1
|
Liu T, Zhang W, Guo R. Enhancing Photocatalytic Hydrogen Evolution by Improving the Morphology of Organic Semiconductor Nanoparticles with TCB Additive. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502829. [PMID: 40304178 DOI: 10.1002/smll.202502829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/12/2025] [Indexed: 05/02/2025]
Abstract
Organic semiconductor nanoparticles (NPs) are promising organic photocatalysts for water splitting. However, effective organic semiconductor NPs require efficient charge dissociation and transport at the heterojunction interface. Common core-shell structured NPs exhibit low hydrogen evolution rates (HERs) due to limited charge dissociation efficiency. Here, this challenge is addressed by introducing 1,3,5-trichlorobenzene (TCB) additive into organic semiconductor NPs to improve their heterojunction morphology. As a result, PM6:Y6 NPs with TCB have a more intimately blended morphology, which enhances charge dissociation and transport. These NPs achieve a HER of 16,490 µmol g-1 h-1, which is more than twice that of NPs without TCB. Further optimization of the NPs concentration led to a remarkable HER of 58,400 µmol g-1 h-1. Moreover, the PM6:Y6 NPs with TCB exhibit better operational stability due to their enhanced morphological stability. This study demonstrates the effectiveness of the additive strategy in improving the heterojunction morphology of organic semiconductor NPs to overcome key limitations of their photocatalytic hydrogen evolution efficiency and provides valuable insights for the development of high-performance organic photocatalysts.
Collapse
Affiliation(s)
- Tong Liu
- Institute Future Lighting, Academy of Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Ruiqian Guo
- Institute Future Lighting, Academy of Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Sun H, Fan J, Fan R, Sun P, Wang S, Wang D, Gu P, Tan W, Zhu Y. A Carboxylate-based Hydrophilic Organic Photovoltaic Catalyst with a Large Molecular Dipole Moment for High-Performance Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2025:e202503792. [PMID: 40271547 DOI: 10.1002/anie.202503792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 04/25/2025]
Abstract
Achieving ultrafast dissociation of photogenerated excitons and efficient charge transport within the photocatalyst is a fundamental issue. Additionally, enhancing the interaction between semiconductors and water is crucial for efficient photocatalytic water splitting. Herein, we synthesized a carboxylate-based hydrophilic polymer, hPTB7-Th. Exposed carboxylates enhance semiconductor-water interfacial compatibility, reducing contact resistance and accelerating charge transfer kinetics. Furthermore, the carboxylate substitution shifts polarity centers, amplifying the molecular dipole moment by 10-fold. This induces a giant built-in electric field, enabling ultrafast electron-transfer process (ca. 0.31 ps) in the hPTB7-Th:PCBM bulk heterojunction. Consequently, the hPTB7-Th:PCBM-based bulk heterojunction nanoparticles exhibit excellent photocatalytic activity, achieving an optimal hydrogen evolution rate of 111.5 mmol g-1 h-1, four times over the ester-based counterpart (PTB7-Th:PCBM). Moreover, the electrostatic stability imparted by the carboxylates endows hPTB7-Th:PCBM with outstanding operational stability, maintaining 81% of its initial hydrogen evolution rate after 100 h operation. This result places it among the state-of-the-art organic photovoltaic bulk heterojunction photocatalysts in terms of stability. This work establishes a molecular engineering strategy for high-performance bulk heterojunction photocatalysts, emphasizing synergistic optimization of hydrophilicity, dipole engineering, and interfacial dynamics.
Collapse
Affiliation(s)
- Hua Sun
- School of Material and Chemistry Engineering, Hydrogen-Carbon Fusion Energy Industry Technology Innovation Center, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Jianan Fan
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P.R. China
| | - Rong Fan
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P.R. China
| | - Po Sun
- Institutes of Molecular Engineering and Applied Chemistry, Analysis and Testing Central Facility, Anhui University of Technology, Ma'anshan, 243002, P.R. China
| | - Shifan Wang
- School of Material and Chemistry Engineering, Hydrogen-Carbon Fusion Energy Industry Technology Innovation Center, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Wenyi Tan
- School of Material and Chemistry Engineering, Hydrogen-Carbon Fusion Energy Industry Technology Innovation Center, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
3
|
Mao J, Fan Q, Yan Z, Chen X, Zhao S, Lu Y, Li S, Jiang W, Xu Z, Wang Z, Wang J. Ultrasmall Organic Nanocrystal Photocatalyst Realizing Highly Efficient Symmetry Breaking Charge Separation and Transport. J Am Chem Soc 2025; 147:12730-12739. [PMID: 40190118 DOI: 10.1021/jacs.5c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The high exciton binding energy and short exciton diffusion length (typical 5-10 nm) of organic photocatalysts (OPCs) hinder efficient charge separation and subsequent charge transfer, limiting their potential for solar energy conversion. Inspired by the symmetry breaking charge separation (SBCS) in natural photosystem II, we employed a freeze assembly (FA) strategy to assemble symmetric perylene diimide (PDI) dimers into ultrasmall (sub-5 nm) nanocrystals (NCs) with ordered molecular stacking, exhibiting SBCS characteristics. The SBCS NCs (p-5 nm) showed 12.3-fold enhancement in charge separation efficiency compared to non-SBCS NCs (PDI-5 nm). Furthermore, the charge transfer efficiency in p-5 nm (94.7%) was 1.6 times greater than that of weak SBCS NCs (m-5 nm, 60.4%). Consequently, we achieved a comparable photocatalytic hydrogen evolution rate (1824 μmol h-1 g-1) among the PDI-based photocatalysts in p-5 nm. This study highlights the importance of ultrasmall NCs in fulfilling bioinspired SBCS and the potential of the FA strategy for developing high-performance OPCs.
