1
|
Cui J, Zhang F, Jiang D, Liu B, Zhang H, Niu N, Yan D, Song G, Li X, Yu L, Wang D, Tang BZ. An AIE-active near-infrared molecular probe for migrasome labeling. Biomaterials 2025; 319:123213. [PMID: 40037204 DOI: 10.1016/j.biomaterials.2025.123213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Migrasomes, newly identified organelles, play crucial roles in various physiological and pathological activities, including embryogenesis, immune responses, wound healing, and metastasis of cancer cells. Migrasome visualization is essential for the deep exploration of migrasome biology. Despite the reported labeling methods based on migrasome marker proteins, a simple and convenient method for migrasome labeling is more desirable compared to the complicated transfection technique. Here, an aggregation-induced emission (AIE) based near-infrared (NIR) molecular probe named TTCPy was presented, which can bind to the phospholipid on migrasomes and light up migrasomes with a turn-on NIR fluorescence. TTCPy allows for high-performance imaging of migrasomes in both live cells and living chorioallantoic membranes via simple and rapid staining. Moreover, TTCPy achieves live-cell super-resolution imaging of migrasomes, affording remarkedly improved spatial resolution and signal-to-background ratio. This work offers a simple yet powerful tool for migrasome visualization and will contribute to the booming hotspot of migrasome biology.
Collapse
Affiliation(s)
- Jie Cui
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Fei Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Jiang
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Boqi Liu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Han Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangjie Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Li Yu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| |
Collapse
|
2
|
Qi Q, Liu Y, Puranik V, Patra S, Svindrych Z, Gong X, She Z, Zhang Y, Aprahamian I. Photoswitchable Fluorescent Hydrazone for Super-Resolution Cell Membrane Imaging. J Am Chem Soc 2025; 147:16404-16411. [PMID: 40315017 DOI: 10.1021/jacs.5c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Advancing the field of super-resolution microscopy will require the design and optimization of new molecular probes whose emission can be toggled "ON" and "OFF" using light. Recently, we reported on a hydrazone photochrome (1) whose emission can be photoswitched on demand, although its low brightness and UV light-dependent back isomerization limited its use in such applications. Here, we report on the optimization of this parent fluorophore by replacing its dimethylamine electron-donating group with conformationally more rigid groups, namely, azetidine (2), 3,3-difluoroazetidine (3), and julolidine (4). This structural change resulted in enhanced brightness (i.e., extinction coefficient multiplied by fluorescence quantum yield), specifically in 4 because of its rigidity and ED capability. Next, three electron push-pull hydrazones (5-7) were designed based on the scaffold of 4, using cyano, nitro, or dicyanovinyl, respectively, as the electron-withdrawing groups, resulting in the progressive red-shifting of the photoswitching wavelengths into the visible region and further enhancement in brightness. Finally, fluorogenic probe 8 was developed based on parent compound 7, which could be activated solely with visible light and used in the super-resolution imaging of fixed-cell and live-cell plasma membranes with average localization precisions of 17 and 25 nm, respectively.
Collapse
Affiliation(s)
- Qingkai Qi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yunshu Liu
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Vedang Puranik
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Shefali Patra
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zdenek Svindrych
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Xiayi Gong
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ziwei She
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yang Zhang
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
3
|
Florès O, Berthomé Y, Weiss L, Griesbaum-Dubourg S, Riché S, Wagner P, Valencia C, Villa P, Klymchenko AS, Karpenko J, Bonnet D. Click-Functionalized Cyanine Fluorogenic Dimers for Improved Detection of GPCRs: Application to Imaging of ApelinR in Living Cells. Chemistry 2025:e202500379. [PMID: 40273184 DOI: 10.1002/chem.202500379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Fluorogenic dimers enable background-free imaging of biological targets under wash-free conditions owing to a strong fluorescence enhancement in the apolar cell microenvironment. However, it is crucial that the imaging probe interacts solely with the target receptor to avoid nonspecific interactions and ensure detection with a high signal-to-noise ratio. Herein, we describe a convenient and rapid approach for the synthesis of various functionalized cyanine dyes by click chemistry allowing the fine-tuning of the physicochemical and fluorogenic properties of the dimers. A structure-interaction relationship study was conducted for the fluorogenic dimers in the presence of bovine serum albumin (BSA) and liposomes as models of serum proteins and cell membranes. We identified d─Cy─E which combined the lowest nonspecific interactions with the optimal fluorescence turn-on properties. By conjugating d─Cy─E to a peptide ligand of the apelin GPCR, we developed Ap─d─Cy─E, the first fluorescent turn-on probe for the background-free imaging of this receptor in living cells.
Collapse
Affiliation(s)
- Océane Florès
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Strasbourg, F-67000, France
| | - Yann Berthomé
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Strasbourg, F-67000, France
| | - Lucille Weiss
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Strasbourg, F-67000, France
| | - Sarah Griesbaum-Dubourg
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Strasbourg, F-67000, France
| | - Stéphanie Riché
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Strasbourg, F-67000, France
| | - Patrick Wagner
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Strasbourg, F-67000, France
| | - Christel Valencia
- PCBIS Plateforme de chimie biologie intégrative de Strasbourg, UAR 3286 CNRS, Université de Strasbourg, Strasbourg, F-67000, France
| | - Pascal Villa
- PCBIS Plateforme de chimie biologie intégrative de Strasbourg, UAR 3286 CNRS, Université de Strasbourg, Strasbourg, F-67000, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Strasbourg, F-67000, France
| | - Julie Karpenko
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Strasbourg, F-67000, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Strasbourg, F-67000, France
| |
Collapse
|
4
|
Pfister S, Walter S, Perrier A, Collot M. Spontaneously blinking spiroamide rhodamines for live SMLM imaging of the plasma membrane. Chem Commun (Camb) 2025; 61:6170-6173. [PMID: 40162850 DOI: 10.1039/d5cc00151j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
We have developed spontaneously blinking fluorescent probes based on the reversible spirolactamization of rhodamine, to efficiently image the plasma membrane (PM) of live cells with enhanced resolution using SMLM. This study demonstrates that the blinking efficiency of spiroamide PM probes is not solely governed by their pKa; the presence of a charged polar group on the amide should also be taken into account.
