Enhanced Photocatalytic Overall Water Splitting. NANO LETTERS 2025; 25:6743-6752. [PMID: 40230171 DOI: 10.1021/acs.nanolett.5c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Cocatalyst engineering is critical for advancing photocatalysis, as it suppresses charge carrier recombination, promotes interfacial electron/hole extraction, and serves as active sites for redox reactions. However, the incompatibility existing between the cocatalyst and host photocatalyst, along with its intrinsic properties of active sites, limits further improvements in the charge separation, surface reaction kinetics, and overall performance. Herein, we introduce palladium hydrides (PdHx) as an efficient cocatalyst on SrTiO3 (STO) for photocatalytic overall water splitting, owing to their similar lattice parameters. The constructed PdHx/STO demonstrates a remarkable 6.4-fold enhancement in hydrogen evolution compared to the Pd/STO control, reaching a rate of 5 mmol·g-1·h-1 at a stoichiometric H2/O2 ratio of 2:1. Structural characterizations and theoretical analyses prove that the in situ formed PdHx sites feature the advantages of accelerated electron extraction and modulated hydrogen adsorption energies for hydrogen evolution; femtosecond transient absorption spectroscopy further reveals prolonged charge carrier lifetime and improved charge transfer efficiency.
Collapse
Affiliation(s)
- Peng Cheng Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Hai Xiang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Wen Bo Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yang Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Meng Min Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Yu Yang Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Wen Jing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Xue Lu Wang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| |
Collapse
|
2
|
Yoo RM, Ngozichukwu B, Yesudoss DK, Lai HE, Arole K, Green MJ, Balbuena PB, Djire A. Vibrational Property Tuning of MXenes Revealed by Sublattice N Reactivity in Polar and Nonpolar Solvents. J Am Chem Soc 2025; 147:10104-10117. [PMID: 39903800 PMCID: PMC11951077 DOI: 10.1021/jacs.4c13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
MXenes, a family of two-dimensional (2D) materials based on transition metal carbides and nitrides, have desirable properties, such as high conductivity, high surface area, and tunable surface groups, for electrocatalysis. Nitride MXenes, in particular, have shown excellent electrocatalytic performance for the nitrogen and oxygen reduction reactions, but a fundamental understanding of how their structures evolve during electrocatalysis remains unknown. Equally important and yet unknown is the effect of the reactivity of the lattice nitrogen on the vibrational behavior of nitride MXenes and the resulting implications in electrocatalysis. Here, we investigate the reactivity of lattice nitrogen and the vibrational properties of titanium nitride MXenes in relevant electrocatalytic solvents using confocal Raman spectroscopy. We found that the vibrational modes of titanium nitride MXenes are attenuated in polar solvents, which is revealed through the alteration of the Raman scattering in solvents. Contrary to polar solvents, the vibrational modes remain unchanged in nonpolar solvents like hydrocarbons due to the inactivity of the lattice nitrogen. We found that this behavior is unique to nitrides because the Raman characteristics of carbides and sulfides are unaffected by the solvent types. However, the inclusion of nitrogen into the carbide structure does exhibit Raman-solvent behavior similar to that of nitrides, suggesting that replacing carbon with nitrogen affects MXene-light interactions. We demonstrated a proof-of-concept utilizing lattice nitrogen reactivity to enhance the electrocatalytic nitrogen reduction reaction for ammonia production. In summary, we elucidate the vibrational properties of nitride MXenes in solvents and demonstrate the tunability of MXene vibrational properties via lattice atom substitution, which in turn can be exploited to advance the applications of MXenes in electrocatalysis.
Collapse
Affiliation(s)
- Ray M.
