1
|
Wang Y, Dong L, Li S, Feng Y, Ge X, Han X, Liu C, Wei Y, Cheng X, Xie L, Huang W. The Unexploring Optoelectronic Features in Organic Trans-Dimensional Materials of Gridofluorenes at the Nanoscale. J Phys Chem Lett 2025; 16:3888-3903. [PMID: 40208067 DOI: 10.1021/acs.jpclett.4c03432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Organic grido-architectures offer not only state-of-the-art models for exploring the complex relationships of multicarrier coherence among excitons, charges, photons, electrons, and phonons but also organic high-dimensional nanomaterials for flexible electronics and organic intelligence. Herein, we initiate the fundamental progress and perspective on gridofluorene-based zero-, one-, two-, and three-dimensional nanomolecules and their optoelectronic features. From the future point of view, the sterically trans-dimensional and hierarchically cross-scale effects of these covalent frameworks and nanostructures are discussed on their photophysical, electrical, mechanical and thermal properties. Organic multiscale systems, with the feature of synergistically molecule-programmable integration of diverse functionalities, open a bright door to flexible electronics, intelligent molecules, devices, systems, and even organobots as well as artificially intelligent and robotic chemists (AiRCs).
Collapse
Affiliation(s)
- Yongxia Wang
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lizhu Dong
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shuangyi Li
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Feng
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xinyao Ge
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xinxin Han
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chao Liu
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Wei
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaogang Cheng
- School of Communications and Information Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Linghai Xie
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| | - Wei Huang
- Center for Molecular Systems & Organic Devices (CMSOD), State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Huang H, Kinziabulatova L, Manickoth A, Zhang Y, Barilla MA, Blancafort L, Kohler B, Lumb JP. An iterative synthesis of poly-substituted indole oligomers reveals a short effective conjugation length in eumelanin model compounds. Chem Sci 2025:d4sc08610d. [PMID: 39981036 PMCID: PMC11836627 DOI: 10.1039/d4sc08610d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
Eumelanin is a multifunctional biomaterial that colors the skin, hair and eyes of mammals. Despite years of effort, its molecular structure remains unknown, limiting our understanding of its biological function and the design of synthetic mimics. In an effort to address this challenge, we report an Iterative Chain Growth (ICG) of well-defined 5,6-dihydroxyindole (DHI) model compounds that provides direct, experimental evidence of a short effective conjugation length in the resulting oligomers. Our ICG highlights the C2-selective borylation of N-H indoles in complex settings, and the utility of Suzuki-Miyaura Coupling (SMC) to grow the chain. The resulting C2-C7' linkage is installed selectively with good yields, affording products with up to 5-indole units. Access to these oligomers allows us to probe how DHI chain extension contributes to the emergence of sun screening in eumelanin. Our oligomers guarantee the absence of oxidized by-products that may otherwise complicate analysis, without substantially altering the photophysics of the indolic-backbone. Steady-state absorption and emission spectroscopy coupled with excited-state calculations reveal pronounced vibronic structure and excited state planarization, but only a moderate red shift with increasing chain length because of poor orbital coupling between adjoined π-systems. We conclude that eumelanin's characteristic ability to absorb visible light does not derive from long chains of fully reduced DHI sub-units. Our work takes an important step towards a more systematic exploration of eumelanin's structure through iterative synthesis, with the long-term goal of explaining the molecular origins of its properties.
Collapse
Affiliation(s)
- Haiyan Huang
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Lilia Kinziabulatova
- Department of Chemistry and Biochemistry, The Ohio State University 100W. 18th Avenue Columbus OH 43210 USA
| | - Anju Manickoth
- Institut de Química Computacional, Departament de Química, Universitat de Girona Girona 17003 Spain
| | - Yiming Zhang
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Marisa A Barilla
- Department of Chemistry and Biochemistry, The Ohio State University 100W. 18th Avenue Columbus OH 43210 USA
| | - Lluís Blancafort
- Institut de Química Computacional, Departament de Química, Universitat de Girona Girona 17003 Spain
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University 100W. 18th Avenue Columbus OH 43210 USA
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
3
|
Yin J, Wang H, Pyle D, Choi S, Liu Y, Wen J, Guest JR, Lyding JW, Dong G. Synthesis and Self-Assembly of Monodisperse Graphene Nanoribbons: Access to Submicron Architectures with Long-Range Order and Uniform Orientation. ACS NANO 2025; 19:4366-4376. [PMID: 39852765 DOI: 10.1021/acsnano.4c12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Fabricating organic semiconducting materials into large-scale, well-organized architectures is critical for building high-performance molecular electronics. While graphene nanoribbons (GNRs) hold enormous promise for various device applications, their assembly into a well-structured monolayer or multilayer architecture poses a substantial challenge. Here, we report the preparation of length-defined monodisperse GNRs via the integrated iterative binomial synthesis (IIBS) strategy and their self-assembly into submicrometer architectures with long-range order, uniform orientation, as well as regular layers. The use of short alkyl side chains benefits forming stable multilayers through interlocking structures. By changing the length and backbone shapes of these monodisperse GNRs, various three-dimensional assemblies, including multilayer stripes, monolayer stripes, and nanowires, can be achieved, leading to different photophysical properties and band gaps. The discovery of these intriguing self-assembly behaviors of length-defined GNRs is expected to enable various future applications.