Collapse
Affiliation(s)
- Sonia Pfister
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France.
| | - Sophie Walter
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France.
| | - Aurélie Perrier
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236, CNRS, Université Paris Cité, F-75013, Paris, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France.
| |
Collapse
|
5
|
Li W, Xu K. Super-Resolution Mapping and Quantification of Molecular Diffusion via Single-Molecule Displacement/Diffusivity Mapping (SM dM). Acc Chem Res 2025; 58:1224-1235. [PMID: 40183356 PMCID: PMC12032829 DOI: 10.1021/acs.accounts.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
ConspectusDiffusion underlies vital physicochemical and biological processes and provides a valuable window into molecular states and interactions. However, it remains a challenge to map molecular diffusion at subcellular and submicrometer scales. Whereas single-particle tracking of fluorescent molecules provides a path to quantify motion at the nanoscale, its typical pursuit of long trajectories limits wide-field mapping to the slow diffusion of bound molecules.Single-molecule displacement/diffusivity mapping (SMdM) rises to the challenge. Rather than following each fluorescent molecule longitudinally as it randomly visits potentially heterogeneous environments, SMdM flips the question to ask, for every location (e.g., a 100 × 100 nm2 spatial bin) in a wide field, how different single molecules of identical nature move locally. This location-centered strategy is naturally effective for spatial mapping of diffusivity. Moreover, by focusing on local motion, each molecule only needs to be detected for its transient displacement within a fixed short time window to achieve local statistics. This task is fulfilled for fast-diffusing molecules using a tandem excitation scheme in which a pair of closely timed stroboscopic excitation pulses are applied across two tandem frames, so that wide-field single-molecule images are recorded at a pulse-defined ≲1 ms separation unlimited by the camera frame rate. With fitting models robust against mismatched molecules and diffusion anisotropy, SMdM thus successfully achieves super-resolution D mapping for fluorescently labeled molecules of contrasting sizes and properties in diverse cellular and in vitro systems.For intracellular protein diffusion, SMdM uncovers nanoscale diffusion heterogeneities in the mammalian cytoplasm and nucleus and further elucidates their origins from the macromolecular crowding effects of cytoskeletal and chromatin ultrastructures, respectively, through correlated single-molecule localization microscopy (SMLM). Across diverse compartments of the mammalian cell, including the cytoplasm, the nucleus, the endoplasmic reticulum (ER) lumen, and the mitochondrial matrix, SMdM further unveils a striking charge effect, in which the diffusion of positively charged proteins is biasedly impeded. For cellular membranes, the integration of SMdM with fluorogenic probes enables diffusivity fine-mapping, which, in combination with spectrally resolved SMLM (SR-SMLM), elucidates nanoscale diffusional heterogeneities of different origins. For biomolecular condensates, another synergy of SMdM and SR-SMLM uncovers the gradual formation of diffusion-suppressed, hydrophobic amyloid nanoaggregates at the surface of FUS (fused in sarcoma) protein condensates during aging. Beyond spatial mapping, the mass accumulation of single-molecule displacements in SMdM further affords a valuable means to quantify D with exceptional precision. This advantage is harnessed to show no enhanced diffusion of enzymes in reactions, to uncover ubiquitous net charge-driven protein-protein interactions in solution, and to show with strategically manipulated cytoplasmic extracts that molecular interaction in the crowded cell is defined by an overwhelmingly negatively charged macromolecular environment with dense meshworks, echoing our parallel results in the mammalian cell.Together, by uniquely enabling super-resolution mapping and high-precision quantification of molecular diffusion across diverse systems, SMdM opens a new door to reveal fascinating spatiotemporal heterogeneities in living cells and beyond.
Collapse
Affiliation(s)
- Wan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Sastourné-Haletou R, Marynberg S, Pereira A, Su F, Chen M, Valet G, Sindikubwabo F, Cañeque T, Müller S, Colombeau L, Solier S, Gaillet C, Guianvarc'h D, Biot C, Karoyan P, Gueroui Z, Arimondo P, Klausen M, Vauzeilles B, Cossy J, Fontecave M, Gasser G, Policar C, Gautier A, Johannes L, Rodriguez R. PSL Chemical Biology Symposia: The Increasing Impact of Chemistry in Life Sciences. Chembiochem 2025:e2500231. [PMID: 40195606 DOI: 10.1002/cbic.202500231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Indexed: 04/09/2025]
Abstract
This symposium is the 6th Paris Sciences & Lettres (PSL) Chemical Biology meeting (2015, 2016, 2019, 2023, 2024, 2025) being held at Institut Curie. This initiative originally started in 2013 at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette and was mostly focused on organic synthesis. It was then exported at Institut Curie to cover a larger scope, before becoming the official French Chemical Biology meeting. This year, around 200 participants had the opportunity to meet world leaders in chemistry and biology who described their latest innovations and future trends covering topics as diverse as prebiotic chemistry, activity-based protein profiling, high-resolution cell imaging, nanotechnologies, bio-orthogonal chemistry, metal ion signaling, ferroptosis, and biocatalysis.