Collapse
Affiliation(s)
- Junqiang Mao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingrui Fan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zequan Yan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoran Chen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Zhao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Youhua Lu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shasha Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zihao Xu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianjun Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
4
|
Liu S, Chen S, Wang J, Wang G, Duan PC, Zhu R, Jia Y, Bai F, Zhong Y. Morphology-Controlled Long-Range Photogenerated Charge Carrier Transfer Pathway for Enhanced Photocatalytic Hydrogen Production. NANO LETTERS 2025; 25:4596-4604. [PMID: 40048550 DOI: 10.1021/acs.nanolett.5c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Achieving precise control over the construction of efficient charge transport channels through self-assembly engineering represents a highly effective strategy for the synthesis of organic supramolecular photocatalysts. Herein, tetragonal zinc meso-5,10,15,20-tetra(4-pyridyl) porphyrin (ZnTPyP) nanorods (T-ZnTPyPs) and hexagonal ZnTPyP nanowires (H-ZnTPyPs) were synthesized by varying the assembly temperature. H-ZnTPyPs demonstrated a photocatalytic hydrogen production rate (183 mmol/g/h) that was 14.62 times greater than that of T-ZnTPyP (13 mmol/g/h). This significantly enhanced activity is primarily attributed to the distinct and well-defined molecular arrangements of H-ZnTPyPs, which support continuous linear long-range electron transfer pathways through effective π-π stacking. Conversely, the heat manipulation used in the synthesis of T-ZnTPyPs limits the participation of water molecules in the crystalline stacking arrangements, leading to lattice distortions that disrupt the π-π stacking interactions and significantly impede long-range electron transfer pathways. This research presents a novel strategy for modulating π-π stacking to optimize charge transport in supramolecular photocatalysts.
Collapse
Affiliation(s)
- Shuanghong Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Jiefei Wang
- International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Peng-Cheng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Rui Zhu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
5
|
Wu S, Zhang Z, Lee Y, Li Y, Tai X, Si W, Bai S, Lin Y. Reversing Surface Charge for Highly-Active Organic Photovoltaic Catalysts. Angew Chem Int Ed Engl 2025; 64:e202422779. [PMID: 39714376 DOI: 10.1002/anie.202422779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
Organic photovoltaic materials typically exhibit low charge separation and transfer efficiency and severe exciton/carrier recombination due to high exciton binding energy and short exciton diffusion lengths, limiting the enhancement of photocatalytic hydrogen evolution performance. Here, we introduce a surface charge reversal strategy to regulate the charge character of organic photovoltaic catalyst (OPC). Compared to OPC nanoparticles (NPs) stabilized by an anionic surfactant ((-) NPs), NPs stabilized by a cationic surfactant ((+) NPs) exhibit a raised Fermi level, larger surface band bending and Schottky barrier, thereby enhancing charge separation and transfer efficiency while suppressing charge carrier recombination. As a result, (+) NPs demonstrate better photocatalytic performance than (-) NPs, independent of the chemical structure of OPCs and surfactant molecules. Under the illumination of AM1.5G, 100 mW cm-2, the PM6: 2FBP-4F NPs stabilized by cationic surfactant (dodecyltrimethylammonium bromide, DTAB) exhibit much higher photocatalytic activity for hydrogen evolution (up to 946.1±15.76 mmol h-1 g-1) than that of PM6: 2FBP-4F NPs stabilized by anionic surfactant, among the best results reported so far for photocatalytic hydrogen evolution under simulated sunlight.
Collapse
Affiliation(s)
- Shichao Wu
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhsuan Lee
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Tai
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, and Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Lin WC, Sun YE, Zhuang YR, Huang TF, Lin KJ, Elsenety MM, Yen JC, Hsu HK, Chen BH, Chang CY, Chang JW, Huang HN, Li BH, Jungsuttiwong S, Haldar T, Wang SH, Lin WC, Wu TL, Chen CW, Yu CH, Su AC, Lin KH, Jeng US, Yang SD, Chou HH. Optimally Miscible Polymer Bulk-Heterojunction-Particles for Nonsurfactant Photocatalytic Hydrogen Evolution. J Am Chem Soc 2025; 147:2537-2548. [PMID: 39705715 PMCID: PMC11760146 DOI: 10.1021/jacs.4c13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024]
Abstract
Mini-emulsion and nanoprecipitation techniques relied on large amounts of surfactants, and unresolved miscibility issues of heterojunction materials limited their efficiency and applicability in the past. Through our molecular design and developed surfactant-free precipitation method, we successfully fabricated the best miscible bulk-heterojunction-particles (BHJP) ever achieved, using donor (PS) and acceptor (PSOS) polymers. The structural similarity ensures optimal miscibility, as supported by the interaction parameter of the PS/PSOS blend is positioned very close to the binodal curve. Experimental studies and molecular dynamics simulations further revealed that surfactants hinder electron output sites and reduce the concentration of sacrificial agents at the interface, slowing polaron formation. Multiscale experiments verified that these BHJP, approximately 12 nm in diameter, further form cross-linked fractal networks of several hundred nanometers. Transient absorption spectroscopy showed that BHJP facilitates polaron formation and electron transfer. Our BHJP demonstrated a superior hydrogen evolution rate (HER) compared to traditional methods. The most active BHJP achieved an HER of 251.2 mmol h-1 g-1 and an apparent quantum yield of 26.2% at 500 nm. This work not only introduces a practical method for preparing BHJP but also offers a new direction for the development of heterojunction materials.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Yu-En Sun
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Ying-Rang Zhuang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Tse-Fu Huang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Kuei-Jhong Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Mohamed M. Elsenety
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- Department
of Chemistry, Faculty of Science, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Jui-Chen Yen
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hung-Kai Hsu
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Han Chen
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chen-Yu Chang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Je-Wei Chang
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Ni Huang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Bing-Heng Li
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Siriporn Jungsuttiwong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Toton Haldar
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 106344, Taiwan
| | - Shin-Huei Wang
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - Wan-Chi Lin
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - Tien-Lin Wu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chin-Wen Chen
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 106344, Taiwan
| | - Chi-Hua Yu
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - An-Chung Su
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Kun-Han Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - U-Ser Jeng
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Shang-Da Yang
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Center
for Photonics Research, National Tsing Hua
University, Hsinchu 300044, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Ho-Hsiu Chou
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- Center
for Photonics Research, National Tsing Hua
University, Hsinchu 300044, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
7
|
Zhu J, Dang J, Xiao H, Wang Y, Ding L, Zheng J, Chen J, Zhang J, Wang X, Xin JH, Chen S, Wang Y. Multi-Scale Hierarchical Organic Photocatalytic Platform for Self-Suspending Sacrificial Hydrogen Production from Seawater. Angew Chem Int Ed Engl 2025; 64:e202412794. [PMID: 39291306 DOI: 10.1002/anie.202412794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
The widespread application of photocatalysis for converting solar energy and seawater into hydrogen is generally hindered by limited catalyst activity and the lack of sustainable large-scale platforms. Here, a multi-scale hierarchical organic photocatalytic platform was developed, combining a photosensitive molecular heterojunction with a molecular-scale gradient energy level alignment and micro-nanoscale hierarchical pore structures. The ternary system facilitates efficient charge transfer and enhances photocatalytic activity compared to conventional donor-acceptor pairs. Meanwhile, the super-wetted hierarchical interfaces of the platform endow it with the ability to repeatedly capture light and self-suspend below the water surface, which simultaneously improves the light utilization efficiency, and reduces the adverse effects of salt deposition. Under a Xe lamp illumination, the hydrogen evolution rate of this organic platform utilizing a sacrificial agent can reach 165.8 mmol h-1 m-2, exceeding that of mostly inorganic systems as reported. And upon constructing a scalable system, the platform produced 80.6 ml m-2 of hydrogen from seawater within five hours at noon. More importantly, the outcomes suggest an innovative multi-scale approach that bridges disciplines, advancing the frontier of sustainable seawater hydrogen production driven by solar energy.
