1
|
Lluna-Galán C, Arango-Daza JC, Gómez D, Concepción P, Sun R, Calvino JJ, Simonelli L, Adam R, Cabrero-Antonino JR. Building lactams by highly selective hydrodeoxygenation of cyclic imides using an alumina-supported AgRe bimetallic nanocatalyst. Nat Commun 2025; 16:4119. [PMID: 40316551 PMCID: PMC12048504 DOI: 10.1038/s41467-025-59514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
The rational design of robust nanocatalysts containing the suitable active sites for building relevant organic compounds, such as lactams, is a desired approximation towards the development of a sustainable fine chemistry field. In that sense, the design of a proper nanomaterial able to mediate the selective hydrodeoxygenation of cyclic imides to lactams with high tolerance to the preservation of aromatic rings remains rather unexplored. Here, we show the design of a bimetallic AgRe nanomaterial with notable activity and selectivity to mediate this transformation affording more than 60 lactams from the corresponding imides. Interestingly, in this work we disclose that the optimal AgRe nanocatalyst is constituted by AgReO4 nanoaggregates that undergo an in situ hydrogenative dispersion to form the active centers composed by Ag0 nanoparticles and ReOx species. Deep characterization, together with kinetic and mechanistic studies, have revealed that the intimate Ag-Re contact intrinsic to AgReO4 species is key for the formation of the most active catalytic sites and the proper bimetallic cooperation required for mediating the desired process.
Collapse
Affiliation(s)
- Carles Lluna-Galán
- Instituto de Tecnología Química. Universitat Politècnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC). Avda. de los Naranjos s/n, València, 46022, Spain
| | - Juan Camilo Arango-Daza
- Instituto de Tecnología Química. Universitat Politècnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC). Avda. de los Naranjos s/n, València, 46022, Spain
| | - Daviel Gómez
- Instituto de Tecnología Química. Universitat Politècnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC). Avda. de los Naranjos s/n, València, 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química. Universitat Politècnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC). Avda. de los Naranjos s/n, València, 46022, Spain
| | - Rong Sun
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz. Puerto Real, Cádiz, 11510, Spain
| | - Jose J Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz. Puerto Real, Cádiz, 11510, Spain
| | - Laura Simonelli
- CELLS-ALBA Synchrotron Radiation Facility. Cerdanyola del Vallès, Barcelona, 08390, Spain
| | - Rosa Adam
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, València, 46100, Spain.
| | - Jose R Cabrero-Antonino
- Instituto de Tecnología Química. Universitat Politècnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC). Avda. de los Naranjos s/n, València, 46022, Spain.
| |
Collapse
|
2
|
Oliver Z, Abrams DJ, Cardinale L, Chen CJ, Beutner GL, Caille S, Cohen B, Deng L, Diwan M, Frederick MO, Harper K, Hawkins JM, Lehnherr D, Lucky C, Meyer A, Noh S, Nunez D, Quasdorf K, Teli J, Stahl SS, Schreier M. Scaling Organic Electrosynthesis: The Crucial Interplay between Mechanism and Mass Transport. ACS CENTRAL SCIENCE 2025; 11:528-538. [PMID: 40290154 PMCID: PMC12022915 DOI: 10.1021/acscentsci.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 04/30/2025]
Abstract
Organic electrosynthesis opens new avenues of reactivity and promises more sustainable practices in the preparation of fine chemicals and pharmaceuticals. The full value of this approach will be realized by taking these processes to the production scale; however, achieving this goal will require a better understanding of the influence of mass transport on reaction behavior and the interactions between reactive species and electrodes inherent to organic electrosynthesis. The limited options for cell geometries used on small scale limit elucidation of these features. Here, we show how advanced cell geometries allow us to control the interplay between reaction mechanism and mass transport, leading to improved performance of three modern organic electrosynthetic reactions. Each reaction shows a unique relationship with mass transport, highlighting the importance of understanding this relationship further to maximize the utility of organic electrosynthesis at scale.
Collapse
Affiliation(s)
- Zachary
J. Oliver
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dylan J. Abrams
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Luana Cardinale
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chih-Jung Chen
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gregory L. Beutner
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Seb Caille
- Drug
Substance Technologies, Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Benjamin Cohen
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Lin Deng
- Small
Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Moiz Diwan
- Process
Research
& Development, AbbVie, 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Michael O. Frederick
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Kaid Harper
- Process
Research
& Development, AbbVie, 1401 Sheridan Road, North Chicago, Illinois 60064, United States
| | - Joel M. Hawkins
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dan Lehnherr
- Process
Research
& Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christine Lucky
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alex Meyer
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Seonmyeong Noh
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Diego Nunez
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle Quasdorf
- Drug
Substance Technologies, Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jaykumar Teli
- Delivery
Devices & Connected Solutions, Eli Lilly and Company, Lilly Capability Center India, Bangalore, Karnataka 560103, India
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Marcel Schreier
- Department
of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Zhang J, Spreckelmeyer N, Lammert J, Wiethoff MA, Milner MJ, Mück-Lichtenfeld C, Studer A. Photocatalytic Hydrogenation of Quinolines to Form 1,2,3,4-Tetrahdyroquinolines Using Water as the Hydrogen Atom Donor. Angew Chem Int Ed Engl 2025:e202502864. [PMID: 40223604 DOI: 10.1002/anie.202502864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
The design of a sequential process combining hydrogenation and a subsequent stereomutation is an attractive strategy for the stereoselective reduction of cyclic disubstituted π-systems to access the thermodynamically more stable trans isomer, which would be the minor compound considering a kinetically controlled cis hydrogenation process. Herein, we demonstrate stereoselective photocatalytic phosphine-mediated quinoline reductions with water as the hydrogen atom source under mild conditions to afford the corresponding 1,2,3,4-tetrahydroquinolines with complete selectivity towards reduction of the heteroaromatic part. The method shows broad functional group tolerance and provides access to trans-2,3-disubstituted tetrahydroquinolines with moderate to excellent diastereoselectivity. These trans isomers are not readily obtained using established methods, as transition-metal-catalyzed regioselective quinoline hydrogenations provide the corresponding cis-2,3-disubstituted isomers with high selectivity. Mechanistic studies reveal that the hydrogenation of the 2,3-disubstituted quinolines proceeds through a cascade process comprising an initial cis selective photocatalytic hydrogenation of the heteroarene core of the quinoline, followed by a trans selective photoisomerization.