Collapse
Affiliation(s)
- Romain Sastourné-Haletou
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Sacha Marynberg
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Arthur Pereira
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Fubao Su
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Mengnuo Chen
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Gaspard Valet
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Fabien Sindikubwabo
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Ludovic Colombeau
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Stéphanie Solier
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Christine Gaillet
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | | | - Christophe Biot
- UGSF, Université de Lille, UMR 8576 CNRS, 59655, Villeneuve d'Ascq, France
| | - Philippe Karoyan
- CPCV, École Normale Supérieure, Sorbonne Université, UMR 8228 CNRS, 75005, Paris, France
| | - Zoher Gueroui
- CPCV, École Normale Supérieure, Sorbonne Université, UMR 8228 CNRS, 75005, Paris, France
| | - Paola Arimondo
- Chimie Biologique Épigénétique, Institut Pasteur, UMR 3523 CNRS, 75724, Paris, France
| | - Maxime Klausen
- ICB, Chimie ParisTech, UMR 8060 CNRS, 75005, Paris, France
| | - Boris Vauzeilles
- ICSN, Université Paris-Saclay, UPR 2301 CNRS, 91190, Gif-sur-Yvette, France
| | | | - Marc Fontecave
- LCPB, Collège de France, UMR 8229 CNRS, 75005, Paris, France
| | - Gilles Gasser
- ICB, Chimie ParisTech, UMR 8060 CNRS, 75005, Paris, France
| | - Clotilde Policar
- CPCV, École Normale Supérieure, Sorbonne Université, UMR 8228 CNRS, 75005, Paris, France
| | - Arnaud Gautier
- CPCV, École Normale Supérieure, Sorbonne Université, UMR 8228 CNRS, 75005, Paris, France
| | - Ludger Johannes
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer, Institut Curie, PSL Université Paris, UMR 3666 CNRS, U1339 INSERM, 75005, Paris, France
| |
Collapse
|
7
|
Pfister S, Le Berruyer V, Fam K, Collot M. A Photoactivatable Plasma Membrane Probe Based on a Self-Triggered Photooxidation Cascade for Live Cell Super-Resolution Microscopy. Angew Chem Int Ed Engl 2025:e202425276. [PMID: 40192285 DOI: 10.1002/anie.202425276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Super-resolution imaging based on the localization of single emitters requires a spatio-temporal control of the ON and OFF states. To this end, photoactivatable fluorophores are adapted as they can be turned on upon light irradiation. Here, we present a concept called self-triggered photooxidation cascade (STPC) based on the photooxidation of a plasma membrane-targeted leuco-rhodamine (LRhod-PM), a non-fluorescent reduced form of a rhodamine probe. Upon visible light irradiation the small number of oxidized rhodamines, Rhod-PM, acts as a photosensitizer to generate singlet oxygen capable of oxidizing the OFF state LRhod-PM thereby switching it to its ON state. We showed that this phenomenon is kinetically favored by a high local concentration and propagates quickly when the probe is embedded in membrane bilayers. In addition, we showed that the close proximity of the dyes favors the photobleaching. At the single-molecule level, the concomitant activation/bleaching phenomena allow reaching a single-molecule blinking regime enabling single-molecule localization microscopy for super-resolution of live cellular membranes and their thin processes including filopodia and tuneling nanotubes.
Collapse
Affiliation(s)
- Sonia Pfister
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Valentine Le Berruyer
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Kyong Fam
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| |
Collapse
|
8
|
Wu T, King MR, Qiu Y, Farag M, Pappu RV, Lew MD. Single-fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates. NATURE PHYSICS 2025; 21:778-786. [PMID: 40386802 PMCID: PMC12084160 DOI: 10.1038/s41567-025-02827-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/12/2025] [Indexed: 05/20/2025]
Abstract
Biomolecular condensates are viscoelastic materials. Simulations predict that condensates formed by intrinsically disordered proteins are network fluids defined by spatially inhomogeneous organization of the underlying molecules. Here, we test these predictions and find that molecules within condensates are organized into slow-moving nanoscale clusters and fast-moving dispersed molecules. These results, obtained using single-fluorogen tracking and super-resolution imaging of different disordered protein-based condensates, affirm the predicted spatially inhomogeneous organization of molecules within condensates. We map the internal environments and interfaces of condensates using fluorogens that localize differently to the interiors versus interface between dilute phase and condensate. We show that nanoscale clusters within condensates are more hydrophobic than regions outside the clusters, and regions within condensates that lie outside clusters are more hydrophobic than coexisting dilute phases. Our findings provide a structural and dynamical basis for the viscoelasticity of condensates.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Matthew R. King
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
- Department of Biomedical Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Yuanxin Qiu
- Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Mina Farag
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
- Department of Biomedical Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Rohit V. Pappu
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
- Department of Biomedical Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
9
|
Jin W, Huang J, Niu J, Zhang S, Liu Z, Yu X. Ultra-photostable fluorescent dye molecular engineering-for measuring plant cells' membrane-spacing through a "deposition-embedding" strategy. J Mater Chem B 2025; 13:3340-3349. [PMID: 39925131 DOI: 10.1039/d4tb02546f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The plant cell membrane serves as a barrier, isolating the cell's interior from its external environment. Unlike animal cells, where the cytoplasmic membrane can be easily fluorescently labeled through genetic engineering, plant cells often rely more heavily on small molecule fluorescent probes to address the problem of probe internalization. Meanwhile, due to cellular internalization, current plasma fluorescent probes struggle to stain cell membranes for long periods of time. In addition, these probes tend to accumulate in the cell wall, making it impossible to achieve specific, high-noise-to-noise staining of cell membranes. In response to these challenges, we propose a novel "deposition-embedding" strategy for developing a plant cell membrane probe. The compound PTBT-O-NPh2, with its low solubility and high hydrophobicity, is designed to limit membrane penetration. Instead, it rapidly deposits on the membrane surface and embeds itself into the lipid environment via strong hydrogen bonding with phospholipid molecules. Additionally, its exceptional resistance to photobleaching and long-term retention capability allow it to measure membrane-spacing over a period of 120 hours. These findings suggest that the "deposition-embedding" strategy could be instrumental in developing a new generation of fluorescent dyes for studying plant mechanobiology.