Collapse
Affiliation(s)
- Jiangliang Yin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Hanfei Wang
- Department of Electrical and Computer Engineering, Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shinyoung Choi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jeffrey R Guest
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Joseph W Lyding
- Department of Electrical and Computer Engineering, Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Jacobse PH, Sarker M, Saxena A, Zahl P, Wang Z, Berger E, Aluru NR, Sinitskii A, Crommie MF. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400473. [PMID: 38412424 DOI: 10.1002/smll.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 02/29/2024]
Abstract
Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high-resolution atomic force microscopy (HR-AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin-degree of freedom in carbon-based nanostructures.
Collapse
Affiliation(s)
- Peter H Jacobse
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mamun Sarker
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Anshul Saxena
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emma Berger
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
5
|
Slicker K, Delgado A, Jiang J, Tang W, Cronin A, Blackwell RE, Louie SG, Fischer FR. Engineering Small HOMO-LUMO Gaps in Polycyclic Aromatic Hydrocarbons with Topologically Protected States. NANO LETTERS 2024; 24:5387-5392. [PMID: 38629638 PMCID: PMC11066967 DOI: 10.1021/acs.nanolett.4c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Topological phases in laterally confined low-dimensional nanographenes have emerged as versatile design tools that can imbue otherwise unremarkable materials with exotic band structures ranging from topological semiconductors and quantum dots to intrinsically metallic bands. The periodic boundary conditions that define the topology of a given lattice have thus far prevented the translation of this technology to the quasi-zero-dimensional (0D) domain of small molecular structures. Here, we describe the synthesis of a polycyclic aromatic hydrocarbon (PAH) featuring two localized zero modes (ZMs) formed by the topological junction interface between a trivial and nontrivial phase within a single molecule. First-principles density functional theory calculations predict a strong hybridization between adjacent ZMs that gives rise to an exceptionally small HOMO-LUMO gap. Scanning tunneling microscopy and spectroscopy corroborate the molecular structure of 9/7/9-double quantum dots and reveal an experimental quasiparticle gap of 0.16 eV, corresponding to a carbon-based small molecule long-wavelength infrared (LWIR) absorber.
Collapse
Affiliation(s)
- Kaitlin Slicker
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Aidan Delgado
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jingwei Jiang
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Weichen Tang
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
| | - Adam Cronin
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Raymond E. Blackwell
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Steven G. Louie
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Felix R. Fischer
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California, Berkeley,
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, Division of Computing,
Data Science, and Society, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Pun SH, Delgado A, Dadich C, Cronin A, Fischer FR. Controlled catalyst-transfer polymerization in graphene nanoribbon synthesis. Chem 2024; 10:675-685. [PMID: 40041413 PMCID: PMC11879277 DOI: 10.1016/j.chempr.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Exercising direct control over the unusual electronic structures arising from quantum confinement effects in graphene nanoribbons (GNRs) is intimately linked to geometric boundary conditions imposed by the structure of the ribbon. Besides composition and position of substitutional dopant atoms, the symmetry of the unit cell, width, length, and termination of a GNR govern its electronic structure. Here, we present a rational design that integrates each of these interdependent variables within a modular bottom-up synthesis. Our hybrid chemical approach relies on a catalyst-transfer polymerization that establishes excellent control over length, width, and end groups. Complemented by a surface-assisted cyclodehydrogenation step, uniquely enabled by matrix-assisted direct (MAD) transfer protocols, geometry and functional handles encoded in a polymer template are faithfully mapped onto the structure of the corresponding GNR. Bond-resolved scanning tunneling microscopy (BRSTM) and spectroscopy (STS) validate the robust correlation between polymer template design and GNR electronic structure.