Collapse
Affiliation(s)
- Jingjing Zhang
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | - Nico Spreckelmeyer
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | | | | | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
- Center for Multiscale Theory and Computation, Universität Münster, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| |
Collapse
|
4
|
Yang XY, Zhang XG, Zhou QL. Enantioselective Reduction of 1-Naphthamides by Electrochemical Reduction and Catalytic Asymmetric Hydrogenation in Tandem. J Am Chem Soc 2025; 147:10052-10058. [PMID: 40083118 DOI: 10.1021/jacs.4c18009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Chiral 1-tetrahydronaphthamides are the core structures of many bioactive molecules, yet their efficient asymmetric synthesis from a simple feedstock remains a challenge. Herein, we present a one-pot synthesis strategy that combines electrochemical reduction and ruthenium-catalyzed asymmetric hydrogenation to achieve the enantioselective reduction of 1-naphthalenamides to chiral 1-tetrahydronaphthamides. The protocol provides a practical platform for selectively constructing high-value chiral tetrahydronaphthenes from readily available naphthalene feedstock, thereby expanding the scope of asymmetric hydrogenation. The synthetic utility of this protocol is further demonstrated through the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Xin-Yi Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xuan-Ge Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Shellnutt ZS, Koide K. Atmosphere Effects on Arene Reduction with Lithium and Ethylenediamine in THF. J Org Chem 2025; 90:3684-3697. [PMID: 40028993 PMCID: PMC11915386 DOI: 10.1021/acs.joc.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Birch reductions employing lithium metal have been performed mostly under argon due to concerns about forming metal nitrides from the reduction of dinitrogen if performed under nitrogen. Although it is generally understood that inert atmospheres are standard for Birch and Birch-type (lithium, ethylenediamine, t-BuOH, THF) reductions, the atmosphere effect on Birch reduction has not been studied. Herein, we report the reduction of model substrates using lithium metal and ethylenediamine in THF under various atmospheric conditions. The reductions under argon and nitrogen atmospheres afforded essentially the same yields. Surprisingly, oxygen not only perturbed the yields in some cases but also controlled regioselectivity for a subset of naphthalenes. We propose a mechanism underlying the unexpected oxygen-dependent regioselectivity for the Birch-type reduction of naphthalenes. This work shows that the Birch-type reduction may be performed under a nitrogen atmosphere and may account for a fraction of oxygen-sensitive Birch-type reductions.
Collapse
Affiliation(s)
- Zachary S Shellnutt
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Frank N, Leutzsch M, List B. Bro̷nsted Acid-Catalyzed Reduction of Furans. J Am Chem Soc 2025; 147:7932-7938. [PMID: 39970008 PMCID: PMC11887439 DOI: 10.1021/jacs.4c18485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Bioderived furans play a pivotal role in advancing defossilized chemical pathways. The complete reduction of furans currently relies on impractical metal-catalyzed hydrogenations at high pressures and temperatures. In addition, the Birch reduction of unbiased furans to 2,5-dihydrofurans remains an unsolved synthetic challenge. Herein, we report a mild Bro̷nsted acid-catalyzed reduction of furans to 2,5-dihydro- and/or tetrahydrofuran derivatives using silanes as reducing agents. In particular, the first formal Birch reduction of furan itself is achieved. Mechanistic investigations reveal an intricate behavior of HFIP as the crucial solvent, preventing the intrinsic polymerization behavior of furans under acidic conditions and introducing additional driving force by specific product binding.
Collapse
Affiliation(s)
- Nils Frank
- Max-Planck-Institut für
Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für
Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| | - Benjamin List
- Max-Planck-Institut für
Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| |
Collapse
|
7
|
De Bon F, Vaz Simões A, Serra AC, Coelho JFJ. Alternating and Pulsed Current Electrolysis for Atom Transfer Radical Polymerization. Chempluschem 2025; 90:e202400661. [PMID: 39620913 DOI: 10.1002/cplu.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Indexed: 12/12/2024]
Abstract
This concept focuses on the application of alternating current (AC) and pulsed electrolysis in Atom Transfer Radical Polymerization (ATRP) for polymer synthesis. AC electrolysis, which oscillates between reduction and oxidation, can be tuned to increase selectivity for a specific reaction pathway, minimize side reactions, and improve product selectivity and reagent conversion. Pulsed electrolysis can also be used to sustain electrochemical reactions in ATRP. The challenges and limitations associated with AC electrolysis are discussed along with an outlook on future developments in polymer synthesis and related applications. A concise overview of recent developments in electro-organic synthesis using AC electrolysis will be provided.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Alexandre Vaz Simões
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Jorge F J Coelho
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
8
|
Zhou X, Zhang J, Sun M, Yang HQ, Wang Z, Yang J, Huang GB. Hexafluoroisopropanol (HFIP)-Promoted Hydrodifluoroalkylation of Furans and Vinyl Ethers Using Difluorinated Silyl Enol Ethers for the Synthesis of gem-Difluorinated Ethers. J Org Chem 2025; 90:2879-2888. [PMID: 39964238 DOI: 10.1021/acs.joc.4c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A hexafluoroisopropanol (HFIP)-promoted hydrodifluoroalkylation of furans and vinyl ethers with difluorinated silyl enol ethers has been developed. Because of the inherent electron richer nature of furans and the poor nucleophilicity of difluorinated silyl enol ethers, the employment of simple furans as the substrates for nucleophilic dearomatization without a metal or stoichiometric chemical oxidizing reagent is challenging, especially considering the rearomatization driving force and ring fragmentation of the furan ring system. This protocol exploits the formation of oxocarbenium intermediate from furans using HFIP as a proton source to allow the nucleophilic addition of difluorinated silyl enol ethers, which provides an efficient synthetic strategy to install a gem-difluorinated group into heterocycles.
Collapse
Affiliation(s)
- Xiaogang Zhou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Hai-Qin Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Guo-Bo Huang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
9
|
Ewing TEH, Kurig N, Yamaki YR, Sun J, Knowles TR, Gollapudi A, Kawamata Y, Baran PS. Pyrolytic Carbon: An Inexpensive, Robust, and Versatile Electrode for Synthetic Organic Electrochemistry. Angew Chem Int Ed Engl 2025; 64:e202417122. [PMID: 39449542 DOI: 10.1002/anie.202417122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Synthetic organic electrochemistry is recognized as one of the most sustainable forms of redox chemistry that can enable a wide variety of useful transformations. In this study, readily prepared pyrolytic carbon electrodes are explored in several powerful rAP transformations as well as C-C and C-N bond forming reactions. Pyrolytic carbon provides an alternative to classic amorphous carbon-based materials that are either expensive or ill-suited to large-scale flow reactions.
Collapse
Affiliation(s)
- Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nils Kurig
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Jiawei Sun
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Timothy R Knowles
- KULR Technology Corp., 4863 Shawline St., Suite B, San Diego, CA, 92111, USA
| | - Asha Gollapudi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
10
|
Li D, Zhang L, Li D, Yu P, Shen T. Paired electrocatalysis enabled oxidative coupling of styrenes with alkyl radicals. Org Biomol Chem 2024; 23:78-82. [PMID: 39506522 DOI: 10.1039/d4ob01605j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
A paired electrocatalysis strategy for intermolecular oxidative cross-dehydrocoupling between styrenes and ethers or p-methylphenol derivatives using ketone as a mild oxidant is described. This approach enables the generation of Csp3 carbon-centered radicals through anodic oxidation, followed by reductive coupling of ketones at the cathode, ultimately yielding valuable oxidative alkylation products.