Collapse
Affiliation(s)
- Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Jie Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Jie Niu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, China
| | - Shiqian Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
10
|
Xiong T, Chen Y, Peng Q, Zhou X, Li M, Lu S, Chen X, Fan J, Wang L, Peng X. Heterodimeric Photosensitizer as Radical Generators to Promoting Type I Photodynamic Conversion for Hypoxic Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410992. [PMID: 39865773 DOI: 10.1002/adma.202410992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/21/2024] [Indexed: 01/28/2025]
Abstract
Photodynamic therapy (PDT) using traditional type II photosensitizers (PSs) has been limited in hypoxic tumors due to excessive oxygen consumption. The conversion from type II into a less oxygen-dependent type I PDT pathway has shown the potential to combat hypoxic tumors. Herein, the design of a heterodimeric PS, NBSSe, by conjugating a widely used type I PS NBS and a type II PS NBSe via molecular dimerization, achieving the aggregation-regulated efficient type I photodynamic conversion for the first time is reported. Electrochemistry characterizations and theoretical calculations elucidate that NBSSe tends to form a S+·/Se-· radical pair via intramolecular electron transfer in the co-excited NBSSe* aggregate, realizing 7.25-fold O2 -· generation compared to NBS and 80% suppression of 1O2 generation compared to NBSe. The enhanced O2 -· generation of NBSSe enables excellent anti-hypoxia PDT efficiency and inhibition of pulmonary metastasis. Additionally, the incorporation of electron-rich bovine serum albumin accelerates the recycling of cationic PS radical NBSSe+·, further boosting photostability and O2 -· generation. The resultant BSA@NBSSe nanoparticles demonstrate successful tumor-targeting PDT capability. This work provides an appealing avenue to convert ROS generation from the type II pathway to the type I pathway for efficient cancer phototherapy in hypoxia.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Qiang Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Jiangli Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Aknine N, Pelletier R, Klymchenko AS. Lipid-Directed Covalent Labeling of Plasma Membranes for Long-Term Imaging, Barcoding and Manipulation of Cells. JACS AU 2025; 5:922-936. [PMID: 40017781 PMCID: PMC11863151 DOI: 10.1021/jacsau.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Fluorescent probes for cell plasma membranes (PM) generally exploit a noncovalent labeling mechanism, which constitutes a fundamental limitation in multiple bioimaging applications. Here, we report a concept of lipid-directed covalent labeling of PM, which exploits transient binding to the lipid membrane surface generating a high local dye concentration, thus favoring covalent ligation to random proximal membrane proteins. This concept yielded fluorescent probes for PM called MemGraft, which are built of a dye (cyanine Cy3 or Cy5) bearing a low-affinity membrane anchor and a reactive group: an activated ester or a maleimide. In contrast to specially designed control dyes and commercial Cy3-based labels of amino or thiol groups, MemGraft probes stain efficiently PM, revealing the crucial role of the membrane anchor combined with optimal reactivity of the activated ester or the maleimide. MemGraft probes overcome existing limitations of noncovalent probes, which makes them compatible with cell fixation, permeabilization, trypsinization, and the presence of serum. The latter allows long-term cell tracking and video imaging of cell PM dynamics without the signs of phototoxicity. The covalent strategy also enables staining and long-term tracking of cocultured cells labeled in different colors without exchange of probes. Moreover, the combination of MemGraft-Cy3 and MemGraft-Cy5 probes at different ratios enabled long-term cell barcoding in at least 5 color codes, important for tracking and visualizing multiple populations of cells. Ultimately, we found that the MemGraft strategy enables efficient biotinylation of the cell surface, opening the path to cell surface engineering and cell manipulation.
Collapse
Affiliation(s)
- Nathan Aknine
- Laboratoire de Bioimagerie
et Pathologies, UMR 7021 CNRS, ITI SysChem-Chimie des Systèmes
Complexes, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Remi Pelletier
- Laboratoire de Bioimagerie
et Pathologies, UMR 7021 CNRS, ITI SysChem-Chimie des Systèmes
Complexes, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie
et Pathologies, UMR 7021 CNRS, ITI SysChem-Chimie des Systèmes
Complexes, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| |
Collapse
|
12
|
Anand S, Bhoge PR, Raigawali R, Saladi SV, Kikkeri R. NeoMProbe: a new class of fluorescent cellular and tissue membrane probe. Chem Sci 2024; 15:19962-19969. [PMID: 39568932 PMCID: PMC11575582 DOI: 10.1039/d4sc06225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
The development of long-lasting plasma membrane (PM) and basement membrane (BM) probes is in high demand to advance our understanding of membrane dynamics during differentiation and disease conditions. Herein, we report that the microheterogeneity of heparan sulfate (HS) on fluorescent neo-proteoglycans backbone offers a facile platform for designing membrane probes. Confocal live-cell imaging studies of cancer and normal cell lines with a panel of Cy5 fluorescently tagged neo-proteoglycans confirmed that highly sulfated HS ligands with an l-iduronic acid component (PG@ID-6) induce a prolonged and brighter expression on the PM compared to low-sulfated and uronic acid counterparts. Mono- and multi-photon microscopic imaging of tissue sections with NeoMProbe (PG@ID-6) allowed mapping BM and demonstrated staining efficacy equivalent to antibodies against the BM components. Finally, in vivo, whole-body imaging of NeoMProbe and subsequent tissue section imaging confirmed versatile and efficient membrane mapping by the probe. Overall, NeoMProbe offers a novel toolkit for cell biology and tissue biomembrane imaging.