Collapse
Affiliation(s)
- Jingshuai Zhu
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Jie Dang
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
| | - Haoyuan Xiao
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Yuqi Wang
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Lei Ding
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Jiaxin Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, China
| | - Jianming Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Kowloon, Hong Kong
| | - Jianxiang Zhang
- National Innovation Center of Advanced Dyeing & Finishing Technology, 271000, Tai'an, Shandong, China
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Kowloon, Hong Kong
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Kowloon, Hong Kong
| | - Shiguo Chen
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Yuanfeng Wang
- College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
8
|
Liu X, Yu M, Huang K, Huang H, Gu H, Tian C, Qi J, Guo Z, Lian C, Wu Y, Zhang W, Zhu WH. Efficient Quasi-Homogenous Photocatalysis Enabled by Molecular Nanophotocatalysts with Donor-Acceptor Motif. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413440. [PMID: 39623807 DOI: 10.1002/adma.202413440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/26/2024] [Indexed: 01/30/2025]
Abstract
Polymer semiconductors have attracted much attention for photocatalytic hydrogen evolution, but they typically exhibit micrometer-sized particles in water-suspension, causing severe loss in light absorption and exciton recombination. Here a molecular nanophotocatalyst featuring a donor-acceptor motif is presented that solution is processed via a facile stirring nanoprecipitation method assisted by hydrophilic surfactants, enabling an efficient quasi-homogenous hydrogen evolution. In contrast to the original bulk powder (heterogeneous system), these quasi-homogenous nanophotocatalysts exhibit significantly improved light-harvesting, water-wettability, and exciton dissociation, resulting in distinctly enhanced (by four-order-of-magnitude) photocatalytic hydrogen evolution rate. The optimized nanophotocatalysts (4CzPN/DDBAB/SDBS) generate an outstanding hydrogen evolution rate of 116.42 mmol g-1 h-1 and apparent quantum yield of 30.2% at 365 nm, which are among the highest reported for single-junction organic photocatalysts. The scalability of the quasi-homogenous photocatalysts is further demonstrated using a flow-based flash nanoprecipitation (FNP) processing.
Collapse
Affiliation(s)
- Xueyan Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miaojie Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kai Huang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haiyang Huang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongxu Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changhao Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Qi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongzhen Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Pan Z, Zhang G, Zhang X, Xing W, Zheng D, Wang S, Hou Y, Wang X. Unveiling the Key Obstacle in Photocatalytic Overall Water Splitting Reaction on Poly (heptazine imide) Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407307. [PMID: 39473317 DOI: 10.1002/smll.202407307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Indexed: 01/11/2025]
Abstract
Poly (heptazine imide) (PHI), a classic 2D polymeric photocatalyst, represents a promising organic semiconductor for photocatalytic overall water splitting (POWS). However, since the key bottleneck in POWS of PHI remains unclear, its quantum efficiency of POWS is extremely restrained. To identify the key obstacle in POWS on the PHI, a series of PHI with different stacking modes is synthesized by tuning interlayer cations. The structural characterizations revealed that tuning the interlayer cations of PHI can induce rearrangements in interlayer stacking modes. Additionally, charge carriers dynamics uncover that optimizing the interlayer stacking modes of PHI can promote exciton diffusion and prolong the photoexcited electron lifetimes, thus improving the concentration of surface-reaching charge. More importantly, this confirms that the POWS activity of PHI is closely correlated with the interlayer stacking modes. This work offers new insight into structural regulation for governing charge-transport dynamics and the activity of 2D polymeric photocatalysts.
Collapse
Affiliation(s)
- Zhiming Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xirui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Dandan Zheng
- Department College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
10
|
Wang L, Deng J, Bai S, Wu Y, Zhu W. Enhanced Photocatalytic Degradation Performance by Micropore-Confined Charge Transfer in Hydrogen-Bonded Organic Framework-Like Cocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406352. [PMID: 39380386 DOI: 10.1002/smll.202406352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Carrier utilization in organic photocatalytic materials is unsatisfactory due to the large exciton binding energy and short exciton diffusion length. Both donor-acceptor (D-A) strategies and porous designs are promising approaches to improve carrier utilization in photocatalysts. However, a more efficient way is to shorten the distance of exciton migration to the catalyst surface by the charge transfer (CT) process. Herein, hydrogen-bonded organic framework-like cocrystal (NDI-Cor HOF-cocrystal) is prepared with novel structures serving as a proof of concept for the approach, using N, N'-bis (5-isophthalate) naphthalimide (NDI-COOH) as the porous framework and acceptor, and Coronene (Cor) as the donor unit. CT and porous engineering are integrated through cocrystal strategy. Under light irradiation, photogenerated excitons transfer and dissociate from the inner surface of the micropores on a hundred-picosecond time scale, where efficient radical transformation and further redox reactions with adsorbed phenol molecules occur. NDI-Cor HOF-cocrystal photocatalytic degradation of phenol is 15 times higher than that of original HOFs, and achieves near 90% deep mineralization of phenol. Significantly, this work has designed novel HOF-cocrystal and also provides new modification strategies for high performance organic photocatalysts.
Collapse
Affiliation(s)
- Lingsong Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jingheng Deng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunxin Wu
- College of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
11
|
Riley DB, Meredith P, Armin A. Exciton diffusion in organic semiconductors: precision and pitfalls. NANOSCALE 2024; 16:17761-17777. [PMID: 39171513 DOI: 10.1039/d4nr02467b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nanometer exciton diffusion is a fundamental process important in virtually all applications of organic semiconductors. Many measurement techniques have been developed to measure exciton diffusion length (LD) at the nanometer scale; however, these techniques have common challenges that the community has worked for decades to overcome. In this perspective, we lay out the principal challenges researchers need to overcome to obtain an accurate measurement of LD. We then examine the most common techniques used to measure LD with respect to these challenges and describe solutions developed to overcome them. This analysis leads to the suggestion that static quenching techniques underestimate LD due to uncertainties in the quenching behavior, while time-resolved exciton-exciton annihilation (EEA) techniques overestimate LD based on experimental conditions, we advance steady-state EEA techniques as an alternative that overcome many of the challenges of these other techniques while preserving accuracy. We support this hypothesis with a meta-analysis of LD measured across various organic semiconductors and measurement techniques. We intend this investigation to provide a framework for researchers to interpret and compare findings across measurement techniques and to guide researchers on how to obtain the most accurate results for each technique in question.