Collapse
Affiliation(s)
- Dong Li
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, P. R. China.
| | - Ling Zhang
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Daixi Li
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Peng Yu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, P. R. China.
| | - Tao Shen
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
11
|
Devi K, Shehzad A, Wiesenfeldt MP. Organophotocatalytic Reduction of Benzenes to Cyclohexenes. J Am Chem Soc 2024; 146:34304-34310. [PMID: 39629986 DOI: 10.1021/jacs.4c14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The reduction of abundant benzene rings to scarce C(sp3)-rich motifs is invaluable for drug design, as C(sp3) content is known to correlate with clinical success. Cyclohexenes are attractive targets, as they can be rapidly elaborated into large product libraries and are stable against rearomatization. However, partial reduction reactions of benzenes to cyclohexenes are rare and have a very narrow scope. Herein we report a broadly applicable method that converts electron-poor benzenes to cyclohexenes and tolerates Lewis-basic functional groups such as triazoles and thioethers as well as reducible groups such as cyanides, alkynes, and sulfones. The reaction utilizes an organic donor that induces mild arene reduction by preassociation to a photoexcitable electron donor-acceptor (EDA) complex and mild isomerization of redox-inert 1,4-cyclohexadienes to reducible 1,3-cyclohexadienes without a strong base in its oxidized thioquinone methide form.
Collapse
Affiliation(s)
- Kirti Devi
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Asad Shehzad
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Mario P Wiesenfeldt
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Franov LJ, Wilsdon TL, Czyz ML, Polyzos A. Electroinduced Reductive and Dearomative Alkene-Aldehyde Coupling. J Am Chem Soc 2024; 146:29450-29461. [PMID: 39417706 DOI: 10.1021/jacs.4c08691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The direct coupling of alkene feedstocks with aldehydes represents an expedient approach to the generation of new and structurally diverse C(sp3)-hybridized alcohols that are primed for elaboration into privileged architectures. Despite their abundance, current disconnection strategies enabling the direct coupling of carbon-carbon π-bonds and aldehydes remain challenging because contemporary methods are often limited by substrate or functional group tolerance and compatibility in complex molecular environments. Here, we report a coupling between simple alkenes, heteroarenes and unactivated aliphatic aldehydes via an electrochemically induced reductive activation of C-C π-bonds. The cornerstone of this approach is the discovery of rapid alternating polarity (rAP) electrolysis to access and direct highly reactive radical anion intermediates derived from conjugated alkenes and heterocyclic compounds. Our developed catalyst-free protocol enables direct access to new and structurally diverse C(sp3)-hybridized alcohol products. This is achieved by the controlled reduction of conjugated alkenes and the C2-C3 π-bond in heteroarenes via an unprecedented reductive dearomative functionalization for heterocyclic compounds. Experimental mechanistic studies demonstrate a kinetically biased single-electron reduction of C-C π-bonds over aldehydes. Application of rAP enables chemoselective generation of olefinic radical anion intermediates and avoids undesired saturative overreduction. Overall, this technology provides a versatile approach to the reductive coupling of olefin and heterocycle feedstocks with aliphatic aldehydes, offering straightforward access to diverse C(sp3)-rich oxygenated scaffolds.
Collapse
Affiliation(s)
- Liam J Franov
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tayla L Wilsdon
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Milena L Czyz
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
13
|
Poh YR, Kawamata Y, Yuen-Zhou J. Physicochemical Principles of AC Electrosynthesis: Reversible Reactions. J Am Chem Soc 2024; 146:24978-24988. [PMID: 39214628 DOI: 10.1021/jacs.4c06664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrolysis integrates renewable energy into chemical manufacturing and is key to sustainable chemistry. Controlling the waveform beyond direct current (DC) addresses the long-standing obstacle of chemoselectivity, yet it also expands the parameter set to optimize, creating a demand for theoretical predictions. Here, we report the first analytical theory for predicting chemoselectivity in an alternating current (AC) electrosynthesis. The mechanism is a selective reversal of the unwanted redox reaction during periods of opposite polarity, reflected in the final reaction outcome as a time-averaged effect. In the ideal scenario of all redox reactions being reversible, square AC waveform biases the outcome toward more overoxidation/over-reduction, whereas sine AC waveform exhibits the opposite effect. However, in a more realistic scenario of some redox reactions being quasi-reversible, sine AC may behave mostly like square AC. These predictions are in numerical agreement with model experiments employing acetophenone and align qualitatively with the literature precedent. Collectively, this study provides theoretical proof for a growing trend that promotes changing waveforms to overcome limitations challenging to address by varying canonical electrochemical parameters.
Collapse
Affiliation(s)
- Yong Rui Poh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Bera S, Sen S, Maiti D. Unveiling Alternate Electrode Electrolysis in Electro-Photochemical and Electro-Organic Syntheses. J Am Chem Soc 2024; 146:25166-25175. [PMID: 39193802 DOI: 10.1021/jacs.4c08826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Electro-photochemical organic synthesis is a rapidly growing field. Recently, technological advancement has contributed significantly to improve electro- and photolytic organic transformations in terms of energy efficiency and productivity. Herein, we have introduced alternating electrode electrolysis|alternate electrode electrolysis (AEE), a new technique in electrosynthesis which in combination with blue LED demonstrated an interesting three-component reaction with aryl diazoesters, 1,4-quinones, and acetone to synthesize ketal-functionalized 1,4-quinones. The AEE setup consists of two pairs of cathode-anode compared to the conventional setup of one pair. Each pair would be polarized or in a resting stage with a preset interval of choice. This would maintain a continuous potential resulting in maximum current and would facilitate the mass transport, thereby increasing the overall efficiency of the reaction. AEE offers the efficient utilization of photochemically generated carbenes. We extended AEE applications in paired photoelectrolysis reactions for the late-stage functionalization of bioactive molecules and pharmaceutical agents. As an application of AEE in electrosynthesis (without light), we demonstrated the efficient hydroxylation of fluorinated benzene and the reduction of benzonitrile to benzyl amine. The amalgamation of AEE with blue LED contributes to sustainability, and we believe that it holds great promise in the field of electro-photochemical organic synthesis.