Collapse
Affiliation(s)
- Saurabh Anand
- Department of Chemistry, Indian Institute of Science Education and Research Pune 411008 India
| | - Preeti Ravindra Bhoge
- Department of Chemistry, Indian Institute of Science Education and Research Pune 411008 India
| | - Rakesh Raigawali
- Department of Chemistry, Indian Institute of Science Education and Research Pune 411008 India
| | - Srinivas Vinod Saladi
- Department of Cell and Cancer Biology, University of Toledo, College of Medicine and Life Sciences Toledo OH 43614 USA
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research Pune 411008 India
- Department of CPAS, Jackson State University Jackson Mississippi 39217 USA
| |
Collapse
|
13
|
Song G, Yang Z, Huang Y, Bai H, Lv F, Wang S. Chemically engineered exogenous organic reactions in living cells for in situ fluorescence imaging and biomedical applications. J Mater Chem B 2024; 12:11852-11866. [PMID: 39485083 DOI: 10.1039/d4tb01925c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The unique microenvironment within living cells, characterized by high glutathione levels, reactive oxygen species concentrations, and active enzymes, facilitates the execution of chemical reactions. Recent advances in organic chemistry and chemical biology have leveraged living cells as reactors for chemical synthesis. This review summarizes recent reports on key intracellular in situ synthesis processes, including the synthesis of near-infrared fluorescent dyes, intracellular oxidative cross-linking, bioorthogonal reactions, and intracellular polymerization reactions. These methods have been applied to fluorescence imaging, tumor treatment, and the enhancement of biological functions. Finally, we discuss the challenges and opportunities in the field of in situ intracellular synthesis. We aim to guide the design of chemical molecules for in situ synthesis, improving the efficiency and control of artificial reactions in living cells, and ultimately achieving cell factory-like exogenous biological synthesis, biological function enhancement, and biomedical applications.
Collapse
Affiliation(s)
- Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Sun ST, Chen JS, Dong BL, Wang MX, Guo X, Chen YY, Zhang MQ, Ren QD, Liu YF, Sun JY, Lin ST, Liu C. An intramolecular charge transfer based fluorescent probe for imaging of OCl . Bioorg Chem 2024; 153:107900. [PMID: 39442460 DOI: 10.1016/j.bioorg.2024.107900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The discovery and utilization of new fluorescent chromophore is indispensable to exploit high performance probes for biological research. Stokes shift is one of the most important properties of chromophore accounting for super-resolution fluorescence imaging. Intramolecular charge transfer (ICT) is one of the fundamental mechanisms for fluorescence that accompanied by large Stokes shifts. Based on the conformational changes between ground and excited states, ICT models can be divided into two types: conformation-steady ICT, whose conformation remains unchanged, and conformation-changeable ICT, which is characterized by the rotation of the chromophore around an axis upon excitation. Herein, we report a new chromophore whose donor and acceptor parts took a butterfly geometry with a dihedral angle of 21° in ground state and a planar conformation upon photo excitation. The bent conformation might be ascribed to the extra conjugated double bond, which made the coplanarity of the chromophore in ground state get worse. The chromophore shows a remarkable Stokes shift over 150 nm and a high fluorescence quantum yieldof 0.62. The limit of detection is 41 nM, which enabled the imaging of basal as well as induced OCl- in different cells. Moreover, the pronounced spectroscopic properties ensure the in vivo monitoring of OCl- in arthritic mice. This finding would shed light on the exploitation of small molecule probes based on new fluorescence chromophore for precise biological imaging.
Collapse
Affiliation(s)
- Shu-Tao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Jia-Shu Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Bao-Li Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Mu-Xuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Ying-Ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Qi-Dong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Yan-Fei Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Sheng-Tian Lin
- Food Hygiene Section, Tai'an Center for Disease Control and Prevention, Tai'an, Shandong 271000, China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China.
| |
Collapse
|
15
|
Wu T, King MR, Qiu Y, Farag M, Pappu RV, Lew MD. Single fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525727. [PMID: 36747818 PMCID: PMC9900924 DOI: 10.1101/2023.01.26.525727] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biomolecular condensates are viscoelastic materials. Simulations predict that fluid-like condensations are defined by spatially inhomogeneous organization of the underlying molecules. Here, we test these predictions using single-fluorogen tracking and super-resolution imaging. Specifically, we leverage the localization and orientational preferences of freely diffusing fluorogens and the solvatochromic effect whereby specific fluorogens are turned on in response to condensate microenvironments. We deployed three different fluorogens to probe the microenvironments and molecular organization of different protein-based condensates. The spatiotemporal resolution and environmental sensitivity afforded by single-fluorogen imaging shows that the internal environments of condensates are more hydrophobic than coexisting dilute phases. Molecules within condensates are organized in a spatially inhomogeneous manner, and this gives rise to slow-moving nanoscale molecular clusters that coexist with fast-moving molecules. Fluorogens that localize preferentially to the interface help us map their distinct features. Our findings provide a structural and dynamical basis for the viscoelasticity of condensates.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- These authors contributed equally: Tingting Wu, Matthew R. King
| | - Matthew R King
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- These authors contributed equally: Tingting Wu, Matthew R. King
| | - Yuanxin Qiu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - Mina Farag
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
| |
Collapse
|
16
|
Sánchez DP, Morice K, Mutovska MG, Khrouz L, Josse P, Allain M, Gohier F, Blanchard P, Monnereau C, Le Bahers T, Sabouri N, Zagranyarski Y, Cabanetos C, Deiana M. Heavy-atom-free π-twisted photosensitizers for fluorescence bioimaging and photodynamic therapy. J Mater Chem B 2024; 12:8107-8121. [PMID: 39041337 DOI: 10.1039/d4tb01014k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As the field of preclinical research on photosensitizers (PSs) for anticancer photodynamic therapy (PDT) continues to expand, a focused effort is underway to develop agents with innovative molecular structures that offer enhanced targeting, selectivity, activation, and imaging capabilities. In this context, we introduce two new heavy-atom-free PSs, DBXI and DBAI, characterized by a twisted π-conjugation framework. This innovative approach enhances the spin-orbit coupling (SOC) between the singlet excited state (S1) and the triplet state (T1), resulting in improved and efficient intersystem crossing (ISC). Both PSs are highly effective in producing reactive oxygen species (ROS), including singlet oxygen and/or superoxide species. Additionally, they also demonstrate remarkably strong fluorescence emission. Indeed, in addition to providing exceptional photocytotoxicity, this emissive feature, generally lacking in other reported structures, allows for the precise monitoring of the PSs' distribution within specific cellular organelles even at nanomolar concentrations. These findings underscore the dual functionality of these PSs, serving as both fluorescent imaging probes and light-activated therapeutic agents, emphasizing their potential as versatile and multifunctional tools in the field of PDT.