S. Yoo
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Bright Ngozichukwu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - David Kumar Yesudoss
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hao-En Lai
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kailash Arole
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas 77843, United States
| | - Micah J. Green
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas 77843, United States
| | - Perla B. Balbuena
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Abdoulaye Djire
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Lei H, Yang X, Chen Z, Rawach D, Du L, Liang Z, Li D, Zhang G, Tavares AC, Sun S. Multiscale Understanding of Anion Exchange Membrane Fuel Cells: Mechanisms, Electrocatalysts, Polymers, and Cell Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410106. [PMID: 39797443 PMCID: PMC11854883 DOI: 10.1002/adma.202410106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs. These significant advantages have made AEMFCs highly competitive in the future fuel cell market, particularly after advancements in developing non-platinum-group-metal anode electrocatalysts, anion exchange membranes and ionomers, and in understanding the relationships between cell operating conditions and mass transport in AEMFCs. This review aims to compile recent literature to provide a comprehensive understanding of AEMFCs in three key areas: i) the mechanisms of the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) in alkaline media; ii) recent advancements in the synthesis routes and structure-property relationships of cutting-edge HOR and ORR electrocatalysts, as well as anion exchange membranes and ionomers; and iii) fuel cell operating conditions, including water management and impact of CO2. Finally, based on these aspects, the future development and perspectives of AEMFCs are proposed.
Collapse
Affiliation(s)
- Huiyu Lei
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Xiaohua Yang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Zhangsen Chen
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Diane Rawach
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
| | - Gaixia Zhang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Ana C. Tavares
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| |
Collapse
|
4
|
Zeng R, Li H, Shi Z, Xu L, Meng J, Xu W, Wang H, Li Q, Pollock CJ, Lian T, Mavrikakis M, Muller DA, Abruña HD. Origins of enhanced oxygen reduction activity of transition metal nitrides. NATURE MATERIALS 2024; 23:1695-1703. [PMID: 39227466 DOI: 10.1038/s41563-024-01998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Transition metal nitride (TMN-) based materials have recently emerged as promising non-precious-metal-containing electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media. However, the lack of fundamental understanding of the oxide surface has limited insights into structure-(re)activity relationships and rational catalyst design. Here we demonstrate how a well-defined TMN can dictate/control the as-formed oxide surface and the resulting ORR electrocatalytic activity. Structural characterization of MnN nanocuboids revealed that an electrocatalytically active Mn3O4 shell grew epitaxially on the MnN core, with an expansive strain along the [010] direction to the surface Mn3O4. The strained Mn3O4 shell on the MnN core exhibited an intrinsic activity that was over 300% higher than that of pure Mn3O4. A combined electrochemical and computational investigation indicated/suggested that the enhancement probably originates from a more hydroxylated oxide surface resulting from the expansive strain. This work establishes a clear and definitive atomistic picture of the nitride/oxide interface and provides a comprehensive mechanistic understanding of the structure-reactivity relationship in TMNs, critical for other catalytic interfaces for different electrochemical processes.
Collapse
Affiliation(s)
- Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Zixiao Shi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Lang Xu
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jinhui Meng
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Qihao Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, USA
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| | - Manos Mavrikakis
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Li M, Han G, Tian F, Tao L, Fu L, Li L, Zhou C, He L, Lin F, Zhang S, Yang W, Ke X, Luo M, Yu Y, Xu B, Guo S. Spin-Polarized PdCu-Fe 3O 4 In-Plane Heterostructures with Tandem Catalytic Mechanism for Oxygen Reduction Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412004. [PMID: 39444073 DOI: 10.1002/adma.202412004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Alloying has significantly upgraded the oxygen reduction reaction (ORR) of Pd-based catalysts through regulating the thermodynamics of oxygenated intermediates. However, the unsatisfactory activation ability of Pd-based alloys toward O2 molecules limits further improvement of ORR kinetics. Herein, the precise synthesis of nanosheet assemblies of spin-polarized PdCu-Fe3O4 in-plane heterostructures for drastically activating O2 molecules and boosting ORR kinetics is reported. It is demonstrated that the deliberate-engineered in-plane heterostructures not only tailor the d-band center of Pd sites with weakened adsorption of oxygenated intermediates but also endow electrophilic Fe sites with strong ability to activate O2 molecules, which make PdCu-Fe3O4 in-plane heterostructures exhibit the highest ORR specific activity among the state-of-art Pd-based catalysts so far. In situ electrochemical spectroscopy and theoretical investigations reveal a tandem catalytic mechanism on PdCu-Fe3O4─Fe sites that initially activate molecular O2 and generate oxygenated intermediates being transferred to Pd sites to finish the subsequent proton-coupled electron transfer steps.