Collapse
Affiliation(s)
- Subhankar Bera
- Department of Chemistry, School of Natural Sciences, Shiv Nadar IoE Deemed to be University, Delhi-NCR Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar IoE Deemed to be University, Delhi-NCR Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar IoE Deemed to be University, Delhi-NCR Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
15
|
Li H, Li Y, Chen J, Lu L, Wang P, Hu J, Ma R, Gao Y, Yi H, Li W, Lei A. Scalable and Selective Electrochemical Hydrogenation of Polycyclic Arenes. Angew Chem Int Ed Engl 2024; 63:e202407392. [PMID: 39031667 DOI: 10.1002/anie.202407392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 07/22/2024]
Abstract
The reduction of aromatic compounds constitutes a fundamental and ongoing area of investigation. The selective reduction of polycyclic aromatic compounds to give either fully or partially reduced products remains a challenge, especially in applications to complex molecules at scale. Herein, we present a selective electrochemical hydrogenation of polycyclic arenes conducted under mild conditions. A noteworthy achievement of this approach is the ability to finely control both the complete and partial reduction of specific aromatic rings within polycyclic arenes by judiciously varying the reaction solvents. Mechanistic investigations elucidate the pivotal role played by in situ proton generation and interface regulation in governing reaction selectivity. The reductive electrochemical conditions show a very high level of functional-group tolerance. Furthermore, this methodology represents an easily scalable reduction (demonstrated by the reduction of 1 kg scale starting material) using electrochemical flow chemistry to give key intermediates for the synthesis of specific drugs.
Collapse
Affiliation(s)
- Hao Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yan Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jiaye Chen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Rui Ma
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Wu Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
| |
Collapse
|
16
|
De Bon F, Fantin M, Pereira VA, Lourenço Bernardino TJ, Serra AC, Matyjaszewski K, Coelho JFJ. Electrochemically Mediated Atom Transfer Radical Polymerization Driven by Alternating Current. Angew Chem Int Ed Engl 2024; 63:e202406484. [PMID: 38647172 DOI: 10.1002/anie.202406484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Alternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuI complex on Cu0 electrodes. Additionally, Cu0 served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuI activator through a comproportionation reaction. We harnessed the distinct properties of Cu0 dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square-wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low-activity Cu/2,2-bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain-end fidelity of the produced polymers, yielding functional and high molecular-weight block copolymers. SEM analysis indicated the robustness of the Cu0 electrodes, sustaining at least 15 consecutive polymerizations.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131, Padova, Italy
| | - Vanessa A Pereira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Teresa J Lourenço Bernardino
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, 15213, Pittsburgh, PA, USA
| | - Jorge F J Coelho
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
17
|
Brzezinski C, LeBlanc AR, Clerici MG, Wuest WM. Mild Photochemical Reduction of Alkenes and Heterocycles via Thiol-Mediated Formate Activation. Org Lett 2024; 26:5534-5538. [PMID: 38915178 PMCID: PMC11232005 DOI: 10.1021/acs.orglett.4c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The reduction of alkenes to their respective alkanes is one of the most important transformations in organic chemistry, given the abundance of natural and commercial olefins. Metal-catalyzed hydrogenation is the most common way to reduce alkenes; however, the use of H2 gas in combination with the precious metals required for these conditions can be impractical, dangerous, and expensive. More complex substrates often require extremely high pressures of H2, further emphasizing the safety concerns associated with these hydrogenation reactions. Here we report a safe, cheap, and practical photochemical alkene reduction using a readily available organophotocatalyst, catalytic thiol, and formate. These conditions reduce a variety of di-, tri-, and tetra-substituted alkenes in good yield as well as dearomatize pharmaceutically relevant heterocycles to generate sp3-rich isosteres of benzofurans and indoles. These formal-hydrogenation conditions tolerate a broad range of functionalities that would otherwise be sensitive to typical hydrogenations and are likely to be important for industry applications.
Collapse
Affiliation(s)
| | | | - Madeline G. Clerici
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
18
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
19
|
Surendran A, Pereverzev AY, Roithová J. Intricacies of Mass Transport during Electrocatalysis: A Journey through Iron Porphyrin-Catalyzed Oxygen Reduction. J Am Chem Soc 2024; 146:15619-15626. [PMID: 38778765 PMCID: PMC11157527 DOI: 10.1021/jacs.4c04989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical steps are increasingly attractive for green chemistry. Understanding reactions at the electrode-solution interface, governed by kinetics and mass transport, is crucial. Traditional insights into these mechanisms are limited, but our study bridges this gap through an integrated approach combining voltammetry, electrochemical impedance spectroscopy, and electrospray ionization mass spectrometry. This technique offers real-time monitoring of the chemical processes at the electrode-solution interface, tracking changes in intermediates and products during reactions. Applied to the electrochemical reduction of oxygen catalyzed by the iron(II) tetraphenyl porphyrin complex, it successfully reveals various reaction intermediates and degradation pathways under different kinetic regimes. Our findings illuminate complex electrocatalytic processes and propose new ways for studying reactions in alternating current and voltage-pulse electrosynthesis. This advancement enhances our capacity to optimize electrochemical reactions for more sustainable chemical processes.
Collapse
Affiliation(s)
- Adarsh
Koovakattil Surendran
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Aleksandr Y. Pereverzev
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
20
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
21
|
Nallaparaju JV, Satsi R, Merzhyievskyi D, Jarg T, Aav R, Kananovich DG. Mechanochemical Birch Reduction with Low Reactive Alkaline Earth Metals. Angew Chem Int Ed Engl 2024; 63:e202319449. [PMID: 38436590 DOI: 10.1002/anie.202319449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Birch reduction and similar dissolved metal-type transformations hold significant importance in the organic synthesis toolbox. Historically, the field has been dominated by alkali metal reductants. In this study, we report that largely neglected, low-reactive alkaline earth metals can become powerful and affordable reductants when used in a ball mill under essentially solvent-free conditions, in the presence of ethylenediamine and THF as liquid additives. Calcium can reduce both electron-deficient and electron-rich arenes, with yields of products similar to those obtained with lithium metal. Magnesium reveals enhanced reducing power, enabling the reduction of benzoic acids while keeping electron-rich aromatic moieties intact and allows for chemoselective transformations. The developed mechanochemical approach uses readily available and safer-to-handle metals, operates under air and ambient temperature conditions, and can be used for gram-scale preparations. Finally, we demonstrate that the developed conditions can be used for other dissolved metal-type reductive transformations, including reductive amination, deoxygenation, dehalogenation, alkene and alkyne reductions.