Collapse
Affiliation(s)
- Sai Ho Pun
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Aidan Delgado
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Christina Dadich
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Adam Cronin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felix Raoul Fischer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Bakar Institute of Digital Materials for the Planet, Division of Computing, Data Science, and Society, University of California, Berkeley, Berkeley, CA 94720, USA
- Lead contact
| |
Collapse
|
7
|
Jacobse P, Daugherty MC, Čerņevičs K, Wang Z, McCurdy RD, Yazyev OV, Fischer FR, Crommie MF. Five-Membered Rings Create Off-Zero Modes in Nanographene. ACS NANO 2023; 17:24901-24909. [PMID: 38051766 PMCID: PMC10753889 DOI: 10.1021/acsnano.3c06006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
The low-energy electronic structure of nanographenes can be tuned through zero-energy π-electron states, typically referred to as zero-modes. Customizable electronic and magnetic structures have been engineered by coupling zero-modes through exchange and hybridization interactions. Manipulation of the energy of such states, however, has not yet received significant attention. We find that attaching a five-membered ring to a zigzag edge hosting a zero-mode perturbs the energy of that mode and turns it into an off-zero mode: a localized state with a distinctive electron-accepting character. Whereas the end states of typical 7-atom-wide armchair graphene nanoribbons (7-AGNRs) lose their electrons when physisorbed on Au(111) (due to its high work function), converting them into off-zero modes by introducing cyclopentadienyl five-membered rings allows them to retain their single-electron occupation. This approach enables the magnetic properties of 7-AGNR end states to be explored using scanning tunneling microscopy (STM) on a gold substrate. We find a gradual decrease of the magnetic coupling between off-zero mode end states as a function of GNR length, and evolution from a more closed-shell to a more open-shell ground state.
Collapse
Affiliation(s)
- Peter
H. Jacobse
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael C. Daugherty
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kristia̅ns Čerņevičs
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ziyi Wang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ryan D. McCurdy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Oleg V. Yazyev
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Felix R. Fischer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bakar
Institute
of Digital Materials for the Planet, Division of Computing, Data Science,
and Society, University of California, Berkeley, California 94720, United States
| | - Michael F. Crommie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Gao Y, Zhang Z, Yi Z, Zhang C, Xu W. Visualizing the Hierarchical Evolution of Aryl-Metal Bonding in Organometallic Nanostructures on Ag(111). J Phys Chem Lett 2023; 14:10819-10824. [PMID: 38016081 DOI: 10.1021/acs.jpclett.3c02950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
On-surface dehalogenative coupling reactions are promising for constructing nanostructures with diverse properties and functionalities. Extensive efforts have been devoted to single aryl-halogen (C-X) substituents and substitutions at various functionalization sites (typically including meta- and para-substitutions) to generate aryl-aryl single bonds. Moreover, multiple C-X substituents at the ortho-site and the peri- and bay-regions have been applied to create a variety of ring scaffolds. However, for multiple C-X substituents, the hierarchy of aryl-metal bond formation and dissociation remains elusive. Herein, by combining scanning tunneling microscopy imaging and density functional theory calculations, we have visualized and demonstrated the hierarchical evolution of aryl-metal bonding in organometallic intermediates involved in a dehalogenative coupling reaction on Ag(111), using a molecular precursor with both para-substitution and potential bay-region substitution. Our results elucidate how metal atoms are progressively embedded into and removed from organometallic intermediates, enhancing the understanding of on-surface dehalogenative coupling reactions for the controlled construction of the desired nanostructures.