Collapse
Affiliation(s)
- Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Guanghui Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fenyang Tian
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Linke Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Chenhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lin He
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Weiwei Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yongsheng Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Liu Q, Du H, Li Z, Wang C, Zeng X, Wang R, Liu Q, Jiang X, Fu G, Tang Y. Cyanogel-Induced Facile Synthesis of Palladium Hydride for Electrocatalytic Oxygen Reduction. CHEMSUSCHEM 2024; 17:e202400680. [PMID: 38747882 DOI: 10.1002/cssc.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Indexed: 06/06/2024]
Abstract
Palladium hydride (PdHx) is one of the well-known electrocatalytic materials, yet its synthesis is still a challenge through an energy-efficient and straightforward method. Herein, we propose a new and facile cyanogel-assisted synthesis strategy for the preparation of PdH0.649 at a mild environment with NaBH4 as the hydrogen source. Unlike traditional inorganic Pd precursors, the unique Pd-CN-Pd bridge in Pdx[Pd(CN)4]y ⋅ aH2O cyanogel offers more favourable spatial sites for insertion of H atoms. The characteristic three-dimensional backbone of cyanogel also acts as a support scaffold resulting in the interconnected network structure of PdH0.649. Due to the incorporation of H atoms and interconnected network structure, the PdH0.649 achieves a high half-wave potential of 0.932 V, a high onset potential of 1.062 V, and a low activation energy, as well as a long-term lifetime for oxygen reduction reaction. Theoretical calculation demonstrates a downshift of the d-band centre of Pd in PdH0.649 owing to the dominant Pd-H incorporation that weakens the binding energies of the *OH intermediate species. Zn-air batteries (ZAB) based on PdH0.649 exhibits high power density, competitive open circuit voltage, and good stability, exceeding that of commercial Pt black. This work not only opens up a new avenue for the development of high-efficiency Pt-free catalysts but also provides an original approach and insight into the synthesis of PdHx.
Collapse
Affiliation(s)
- Qicheng Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Han Du
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhijuan Li
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Caikang Wang
- School of New Energy, Nanjing University of Science and Technology, Wu Xi, Jiangyin, 214400, China
| | - Xin Zeng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ruotong Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qinyi Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xian Jiang
- School of New Energy, Nanjing University of Science and Technology, Wu Xi, Jiangyin, 214400, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Ando S, Yamamoto E, Kobayashi M, Osada M. Atomic Layer Engineering of Pd Nanosheets for an Enhanced Hydrogen Evolution Reaction. NANO LETTERS 2024; 24:11239-11245. [PMID: 39102442 DOI: 10.1021/acs.nanolett.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Thickness control of two-dimensional (2D) metal nanosheets (metallenes) has scientific significance for energy and catalyst applications, yet is unexplored owing to the lack of an efficient approach for the tailored synthesis of metallenes with controlled atomic layers. Here we report a 2D template-directed synthesis of ultrathin Pd nanosheets with well-controlled thicknesses. Molecularly thin single-crystalline Pd nanosheets with well-defined hexagonal morphologies were synthesized via a one-pot method with 2,4,6-trichlorophenyl formate. Such Pd nanosheets were used as hard templates for the tailored synthesis of the Pd nanosheets with controlled thicknesses (9, 11, 13, and 15 atomic layers). Hard X-ray photoelectron spectroscopy and density functional theory calculations revealed unique electronic states in thickness-controlled Pd nanosheets; these states included reduced surface charges to bulk, increased work functions, and decreased d-band centers. Thus, atomic layer engineering of Pd nanosheets enabled the fine-tuning of the surface electronic states to improve the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Sumiya Ando
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
| | - Eisuke Yamamoto
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
| | - Makoto Kobayashi
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
| | - Minoru Osada
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Luo L, Liu X, Zhao X, Zhang X, Peng HJ, Ye K, Jiang K, Jiang Q, Zeng J, Zheng T, Xia C. Pressure-induced generation of heterogeneous electrocatalytic metal hydride surfaces for sustainable hydrogen transfer. Nat Commun 2024; 15:7845. [PMID: 39245756 PMCID: PMC11381543 DOI: 10.1038/s41467-024-52228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Metal hydrides are crucial intermediates in numerous catalytic reactions. Intensive efforts have been dedicated to constructing molecular metal hydrides, where toxic precursors and delicate mediators are usually involved. Herein, we demonstrate a facile pressure-induced methodology to generate a cost-effective heterogeneous electrocatalytic metal hydride surface for sustainable hydrogen transfer. Taking carbon dioxide (CO2) electroreduction as a model system and zinc (Zn), a well-known carbon monoxide (CO)-selective catalyst, as a model catalyst, we showcase a homogeneous-type hydrogen atom transfer process induced by heterogeneous hydride surfaces, enabling direct hydrogenation pathways traditionally considered "prohibited". Specifically, the maximal Faradaic efficiency for formate is enhanced by ~fivefold to 83% under ambient conditions. Experimental and theoretical analyses reveal that unlike the distal hydrogenation route for CO2 to CO over pristine Zn, the Zn hydride surface enables direct hydrogenation at the carbon site of CO2 to form formate. This work provides a promising material platform for sustainable synthesis.