Collapse
Affiliation(s)
- Jagadeesh Varma Nallaparaju
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Riin Satsi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Danylo Merzhyievskyi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
- Department of Chemistry of Bioactive Nitrogen-containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Tatsiana Jarg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Dzmitry G Kananovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
22
|
Smith BP, Truax NJ, Pollatos AS, Meanwell M, Bedekar P, Garrido-Castro AF, Baran PS. Total Synthesis of Dragocins A-C through Electrochemical Cyclization. Angew Chem Int Ed Engl 2024; 63:e202401107. [PMID: 38358802 PMCID: PMC11619770 DOI: 10.1002/anie.202401107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
The first total synthesis of dragocins A-C, remarkable natural products containing an unusual C4' oxidized ribose architecture bridged by a polyhydroxylated pyrrolidine, is presented through a route featuring a number of uncommon maneuvers. Several generations towards the target molecules are presented, including the spectacular failure of a key C-H oxidation on a late-stage intermediate. The final route features rapid, stereocontrolled access to a densely functionalized pyrrolidine and an unprecedented diastereoselective oxidative electrochemical cyclization to forge the hallmark 9-membered ring. Preliminary studies suggest this electrochemical oxidation protocol is generally useful.
Collapse
Affiliation(s)
- Brendyn P Smith
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nathanyal J Truax
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Alexandros S Pollatos
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael Meanwell
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2N4, Canada
| | - Pranali Bedekar
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Alberto F Garrido-Castro
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
23
|
Yao S, Swanson CS, Cheng Z, He Q, Yuan H. Alternating polarity as a novel strategy for building synthetic microbial communities capable of robust Electro-Methanogenesis. BIORESOURCE TECHNOLOGY 2024; 395:130374. [PMID: 38280409 DOI: 10.1016/j.biortech.2024.130374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Electro-methanogenic microbial communities can produce biogas with high efficiency and have attracted extensive research interest. In this study an alternating polarity strategy was developed to build electro-methanogenic communities. In two-chamber bioelectrochemical systems amended with activated carbon, the electrode potential was alternated between +0.8 V and -0.4 V vs. standard hydrogen electrode every three days. Cumulative biogas production under alternating polarity increased from 45 L/L/kg-activated carbon after start-up to 125 L/L/kg after the 4th enrichment, significantly higher than that under intermittent cathode (-0.4 V/open circuit), continuous cathode (-0.4 V), and open circuit. The communities assembled under alternating polarity were electroactive and structurally different from those assembled under other conditions. One Methanobacterium population and two Geobacter populations were consistently abundant and active in the communities. Their 16S rRNA was up-regulated by electrode potentials. Bayesian networks inferred close associations between these populations. Overall, electro-methanogenic communities have been successfully assembled with alternating polarity.
Collapse
Affiliation(s)
- Shiyun Yao
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Clifford S Swanson
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States.
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
24
|
Behera N, Rodrigo S, Hazra A, Maity R, Luo L. Revisiting Alternating Current Electrolysis for Organic Synthesis. CURRENT OPINION IN ELECTROCHEMISTRY 2024; 43:101439. [PMID: 38450312 PMCID: PMC10914348 DOI: 10.1016/j.coelec.2023.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
This review summarizes the recent advancements in alternating current (AC)-driven electroorganic synthesis since 2021 and discusses the reactivities AC electrolysis provides to achieve new and unique organic transformations.
Collapse
Affiliation(s)
- Nibedita Behera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sachini Rodrigo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Rajendra Maity
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
25
|
Atkins AP, Chaturvedi AK, Tate JA, Lennox AJJ. Pulsed electrolysis: enhancing primary benzylic C(sp 3)-H nucleophilic fluorination. Org Chem Front 2024; 11:802-808. [PMID: 38298566 PMCID: PMC10825853 DOI: 10.1039/d3qo01865b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/09/2023] [Indexed: 02/02/2024]
Abstract
Electrosynthesis is an efficient and powerful tool for the generation of elusive reactive intermediates. The application of alternative electrolysis waveforms provides a new level of control for dynamic redox environments. Herein, we demonstrate that pulsed electrolysis provides a favourable environment for the generation and fluorination of highly unstable primary benzylic cations from C(sp3)-H bonds. By introduction of a toff period, we propose this waveform modulates the electrical double layer to improve mass transport and limit over-oxidation.
Collapse
Affiliation(s)
- Alexander P Atkins
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Atul K Chaturvedi
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Joseph A Tate
- Jealott's Hill International Research Centre, Syngenta Jealott's Hill Bracknell RG426EY UK
| | - Alastair J J Lennox
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| |
Collapse
|
26
|
Zeng L, Wang J, Wang D, Yi H, Lei A. Comprehensive Comparisons between Directing and Alternating Current Electrolysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202309620. [PMID: 37606535 DOI: 10.1002/anie.202309620] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Organic electrosynthesis has consistently aroused significant interest within both academic and industrial spheres. Despite the considerable progress achieved in this field, the majority of electrochemical transformations have been conducted through the utilization of direct-current (DC) electricity. In contrast, the application of alternating current (AC), characterized by its polarity-alternating nature, remains in its infancy within the sphere of organic synthesis, primarily due to the absence of a comprehensive theoretical framework. This minireview offers an overview of recent advancements in AC-driven organic transformations and seeks to elucidate the differences between DC and AC electrolytic methodologies by probing into their underlying physical principles. These differences encompass the ability of AC to preclude the deposition of metal catalysts, the precision in modulating oxidation and reduction intensities, and the mitigation of mass transfer processes.
Collapse
Affiliation(s)
- Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianxing Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Daoxin Wang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
27
|
Liu DH, Nagashima K, Liang H, Yue XL, Chu YP, Chen S, Ma J. Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202312203. [PMID: 37803457 DOI: 10.1002/anie.202312203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Lin Yue
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Peng Chu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
28
|
Behera N, Gunasekera D, Mahajan JP, Frimpong J, Liu ZF, Luo L. Electrochemical hydrogen isotope exchange of amines controlled by alternating current frequency. Faraday Discuss 2023; 247:45-58. [PMID: 37466111 PMCID: PMC10796833 DOI: 10.1039/d3fd00044c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Here, we report an electrochemical protocol for hydrogen isotope exchange (HIE) at α-C(sp3)-H amine sites. Tetrahydroisoquinoline and pyrrolidine are selected as two model substrates because of their different proton transfer (PT) and hydrogen atom transfer (HAT) kinetics at the α-C(sp3)-H amine sites, which are utilized to control the HIE reaction outcome at different applied alternating current (AC) frequencies. We found the highest deuterium incorporation for tetrahydroisoquinolines at 0 Hz (i.e., under direct current (DC) electrolysis conditions) and pyrrolidines at 0.5 Hz. Analysis of the product distribution and D isotope incorporation at different frequencies reveals that the HIE of tetrahydroisoquinolines is limited by its slow HAT, whereas the HIE of pyrrolidines is limited by the overoxidation of its α-amino radical intermediates. The AC-frequency-dependent HIE of amines can be potentially used to achieve selective labeling of α-amine sites in one drug molecule, which will significantly impact the pharmaceutical industry.