Collapse
Affiliation(s)
| | - Korentin Morice
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Monika G Mutovska
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164 Sofia, Bulgaria.
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Pierre Josse
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Frédéric Gohier
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | | | - Cyrille Monnereau
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Tangui Le Bahers
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Yulian Zagranyarski
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164 Sofia, Bulgaria.
| | - Clement Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France.
| | - Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
17
|
Saczuk K, Dudek M, Matczyszyn K, Deiana M. Advancements in molecular disassembly of optical probes: a paradigm shift in sensing, bioimaging, and therapeutics. NANOSCALE HORIZONS 2024; 9:1390-1416. [PMID: 38963132 DOI: 10.1039/d4nh00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The majority of self-assembled fluorescent dyes suffer from aggregation-caused quenching (ACQ), which detrimentally affects their diagnostic and therapeutic effectiveness. While aggregation-induced emission (AIE) active dyes offer a promising solution to overcome this limitation, they may face significant challenges as the intracellular environment often prevents aggregation, leading to disassembly and posing challenges for AIE fluorogens. Recent progress in signal amplification through the disassembly of ACQ dyes has opened new avenues for creating ultrasensitive optical sensors and enhancing phototherapeutic outcomes. These advances are well-aligned with cutting-edge technologies such as single-molecule microscopy and targeted molecular therapies. This work explores the concept of disaggregation-induced emission (DIE), showcasing the revolutionary capabilities of DIE-based dyes from their design to their application in sensing, bioimaging, disease monitoring, and treatment in both cellular and animal models. Our objective is to provide an in-depth comparison of aggregation versus disaggregation mechanisms, aiming to stimulate further advancements in the design and utilization of ACQ fluorescent dyes through DIE technology. This initiative is poised to catalyze scientific progress across a broad spectrum of disciplines.
Collapse
Affiliation(s)
- Karolina Saczuk
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
18
|
Kessler L, Balakrishnan A, Menche T, Wang D, Li Y, Mantel M, Glogger M, Dietz MS, Heilemann M. Self-Quenched Fluorophore-DNA Labels for Super-Resolution Fluorescence Microscopy. J Phys Chem B 2024; 128:6751-6759. [PMID: 38955346 PMCID: PMC11264260 DOI: 10.1021/acs.jpcb.4c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Protein labeling through transient and repetitive hybridization of short, fluorophore-labeled DNA oligonucleotides has become widely applied in various optical super-resolution microscopy methods. The main advantages are multitarget imaging and molecular quantification. A challenge is the high background signal originating from the presence of unbound fluorophore-DNA labels in solution. Here, we report the self-quenching of fluorophore dimers conjugated to DNA oligonucleotides as a general concept to reduce the fluorescence background. Upon hybridization, the fluorescence signals of both fluorophores are restored. We expand the toolbox of fluorophores suitable for self-quenching and report their spectra and hybridization equilibria. We apply self-quenched fluorophore-DNA labels to stimulated emission depletion microscopy and single-molecule localization microscopy and report improved imaging performances.
Collapse
Affiliation(s)
- Laurell
F. Kessler
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Ashwin Balakrishnan
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Tanja Menche
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Dongni Wang
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Yunqing Li
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Maximilian Mantel
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Marius Glogger
- Optical
Imaging Competence Centre, Universität
Erlangen-Nürnberg, Cauerstraße 3, Erlangen 91058, Germany
| | - Marina S. Dietz
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany
| |
Collapse
|
19
|
Fang H, Wang M, Wei P, Liu Q, Su Y, Liu H, Chen Y, Su Z, He W. Molecular probes for super-resolution imaging of drug dynamics. Adv Drug Deliv Rev 2024; 210:115330. [PMID: 38735627 DOI: 10.1016/j.addr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
Collapse
Affiliation(s)
- Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
| | - Pengfan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Zhou W, Tao Y, Qiao Q, Xu N, Li J, Wang G, Fang X, Chen J, Liu W, Xu Z. Cell-Impermeable Buffering Fluorogenic Probes for Live-Cell Super-Resolution Imaging of Plasma Membrane Morphology Dynamics. ACS Sens 2024; 9:3170-3177. [PMID: 38859630 DOI: 10.1021/acssensors.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Super-resolution fluorescence imaging has emerged as a potent tool for investigating the nanoscale structure and function of the plasma membrane (PM). Nevertheless, the challenge persists in achieving super-resolution imaging of PM dynamics due to limitations in probe photostability and issues with cell internalization staining. Herein, we report assembly-mediated buffering fluorogenic probes BMP-14 and BMP-16 exhibiting fast PM labeling and extended retention time (over 2 h) on PM. The incorporation of alkyl chains proves effective in promoting the aggregation of BMP-14 and BMP-16 into nonfluorescent nanoparticles to realize fluorogenicity and regulate the buffering capacity to rapidly replace photobleached probes ensuring stable long-term super-resolution imaging of PM. Utilizing these PM-buffering probes, we observed dynamic movements of PM filopodia and continuous shrinkage, leading to the formation of extracellular vesicles (EVs) using structured illumination microscopy (SIM). Furthermore, we discovered two distinct modes of EV fusion: one involving fusion through adjacent lipids and the other through filamentous lipid traction. The entire process of EV fusion outside the PM was dynamically tracked. Additionally, BMP-16 exhibited a unique capability of inducing single-molecule fluorescence blinking when used for cell membrane staining. This property makes BMP-16 suitable for the PAINT imaging of cell membranes.
Collapse
Affiliation(s)
- Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangying Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangning Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
He Z, Liu D, Li H, Gao W, Li X, Ma H, Shi W. Amphiphilic Rhodamine Fluorescent Probes Combined with Basal Imaging for Fine Structures of the Cell Membrane. Anal Chem 2024; 96:7257-7264. [PMID: 38664861 DOI: 10.1021/acs.analchem.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Confocal fluorescence imaging of fine structures of the cell membrane is important for understanding their biofunctions but is often neglected due to the lack of an effective method. Herein, we develop new amphiphilic rhodamine fluorescent probe RMGs in combination with basal imaging for this purpose. The probes show high signal-to-noise ratio and brightness and low internalization rate, making them suitable for imaging the fine substructures of the cell membrane. Using the representative probe RMG3, we not only observed the cell pseudopodia and intercellular nanotubes but also monitored the formation of migrasomes in real time. More importantly, in-depth imaging studies on more cell lines revealed for the first time that hepatocellular carcinoma cells secreted much more adherent extracellular vesicles than other cell lines, which might serve as a potential indicator of liver cells. We believe that RMGs may be useful for investigating the fine structures of the cell membrane.