Collapse
Affiliation(s)
- Drew B Riley
- Sustainable Advanced Materials (Sêr-SAM), Centre for Integrative Semiconductor Materials (CISM), Department of Physics, Swansea University Bay Campus, Swansea SA1 8EN, UK.
| | - Paul Meredith
- Sustainable Advanced Materials (Sêr-SAM), Centre for Integrative Semiconductor Materials (CISM), Department of Physics, Swansea University Bay Campus, Swansea SA1 8EN, UK.
| | - Ardalan Armin
- Sustainable Advanced Materials (Sêr-SAM), Centre for Integrative Semiconductor Materials (CISM), Department of Physics, Swansea University Bay Campus, Swansea SA1 8EN, UK.
| |
Collapse
|
12
|
Pavliuk MV, Böhm M, Wilhelmsen J, Hardt S, Land H, Tian H. Photobiocatalytic CO 2 reduction into CO by organic nanorod-carbon monoxide dehydrogenase assemblies: surfactant matters. Chem Sci 2024:d4sc03154g. [PMID: 39328197 PMCID: PMC11421036 DOI: 10.1039/d4sc03154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Photobiocatalytic CO2 reduction represents an attractive approach for conversion of solar light and abundant resources to value-added chemicals. However, the design of suitable systems requires a detailed understanding of the interaction between the artificial photosensitizer and biocatalyst interface. In this work, we investigate the effect of surfactant charge utilized in the preparation of a phenoxazine-based organic molecule nanorod photosensitizer on the interaction with the carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans within biohybrid assemblies for sacrificially driven photobiocatalytic CO2 reduction into CO. Electrophoretic mobility shift assay in conjunction with cryogenic electron microscopy (Cryo-EM) and detailed physicochemical characterization are conducted to understand the interaction at the biohybrid interface in order to suggest a strategy for future functionalization of nanoparticles that fulfills the needs of the biocatalyst for green fuel production.
Collapse
Affiliation(s)
- Mariia V Pavliuk
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| | - Maximilian Böhm
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University Uppsala Sweden
| | - Janna Wilhelmsen
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| | - Steffen Hardt
- Leiden Institute of Chemistry, Energy and Sustainability - Catalysis and Surface Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden the Netherlands
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University Uppsala Sweden
| | - Haining Tian
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| |
Collapse
|
13
|
Lyons RJ, Sprick RS. Processing polymer photocatalysts for photocatalytic hydrogen evolution. MATERIALS HORIZONS 2024; 11:3764-3791. [PMID: 38895815 DOI: 10.1039/d4mh00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Conjugated materials have emerged as competitive photocatalysts for the production of sustainable hydrogen from water over the last decade. Interest in these polymer photocatalysts stems from the relative ease to tune their electronic properties through molecular engineering, and their potentially low cost. However, most polymer photocatalysts have only been utilised in rudimentary suspension-based photocatalytic reactors, which are not scalable as these systems can suffer from significant optical losses and often require constant agitation to maintain the suspension. Here, we will explore research performed to utilise polymeric photocatalysts in more sophisticated systems, such as films or as nanoparticulate suspensions, which can enhance photocatalytic performance or act as a demonstration of how the polymer can be scaled for real-world applications. We will also discuss how the systems were prepared and consider both the benefits and drawbacks of each system before concluding with an outlook on the field of processable polymer photocatalysts.
Collapse
Affiliation(s)
- Richard Jack Lyons
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | | |
Collapse
|
14
|
Lin WC, Wu YH, Sun YE, Elsenety MM, Lin WC, Yen JC, Hsu HK, Chen BH, Huang HY, Chang CA, Huang TF, Zhuang YR, Tseng YT, Lin KH, Yang SD, Yu CH, Chou HH. Symmetry-breaking of Dibenzo[b,d]thiophene Sulfone Enhancing Polaron Generation for Boosted Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202407702. [PMID: 38751355 DOI: 10.1002/anie.202407702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 06/28/2024]
Abstract
The current bottleneck in the development of efficient photocatalysts for hydrogen evolution is the limited availability of high-performance acceptor units. Over the past nine years, dibenzo[b,d]thiophene sulfone (DBS) has been the preferred choice for the acceptor unit. Despite extensive exploration of alternative structures as potential replacements for DBS, a superior substitute remains elusive. In this study, a symmetry-breaking strategy was employed on DBS to develop a novel acceptor unit, BBTT-1SO. The asymmetric structure of BBTT-1SO proved beneficial for increasing multiple moment and polarizability. BBTT-1SO-containing polymers showed higher efficiencies for hydrogen evolution than their DBS-containing counterparts by up to 166 %. PBBTT-1SO exhibited an excellent hydrogen evolution rate (HER) of 222.03 mmol g-1 h-1 and an apparent quantum yield of 27.5 % at 500 nm. Transient spectroscopic studies indicated that the BBTT-1SO-based polymers facilitated electron polaron formation, which explains their superior HERs. PBBTT-1SO also showed 14 % higher HER in natural seawater splitting than that in deionized water splitting. Molecular dynamics simulations highlighted the enhanced water-PBBTT-1SO polymer interactions in salt-containing solutions. This study presents a pioneering example of a substitute acceptor unit for DBS in the construction of high-performance photocatalysts for hydrogen evolution.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Yi-Hsiang Wu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Yu-En Sun
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Mohamed M Elsenety
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
- Department of Chemistry, Faculty of Science, Al-Azhar University, Yosief Abbas Street, Cairo, 11754, Cairo, Egypt
| | - Wan-Chi Lin
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan R.O.C
| | - Jui-Chen Yen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Hung-Kai Hsu
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Bo-Han Chen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Hung-Yi Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Chia-An Chang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Tse-Fu Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Ying-Rang Zhuang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Yuan-Ting Tseng
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Shang-Da Yang
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
- Center for Photonics Research, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| | - Chi-Hua Yu
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan R.O.C
- Department of Engineering Science, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan R.O.C
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
- Center for Photonics Research, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
- College of Semiconductor Research, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan R.O.C
| |
Collapse
|
15
|
Gao J, Bai H, Li P, Zhou Y, Su W, Liu C, Li X, Wu Y, Hu B, Liang Z, Bi Z, Li X, Yan L, Du H, Lu G, Gao C, Wang K, Liu Y, Ma W, Fan Q. Halogenated Dibenzo[f,h]quinoxaline Units Constructed 2D-Conjugated Guest Acceptors for 19% Efficiency Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403334. [PMID: 38884140 PMCID: PMC11336942 DOI: 10.1002/advs.202403334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.