Collapse
Affiliation(s)
- Nibedita Behera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Disni Gunasekera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Joseph Frimpong
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
29
|
Shibuya A, Ishisaka Y, Saito A, Kato M, Manmode S, Komatsu H, Rahman MA, Sasaki N, Itoh T, Nokami T. Electrochemical synthesis of the protected cyclic (1,3;1,6)-β-glucan dodecasaccharide. Faraday Discuss 2023; 247:59-69. [PMID: 37466008 DOI: 10.1039/d3fd00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Automated electrochemical assembly is an electrochemical method to synthesise middle-sized molecules, including linear oligosaccharides, and some linear oligosaccharides can be electrochemically converted into the corresponding cyclic oligosaccharides effectively. In this study, the target cyclic oligosaccharide is a protected cyclic (1,3;1,6)-β-glucan dodecasaccharide, which consists of two types of glucose trisaccharides with β-(1,3)- and β-(1,6)-glycosidic linkages. The formation of the protected cyclic dodecasaccharide was confirmed by the electrochemical one-pot dimerisation-cyclisation of the semi-circular hexasaccharide. The yield of the protected cyclic dodecasaccharide was improved by using a stepwise synthesis via the linear dodecasaccharide.
Collapse
Affiliation(s)
- Akito Shibuya
- Graduate School of Engineering, Tottori University, Japan.
| | - Yui Ishisaka
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Asuka Saito
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Moeko Kato
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Sujit Manmode
- Graduate School of Engineering, Tottori University, Japan.
| | - Hiroto Komatsu
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Japan
| | | | - Norihiko Sasaki
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| | - Toshiyuki Itoh
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| | - Toshiki Nokami
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| |
Collapse
|
30
|
Garrido-Castro AF, Hioki Y, Kusumoto Y, Hayashi K, Griffin J, Harper KC, Kawamata Y, Baran PS. Scalable Electrochemical Decarboxylative Olefination Driven by Alternating Polarity. Angew Chem Int Ed Engl 2023; 62:e202309157. [PMID: 37656907 DOI: 10.1002/anie.202309157] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
A mild, scalable (kg) metal-free electrochemical decarboxylation of alkyl carboxylic acids to olefins is disclosed. Numerous applications are presented wherein this transformation can simplify alkene synthesis and provide alternative synthetic access to valuable olefins from simple carboxylic acid feedstocks. This robust method relies on alternating polarity to maintain the quality of the electrode surface and local pH, providing a deeper understanding of the Hofer-Moest process with unprecedented chemoselectivity.
Collapse
Affiliation(s)
- Alberto F Garrido-Castro
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Yuta Hioki
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Science and Innovation Center, Mitsubishi Chemical Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan
| | - Yoshifumi Kusumoto
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kyohei Hayashi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jeremy Griffin
- AbbVie Process Research and Development, 1401 North Sheridan Road, North Chicago, IL, 60064, USA
| | - Kaid C Harper
- AbbVie Process Research and Development, 1401 North Sheridan Road, North Chicago, IL, 60064, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
31
|
Rodrigo S, Hazra A, Mahajan JP, Nguyen HM, Luo L. Overcoming the Potential Window-Limited Functional Group Compatibility by Alternating Current Electrolysis. J Am Chem Soc 2023; 145:21851-21859. [PMID: 37747918 PMCID: PMC10774024 DOI: 10.1021/jacs.3c05802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The functional group compatibility of an electrosynthetic method is typically limited by its potential reaction window. Here, we report that alternating current (AC) electrolysis can overcome such potential window-limited functional group compatibility. Using alkene heterodifunctionalization as a model system, we design and demonstrate a series of AC-driven reactions that add two functional groups sequentially and separately under the cathodic and anodic pulses, including chloro- and bromotrilfuoromethylation as well as chlorosulfonylation. We discovered that the oscillating redox environment during AC electrolysis allows the regeneration of the redox-active functional groups after their oxidation or reduction in the preceding step. As a result, even though redox labile functional groups such as pyrrole, quinone, and aryl thioether fall in the reaction potential window, they are tolerated under AC electrolysis conditions, leading to synthetically useful yields. The cyclic voltammetric study has confirmed that the product yield is limited by the extent of starting material regeneration during the redox cycling. Our findings open a new avenue for improving functional group compatibility in electrosynthesis and show the possibility of predicting the product yield under AC electrolysis from voltammogram features.
Collapse
Affiliation(s)
- Sachini Rodrigo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
32
|
Wan Q, Chen K, Dong X, Ruan X, Yi H, Chen S. Elucidating the Underlying Reactivities of Alternating Current Electrosynthesis by Time-Resolved Mapping of Short-Lived Reactive Intermediates. Angew Chem Int Ed Engl 2023; 62:e202306460. [PMID: 37593930 DOI: 10.1002/anie.202306460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Alternating current (AC) electrolysis is an emerging field in synthetic chemistry, however its mechanistic studies are challenged by the effective characterization of the elusive intermediate processes. Herein, we develop an operando electrochemical mass spectrometry platform that allows time-resolved mapping of stepwise electrosynthetic reactive intermediates in both direct current and alternating current modes. By dissecting the key intermediate processes of electrochemical functionalization of arylamines, the unique reactivities of AC electrosynthesis, including minimizing the over-oxidation/reduction through the inverse process, and enabling effective reaction of short-lived intermediates generated by oxidation and reduction in paired electrolysis, were evidenced and verified. Notably, the controlled kinetics of reactive N-centered radical intermediates in multistep sequential AC electrosynthesis to minimize the competing reactions was discovered. Overall, this work provides direct evidence for the mechanism of AC electrolysis, and clarifies the underlying reasons for its high efficiency, which will benefit the rational design of AC electrosynthetic reactions.
Collapse
Affiliation(s)
- Qiongqiong Wan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Kaixiang Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xin Dong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xianqin Ruan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Suming Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
33
|
Li Z, Wang L, Wang T, Sun L, Yang W. Steering the Dynamics of Reaction Intermediates and Catalyst Surface during Electrochemical Pulsed CO 2 Reduction for Enhanced C 2+ Selectivity. J Am Chem Soc 2023; 145:20655-20664. [PMID: 37639564 DOI: 10.1021/jacs.3c08005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Developing alternative electrolysis techniques is crucial for advancing electrocatalysis in addition to tremendous efforts of material developments. Recently, pulse electrochemical CO2 reduction reaction (CO2RR) has demonstrated dramatic selectivity improvement toward multicarbon (C2+) products compared to potentiostatic electrochemical CO2RR, yet the underlying mechanisms remain little understood. Herein, we develop a fast time-resolved in situ Raman spectroscopic method with a time resolution of 0.25 s. We reveal that pulse electrolysis improves the C2+ selectivity of CO2RR through dynamic controls of the surface CuxO/Cu composition that would be unachievable under potentiostatic electrolysis. The population of the surface-adsorbed CO intermediate (COads) is characterized to be the determining factor in controlling reaction selectivity, which depicts the C2+/C1 selectivity of CO2RR under pulse conditions. Meanwhile, the vibrational character of COads, despite transforming dynamically between the low-frequency and high-frequency modes is characterized not to be the key factor in controlling the reaction selectivity. Such an active control of catalyst surface compositions and reaction intermediates enabled by pulse electrolysis offer a general way of regulating the electrocatalysis performance of broad electrochemical reactions beyond CO2RR.