Collapse
Affiliation(s)
- Laihao Luo
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Xinyan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Xinyu Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Xinyan Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, Zhejiang, P. R. China
| | - Ke Ye
- Interdisciplinary Research Center, Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Kun Jiang
- Interdisciplinary Research Center, Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, Zhejiang, P. R. China.
| |
Collapse
|
9
|
Ding C, Zhao Y, Qiao Z. Modification of carbon nanofibers for boosting oxygen electrocatalysis. Phys Chem Chem Phys 2024; 26:13606-13621. [PMID: 38682278 DOI: 10.1039/d3cp05904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Oxygen electrocatalysis is a key process for many effective energy conversion techniques, which requires the development of high-performance electrocatalysts. Carbon nanofibers featuring good electronic conductivity, large specific surface area, high axial strength and modulus, and good resistance toward harsh environments have thus been recognized as reinforcements in oxygen electrocatalysis. This review summarizes the recent progress on carbon nanofibers as electrocatalysts for oxygen electrocatalysis, with special focus on the modulation of carbon nanofibers for further elevating their electrocatalytic performance, which includes morphological and structural engineering, surface and pore size distribution, defect engineering, and coupling with other electroactive materials. Additionally, the correlation between the geometrical/electronic structure of their active centers and electrocatalytic activity is systematically discussed. Finally, conclusions and perspectives of this interesting research field are presented, which we hope will provide guidance for the future fabrication of more advanced carbon-fiber-based electrocatalysts.
Collapse
Affiliation(s)
- Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China
- Jiangsu Key Laboratory of High-Performance Fiber Composites, JITRI-PGTEX Joint Innovation Center, PGTEX CHINA Co., Ltd., Changzhou, Jiangsu Province, 213164, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| |
Collapse
|
10
|
Ando S, Yamamoto E, Kobayashi M, Kumatani A, Osada M. Facile Synthesis of Pd Nanosheets and Implications for Superior Catalytic Activity. ACS NANO 2024; 18:461-469. [PMID: 37929939 DOI: 10.1021/acsnano.3c07861] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
As a member of the 2D materials family, 2D metal nanosheets (metallenes) have received increasing attention due to their intriguing properties distinct from those of graphene and other inorganic 2D nanosheets. However, the synthesis of metallenes is still challenging, owing to the lack of an efficient synthetic approach. Here we present a facile one-pot approach to the controlled synthesis of Pd nanosheets. A key feature of this process is a stepwise reaction using 2,4,6-trichlorophenyl formate (TCPF); TCPF emits carbon monoxide gas, which acts as both a reductant and a surface capping agent, promoting the anisotropic 2D growth of the Pd nanosheets. Photoemission spectroscopy revealed some peculiar features of the surface charge and valence band states due to suppressed electron transfer at the 2D surface. This surface state caused improved catalytic activity for the hydrogen evolution reaction compared to that of bulk Pd.