Collapse
Affiliation(s)
- Jingshun Gao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Hairui Bai
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Ping Li
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Yibo Zhou
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Wenyan Su
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Chang Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiaoxiao Li
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and DevicesCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123China
| | - Yue Wu
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and DevicesCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123China
| | - Bin Hu
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & ShaanxiKey Lab of Photonic Technique for InformationSchool of Electronics Science & EngineeringFaculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiong Li
- Department of PhysicsBeijing Technology and Business UniversityBeijing100048China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & ShaanxiKey Lab of Photonic Technique for InformationSchool of Electronics Science & EngineeringFaculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Huiling Du
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Guanghao Lu
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Chao Gao
- Key Laboratory of Liquid Crystal and Organic Photovoltaic MaterialsState Key Laboratory of Fluorine & Nitrogen ChemicalsXi'an Modern Chemistry Research InstituteXi'an710065China
| | - Kun Wang
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Yuhang Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
16
|
Mi F, Liu Z, Wang X, Wang Y, Yang J, Wang Z, Yin S, Fang X, Shu P, Zhang X, Wu C. Deep Red Light Driven Hydrogen Evolution by Heterojunction Polymer Dots for Diabetic Wound Healing. Angew Chem Int Ed Engl 2024; 63:e202402133. [PMID: 38708621 DOI: 10.1002/anie.202402133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
We describe small heterojunction polymer dots (Pdots) with deep-red light catalyzed H2 generation for diabetic skin wound healing. The Pdots with donor/acceptor heterojunctions showed remarkably enhanced photocatalytic activity as compared to the donor or acceptor nanoparticles alone. We encapsulate the Pdots and ascorbic acid into liposomes to form Lipo-Pdots nanoreactors, which selectively scavenge ⋅OH radicals in live cells and tissues under 650 nm light illumination. The antioxidant capacity of the heterojunction Pdots is ~10 times higher than that of the single-component Pdots described previously. Under a total light dose of 360 J/cm2, the Lipo-Pdots nanoreactors effectively scavenged ⋅OH radicals and suppressed the expression of pro-inflammatory cytokines in skin tissues, thereby accelerating the healing of skin wounds in diabetic mice. This study provides a feasible solution for safe and effective treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Feixue Mi
- Optical Molecule and Skin Imaging Joint Laboratory, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhao Liu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, 518000, China
| | - Xinyu Wang
- Optical Molecule and Skin Imaging Joint Laboratory, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yingjie Wang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Junfeng Yang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaofeng Fang
- Optical Molecule and Skin Imaging Joint Laboratory, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, 518000, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Changfeng Wu
- Optical Molecule and Skin Imaging Joint Laboratory, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
17
|
Huang Y, Shen M, Yan H, He Y, Xu J, Zhu F, Yang X, Ye YX, Ouyang G. Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport. Nat Commun 2024; 15:5406. [PMID: 38926358 PMCID: PMC11208529 DOI: 10.1038/s41467-024-49373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Efficiently converting solar energy into chemical energy remains a formidable challenge in artificial photosynthetic systems. To date, rarely has an artificial photosynthetic system operating in the open air surpassed the highest solar-to-biomass conversion efficiency (1%) observed in plants. In this study, we present a three-dimension polymeric photocatalyst achieving a solar-to-H2O2 conversion efficiency of 3.6% under ambient conditions, including real water, open air, and room temperature. The impressive performance is attributed to the efficient storage of electrons inside materials via expeditious intramolecular charge transfer, and the fast extraction of the stored electrons by O2 that can diffuse into the internal pores of the self-supporting three-dimensional material. This construction strategy suppresses the interlayer transfer of excitons, polarizers and carriers, effectively increases the utilization of internal excitons to 82%. This breakthrough provides a perspective to substantially enhance photocatalytic performance and bear substantial implications for sustainable energy generation and environmental remediation.
Collapse
Affiliation(s)
- Yuyan Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minhui Shen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huijie Yan
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yingge He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianqiao Xu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519082, China.
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China.
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519082, China.
| |
Collapse
|
18
|
Zhang Z, Xu C, Sun Q, Zhu Y, Yan W, Cai G, Li Y, Si W, Lu X, Xu W, Yang Y, Lin Y. Delocalizing Excitation for Highly-Active Organic Photovoltaic Catalysts. Angew Chem Int Ed Engl 2024; 63:e202402343. [PMID: 38639055 DOI: 10.1002/anie.202402343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged charge carrier lifetime highly related to enhanced exciton delocalization, the PM6 : 2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6-561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6 : BP-4F and PM6 : 2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM 1.5G, 100 mW cm-2).
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qianlu Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yufan Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenlong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guilong Cai
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Gharbi AM, Biswas DS, Crégut O, Malý P, Didier P, Klymchenko A, Léonard J. Exciton annihilation and diffusion length in disordered multichromophoric nanoparticles. NANOSCALE 2024; 16:11550-11563. [PMID: 38868990 DOI: 10.1039/d4nr00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Efficient exciton transport is the essential property of natural and synthetic light-harvesting (LH) devices. Here we investigate exciton transport properties in LH organic polymer nanoparticles (ONPs) of 40 nm diameter. The ONPs are loaded with a rhodamine B dye derivative and bulky counterion, enabling dye loadings as high as 0.3 M, while preserving fluorescence quantum yields larger than 30%. We use time-resolved fluorescence spectroscopy to monitor exciton-exciton annihilation (EEA) kinetics within the ONPs dispersed in water. We demonstrate that unlike the common practice for photoluminescence investigations of EEA, the non-uniform intensity profile of the excitation light pulse must be taken into account to analyse reliably intensity-dependent population dynamics. Alternatively, a simple confocal detection scheme is demonstrated, which enables (i) retrieving the correct value for the bimolecular EEA rate which would otherwise be underestimated by a typical factor of three, and (ii) revealing minor EEA by-products otherwise unnoticed. Considering the ONPs as homogeneous rigid solutions of weakly interacting dyes, we postulate an incoherent exciton hoping mechanism to infer a diffusion constant exceeding 0.003 cm2 s-1 and a diffusion length as large as 70 nm. This work demonstrates the success of the present ONP design strategy at engineering efficient exciton transport in disordered multichromophoric systems.