Collapse
Affiliation(s)
- Zhuofeng Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Wenxing Yang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| |
Collapse
|
34
|
Zhang W, Guan W, Martinez Alvarado JI, Novaes LFT, Lin S. Deep Electroreductive Chemistry: Harnessing Carbon- and Silicon-based Reactive Intermediates in Organic Synthesis. ACS Catal 2023; 13:8038-8048. [PMID: 38707967 PMCID: PMC11067979 DOI: 10.1021/acscatal.3c01174] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This Viewpoint outlines our recent contribution in electroreductive synthesis. Specifically, we leveraged deeply reducing potentials provided by electrochemistry to generate radical and anionic intermediates from readily available alkyl halides and chlorosilanes. Harnessing the distinct reactivities of radicals and anions, we have achieved several challenging transformations to construct C-C, C-Si, and Si-Si bonds. We highlight the mechanistic design principle that underpinned the development of each transformation and provide a view forward on future opportunities in growing area of reductive electrosynthesis.
Collapse
Affiliation(s)
| | | | | | - Luiz F. T. Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Zhang W, Chen Z, Jiang YX, Liao LL, Wang W, Ye JH, Yu DG. Arylcarboxylation of unactivated alkenes with CO 2 via visible-light photoredox catalysis. Nat Commun 2023; 14:3529. [PMID: 37316537 DOI: 10.1038/s41467-023-39240-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Photocatalytic carboxylation of alkenes with CO2 is a promising and sustainable strategy to synthesize high value-added carboxylic acids. However, it is challenging and rarely investigated for unactivated alkenes due to their low reactivities. Herein, we report a visible-light photoredox-catalyzed arylcarboxylation of unactivated alkenes with CO2, delivering a variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids in moderate-to-good yields. This reaction features high chemo- and regio-selectivities, mild reaction conditions (1 atm, room temperature), broad substrate scope, good functional group compatibility, easy scalability and facile derivatization of products. Mechanistic studies indicate that in situ generation of carbon dioxide radical anion and following radical addition to unactivated alkenes might be involved in the process.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li-Li Liao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
36
|
Williams OP, Chmiel AF, Mikhael M, Bates DM, Yeung CS, Wickens ZK. Practical and General Alcohol Deoxygenation Protocol. Angew Chem Int Ed Engl 2023; 62:e202300178. [PMID: 36840940 PMCID: PMC10121858 DOI: 10.1002/anie.202300178] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Herein, we describe a practical protocol for the removal of alcohol functional groups through reductive cleavage of their benzoate ester analogs. This transformation requires a strong single electron transfer (SET) reductant and a means to accelerate slow fragmentation following substrate reduction. To accomplish this, we developed a photocatalytic system that generates a potent reductant from formate salts alongside Brønsted or Lewis acids that promote fragmentation of the reduced intermediate. This deoxygenation procedure is effective across structurally and electronically diverse alcohols and enables a variety of difficult net transformations. This protocol requires no precautions to exclude air or moisture and remains efficient on multigram scale. Finally, the system can be adapted to a one-pot benzoylation-deoxygenation sequence to enable direct alcohol deletion. Mechanistic studies validate that the role of acidic additives is to promote the key C(sp3 )-O bond fragmentation step.
Collapse
Affiliation(s)
- Oliver P. Williams
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Desiree M. Bates
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| |
Collapse
|
37
|
Ikeda K, Kojima R, Kawai K, Murakami T, Kikuchi T, Kojima M, Yoshino T, Matsunaga S. Formation of Isolable Dearomatized [4 + 2] Cycloadducts from Benzenes, Naphthalenes, and N-Heterocycles Using 1,2-Dihydro-1,2,4,5-tetrazine-3,6-diones as Arenophiles under Visible Light Irradiation. J Am Chem Soc 2023; 145:9326-9333. [PMID: 37055373 DOI: 10.1021/jacs.3c02556] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
We report that the dearomative [4 + 2] cycloaddition between 1,2-dihydro-1,2,4,5-tetrazine-3,6-diones (TETRADs) and benzenes, naphthalenes, or N-heteroaromatic compounds under visible light irradiation affords the corresponding isolable cycloadducts. Several synthetic transformations including transition-metal-catalyzed allylic substitution reactions using the isolated cycloadducts at room temperature or above were demonstrated. Computational studies revealed that the retro-cycloaddition of the benzene-TETRAD adduct proceeds via an asynchronous concerted mechanism, while that of the benzene-MTAD adduct (MTAD = 4-methyl-1,2,4-triazoline-3,5-dione) proceeds via a synchronous mechanism.
Collapse
Affiliation(s)
- Kazuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Riku Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takayasu Murakami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
38
|
Hioki Y, Costantini M, Griffin J, Harper KC, Merini MP, Nissl B, Kawamata Y, Baran PS. Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis. Science 2023; 380:81-87. [PMID: 37023204 DOI: 10.1126/science.adf4762] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023]
Abstract
The Kolbe reaction forms carbon-carbon bonds through electrochemical decarboxylative coupling. Despite more than a century of study, the reaction has seen limited applications owing to extremely poor chemoselectivity and reliance on precious metal electrodes. In this work, we present a simple solution to this long-standing challenge: Switching the potential waveform from classical direct current to rapid alternating polarity renders various functional groups compatible and enables the reaction on sustainable carbon-based electrodes (amorphous carbon). This breakthrough enabled access to valuable molecules that range from useful unnatural amino acids to promising polymer building blocks from readily available carboxylic acids, including biomass-derived acids. Preliminary mechanistic studies implicate the role of waveform in modulating the local pH around the electrodes and the crucial role of acetone as an unconventional reaction solvent for Kolbe reaction.