Collapse
Affiliation(s)
- Zixu He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - He Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Liu Y, Liang J, Zhu R, Yang Y, Wang Y, Wei W, Li H, Chen L. Application of PROTACs in Target Identification and Target Validation. ACTA MATERIA MEDICA 2024; 3:72-87. [PMID: 39373008 PMCID: PMC11452161 DOI: 10.15212/amm-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
PROTAC, as a novel therapeutic drug model, has received widespread attention from the academic and pharmaceutical industries. At the same time, PROTAC technology has led many researchers to focus on developing chemical biology tool properties due to its unique operating mechanism and protein dynamic regulatory properties. In recent years, the rapid development of PROTAC technology has gradually made it an essential tool for target identification and target validation. To further promote the application of PROTAC tools in drug discovery and basic medical sciences research, this review distinguished between target identification and target validation concepts. It summarized the research progress of PROTAC technology in these aspects.
Collapse
Affiliation(s)
- Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rui Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yali Wang
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
23
|
Gutierrez B, Aggarwal T, Erguven H, Stone MRL, Guo C, Bellomo A, Abramova E, Stevenson ER, Laskin DL, Gow AJ, Izgu EC. Direct assessment of nitrative stress in lipid environments: Applications of a designer lipid-based biosensor for peroxynitrite. iScience 2023; 26:108567. [PMID: 38144454 PMCID: PMC10746523 DOI: 10.1016/j.isci.2023.108567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.
Collapse
Affiliation(s)
- Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - M. Rhia L. Stone
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alyssa Bellomo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily R. Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Debra L. Laskin
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew J. Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
24
|
Samanta S, Lai K, Wu F, Liu Y, Cai S, Yang X, Qu J, Yang Z. Xanthene, cyanine, oxazine and BODIPY: the four pillars of the fluorophore empire for super-resolution bioimaging. Chem Soc Rev 2023; 52:7197-7261. [PMID: 37743716 DOI: 10.1039/d2cs00905f] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the realm of biological research, the invention of super-resolution microscopy (SRM) has enabled the visualization of ultrafine sub-cellular structures and their functions in live cells at the nano-scale level, beyond the diffraction limit, which has opened up a new window for advanced biomedical studies to unravel the complex unknown details of physiological disorders at the sub-cellular level with unprecedented resolution and clarity. However, most of the SRM techniques are highly reliant on the personalized special photophysical features of the fluorophores. In recent times, there has been an unprecedented surge in the development of robust new fluorophore systems with personalized features for various super-resolution imaging techniques. To date, xanthene, cyanine, oxazine and BODIPY cores have been authoritatively utilized as the basic fluorophore units in most of the small-molecule-based organic fluorescent probe designing strategies for SRM owing to their excellent photophysical characteristics and easy synthetic acquiescence. Since the future of next-generation SRM studies will be decided by the availability of advanced fluorescent probes and these four fluorescent building blocks will play an important role in progressive new fluorophore design, there is an urgent need to review the recent advancements in designing fluorophores for different SRM methods based on these fluorescent dye cores. This review article not only includes a comprehensive discussion about the recent developments in designing fluorescent probes for various SRM techniques based on these four important fluorophore building blocks with special emphasis on their effective integration into live cell super-resolution bio-imaging applications but also critically evaluates the background of each of the fluorescent dye cores to highlight their merits and demerits towards developing newer fluorescent probes for SRM.
Collapse
Affiliation(s)
- Soham Samanta
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Kaitao Lai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Feihu Wu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yingchao Liu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Songtao Cai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xusan Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhigang Yang
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
25
|
Liu Y, Shahid MA, Mao H, Chen J, Waddington M, Song KH, Zhang Y. Switchable and Functional Fluorophores for Multidimensional Single-Molecule Localization Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:403-413. [PMID: 37655169 PMCID: PMC10466381 DOI: 10.1021/cbmi.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Multidimensional single-molecule localization microscopy (mSMLM) represents a paradigm shift in the realm of super-resolution microscopy techniques. It affords the simultaneous detection of single-molecule spatial locations at the nanoscale and functional information by interrogating the emission properties of switchable fluorophores. The latter is finely tuned to report its local environment through carefully manipulated laser illumination and single-molecule detection strategies. This Perspective highlights recent strides in mSMLM with a focus on fluorophore designs and their integration into mSMLM imaging systems. Particular interests are the accomplishments in simultaneous multiplexed super-resolution imaging, nanoscale polarity and hydrophobicity mapping, and single-molecule orientational imaging. Challenges and prospects in mSMLM are also discussed, which include the development of more vibrant and functional fluorescent probes, the optimization of optical implementation to judiciously utilize the photon budget, and the advancement of imaging analysis and machine learning techniques.