Collapse
Affiliation(s)
| | | | - Olivier Crégut
- IPCMS, Université de Strasbourg - CNRS, Strasbourg, France.
| | - Pavel Malý
- Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
20
|
Guo Y, Sun J, Guo T, Liu Y, Yao Z. Emerging Light-Harvesting Materials Based on Organic Photovoltaic D/A Heterojunctions for Efficient Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202319664. [PMID: 38240469 DOI: 10.1002/anie.202319664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Photocatalytic water splitting to hydrogen is a highly promising method to meet the surging energy consumption globally through the environmentally friendly means. As the initial step before photocatalysis, harvesting photons from sunlight is crucially important, thus making the design of photosensitizers with visible even near-infrared (NIR) absorptions get more and more attentions. In the past three years, organic donor/acceptor (D/A) heterojunctions with absorptions extending to 950 nm, have emerged as the new star light-harvesting materials for photocatalytic water splitting, demonstrating exciting advantages over inorganic materials in solar light utilization, hydrogen yielding rate, etc. This Minireview firstly gives a brief discussion about the principle processes and determining factors for photocatalytic water splitting with organic photovoltaic D/A heterojunction as photosensitizers. Thereafter, the current progress is summarized in details by introducing typical and excellent D/A heterojunction-based photocatalytic systems. Finally, not only the great prospects but also the most challenging issues confronted by organic D/A heterojunctions are indicated along with a perspective on the opportunities and new directions for future material explorations.
Collapse
Affiliation(s)
- Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Jiayuan Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Tao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Zhaoyang Yao
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Wang L, Zhu W. Organic Donor-Acceptor Systems for Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307227. [PMID: 38145342 PMCID: PMC10933655 DOI: 10.1002/advs.202307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Organic semiconductor materials are considered to be promising photocatalysts due to their excellent light absorption by chromophores, easy molecular structure tuning, and solution-processable properties. In particular, donor-acceptor (D-A) type organic photocatalytic materials synthesized by introducing D and A units intra- or intermolecularly, have made great progress in photocatalytic studies. More and more studies have demonstrated that the D-A type organic photocatalytic materials combine effective carrier separation, tunable bandgap, and sensitive optoelectronic response, and are considered to be an effective strategy for enhancing light absorption, improving exciton dissociation, and optimizing carrier transport. This review provides a thorough overview of D-A strategies aimed at optimizing the photocatalytic performance of organic semiconductors. Initially, essential methods for modifying organic photocatalytic materials, such as interface engineering, crystal engineering, and interaction modulation, are briefly discussed. Subsequently, the review delves into various organic photocatalytic materials based on intramolecular and intermolecular D-A interactions, encompassing small molecules, conjugated polymers, crystalline polymers, supramolecules, and organic heterojunctions. Meanwhile, the energy band structures, exciton dynamics, and redox-active sites of D-A type organic photocatalytic materials under different bonding modes are discussed. Finally, the review highlights the advanced applications of organic photocatalystsand outlines prospective challenges and opportunities.
Collapse
Affiliation(s)
- Lingsong Wang
- Key Laboratory of Organic Integrated CircuitsMinistry of EducationTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated CircuitsMinistry of EducationTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| |
Collapse
|
22
|
Aitchison CM, McCulloch I. Organic Photovoltaic Materials for Solar Fuel Applications: A Perfect Match? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1781-1792. [PMID: 38435046 PMCID: PMC10902810 DOI: 10.1021/acs.chemmater.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
This work discusses the use of donor and acceptor materials from organic photovoltaics in solar fuel applications. These two routes to solar energy conversion have many shared materials design parameters, and in recent years there has been increasing overlap of the molecules and polymers used in each. Here, we examine whether this is a good approach, where knowledge can be translated, and where further consideration to molecular design is required.
Collapse
Affiliation(s)
- Catherine M. Aitchison
- Department of Chemistry, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Iain McCulloch
- Department of Chemistry, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
23
|
Zhu Y, He D, Wang C, Han X, Liu Z, Wang K, Zhang J, Shen X, Li J, Lin Y, Wang C, He Y, Zhao F. Suppressing Exciton-Vibration Coupling to Prolong Exciton Lifetime of Nonfullerene Acceptors Enables High-Efficiency Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202316227. [PMID: 38179837 DOI: 10.1002/anie.202316227] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The limited exciton lifetime (τ, generally <1 ns) leads to short exciton diffusion length (LD ) of organic semiconductors, which is the bottleneck issue impeding the further improvement of power conversion efficiencies (PCEs) for organic solar cells (OSCs). However, efficient strategies to prolong intrinsic τ are rare and vague. Herein, we propose a facile method to efficiently reduce vibrational frequency of molecular skeleton and suppress exciton-vibration coupling to decrease non-radiative decay rate and thus prolong τ via deuterating nonfullerene acceptors. The τ remarkably increases from 0.90 ns (non-deuterated L8-BO) to 1.35 ns (deuterated L8-BO-D), which is the record for organic photovoltaic materials. Besides, the inhibited molecular vibration improves molecular planarity of L8-BO-D for enhanced exciton diffusion coefficient. Consequently, the LD increases from 7.9 nm (L8-BO) to 10.7 nm (L8-BO-D). The prolonged LD of L8-BO-D enables PM6 : L8-BO-D-based bulk heterojunction OSCs to acquire higher PCEs of 18.5 % with more efficient exciton dissociation and weaker charge carrier recombination than PM6 : L8-BO-based counterparts. Moreover, benefiting from the prolonged LD , D18/L8-BO-D-based pseudo-planar heterojunction OSCs achieve an impressive PCE of 19.3 %, which is among the highest values. This work provides an efficient strategy to increase the τ and thus LD of organic semiconductors, boosting PCEs of OSCs.