Collapse
Affiliation(s)
- Yuhong Gao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhaoyu Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zewei Yi
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
9
|
Kinikar A, Xu X, Giovannantonio MD, Gröning O, Eimre K, Pignedoli CA, Müllen K, Narita A, Ruffieux P, Fasel R. On-Surface Synthesis of Edge-Extended Zigzag Graphene Nanoribbons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306311. [PMID: 37795919 DOI: 10.1002/adma.202306311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/06/2023] [Indexed: 10/06/2023]
Abstract
Graphene nanoribbons (GNRs) have gained significant attention in nanoelectronics due to their potential for precise tuning of electronic properties through variations in edge structure and ribbon width. However, the synthesis of GNRs with highly sought-after zigzag edges (ZGNRs), critical for spintronics and quantum information technologies, remains challenging. In this study, a design motif for synthesizing a novel class of GNRs termed edge-extended ZGNRs is presented. This motif enables the controlled incorporation of edge extensions along the zigzag edges at regular intervals. The synthesis of a specific GNR instance-a 3-zigzag-rows-wide ZGNR-with bisanthene units fused to the zigzag edges on alternating sides of the ribbon axis is successfully demonstrated. The resulting edge-extended 3-ZGNR is comprehensively characterized for its chemical structure and electronic properties using scanning probe techniques, complemented by density functional theory calculations. The design motif showcased here opens up new possibilities for synthesizing a diverse range of edge-extended ZGNRs, expanding the structural landscape of GNRs and facilitating the exploration of their structure-dependent electronic properties.
Collapse
Affiliation(s)
- Amogh Kinikar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Xiushang Xu
- Okinawa Institute of Science and Technology Graduate University, Organic and Carbon Nanomaterials Unit, 1919-1 Tancha, Onnason, Kunigamigun, Okinawa, 904-0495, Japan
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Oliver Gröning
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Kristjan Eimre
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Carlo A Pignedoli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Johannes Gutenberg University Mainz, Institute of Physical Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Akimitsu Narita
- Okinawa Institute of Science and Technology Graduate University, Organic and Carbon Nanomaterials Unit, 1919-1 Tancha, Onnason, Kunigamigun, Okinawa, 904-0495, Japan
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, 3012, Switzerland
| |
Collapse
|
10
|
Zhang JJ, Liu K, Xiao Y, Yu X, Huang L, Gao HJ, Ma J, Feng X. Precision Graphene Nanoribbon Heterojunctions by Chain-Growth Polymerization. Angew Chem Int Ed Engl 2023; 62:e202310880. [PMID: 37594477 DOI: 10.1002/anie.202310880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Graphene nanoribbons (GNRs) are considered promising candidates for next-generation nanoelectronics. In particular, GNR heterojunctions have received considerable attention due to their exotic topological electronic phases at the heterointerface. However, strategies for their precision synthesis remain at a nascent stage. Here, we report a novel chain-growth polymerization strategy that allows for constructing GNR heterojunction with N=9 armchair and chevron GNRs segments (9-AGNR/cGNR). The synthesis involves a controlled Suzuki-Miyaura catalyst-transfer polymerization (SCTP) between 2-(6'-bromo-4,4''-ditetradecyl-[1,1':2',1''-terphenyl]-3'-yl) boronic ester (M1) and 2-(7-bromo-9,12-diphenyl-10,11-bis(4-tetradecylphenyl)-triphenylene-2-yl) boronic ester (M2), followed by the Scholl reaction of the obtained block copolymer (poly-M1/M2) with controlled Mn (18 kDa) and narrow Đ (1.45). NMR and SEC analysis of poly-M1/M2 confirm the successful block copolymerization. The solution-mediated cyclodehydrogenation of poly-M1/M2 toward 9-AGNR/cGNR is unambiguously validated by FT-IR, Raman, and UV/Vis spectroscopies. Moreover, we also demonstrate the on-surface formation of pristine 9-AGNR/cGNR from the unsubstituted copolymer precursor, which is unambiguously characterized by scanning tunneling microscopy (STM).
Collapse
Affiliation(s)
- Jin-Jiang Zhang
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Yao Xiao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiuling Yu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Li Huang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
11
|
Yin J, Choi S, Pyle D, Guest JR, Dong G. Backbone Engineering of Monodisperse Conjugated Polymers via Integrated Iterative Binomial Synthesis. J Am Chem Soc 2023; 145:19120-19128. [PMID: 37603817 PMCID: PMC10472507 DOI: 10.1021/jacs.3c08143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Synthesis of sequence-defined monodisperse π-conjugated polymers with versatile backbones remains a substantial challenge. Here we report the development of an integrated iterative binomial synthesis (IIBS) strategy to enable backbone engineering of conjugated polymers with precisely controlled lengths and sequences as well as high molecular weights. The IIBS strategy capitalizes on the use of phenol as a surrogate for aryl bromide and represents the merge between protecting-group-aided iterative synthesis (PAIS) and iterative binomial synthesis (IBS). Long and monodisperse conjugated polymers with diverse irregular backbones, which are inaccessible by conventional polymerizations, can be efficiently prepared by IIBS. In addition, topology-dependent and chain-length-dependent properties have been investigated.