Collapse
Affiliation(s)
- Yuta Hioki
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Science and Innovation Center, Mitsubishi Chemical Corporation, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | | | - Jeremy Griffin
- Abbvie Process Research and Development, North Chicago, IL 60064, USA
| | - Kaid C Harper
- Abbvie Process Research and Development, North Chicago, IL 60064, USA
| | | | - Benedikt Nissl
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Wood D, Lin S. Deuterodehalogenation Under Net Reductive or Redox-Neutral Conditions Enabled by Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218858. [PMID: 36738472 PMCID: PMC10050105 DOI: 10.1002/anie.202218858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Interest in deuterated active pharmaceutical ingredients (APIs) is increasing as deuteration holds promise for kinetic isotope effect (KIE) regulated fine-tuning of API performance. Moreover, deuterium isotope labeling is frequently carried out to study organic and bioorganic reaction mechanisms and to facilitate complex target synthesis. As such, methods for highly selective deuteration of organic molecules are highly desirable. Herein, we present an electrochemical method for the selective deuterodehalogenation of benzylic halides via a radical-polar crossover mechanism, using inexpensive deuterium oxide (D2 O) as the deuterium source. We demonstrate broad functional group compatibility across a range of aryl and heteroaryl benzylic halides. Furthermore, we uncover a sequential paired electrolysis regime, which permits switching between net reductive and overall redox-neutral reactions of sulfur-containing substrates simply by changing the identity of the sacrificial reductant employed.
Collapse
Affiliation(s)
- Devin Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| |
Collapse
|
40
|
Cohen B, Lehnherr D, Sezen-Edmonds M, Forstater JH, Frederick MO, Deng L, Ferretti AC, Harper K, Diwan M. Emerging Reaction Technologies in Pharmaceutical Development: Challenges and Opportunities in Electrochemistry, Photochemistry, and Biocatalysis. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
41
|
Hu C, Vo C, Merchant RR, Chen SJ, Hughes JME, Peters BK, Qin T. Uncanonical Semireduction of Quinolines and Isoquinolines via Regioselective HAT-Promoted Hydrosilylation. J Am Chem Soc 2023; 145:25-31. [PMID: 36548026 PMCID: PMC9930105 DOI: 10.1021/jacs.2c11664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterocycles are the backbone of modern medical chemistry and drug development. The derivatization of "an olefin" inside aromatic rings represents an ideal approach to access functionalized saturated heterocycles from abundant aromatic building blocks. Here, we report an operationally simple, efficient, and practical method to selectively access hydrosilylated and reduced N-heterocycles from bicyclic aromatics via a key diradical intermediate. This approach is expected to facilitate complex heterocycle functionalizations that enable access to novel medicinally relevant scaffolds.
Collapse
Affiliation(s)
- Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Cuong Vo
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Rohan R. Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jonathan M. E. Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Byron K. Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
42
|
Bortnikov EO, Smith BS, Volochnyuk DM, Semenov SN. Stirring-Free Scalable Electrosynthesis Enabled by Alternating Current. Chemistry 2023; 29:e202203825. [PMID: 36594259 DOI: 10.1002/chem.202203825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Alternating current (AC) electrolysis is receiving increased interest as a versatile tool for mild and selective electrochemical transformations. This work demonstrates that AC can enable the concept of a stirring-free electrochemical reactor where the periodic switch of electrode polarity, inherent to AC, provides uniform electrolysis across the whole volume of the reactor. Such design implies a straightforward approach for scaling up electrosynthesis. This was demonstrated on the range of electrochemical transformations performed in three different RVC-packed reactors on up to a 50-mmol scale. Redox-neutral, oxidative, and reductive processes were successfully implemented using the suggested design and the applicable frequency ranges were further investigated for different types of reactions. The advantages of the AC-enabled design - such as the absence of stirring and a maximized surface area of the electrodes - provide the possibility for its universal application both for small-scale screening experimentation and large-scale preparative electrosynthesis without significant optimization needed in between.
Collapse
Affiliation(s)
- Evgeniy O Bortnikov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, 550 E. Orange Street, Tempe, Arizona, 85281, USA
| | | | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| |
Collapse
|
43
|
Kratena N, Marinic B, Donohoe TJ. Recent advances in the dearomative functionalisation of heteroarenes. Chem Sci 2022; 13:14213-14225. [PMID: 36545133 PMCID: PMC9749106 DOI: 10.1039/d2sc04638e] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Dearomatisation reactions of (hetero)arenes have been widely employed as efficient methods to obtain highly substituted saturated cyclic compounds for over a century. In recent years, research in this area has shifted towards effecting additional C-C bond formation during the overall dearomative process. Moving away from classical hydrogenation-based strategies a wide range of reagents were found to be capable of initiating dearomatisation through nucleophilic addition (typically a reduction) or photochemically induced radical addition. The dearomatisation process gives rise to reactive intermediates which can be intercepted in an intra- or intermolecular fashion to deliver products with significantly increased molecular complexity when compared to simple dearomatisation. In this Perspective recent examples and strategies for the dearomative functionalisation of heteroaromatic systems will be discussed.
Collapse
Affiliation(s)
- Nicolas Kratena
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Bruno Marinic
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Timothy J Donohoe
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
44
|
A room-temperature-stable electride and its reactivity: Reductive benzene/pyridine couplings and solvent-free Birch reductions. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
45
|
Koide K. Mechanistic and Synthetic Studies of Biaryl Birch Reductions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractThe Birch reduction of biaryls generally converts one of the two arenes into a cyclohexa-1,4-diene. Biaryls are more reactive than monocyclic arenes under the Birch conditions. Unlike the reduction of monocyclic arenes, biaryl reduction proceeds through two consecutive electron transfer steps before the protonation of the dianion intermediate. The biaryl reductions and subsequent alkylations in one pot rapidly increase the molecular complexity and thus have been used in the synthesis of natural products and drug-like molecules.1 Introduction2 The Physical Organic Chemistry of the Birch Reduction of Biaryls3 Biaryls as the Mediators of Electron Transfer4 Methods for the Dissolving-Metal Reduction of Biaryls5 Intercepting the Biaryl Reduction Intermediates with Electrophiles6 Synthetic Applications of the Dissolving-Metal-Mediated Reductions of Biaryls7 Outlook
Collapse
|
46
|
Zhou H, Wang Y, Ren Y, Li Z, Kong X, Shao M, Duan H. Plastic Waste Valorization by Leveraging Multidisciplinary Catalytic Technologies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
47
|
Chen W, Ni S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Reductive Allylation of Aryl Halides. Org Lett 2022; 24:3647-3651. [PMID: 35579336 DOI: 10.1021/acs.orglett.2c01247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compared with conventional reductive coupling, reductive coupling under electrochemical conditions without external reductants is greener, milder, and more efficient and is of increasing interest to organic chemists. In this work, we report the sacrificial anode, nickel-catalyzed electrochemical allylation reaction of aryl and alkyl halides. The reaction can be applied to a range of allylation reagents such as trifluoroalkenes, oxalates, and acetates.
Collapse
Affiliation(s)
- Wangzhe Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
48
|
Wang J, Zhou W, Li J, Ding Y, Gao J. Recent Advances and Performance Enhancement Mechanisms of Pulsed Electrocatalysis. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|