Collapse
Affiliation(s)
- Yufan Zhu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Dan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Chong Wang
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiao Han
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zesheng Liu
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ke Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, P. R. China
| | - Jie Li
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuze Lin
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chunru Wang
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuehui He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Fuwen Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
24
|
Hua Z, Wu B, Zhang Y, Wang C, Dong T, Song Y, Jiang Y, Wang C. Efficient Charge Separation and Transport in Fullerene-CuPcOC 8 Donor-Acceptor Nanorod Enhancing Photocatalytic Hydrogen Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:256. [PMID: 38334527 PMCID: PMC10856716 DOI: 10.3390/nano14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
Photocatalytic hydrogen generation via water decomposition is a promising avenue in the pursuit of large-scale, cost-effective renewable hydrogen energy generation. However, the design of an efficient photocatalyst plays a crucial role in achieving high yields in hydrogen generation. Herein, we have engineered a fullerene-2,3,9,10,16,17,23,24-octa(octyloxy)copper phthalocyanine (C60-CuPcOC8) photocatalyst, achieving both efficient hydrogen generation and high stability. The significant donor-acceptor (D-A) interactions facilitate the efficient electron transfer from CuPcOC8 to C60. The rate of photocatalytic hydrogen generation for C60-CuPcOC8 is 8.32 mmol·g-1·h-1, which is two orders of magnitude higher than the individual C60 and CuPcOC8. The remarkable increase in hydrogen generation activity can be attributed to the development of a robust internal electric field within the C60-CuPcOC8 assembly. It is 16.68 times higher than that of the pure CuPcOC8. The strong internal electric field facilitates the rapid separation within 0.6 ps, enabling photogenerated charge transfer efficiently. Notably, the hydrogen generation efficiency of C60-CuPcOC8 remains above 95%, even after 10 h, showing its exceptional photocatalytic stability. This study provides critical insight into advancing the field of photocatalysis.
Collapse
Affiliation(s)
- Zihui Hua
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Bo Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yuhe Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
| | - Chong Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Tianyang Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
| | - Yupeng Song
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Z.H.); (Y.Z.); (C.W.); (T.D.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
25
|
Lin WC, Chang CL, Shih CH, Lin WC, Yu Lai Z, Chang JW, Ting LY, Huang TF, Sun YE, Huang HY, Lin YT, Liu JJ, Wu YH, Tseng YT, Zhuang YR, Li BH, Su AC, Yu CH, Chen CW, Lin KH, Jeng US, Chou HH. Sulfide Oxidation on Ladder-Type Heteroarenes to Construct All-Acceptor Copolymers for Visible-Light-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302682. [PMID: 37322304 DOI: 10.1002/smll.202302682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Conjugated polymers (CPs) have recently gained increasing attention as photocatalysts for sunlight-driven hydrogen evolution. However, they suffer from insufficient electron output sites and poor solubility in organic solvents, severely limiting their photocatalytic performance and applicability. Herein, solution-processable all-acceptor (A1 -A2 )-type CPs based on sulfide-oxidized ladder-type heteroarene are synthesized. A1 -A2 -type CPs showed upsurging efficiency improvements by two to three orders of magnitude, compared to their donor-acceptor -type CP counterparts. Furthermore, by seawater splitting, PBDTTTSOS exhibited an apparent quantum yield of 18.9% to 14.8% at 500 to 550 nm. More importantly, PBDTTTSOS achieved an excellent hydrogen evolution rate of 35.7 mmol h-1 g-1 and 150.7 mmol h-1 m-2 in the thin-film state, which is among the highest efficiencies in thin film polymer photocatalysts to date. This work provides a novel strategy for designing polymer photocatalysts with high efficiency and broad applicability.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Li Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chin-Hsuan Shih
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Wan-Chi Lin
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Ze- Yu Lai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Je-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Tse-Fu Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-En Sun
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hung-Yi Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Tung Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jia-Jen Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Hsiang Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yuan-Ting Tseng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ying-Rang Zhuang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Bing-Heng Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chi-Hua Yu
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Engineering Science, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chin-Wen Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - U-Ser Jeng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Photonics Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
26
|
Li Y, Zhang Z, Li T, Liang Y, Si W, Lin Y. Highly-Active Chiral Organic Photovoltaic Catalysts with Suppressed Charge Recombination. Angew Chem Int Ed Engl 2023; 62:e202307466. [PMID: 37403233 DOI: 10.1002/anie.202307466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Recombination of free charges in organic semiconductors reduces the available photo-induced charge-carriers and restricts photovoltaic efficiency. In this work, the chiral organic semiconductors (Y6-R and Y6-S with enantiopure R- and S- chiral alkyl sidechains) are designed and synthesized, which show effective aggregation-induced chirality through mainchain packing with chiral conformations in non-centrosymmetric space groups with tilt chirality. Based on the analysis of spin-injection, magnetic-hysteresis loop, and thermodynamics and dynamics of the excited state, we suggest that the aggregation-induced chirality can generate spin-polarization, which suppresses charge recombination and offers more available charge-carriers within Y6-R and Y6-S relative to the achiral counterpart (Y6). Then the chiral Y6-R and Y6-S show enhanced catalytic activity with optimal average hydrogen evolution rates of 205 and 217 mmol h-1 g-1 , respectively, 60-70 % higher than Y6, when they are employed as nanoparticle photocatalysts in photocatalytic hydrogen evolution under simulated solar light, AM1.5G, 100 mW cm-2 .
Collapse
Affiliation(s)
- Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanxin Liang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Mo Z, Miao Z, Yan P, Sun P, Wu G, Zhu X, Ding C, Zhu Q, Lei Y, Xu H. Electronic and energy level structural engineering of graphitic carbon nitride nanotubes with B and S co-doping for photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 645:525-532. [PMID: 37159994 DOI: 10.1016/j.jcis.2023.04.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
The ideal photocatalyst used for photocatalytic water splitting requires strong light absorption, fast charge separation/transfer ability and abundant active sites. Heteroatom doping offers a promising and rational approach to optimize the photocatalytic activity. However, achieving high photocatalytic performance remains challenging if just relying on single-element doping. Herein, Boron (B) and sulfur (S) dopants are simultaneously introduced into graphitic carbon nitride (g-C3N4) nanotubes by supramolecular self-assembly strategy. The developed B and S co-doped g-C3N4 nanotubes (B,S-TCN) exhibited an outstanding photocatalytic performance in the conversion of H2O into H2 (9.321 mmol g-1h-1), and the corresponding external quantum efficiency (EQE) reached 5.3% under the irradiation of λ = 420 nm. It is well evidenced by the closely combined experimental and (density functional theory) DFT calculations: (1) the introduction of B dopants can facilitate H2O adsorption and drive interatomic electron transfer, leading to efficient water splitting reaction. (2) S dopants can stretch the VB position to promote the oxidation ability of g-C3N4, which can accelerate the consumption of holes and thus inhibit the recombination with electrons. (3) the simultaneous introduction of B and S can engineer the electronic and energy level structural of g-C3N4 for optimizing interior charge transfer. Finally, the purpose of maximizing photocatalytic performance is achieved.