Collapse
Affiliation(s)
- Yunshu Liu
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Md Abul Shahid
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Hongjing Mao
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Jiahui Chen
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Michael Waddington
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Ki-Hee Song
- Quantum
Optics Research Division, Korea Atomic Energy
Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Yang Zhang
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
26
|
Bertocchi F, Delledonne A, Vargas-Nadal G, Terenziani F, Painelli A, Sissa C. Aggregates of Cyanine Dyes: When Molecular Vibrations and Electrostatic Screening Make the Difference. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10185-10196. [PMID: 37284292 PMCID: PMC10240496 DOI: 10.1021/acs.jpcc.3c01253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Indexed: 06/08/2023]
Abstract
Aggregates of cyanine dyes are currently investigated as promising materials for advanced electronic and photonic applications. The spectral properties of aggregates of cyanine dyes can be tuned by altering the supramolecular packing, which is affected by the length of the dye, the presence of alkyl chains, or the nature of the counterions. In this work, we present a joint experimental and theoretical study of a family of cyanine dyes forming aggregates of different types according to the length of the polymethinic chain. Linear and nonlinear optical spectra of aggregates are rationalized here in terms of an essential-state model accounting for intermolecular interactions together with the molecular polarizability and vibronic coupling. A strategy is implemented to properly account for screening effects, distinguishing between electrostatic intermolecular interactions relevant to the ground state (mean-field effect) and the interactions relevant to the excited states (excitonic effects). To the best of our knowledge, this is the first attempt to simulate nonlinear spectral properties of aggregates of symmetric dyes accounting for molecular vibrations.
Collapse
|
27
|
Prasad PK, Eizenshtadt N, Goliand I, Fellus-Alyagor L, Oren R, Golani O, Motiei L, Margulies D. Chemically programmable bacterial probes for the recognition of cell surface proteins. Mater Today Bio 2023; 20:100669. [PMID: 37334185 PMCID: PMC10275978 DOI: 10.1016/j.mtbio.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Common methods to label cell surface proteins (CSPs) involve the use of fluorescently modified antibodies (Abs) or small-molecule-based ligands. However, optimizing the labeling efficiency of such systems, for example, by modifying them with additional fluorophores or recognition elements, is challenging. Herein we show that effective labeling of CSPs overexpressed in cancer cells and tissues can be obtained with fluorescent probes based on chemically modified bacteria. The bacterial probes (B-probes) are generated by non-covalently linking a bacterial membrane protein to DNA duplexes appended with fluorophores and small-molecule binders of CSPs overexpressed in cancer cells. We show that B-probes are exceptionally simple to prepare and modify because they are generated from self-assembled and easily synthesized components, such as self-replicating bacterial scaffolds and DNA constructs that can be readily appended, at well-defined positions, with various types of dyes and CSP binders. This structural programmability enabled us to create B-probes that can label different types of cancer cells with distinct colors, as well as generate very bright B-probes in which the multiple dyes are spatially separated along the DNA scaffold to avoid self-quenching. This enhancement in the emission signal enabled us to label the cancer cells with greater sensitivity and follow the internalization of the B-probes into these cells. The potential to apply the design principles underlying B-probes in therapy or inhibitor screening is also discussed here.
Collapse
Affiliation(s)
- Pragati K. Prasad
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Noa Eizenshtadt
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Inna Goliand
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| |
Collapse
|
28
|
Abstract
Biomembranes are ubiquitous lipid structures that delimit the cell surface and organelles and operate as platforms for a multitude of biomolecular processes. The development of chemical tools─fluorescent probes─for the sensing and imaging of biomembranes is a rapidly growing research direction, stimulated by a high demand from cell biologists and biophysicists. This Account focuses on advances in these smart molecules, providing a voyage from the cell frontier─plasma membranes (PM)─toward intracellular membrane compartments─organelles. General classification of the membrane probes can be based on targeting principles, sensing profile, and optical response. Probes for PM and organelle membranes are designed based on multiple targeting principles: conjugation with natural lipids or synthetic targeting ligands and in situ cell labeling by bio-orthogonal chemistry, conjugation to protein tags, and receptor-ligand interactions. Thus, to obtain membrane probes targeting PM with selectivity to one leaflet, we designed membrane anchor ligands based on a charged group and an alkyl chain. According to the sensing profile, we define basic membrane markers with constant emission and probes for biophysical and chemical sensing. The markers are built from classical fluorophores, exemplified by a series of bright cyanines and BODIPY dyes bearing the PM anchors (MemBright). Membrane probes for biophysical sensing are based on environment-sensitive fluorophores: (1) polarity-sensitive solvatochromic dyes; (2) viscosity-sensitive fluorescent molecular rotors; (3) mechanosensitive fluorescent flippers; and (4) voltage-sensitive electrochromic dyes. Our solvatochromic probes based on Nile Red (NR12S, NR12A, NR4A), Laurdan (Pro12A), and 3-hydroxyflavone (F2N12S) through polarity-sensing can visualize liquid ordered and disordered phases of lipid membranes, sense lipid order and its heterogeneity in cell PM, detect apoptosis, etc. Chemically sensitive probes, combining a dye, membrane-targeting ligand, and molecular recognition unit, enable the detection of pH, ions, redox species, lipids, and proteins at the biomembrane surface. In terms of the optical response profile, we can identify (1) fluorogenic (turn-on) probes, allowing background-free imaging; (2) ratiometric probes, e.g., solvatochromic probes, which enable ratiometric imaging by changing their emission/excitation color; (3) fluorescence lifetime-responsive probes, e.g., fluorescence molecular rotors and flippers, suitable for fluorescence lifetime imaging (FLIM); and (4) switchable probes, important for single-molecule localization microscopy. We showed that combining solvatochromic probes with on-off switching through a reversible binding specifically to cell PM enables the mapping of their biophysical properties with superior resolution. While the majority of efforts have been focused on PM, the probes for cellular organelles, such as endoplasmic reticulum, mitochondria, Golgi apparatus, etc., emerge rapidly. Thus, nontargeted solvatochromic probes can distinguish organelles by the emission color. Targeted solvatochromic probes based on Nile Red revealed unique signatures of polarity and lipid order of individual organelles and their different sensitivities to oxidative or mechanical stress. Lipid droplets, which are membraneless lipidic structures, constitute another interesting organelle target for probing the cell stress. Currently, we stand at the beginning of a long route with big challenges ahead, in particular (1) to achieve superior organelle specificity; (2) to label specific biomembrane leaflets, notably the inner leaflet of PM; (3) to detect lipid organization in a proximity of specific proteins; and (4) to probe biomembranes in tissues and animals.
Collapse
Affiliation(s)
- Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| |
Collapse
|