Collapse
Affiliation(s)
- Sumiya Ando
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
| | - Eisuke Yamamoto
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
| | - Makoto Kobayashi
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
| | - Akichika Kumatani
- Institute of Engineering Innovation (IEI), School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- WPI-Advanced Institute for Materials Research (AIMR) & Graduate School of Environmental Studies, Tohoku University, Sendai 980-8577, Japan
| | - Minoru Osada
- Department of Materials Chemistry & Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
- Research Center for Crystalline Materials Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Zhao T, Li M, Xiao D, Yang X, An L, Deng Z, Shen T, Gong M, Chen Y, Liu H, Feng L, Yang X, Li L, Wang D. Improving Alkaline Hydrogen Oxidation through Dynamic Lattice Hydrogen Migration in Pd@Pt Core-Shell Electrocatalysts. Angew Chem Int Ed Engl 2023:e202315148. [PMID: 38078596 DOI: 10.1002/anie.202315148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/29/2023]
Abstract
Tracking the trajectory of hydrogen intermediates during hydrogen electro-catalysis is beneficial for designing synergetic multi-component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization-driven electrochemical hydrogenation process from Pd@Pt to PdHx @Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate-determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx @Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro-catalysis.
Collapse
Affiliation(s)
- Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengting Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lulu An
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
12
|
Zhou X, Zhang A, Chen B, Zhu S, Cui Y, Bai L, Yu J, Ge Y, Yun Q, Li L, Huang B, Liao L, Fu J, Wa Q, Wang G, Huang Z, Zheng L, Ren Y, Li S, Liu G, Zhai L, Li Z, Liu J, Chen Y, Ma L, Ling C, Wang J, Fan Z, Du Y, Shao M, Zhang H. Synthesis of 2H/fcc-Heterophase AuCu Nanostructures for Highly Efficient Electrochemical CO 2 Reduction at Industrial Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304414. [PMID: 37515580 DOI: 10.1002/adma.202304414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.
Collapse
Affiliation(s)
- Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Cui
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Licheng Bai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518057, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Lingwen Liao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jiaju Fu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Guangyao Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
13
|
Sun X, Wang P, Davey K, Zheng Y, Qiao SZ. Mild Methane Electrochemical Oxidation Boosted via Plasma Pre-Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303428. [PMID: 37434078 DOI: 10.1002/smll.202303428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Obtaining partial methane oxidation reaction (MOR) with various oxygenates via a mild electrochemical method is practically difficult because of activation of stable C─H bond and consequent reaction pathway regulation. Here, a real-time tandem MOR with cascaded plasma and electrocatalysis to activate and convert the methane (CH4 ) synergistically is reported for the first time. Boosted CH4 conversion is demonstrated toward value-added products including, alcohols, carboxylates, and ketone via use of commercial Pd-based electrocatalysts. Compared with hash industrial processes, a mild condition, that is, anode potential < 1.0 V versus RHE (reversible hydrogen electrode) is used that mitigates overoxidation of oxygenates and obviates competing reaction(s). One evidence that Pd(II) sites and surface adsorbed hydroxyls are important in facilitating activated-CH4 species conversion, and establish a reaction mechanism for conversion(s) that involves coupling reactions between adsorbed hydroxyls, carbon monoxide and C1 /C2 alkyls. One conclude that pre-activation is important in boosting electrochemical partial MOR under mild conditions and will be of benefit in the development of sustainable CH4 conversion technology.