Collapse
Affiliation(s)
- Zhao Mo
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihuan Miao
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengcheng Yan
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Peipei Sun
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Guanyu Wu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Xingwang Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Cheng Ding
- School of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Qiang Zhu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Yucheng Lei
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Xu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
28
|
Enhanced photocatalytic hydrogen evolution activity of co-catalyst free S-scheme polymer heterojunctions via ultrasonic assisted reorganization in solvent. J Colloid Interface Sci 2023; 636:230-244. [PMID: 36634393 DOI: 10.1016/j.jcis.2023.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
In this work, two donor-acceptor linear conjugated polymers were designed and synthesized based on thianthrene-5,5,10,10-tetraoxide (TTO) as the acceptor unit, benzo[1,2-b:4,5-b']dithiophene derivative (Py1) and thiophene (Py2) as the donor units, respectively. The Py1/Py2 composite was prepared by physical ball milling of the two polymers in a mixture, which was further treated with a N-methyl-2-pyrrolidone (NMP)-assisted sonication treatment, and the obtained catalyst was named N-Py1/Py2. Compared with the single polymer or Py1/Py2, the FTIR characteristic peaks of O=S=O have a red shift for N-Py1/Py2, accompanied by a profound change in morphology. Furthermore, N-Py1/Py2 has a broader light response and more efficient separation and transport of charge carriers, and as a result it exhibits a higher photocatalytic hydrogen evolution rate (26.5 mmol g-1 h-1) without the involvement of any co-catalyst than Py1/Py2 catalyst (3.56 mmol g-1 h-1). The underlying mechanism for the enhanced photocatalytic activity by the sonication treatment in NMP is discussed based both on experimental and theoretical calculation data.
Collapse
|
29
|
Liang Y, Li T, Lee Y, Zhang Z, Li Y, Si W, Liu Z, Zhang C, Qiao Y, Bai S, Lin Y. Organic Photovoltaic Catalyst with σ-π Anchor for High-Performance Solar Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202217989. [PMID: 36700554 DOI: 10.1002/anie.202217989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
Efficient in situ deposition of metallic cocatalyst, like zero-valent platinum (Pt), on organic photovoltaic catalysts (OPCs) is the prerequisite for their high catalytic activities. Here we develop the OPC (Y6CO), by introducing carbonyl in the core, which is available to σ-π coordinate with transition metals, due to the high-energy empty π* orbital of carbonyl. Y6CO exhibits a stronger capability to anchor Pt species and reduce them to metallic state, resulting in more Pt0 deposition, relative to the control OPC without the central σ-π anchor. Single-component and heterojunction nanoparticles (NPs) employing Y6CO show enhanced average hydrogen evolution rates of 230.98 and 323.22 mmol h-1 g[OPC] -1 , respectively, under AM 1.5G, 100 mW cm-2 for 10 h, and heterojunction NPs yield the external quantum efficiencies of ca. 10 % in 500-800 nm. This work demonstrates that σ-π anchoring is one efficient strategy for integrating metallic cocatalyst and OPC for high-performance photocatalysis.
Collapse
Affiliation(s)
- Yuanxin Liang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei Li
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhsuan Lee
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zesheng Liu
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Abdullah, Lee SJ, Park JB, Kim YS, Shin HS, Kotta A, Siddiqui QT, Lee YS, Seo HK. Linear-Shaped Low-Bandgap Asymmetric Conjugated Donor Molecule for Fabrication of Bulk Heterojunction Small-Molecule Organic Solar Cells. Molecules 2023; 28:1538. [PMID: 36838527 PMCID: PMC9964613 DOI: 10.3390/molecules28041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
A linear-shaped small organic molecule (E)-4-(5-(3,5-dimethoxy-styryl)thiophen-2-yl)-7-(5″-hexyl-[2,2':5',2″-terthiophen]-5-yl)benzo[c][1,2,5]thiadiazole (MBTR) comprising a benzothiadiazole (BTD) acceptor linked with the terminal donors bithiophene and dimethoxy vinylbenzene through a π-bridge thiophene was synthesized and analyzed. The MBTR efficiently tuned the thermal, absorption, and emission characteristics to enhance the molecular packing and aggregation behaviors in the solid state. The obtained optical bandgap of 1.86 eV and low-lying highest occupied molecular orbital (HOMO) level of -5.42 eV efficiently lowered the energy losses in the fabricated devices, thereby achieving enhanced photovoltaic performances. The optimized MBTR:PC71BM (1:2.5 w/w%) fullerene-based devices showed a maximum power conversion efficiency (PCE) of 7.05%, with an open-circuit voltage (VOC) of 0.943 V, short-circuit current density (JSC) of 12.63 mA/cm2, and fill factor (FF) of 59.2%. With the addition of 3% 1,8-diiodooctane (DIO), the PCE improved to 8.76% with a high VOC of 1.02 V, JSC of 13.78 mA/cm2, and FF of 62.3%, which are associated with improved charge transport at the donor/acceptor interfaces owing to the fibrous active layer morphology and favorable phase separation. These results demonstrate that the introduction of suitable donor/acceptor groups in molecular design and device engineering is an effective approach to enhancing the photovoltaic performances of organic solar cells.
Collapse
Affiliation(s)
- Abdullah
- Korea Basic Science Institute (KBSI), Jeonju Center, Jeonju 54896, Republic of Korea
| | - Sei-Jin Lee
- Korea Basic Science Institute (KBSI), Jeonju Center, Jeonju 54896, Republic of Korea
| | - Jong Bae Park
- Korea Basic Science Institute (KBSI), Jeonju Center, Jeonju 54896, Republic of Korea
| | - Yang Soo Kim
- Korea Basic Science Institute (KBSI), Jeonju Center, Jeonju 54896, Republic of Korea
| | - Hyung-Shik Shin
- Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Ashique Kotta
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Future Energy Convergence Core Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Qamar Tabrez Siddiqui
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youn-Sik Lee
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyung-Kee Seo
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Future Energy Convergence Core Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
31
|
Chen P, Ru C, Hu L, Yang X, Wu X, Zhang M, Zhao H, Wu J, Pan X. Construction of Efficient D–A-Type Photocatalysts by B–N Bond Substitution for Water Splitting. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Leilei Hu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xuan Yang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People’s Republic of China
| | - Xuan Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Mingcai Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hao Zhao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- School of Physics and Electronic Information, Yantai University, 30 Qingquan Road, Yantai 264005, People’s Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 People’s Republic of China
- Key Laboratory of Petroleum Resources Research, Gansu Province, Lanzhou 730000, People’s Republic of China
| |
Collapse
|