Collapse
Affiliation(s)
- Jiangliang Yin
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shinyoung Choi
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey R. Guest
- Center
for Nanoscale Materials, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Guangbin Dong
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Lee J, Ryu H, Park S, Cho M, Choi TL. Living Suzuki-Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Length-Controlled Armchair Graphene Nanoribbons and Their Block Copolymers. J Am Chem Soc 2023. [PMID: 37376993 DOI: 10.1021/jacs.3c04130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The bottom-up synthesis of graphene nanoribbons (GNRs) offers a promising approach for designing atomically precise GNRs with tuneable photophysical properties, but controlling their length remains a challenge. Herein, we report an efficient synthetic protocol for producing length-controlled armchair GNRs (AGNRs) through living Suzuki-Miyaura catalyst-transfer polymerization (SCTP) using RuPhos-Pd catalyst and mild graphitization methods. Initially, SCTP of a dialkynylphenylene monomer was optimized by modifying boronates and halide moieties on the monomers, affording poly(2,5-dialkynyl-p-phenylene) (PDAPP) with controlled molecular weight (Mn up to 29.8k) and narrow dispersity (Đ = 1.14-1.39) in excellent yield (>85%). Subsequently, we successfully obtained N = 5 AGNRs by employing a mild alkyne benzannulation reaction on the PDAPP precursor and confirmed their length retention by size-exclusion chromatography. In addition, photophysical characterization revealed that a molar absorptivity was directly proportional to the length of the AGNR, while its highest occupied molecular orbital (HOMO) energy level remained constant within the given AGNR length. Furthermore, we prepared, for the very first time, N = 5 AGNR block copolymers with widely used donor or acceptor-conjugated polymers by taking advantage of the living SCTP. Finally, we achieved the lateral extension of AGNRs from N = 5 to 11 by oxidative cyclodehydrogenation in solution and confirmed their chemical structure and low band gap by various spectroscopic analyses.
Collapse
Affiliation(s)
- Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanseul Ryu
- Department of Materials, ETH Zürich, Zurich 8093, Switzerland
| | - Songyee Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minyoung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zurich 8093, Switzerland
| |
Collapse
|
13
|
Eghbarieh N, Hanania N, Masarwa A. Stereodefined polymetalloid alkenes synthesis via stereoselective boron-masking of polyborylated alkenes. Nat Commun 2023; 14:2022. [PMID: 37041219 PMCID: PMC10090189 DOI: 10.1038/s41467-023-37733-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Polyborylated-alkenes are valuable polymetalloid reagents in modern organic synthesis, providing access to a wide array of transformations, including the construction of multiple C-C and C-heteroatom bonds. However, because they contain similar boryl groups, many times their transformation faces the main challenge in controlling the chemo-, regio- and stereoselectivity. One way to overcome these limitations is by installing different boron groups that can provide an opportunity to tune their reactivity toward better chemo-, regio- and stereoselectivity. Yet, the preparation of polyborylated-alkenes containing different boryl groups has been rare. Herein we report concise, highly site-selective, and stereoselective boron-masking strategies of polyborylated alkenes. This is achieved by designed stereoselective trifluorination and MIDA-ation reactions of readily available starting polyborylated alkenes. Additionally, the trifluoroborylated-alkenes undergo a stereospecific interconversion to Bdan-alkenes. These transition-metal free reactions provide a general and efficient method for the conversion of polyborylated alkenes to access 1,1-di-, 1,2-di-, 1,1,2-tris-(borylated) alkenes containing BF3M, Bdan, and BMIDA, a family of compounds that currently lack efficient synthetic access. Moreover, tetraborylethene undergoes the metal-free MIDA-ation reaction to provide the mono BMIDA tetraboryl alkene selectively. The mixed polyborylalkenes are then demonstrated to be useful in selective C-C and C-heteroatom bond-forming reactions. Given its simplicity and versatility, these stereoselective boron-masking approaches hold great promise for organoboron synthesis and will result in more transformations.
Collapse
Affiliation(s)
- Nadim Eghbarieh
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Nicole Hanania
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ahmad Masarwa
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|