Collapse
Affiliation(s)
- Xiaogang Sun
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
14
|
Li L, Xu H, Zhu Q, Meng X, Xu J, Han M. Recent advances of H-intercalated Pd-based nanocatalysts for electrocatalytic reactions. Dalton Trans 2023; 52:13452-13466. [PMID: 37721115 DOI: 10.1039/d3dt02201c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The intercalation of H into Pd-based nanocatalysts plays a crucial role in optimizing the catalytic performance by tailoring the structural and electronic properties. We herein present a comprehensive review about the recent progress of interstitial hydrogen atom modified Pd-based nanocatalysts for various energy-related electrocatalytic reactions. Before systematically manifesting the great potential of Pd-based hydrides for electrocatalytic applications, we have briefly illustrated the synthesis strategies and corresponding mechanisms for the Pd-based hydrides. This is followed by a comprehensive discussion about the fundamentals and functions of H intercalation in tailoring their physicochemical and electrochemical properties. Subsequently, we focus on the widespread application of Pd-based hydrides for electrocatalytic reactions, with the emphasis on the role of H intercalation played in determining electrocatalytic performance. Finally, the future direction and perspectives regarding the development of more efficient Pd-based hydrides are also manifested.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Hongliang Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Xiangjun Meng
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Jixing Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| |
Collapse
|
15
|
Feng G, Ning F, Pan Y, Chen T, Song J, Wang Y, Zou R, Su D, Xia D. Engineering Structurally Ordered High-Entropy Intermetallic Nanoparticles with High-Activity Facets for Oxygen Reduction in Practical Fuel Cells. J Am Chem Soc 2023; 145:11140-11150. [PMID: 37161344 DOI: 10.1021/jacs.3c00868] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
High-entropy solid-solution alloys have generated significant interest in energy conversion technologies. However, structurally ordered high-entropy intermetallic (HEI) nanoparticles (NPs) have been rarely reported in electrocatalysis applications. Here, we demonstrate structurally ordered PtIrFeCoCu HEI (PIFCC-HEI) NPs with extremely superior performance for both oxygen reduction reaction (ORR) and H2/O2 fuel cells. The PIFCC-HEI NPs show an average diameter of 6 nm. Atomic structural characterizations including atomic-resolution energy-dispersive spectroscopy (EDS) mapping technology confirm the ordered intermetallic structure of PIFCC-HEI NPs. As an electrocatalyst for ORR, the PIFCC-HEI/C achieves an ultrahigh mass activity of 7.14 A mgnoble metals-1 at 0.85 V and extraordinary durability over 60 000 potential cycles. Moreover, the fuel cell assembled with PIFCC-HEI/C as the cathode delivers an ultrahigh peak power density of 1.73 W cm-2 at a back pressure of 1.0 bar and almost no working voltage decay after 80 h operation, certifying the top-level performance among reported fuel cells. Theoretical calculations combined with experimental results reveal that the superior performance of PIFCC-HEI/C for ORR and fuel cells is attributed to its ultrahigh-activity facets. Especially, the (001) facet affords the lowest activation barriers for the rate-limiting step, the optimal downshift of the d-band center, and more efficient regulation of electron structures for ORR. This work not only opens up a new avenue for the fabrication of high-activity facets in the catalysts but also highlights structurally ordered HEI NPs as sufficiently effective catalysts in practical fuel cells and other potential energy-related applications.
Collapse
Affiliation(s)
- Guang Feng
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Fanghua Ning
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tao Chen
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jin Song
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative innovation center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ruqiang Zou
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
16
|
Fan J, Feng Z, Mu Y, Ge X, Wang D, Zhang L, Zhao X, Zhang W, Singh DJ, Ma J, Zheng L, Zheng W, Cui X. Spatially Confined PdH x Metallenes by Tensile Strained Atomic Ru Layers for Efficient Hydrogen Evolution. J Am Chem Soc 2023; 145:5710-5717. [PMID: 36877096 DOI: 10.1021/jacs.2c11692] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Hydride metallenes show great potential for hydrogen-related catalytic applications due to favorable electronic structures modulated by interstitial hydrogen atoms and large active surface areas of metallenes. Metallene nanostructures generally have compressive strain relative to bulk, which can affect both the stability and the catalytic behavior of hydride metallenes but in general cannot be controlled. Here, we demonstrate highly stable PdHx metallenes with a tensile strained Ru surface layer and reveal the spatial confinement effect of the Ru skin by multiple spectroscopic characterizations and molecular dynamics simulations. These PdHx@Ru metallenes with a 4.5% expanded Ru outer layer exhibit outstanding alkaline hydrogen evolution reaction activity with a low overpotential of 30 mV at 10 mA cm-2 and robust stability with negligible activity decay after 10,000 cycles, which are superior to commercial Pt/C and most reported Ru-based electrocatalysts. Control experiments and first-principles calculations reveal that the tensile strained Ru outer layer lowers the energy barrier of H2O dissociation and provides a moderate hydrogen adsorption energy.
Collapse
Affiliation(s)
- Jinchang Fan
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Zhipeng Feng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Yajing Mu
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Xin Ge
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Dewen Wang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiao Zhao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Wei Zhang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - David J Singh
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 China
| | - Weitao Zheng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun 130012, China
| |
Collapse
|
17
|
Xing GN, Wei DY, Zhang H, Tian ZQ, Li JF. Pd-based Nanocatalysts for Oxygen Reduction Reaction: Preparation, Performance, and in-Situ Characterization. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Xing G, Tong M, Yu P, Wang L, Zhang G, Tian C, Fu H. Reconstruction of Highly Dense Cu−N
4
Active Sites in Electrocatalytic Oxygen Reduction Characterized by Operando Synchrotron Radiation. Angew Chem Int Ed Engl 2022; 61:e202211098. [PMID: 35993239 DOI: 10.1002/anie.202211098] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/06/2022]
Abstract
The emerging star of single atomic site (SAS) catalyst has been regarded as the most promising Pt-substituted electrocatalyst for oxygen reduction reaction (ORR) in anion-exchange membrane fuel cells (AEMFCs). However, the metal loading in SAS directly affects the whole device performance. Herein, we report a dual nitrogen source coordinated strategy to realize high dense Cu-N4 SAS with a metal loading of 5.61 wt% supported on 3D N-doped carbon nanotubes/graphene structure wherein simultaneously performs superior ORR activity and stability in alkaline media. When applied in H2 /O2 AEMFC, it could reach an open-circuit voltage of 0.90 V and a peak power density of 324 mW cm-2 . Operando synchrotron radiation analyses identify the reconstruction from initial Cu-N4 to Cu-N4 /Cu-nanoclusters (NC) and the subsequent Cu-N3 /Cu-NC under working conditions, which gradually regulate the d-band center of central metal and balance the Gibbs free energy of *OOH and *O intermediates, benefiting to ORR activity.
Collapse
Affiliation(s)
- Gengyu Xing
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Miaomiao Tong
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Peng Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Guangying Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| |
Collapse
|
19
|
Wang D, Jiang X, Lin Z, Zeng X, Zhu Y, Wang Y, Gong M, Tang Y, Fu G. Ethanol-Induced Hydrogen Insertion in Ultrafine IrPdH Boosts pH-Universal Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204063. [PMID: 35934833 DOI: 10.1002/smll.202204063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Engineering Pt-free catalysts for hydrogen evolution reaction (HER) with high activity and stability is of great significance in electrochemical hydrogen production. Herein, in situ chemical H intercalation into ultrafine Pd to activate this otherwise HER-inferior material to form the ultrafine IrPdH hydride as an efficient and stable HER electrocatalyst is proposed. The formation of PdIrH depends on a new hydrogenation strategy via using ethanol as the hydrogen resource. It is demonstrated that H atoms in IrPdH originate from the OH and CH2 of ethanol, which fills the gap of ethanol as the hydrogen source for the preparation of Pd hydride. Thanks to the incorporation of H/Ir atoms and ultrafine structure, the IrPdH exhibits superior HER activity and stability in the whole pH range. The IrPdH delivers very low overpotentials of 14, 25 and 60 mV at a current density of 10 mA cm-2 respectively in 0.5 m H2 SO4 , 1 m KOH, and 1 m PBS electrolytes, which are much better than those of commercial Pt/C and most reported noble metal electrocatalysts. Theoretical calculations confirm that interstitial hydrogen availably refines the electronic density of Pd and Ir sites, which optimizes the adsorption of *H and leads to the significant enhancement of HER performance.
Collapse
Affiliation(s)
- Dayu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xian Jiang
- School of New Energy, Nanjing University of Science and Technology, Jiangyin, 214443, China
| | - Zijing Lin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Zeng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yinyan Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yongchao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), Wuhan, Hubei, 430078, China
| | - Mingxing Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), Wuhan, Hubei, 430078, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
20
|
Xing G, Tong M, Yu P, Wang L, Zhang G, Tian C, Fu H. Reconstruction of Highly Dense Cu−N4 Active Sites in Electrocatalytic Oxygen Reduction Characterized by Operando Synchrotron Radiation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gengyu Xing
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Miaomiao Tong
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Peng Yu
- Harbin Normal University Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering CHINA
| | - Lei Wang
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Guangying Zhang
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Chungui Tian
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Honggang Fu
- Heilongjiang University Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China Xuefu Road 150080 Harbin CHINA
| |
Collapse
|